
privacyIDEA Authentication System
Release 3.6.2

Cornelius Kölbel

Aug 15, 2021

CONTENTS

1 Table of Contents 3

2 Indices and tables 419

Python Module Index 421

HTTP Routing Table 423

Index 427

i

ii

privacyIDEA Authentication System, Release 3.6.2

privacyIDEA is a modular authentication system. Using privacyIDEA you can enhance your existing applications
like local login, VPN, remote access, SSH connections, access to web sites or web portals with a second factor
during authentication. Thus boosting the security of your existing applications. Originally it was used for OTP
authentication devices. But other “devices” like challenge response and SSH keys are also available. It runs on Linux
and is completely Open Source, licensed under the AGPLv3.

privacyIDEA can read users from many different sources like flat files, different LDAP services, SQL databases and
SCIM services. (see Realms)

Authentication devices to provide two factor authentication can be assigned to those users, either by administrators
or by the users themselves. Policies define what a user is allowed to do in the web UI and what an administrator is
allowed to do in the management interface.

The system is written in python, uses flask as web framework and an SQL database as datastore. Thus it can be
enrolled quite easily providing a lean installation. (see Installation)

CONTENTS 1

privacyIDEA Authentication System, Release 3.6.2

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Overview

privacyIDEA is a system that is used to manage devices for two factor authentication. Using privacyIDEA you can
enhance your existing applications like local login, VPN, remote access, SSH connections, access to web sites or web
portals with a second factor during authentication. Thus boosting the security of your existing applications.

In the beginning there were OTP tokens, but other means to authenticate like SSH keys are added. Other concepts like
handling of machines or enrolling certificates are coming up, you may monitor this development on Github.

privacyIDEA is a web application written in Python based on the flask micro framework. You can use any webserver
with a wsgi interface to run privacyIDEA. E.g. this can be Apache, Nginx or even werkzeug.

A device or item used to authenticate is still called a “token”. All token information is stored in an SQL database,
while you may choose, which database you want to use. privacyIDEA uses SQLAlchemy to map the database to
internal objects. Thus you may choose to run privacyIDEA with SQLite, MySQL, PostgreSQL, Oracle, DB2 or other
database.

The code is divided into three layers, the API, the library and the database layer. Read about it at Code Documentation.
privacyIDEA provides a clean REST API.

Administrators can use a Web UI or a command line client to manage authentication devices. Users can log in to the
Web UI to manage their own tokens.

Authentication is performed via the API or certain plugins for FreeRADIUS, simpleSAMLphp, Wordpress, Contao,
Dokuwiki. . . to either provide default protocols like RADIUS or SAML or to integrate into applications directly.

Due to this flexibility there are also many different ways to install and setup privacyIDEA. We will take a look at
common ways to setup privacyIDEA in the section Installation but there are still many others.

1.2 Installation

The ways described here to install privacyIDEA are

• the installation via the Python Package Index, which can be used on any Linux distribution and

• ready made Ubuntu Packages for Ubuntu 16.04 LTS and 18.04 LTS.

If you want to upgrade please read Upgrading.

3

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://www.sqlalchemy.org/

privacyIDEA Authentication System, Release 3.6.2

1.2.1 Python Package Index

You can install privacyidea usually on any Linux distribution in a python virtual environment. This way you keep all
privacyIDEA code in one defined subdirectory.

privacyIDEA currently runs with Python 2.7 and 3.5, 3.6, 3.7 and 3.8. Other versions either do not work or are not
tested.

You first need to install a package for creating a python virtual environment.

Now you can setup the virtual environment for privacyIDEA like this:

virtualenv /opt/privacyidea

cd /opt/privacyidea
source bin/activate

Note: Some distributions still ship Python 2.7 as the system python. If you want to use Python 3 you can create the
virtual environment like this: virtualenv -p /usr/bin/python3 /opt/privacyidea

Now you are within the python virtual environment and you can run:

pip install privacyidea

in order to install the latest privacyIDEA version from PyPI.

Deterministic Installation

The privacyIDEA package contains dependencies with a minimal required version. However, newest versions of
dependencies are not always tested and might cause problems. If you want to achieve a deterministic installation, you
can now install the pinned and tested versions of the dependencies:

pip install -r lib/privacyidea/requirements.txt

It would even be safer to install the pinned dependencies before installing privacyIDEA. So if you e.g. know that you
are going to install version 3.6 you can run:

pip install -r https://raw.githubusercontent.com/privacyidea/privacyidea/v3.6/
→˓requirements.txt
pip install privacyidea==3.6

Configuration

Database

privacyIDEA makes use of SQLAlchemy to be able to talk to different SQL-based databases. Our best experience is
with MySQL but SQLAlchemy supports many different databases1.

The database server should be installed on the host or be otherwise reachable.

In order for privacyIDEA to use the database, a database user with the appropriate privileges is needed. The following
SQL commands will create the database as well as a user in MySQL:

1 https://docs.sqlalchemy.org/en/13/dialects/index.html

4 Chapter 1. Table of Contents

https://virtualenv.pypa.io/en/stable/
https://pypi.org/project/privacyIDEA
https://www.sqlalchemy.org
https://www.mysql.com/
https://docs.sqlalchemy.org/en/13/dialects/index.html

privacyIDEA Authentication System, Release 3.6.2

CREATE DATABASE pi;
CREATE USER "pi"@"localhost" IDENTIFIED BY "<dbsecret>";
GRANT ALL PRIVILEGES ON pi.* TO "pi"@"localhost";

You must then add the database name, user and password to your pi.cfg. See The Config File for more information on
the configuration.

Setting up privacyIDEA

Additionally to the database connection a new PI_PEPPER and SECRET_KEY must be generated in order to secure
the installation:

PEPPER="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
echo "PI_PEPPER = '$PEPPER'" >> /path/to/pi.cfg
SECRET="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
echo "SECRET_KEY = '$SECRET'" >> /path/to/pi.cfg

An encryption key for encrypting the secrets in the database and a key for signing the Audit log is also needed (the
following commands should be executed inside the virtual environment):

pi-manage create_enckey # encryption key for the database
pi-manage create_audit_keys # key for verification of audit log entries

To create the database tables execute:

pi-manage createdb

Stamping the database to the current database schema version is important for the update process later:

pi-manage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations/

After creating a local administrative user with:

pi-manage admin add <login>

the development server can be started with:

pi-manage runserver

Warning: The development server should not be used for a productive environment.

Webserver

To serve authentication requests and provide the management UI a WSGI capable webserver like Apache2 or nginx is
needed.

Setup and configuration of a webserver can be a complex procedure depending on several parameter (host OS, SSL,
internal network structure, . . .). Some example configuration can be found in the NetKnights GitHub repositories2.
More on the WSGI setup for privacyIDEA can be found in The WSGI Script.

2 https://github.com/NetKnights-GmbH/ubuntu/tree/master/deploy

1.2. Installation 5

https://wsgi.readthedocs.io/en/latest/index.html
https://httpd.apache.org/
https://nginx.org/en
https://github.com/NetKnights-GmbH/ubuntu/tree/master/deploy

privacyIDEA Authentication System, Release 3.6.2

1.2.2 Ubuntu Packages

There are ready made packages for Ubuntu.

Packages of older releases of privacyIDEA up to version 2.23 are available for Ubuntu 14.04 LTS and Ubuntu 16.04
LTS from a public ppa repository1. Using these is deprecated.

For recent releases of privacyIDEA starting from version 3.0 a repository is available which provides packages for
Ubuntu 16.04 LTS, 18.04 LTS and 20.04LTS2.

Note: The packages privacyidea-apache2 and privacyidea-nginx assume that you want to run a pri-
vacyIDEA system. These packages deactivate all other (default) websites. Instead, you may install the package
privacyidea-mysql to install the privacyIDEA application and setup the database without any webserver con-
figuration. After this, you can integrate privacyIDEA with your existing webserver configuration.

Read about the upgrading process in Upgrading a packaged installation.

Installing privacyIDEA 3.0 or higher

Before installing privacyIDEA 3.0 or upgrading to 3.0 you need to add the repository.

Add repository

The packages are digitally signed. First you need to download the signing key:

wget https://lancelot.netknights.it/NetKnights-Release.asc

On Ubuntu 16.04 check the fingerprint of the key:

gpg --with-fingerprint NetKnights-Release.asc

On 18.04 and 20.04 you need to run:

gpg --import --import-options show-only --with-fingerprint NetKnights-Release.asc

The fingerprint of the key is:

pub 4096R/AE250082 2017-05-16 NetKnights GmbH <release@netknights.it>
Key fingerprint = 0940 4ABB EDB3 586D EDE4 AD22 00F7 0D62 AE25 0082

Now add the signing key to your system:

apt-key add NetKnights-Release.asc

Now you need to add the repository for your release (either xenial/16.04LTS, bionic/18.04LTS, focal/20.04LTS)

You can do this by running the command:

add-apt-repository http://lancelot.netknights.it/community/xenial/stable

or:
1 https://launchpad.net/~privacyidea
2 Starting with privacyIDEA 2.15 Ubuntu 16.04 packages are provided. Starting with privacyIDEA 3.0 Ubuntu 16.04 and 18.04 packages are

provided, Ubuntu 14.04 packages are dropped. Starting with privacyIDEA 3.5 Ubuntu 20.04 packages are available.

6 Chapter 1. Table of Contents

https://launchpad.net/~privacyidea

privacyIDEA Authentication System, Release 3.6.2

add-apt-repository http://lancelot.netknights.it/community/bionic/stable

or:

add-apt-repository http://lancelot.netknights.it/community/focal/stable

As an alternative you can add the repo in a dedicated file. Create a new file /etc/apt/sources.list.d/
privacyidea-community.list with the following contents:

deb http://lancelot.netknights.it/community/xenial/stable xenial main

or:

deb http://lancelot.netknights.it/community/bionic/stable bionic main

or:

deb http://lancelot.netknights.it/community/focal/stable focal main

Note: While the link http://lancelot.netknights.it/community/ and its subdirectories are browsable, it is only available
via http! Most browsers will automatically redirect you to https, which will result in a 404 error, since the link
http**s**://lancelot.netknights.it/community/ does not exist. So if you want to browse the repository, take care to do
this via http. This is OK. The apt program fetches all packages via http. If you still fail to fetch packages, you might
most probably need to check your firewall and proxy settings.

Installation of privacyIDEA 3.x

After having added the repositories, run:

apt update
apt install privacyidea-apache2

If you do not like the Apache2 webserver you could alternatively use the meta package privacyidea-nginx.

Now you may proceed to First Steps.

FreeRADIUS

privacyIDEA has a perl module to “translate” RADIUS requests to the API of the privacyIDEA server. This module
plugs into FreeRADIUS. The FreeRADIUS does not have to run on the same machine as privacyIDEA. To install this
module run:

apt-get install privacyidea-radius

For further details see rlm_perl.

1.2. Installation 7

http://lancelot.netknights.it/community/

privacyIDEA Authentication System, Release 3.6.2

1.2.3 CentOS Installation

Step-by-Step installation on CentOS

In this chapter we describe a way to install privacyIDEA on CentOS 7 based on the installation via Python Package
Index. It follows the approach used in the enterprise packages (See RPM Repository).

Setting up the required services

In this guide we use Python 2.7 even though its end-of-life draws closer. CentOS 7 will support Python 2 until the end
of its support frame. Basically the steps for using privacyIDEA with Python 3 are the same but several other packages
need to be installed1.

First the necessary packages need to be installed:

$ yum install mariadb-server httpd mod_wsgi mod_ssl python-virtualenv policycoreutils-
→˓python

Now enable and configure the services:

$ systemctl enable --now httpd
$ systemctl enable --now mariadb
$ mysql_secure_installation

Setup the database for the privacyIDEA server:

$ echo 'create database pi;' | mysql -u root -p
$ echo 'create user "pi"@"localhost" identified by "<dbsecret>";' | mysql -u root -p
$ echo 'grant all privileges on pi.* to "pi"@"localhost";' | mysql -u root -p

If this should be a pinned installation (i.e. with all the package pinned to the versions with which we are develop-
ing/testing), some more packages need to be installed for building these packages:

$ yum install gcc postgresql-devel

Create the necessary directories:

$ mkdir /etc/privacyidea
$ mkdir /opt/privacyidea
$ mkdir /var/log/privacyidea

Add a dedicated user for the privacyIDEA server and change some ownerships:

$ useradd -r -M -d /opt/privacyidea privacyidea
$ chown privacyidea:privacyidea /opt/privacyidea /etc/privacyidea /var/log/privacyidea

1 https://stackoverflow.com/questions/42004986/how-to-install-mod-wgsi-for-apache-2-4-with-python3-5-on-centos-7

8 Chapter 1. Table of Contents

https://stackoverflow.com/questions/42004986/how-to-install-mod-wgsi-for-apache-2-4-with-python3-5-on-centos-7

privacyIDEA Authentication System, Release 3.6.2

Install the privacyIDEA server

Now switch to that user and install the virtual environment for the privacyIDEA server:

$ su - privacyidea

Create the virtual environment:

$ virtualenv /opt/privacyidea

activate it:

$. /opt/privacyidea/bin/activate

and install/update some prerequisites:

(privacyidea)$ pip install -U pip setuptools

If this should be a pinned installation (that is the environment we use to build and test), we need to install some pinned
dependencies first. They should match the version of the targeted privacyIDEA. You can get the latest version tag from
the GitHub release page or the PyPI package history (e.g. “3.3.1”):

(privacyidea)$ export PI_VERSION=3.3.1
(privacyidea)$ pip install -r https://raw.githubusercontent.com/privacyidea/
→˓privacyidea/v${PI_VERSION}/requirements.txt

Then just install the targeted privacyIDEA version with:

(privacyidea)$ pip install privacyidea==${PI_VERSION}

Setting up privacyIDEA

In order to setup privacyIDEA a configuration file must be added in /etc/privacyidea/pi.cfg. It should look
something like this:

import logging
The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super']
Your database
SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://pi:<dbsecret>@localhost/pi'
This is used to encrypt the auth_token
#SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
#PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_AUDIT_SQL_TRUNCATE = True
The Class for managing the SQL connection pool
PI_ENGINE_REGISTRY_CLASS = "shared"
PI_AUDIT_POOL_SIZE = 20
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'
PI_LOGLEVEL = logging.INFO

1.2. Installation 9

https://github.com/privacyidea/privacyidea/releases
https://pypi.org/project/privacyIDEA/#history

privacyIDEA Authentication System, Release 3.6.2

Make sure the configuration file is not world readable:

(privacyidea)$ chmod 640 /etc/privacyidea/pi.cfg

More information on the configuration parameters can be found in The Config File.

In order to secure the installation a new PI_PEPPER and SECRET_KEY must be generated:

(privacyidea)$ PEPPER="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "PI_PEPPER = '$PEPPER'" >> /etc/privacyidea/pi.cfg
(privacyidea)$ SECRET="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "SECRET_KEY = '$SECRET'" >> /etc/privacyidea/pi.cfg

From now on the pi-manage-tool can be used to configure and manage the privacyIDEA server:

(privacyidea)$ pi-manage create_enckey # encryption key for the database
(privacyidea)$ pi-manage create_audit_keys # key for verification of audit log
→˓entries
(privacyidea)$ pi-manage createdb # create the database structure
(privacyidea)$ pi-manage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations/
→˓ # stamp the db

An administrative account is needed to configure and maintain privacyIDEA:

(privacyidea)$ pi-manage admin add <admin-user>

Setting up the Apache webserver

Now We need to set up apache to forward requests to privacyIDEA, so the next steps are executed as the root-user
again.

First the SELinux settings must be adjusted in order to allow the httpd-process to access the database and write to
the privacyIDEA logfile:

$ semanage fcontext -a -t httpd_sys_rw_content_t "/var/log/privacyidea(/.*)?"
$ restorecon -R /var/log/privacyidea

and:

$ setsebool -P httpd_can_network_connect_db 1

If the user store is an LDAP-resolver, the httpd-process also needs to access the ldap ports:

$ setsebool -P httpd_can_connect_ldap 1

If something does not seem right, check for “denied” entries in /var/log/audit/audit.log

Some LDAP-resolver could be listening on a different port. In this case SELinux has to be configured accordingly.
Please check the SELinux audit.log to see if SELinux might block any connection.

For testing purposes we use a self-signed certificate which should already have been created. In production environ-
ments this should be replaced by a certificate from a trusted authority.

To correctly load the apache config file for privacyIDEA we need to disable some configuration first:

10 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

$ cd /etc/httpd/conf.d
$ mv ssl.conf ssl.conf.inactive
$ mv welcome.conf welcome.conf.inactive
$ curl -o privacyidea.conf https://raw.githubusercontent.com/NetKnights-GmbH/centos7/
→˓master/SOURCES/privacyidea.conf.disabled

In order to avoid recreation of the configuration files during update You can create empty dummy files for ssl.conf
and welcome.conf.

And we need a corresponding wsgi-script file in /etc/privacyidea/:

$ cd /etc/privacyidea
$ curl -O https://raw.githubusercontent.com/NetKnights-GmbH/centos7/master/SOURCES/
→˓privacyideaapp.wsgi

If firewalld is running ($ firewall-cmd --state) You need to open the https port to allow connections:

$ firewall-cmd --permanent --add-service=https
$ firewall-cmd --reload

After a restart of the apache webserver ($ systemctl restart httpd) everything should be up and running.
You can log in with Your admin user at https://<privacyidea server> and start enrolling tokens.

RPM Repository

For customers with a valid service level agreement2 with NetKnights there is an RPM repository, that can be used to
easily install and update privacyIDEA on CentOS 7 / RHEL 7. For more information see3.

1.2.4 Upgrading

In any case before upgrading a major version read the document READ_BEFORE_UPDATE which is continuously
updated in the Github repository. Note, that when you are upgrading over several major versions, read all the comments
for all versions.

If you installed privacyIDEA via DEB or RPM repository you can use the normal system ways of apt-get, aptitude
and yum to upgrade privacyIDEA to the current version.

If you want to upgrade an old Ubuntu installation from privacyIDEA 2.23 to privacyIDEA 3.0, please read the Note
on legacy upgrades.

Different upgrade processes

Depending on the way privacyIDEA was installed, there are different recommended update procedures. The following
section describes the process for pip installations. Instructions for packaged versions on RHEL and Ubuntu are found
in Upgrading a packaged installation.

2 https://netknights.it/en/leistungen/service-level-agreements/
3 https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

1.2. Installation 11

https://github.com/privacyidea/privacyidea/blob/master/READ_BEFORE_UPDATE.md
https://netknights.it/en/leistungen/service-level-agreements/
https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

privacyIDEA Authentication System, Release 3.6.2

Upgrading a pip installation

If you install privacyIDEA into a python virtualenv like /opt/privacyidea, you can follow this basic upgrade process.

First you might want to backup your program directory:

tar -zcf privacyidea-old.tgz /opt/privacyidea

and your database:

source /opt/privacyidea/bin/activate
pi-manage backup create

Running upgrade

Starting with version 2.17 the script privacyidea-pip-update performs the update of the python virtualenv
and the DB schema.

Just enter your python virtualenv (you already did so, when running the backup) and run the command:

privacyidea-pip-update

The following parameters are allowed:

-f or --force skips the safety question, if you really want to update.

-s or --skipstamp skips the version stamping during schema update.

-n or --noshema completely skips the schema update and only updates the code.

Manual upgrade

Now you can upgrade the installation:

source /opt/privacyidea/bin/activate
pip install --upgrade privacyidea

Usually you will need to upgrade/migrate the database:

privacyidea-schema-upgrade /opt/privacyidea/lib/privacyidea/migrations

Now you need to restart your webserver for the new code to take effect.

Upgrading a packaged installation

In general, the upgrade of a packaged version of privacyIDEA should be done using the default tools (e.g. apt and
yum). In any case, read the READ_BEFORE_UPDATE file. It is also a good idea to backup your system before
upgrading.

12 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/blob/master/READ_BEFORE_UPDATE.md

privacyIDEA Authentication System, Release 3.6.2

Ubuntu upgrade

If you use the Ubuntu packages in a default setup, the upgrade can should be done using:

apt update
apt dist-upgrade

Note: In case you upgrade from the old privacyIDEA 2.23.x to the version 3.x you have to change from your ppa
sources to the new repositories. If you are upgrading your Ubuntu release, e.g. from 14.04 to 16.04 the principal steps
are

• Bring your Ubuntu 14.04 system up-to-date

• Run the release upgrade (do-release-upgrade)

• Eventually remove old repositories and add recent repositories as described in Add repository.

• Reinstall/Upgrade privacyIDEA 3.x

privacyIDEA 2.x installed the python packages to the system directly. The packages in the repository instead come
with a virtual python environment. This may cause lots of obsolete packages after upgrading which may be removed
with:

apt autoremove

CentOS upgrade

For a Red Hat Enterprise Linux (RHEL) installation run:

yum update

to upgrade.

1.2.5 The Config File

privacyIDEA reads its configuration from different locations:

1. default configuration from the module privacyidea/config.py

2. then from the config file /etc/privacyidea/pi.cfg if it exists and then

3. from the file specified in the environment variable PRIVACYIDEA_CONFIGFILE.

export PRIVACYIDEA_CONFIGFILE=/your/config/file

The configuration is overwritten and extended in each step. I.e. values define in privacyidea/config.py that
are not redefined in one of the other config files, stay the same.

You can create a new config file (either /etc/privacyidea/pi.cfg) or any other file at any location and set the
environment variable. The file should contain the following contents:

The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super', 'administrators']
Your database
SQLALCHEMY_DATABASE_URI = 'sqlite:////etc/privacyidea/data.sqlite'

(continues on next page)

1.2. Installation 13

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

This is used to encrypt the auth_token
SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/home/cornelius/src/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/home/cornelius/src/privacyidea/public.pem'
PI_AUDIT_MODULE = <python audit module>
PI_AUDIT_SQL_URI = <special audit log DB uri>
PI_LOGFILE = '....'
PI_LOGLEVEL = 20
PI_INIT_CHECK_HOOK = 'your.module.function'
PI_CSS = '/location/of/theme.css'
PI_UI_DEACTIVATED = True

Note: The config file is parsed as python code, so you can use variables to set the path and you need to take care for
indentations.

SQLALCHEMY_DATABASE_URI defines the location of your database. You may want to use the MySQL database
or Maria DB. There are two possible drivers, to connect to this database. Please read MySQL database connect string.

The SUPERUSER_REALM is a list of realms, in which the users get the role of an administrator.

PI_INIT_CHECK_HOOK is a function in an external module, that will be called as decorator to token/init and
token/assign. This function takes the request and action (either “init” or “assign”) as arguments and can
modify the request or raise an exception to avoid the request being handled.

If you set PI_DB_SAFE_STORE to True the database layer will in the cases of tokenowner, tokeinfo and
tokenrealm read the id of the newly created database object in an additional SELECT statement and not return it
directly. This is slower but more robust and can be necessary in large redundant setups.

Note: In certain cases (e.g. with Galera Cluster) it can happen that the database node has no information about the
object id directly during the write-process. The database might respond with an error like “object has been deleted or
its row is otherwise not present”. In this case setting PI_DB_SAFE_STORE to True might help.

Logging

There are three config entries, that can be used to define the logging. These are PI_LOGLEVEL, PI_LOGFILE,
PI_LOGCONFIG. These are described in Debugging and Logging.

You can use PI_CSS to define the location of another cascading style sheet to customize the look and feel. Read more
at Themes.

Note: If you ever need passwords being logged in the log file, you may set PI_LOGLEVEL = 9, which is a lower
log level than logging.DEBUG. Use this setting with caution and always delete the logfiles!

privacyIDEA digitally signs the responses. You can disable this using the parameter PI_NO_RESPONSE_SIGN. Set
this to True to suppress the response signature.

14 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

You can set PI_UI_DEACTIVATED = True to deactivate the privacyIDEA UI. This can be interesting if you are
only using the command line client or your own UI and you do not want to present the UI to the user or the outside
world.

Note: The API calls are all still accessible, i.e. privacyIDEA is technically fully functional.

The parameter PI_TRANSLATION_WARNING can be used to provide a prefix, that is set in front of every string in
the UI, that is not translated to the language your browser is using.

Engine Registry Class

The PI_ENGINE_REGISTRY_CLASS option controls the pooling of database connections opened by SQL resolvers
and the SQL audit module. If it is set to "null", SQL connections are not pooled at all and new connections are
opened for every request. If it is set to "shared", connections are pooled on a per-process basis, i.e. every wsgi
process manages one connection pool for each SQL resolver and the SQL audit module. Every request then checks
out connections from this shared pool, which reduces the overall number of open SQL connections. If the option is
left unspecified, its value defaults to "null".

Audit parameters

PI_AUDIT_MODULE lets you specify an alternative auditing module. The default which is shipped with privacyIDEA
is privacyidea.lib.auditmodules.sqlaudit. There is no need to change this, unless you know exactly
what you are doing.

You can change the servername of the privacyIDEA node, which will be logged to the audit log using the variable
PI_AUDIT_SERVERNAME.

You can run the database for the audit module on another database or even server. For this you can specify the database
URI via PI_AUDIT_SQL_URI.

PI_AUDIT_SQL_TRUNCATE = True lets you truncate audit entries to the length of the database fields.

In certain cases when you experiencing problems you may use the parameters PI_AUDIT_POOL_SIZE and
PI_AUDIT_POOL_RECYCLE. However, they are only effective if you also set PI_ENGINE_REGISTRY_CLASS
to "shared".

If you by any reason want to avoid signing audit entries you can set PI_AUDIT_NO_SIGN = True. If
PI_AUDIT_NO_SIGN is set to True audit entries will not be signed and also the signature of audit entries will
not be verified. Audit entries will appears with signature fail.

Monitoring parameters

PI_MONITORING_MODULE lets you specify an alternative statistics monitoring module. The monitoring module
takes care of writing values with timestamps to a store. This is used e.g. by the EventCounter and SimpleStats.

The first available monitoring module is privacyidea.lib.monitoringmodules.sqlstats. It accepts the
following additional parameters:

PI_MONITORING_SQL_URI can hold an alternative SQL connect string. If not specified the normal
SQLALCHEMY_DATABASE_URI is used.

PI_MONITORING_POOL_SIZE (default 20) and PI_MONITORING_POOL_RECYCLE (default 600) let you con-
figure pooling. It uses the settings from the above mentioned PI_ENGINE_REGISTRY_CLASS.

1.2. Installation 15

privacyIDEA Authentication System, Release 3.6.2

Note: A SQL database is probably not the best database to store time series. Other monitoring modules will follow.

privacyIDEA Nodes

privacyIDEA can run in a redundant setup. For statistics and monitoring purposes you can give these different nodes,
dedicated names.

PI_NODE is a string with the name of this very node. PI_NODES is a list of all available nodes in the cluster.

If PI_NODE is not set, then PI_AUDIT_SERVERNAME is used as node name. If this is also not set, the node name
is returned as “localnode”.

Trusted JWTs

Other applications can use the API without the need to call the /auth endpoint. This can be achieved by trusting
private RSA keys to sign JWTs. You can define a list of corresponding public keys that are trusted for certain users
and roles using the parameter PI_TRUSTED_JWT:

PI_TRUSTED_JWT = [{"public_key": "-----BEGIN PUBLIC KEY-----\
→˓nMIIBIjANBgkqhkiG9w0BAQEF...",

"algorithm": "RS256",
"role": "user",
"realm": "realm1",
"username": "userA",
"resolver": "resolverX"}]

This entry means, that the private key, that corresponds to the given public key can sign a JWT, that can impersonate
as the userA in resolver resolverX in realmA.

Note: The username can be a regular expression like “.*”. This way you could allow a private signing key to
impersonate every user in a realm. (Starting with version 3.3)

A JWT can be created like this:

auth_token = jwt.encode(payload={"role": "user",
"username": "userA",
"realm": "realm1",
"resolver": "resolverX"},
key=private_key,
algorithm="RS256")

Note: The user and the realm do not necessarily need to exist in any resolver! But there probably must be certain
policies defined for this user. If you are using an administrative user, the realm for this administrative must be defined
in pi.cfg in the list SUPERUSER_REALM.

16 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

3rd party token types

You can add 3rd party token types to privacyIDEA. Read more about this at New token classes.

To make the new token type available in privacyIDEA, you need to specify a list of your 3rd party token class modules
in pi.cfg using the parameter PI_TOKEN_MODULES:

PI_TOKEN_MODULES = [“myproject.cooltoken”, “myproject.lametoken”]

Custom Web UI

The Web UI is a single page application, that is initiated from the file static/templates/index.html. This
file pulls all CSS, the javascript framework and all the javascript business logic.

You can configure privacyIDEA to use your own WebUI, which is completely different and stored at another location.

You can do this using the following config values:

PI_INDEX_HTML = “myindex.html” PI_STATIC_FOLDER = “mystatic” PI_TEMPLATE_FOLDER =
“mystatic/templates”

In this example the file mystatic/templates/myindex.html would be loaded as the initial single page ap-
plication.

1.2.6 Debugging and Logging

You can set PI_LOGLEVEL to a value 10 (Debug), 20 (Info), 30 (Warning), 40 (Error) or 50 (Critical). If you
experience problems, set PI_LOGLEVEL = 10 restart the web service and resume the operation. The log file
privacyidea.log should contain some clues.

You can define the location of the logfile using the key PI_LOGFILE. Usually it is set to:

PI_LOGFILE = "/var/log/privacyidea/privacyidea.log"

Advanced Logging

You can also define a more detailed logging by specifying a log configuration file. By default the file is /etc/
privacyidea/logging.cfg.

You can change the location of the logging configuration file in The Config File like this:

PI_LOGCONFIG = "/path/to/logging.yml"

Since Version 3.3 the logging configuration can be written in YAML1. Such a YAML based configuration could look
like this:

version: 1
formatters:

detail:
class: privacyidea.lib.log.SecureFormatter
format: '[%(asctime)s][%(process)d][%(thread)d][%(levelname)s][%(name)s:

→˓%(lineno)d] %(message)s'

handlers:
(continues on next page)

1 https://yaml.org/

1.2. Installation 17

https://yaml.org/

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

mail:
class: logging.handlers.SMTPHandler
mailhost: mail.example.com
fromaddr: privacyidea@example.com
toaddrs:
- admin1@example.com
- admin2@example.com
subject: PI Error
formatter: detail
level: ERROR

file:
Rollover the logfile at midnight
class: logging.handlers.RotatingFileHandler
backupCount: 5
maxBytes: 1000000
formatter: detail
level: INFO
filename: /var/log/privacyidea/privacyidea.log

loggers:
The logger name is the qualname
privacyidea:
handlers:
- file
- mail
level: INFO

root:
level: WARNING

Different handlers can be used to send log messages to log-aggregators like splunk2 or logstash3.

The old python logging config file format is also still supported:

[formatters]
keys=detail

[handlers]
keys=file,mail

[formatter_detail]
class=privacyidea.lib.log.SecureFormatter
format=[%(asctime)s][%(process)d][%(thread)d][%(levelname)s][%(name)s:%(lineno)d]
→˓%(message)s

[handler_mail]
class=logging.handlers.SMTPHandler
level=ERROR
formatter=detail
args=('mail.example.com', 'privacyidea@example.com', ['admin1@example.com',\

'admin2@example.com'], 'PI Error')

[handler_file]
Rollover the logfile at midnight
class=logging.handlers.RotatingFileHandler
backupCount=14

(continues on next page)

2 https://www.splunk.com/
3 https://www.elastic.co/logstash

18 Chapter 1. Table of Contents

https://docs.python.org/3/library/logging.config.html#logging-config-fileformat
https://www.splunk.com/
https://www.elastic.co/logstash

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

maxBytes=10000000
formatter=detail
level=DEBUG
args=('/var/log/privacyidea/privacyidea.log',)

[loggers]
keys=root,privacyidea

[logger_privacyidea]
handlers=file,mail
qualname=privacyidea
level=DEBUG

[logger_root]
level=ERROR
handlers=file

Note: These examples define a mail handler, that will send emails to certain email addresses, if an ERROR occurs.
All other DEBUG messages will be logged to a file.

Note: The filename extension is irrelevant in this case

1.2.7 The WSGI Script

Apache2 and Nginx are using a WSGI script to start the application.

This script is usually located at /etc/privacyidea/privacyideaapp.py or /etc/privacyidea/
privacyideaapp.wsgi and has the following contents:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production",

config_file="/etc/privacyidea/pi.cfg")

In the create_app-call you can also select another config file.

Note: This way you can run several instances of privacyIDEA in one Apache2 server by defining several WSGIScrip-
tAlias definitions pointing to different wsgi-scripts, that again reference different config files with different database
definitions.

1.2. Installation 19

privacyIDEA Authentication System, Release 3.6.2

Running Apache instances

To run further Apache instances add additional lines in your Apache config:

WSGIScriptAlias /instance1 /etc/privacyidea1/privacyideaapp.wsgi
WSGIScriptAlias /instance2 /etc/privacyidea2/privacyideaapp.wsgi
WSGIScriptAlias /instance3 /etc/privacyidea3/privacyideaapp.wsgi
WSGIScriptAlias /instance4 /etc/privacyidea4/privacyideaapp.wsgi

It is a good idea to create a subdirectory in /etc for each instance. Each wsgi script needs to point to the corresponding
config file pi.cfg.

Each config file can define its own

• database

• encryption key

• signing key

• . . .

To create the new database you need the command pi-manage. The command pi-manage reads the configuration from
/etc/privacyidea/pi.cfg.

If you want to use another instance with another config file, you need to set an environment variable and create the
database like this:

PRIVACYIDEA_CONFIGFILE=/etc/privacyidea3/pi.cfg pi-manage createdb

This way you can use pi-manage for each instance.

1.2.8 The pi-manage Script

pi-manage is the script that is used during the installation process to setup the database and do many other tasks.

Note: The interesting thing about pi-manage is, that it does not need the server to run as it acts directly on the
database. Therefor you need read access to /etc/privacyidea/pi.cfg and the encryption key.

If you want to use a config file other than /etc/privacyidea/pi.cfg, you can set an environment variable:

PRIVACYIDEA_CONFIGFILE=/home/user/pi.cfg pi-manage

pi-manage always takes a command and sometimes a sub command:

pi-manage <command> [<subcommand>] [<parameters>]

For a complete list of commands and sub commands use the -h parameter.

You can do the following tasks.

20 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Encryption Key

You can create an encryption key and encrypt the encryption key.

Create encryption key:

pi-manage create_enckey [--enckey_b64=BASE64_ENCODED_ENCKEY]

Note: The filename of the encryption key is read from the configuration. The key will not be created, if it already
exists. Optionally, enckey can be passed via –enckey_b64 argument, but it is not recommended. –enckey_b64 must be
a string with 96 bytes, encoded in base 64 in order to avoid ambiguous chars.

The encryption key is a plain file on your hard drive. You need to take care, to set the correct access rights.

You can also encrypt the encryption key with a passphrase. To do this do:

pi-manage encrypt_enckey /etc/privacyidea/enckey

and pipe the encrypted enckey to a new file.

Read more about the database encryption and the enckey in Security Modules.

Backup and Restore

You can create a backup which will be save to /var/lib/privacyidea/backup/.

The backup will contain the database dump and the complete directory /etc/privacyidea. You may choose if you want
to add the encryption key to the backup or not.

Warning: If the backup includes the database dump and the encryption key all seeds of the OTP tokens can be
read from the backup.

As the backup contains the etc directory and the database you only need this tar archive backup to perform a complete
restore.

Rotate Audit Log

Audit logs are written to the database. You can use pi-manage to perform a log rotation.

pi-manage rotate_audit

You can specify a highwatermark and a lowwatermark, age or a config file. Read more about it at Cleaning up entries.

1.2. Installation 21

privacyIDEA Authentication System, Release 3.6.2

API Keys

You can use pi-manage to create API keys. API keys can be used to

1. secure the access to the /validate/check API or

2. to access administrative tasks via the REST API.

You can create API keys for /validate/check using the command

pi-manage api createtoken -r validate

If you want to secure the access to /validate/check you also need to define a policy in scope authorizaion.
See api_key_required.

If you wan to use the API key to automate administrative REST API calls, you can use the command:

pi-manage api createtoken -r admin

This command also generates an admin account name. But it does not create this admin account. You need to do so
using pi-manage admin. You can now use this API key to enroll tokens as administrator.

Note: These API keys are not persistent. They are not stored in the privacyIDEA server. The API key is connected to
the username, that is also generated. This means you have to create an administrative account with this very username
to use this API key for this admin user. You also should set policies for this admin user, so that this API key has only
restricted rights!

Note: The API key is valid for 365 days.

Policies

You can use pi-manage policy to enable, disable, create and delete policies. Using the sub commands
p_export and p_import you can also export a backup of your policies and import this policy set later.

This could also be used to transfer the policies from one privacyIDEA instance to another.

1.2.9 Security Modules

Note: For a normal installation this section can be safely ignored.

privacyIDEA provides a security module that takes care of

• encrypting the token seeds,

• encrypting passwords from the configuration like the LDAP password,

• creating random numbers,

• and hashing values.

Note: The Security Module concept can also be used to add a Hardware Security Module to perform the above
mentioned tasks.

22 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Default Security Module

The default security module is implemented with the operating systems capabilities. The encryption key is located
in a file enckey specified via PI_ENCFILE in the configuration file (The Config File).

This enckey contains three 32byte keys and is thus 96 bytes. This file has to be protected. So the access rights to this
file are set accordingly.

In addition you can encrypt this encryption key with an additional password. In this case, you need to enter the
password each time the privacyIDEA server is restarted and the password for decrypting the enckey is kept in memory.

The pi-manage Script contains the instruction how to encrypt the enckey

After starting the server, you can check, if the encryption key is accessible. To do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule

The output will contain "is_ready": True to signal that the encryption key is operational.

If it is not yet operational, you need to pass the password to the privacyIDEA server to decrypt the encryption key. To
do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule \
--module=default

Note: If the security module is not operational yet, you might get an error message “HSM not ready.”.

PKCS11 Security Module

The PKCS11 Security Module can be used to encrypt data with an hardware security module, that is connected via the
PKCS11 interface. To encrypt and decrypt data you can use an RSA key pair that is stored on the HSM.

To activate this module add the following to the configuration file (The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.pkcs11.PKCS11SecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

PI_HSM_MODULE_KEY_ID is the key id (integer) on the HSM.

AES HSM Security Module

The AES Hardware Security Module can be used to encrypt data with an hardware security module (HSM) connected
via the PKCS11 interface. This module allows to use AES keys stored in the HSM to encrypt and decrypt data.

This module uses three keys, similarly to the content of PI_ENCFILE, identified as token, config and value.

To activate this module add the following to the configuration file (The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.aeshsm.AESHardwareSecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

1.2. Installation 23

privacyIDEA Authentication System, Release 3.6.2

PI_HSM_MODULE_SLOT is the slot on the HSM where the keys are located (default: 1).

PI_HSM_MODULE_PASSWORD is the password to access the slot.

PI_HSM_MODULE_MAX_RETRIES is the number privacyIDEA tries to perform a cryptographic operation like de-
crypt, encrypt or random if the first attempt with the HSM fails. The default value is 5.

Note: Some PKCS11 libraries for network attached HSMs also implement a retry. You should take this into account,
since retries would multiply and it could take a while till a request would finally fail.

PI_HSM_MODULE_KEY_LABEL is the label prefix for the keys on the HSM (default: privacyidea). In order to
locate the keys, the module will search for key with a label equal to the concatenation of this prefix, _ and the key
identifier (respectively token, config and value).

PI_HSM_MODULE_KEY_LABEL_TOKEN is the label for token key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_CONFIG is the label for config key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_VALUE is the label for value key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

After installation you might want to take a look at First Steps.

1.3 First Steps

You installed privacyIDEA successfully according to Installation.

These first steps will guide you through the tasks of logging in to the management web UI, attaching your first users
and enrolling the first token.

1.3.1 Add an administrator

PrivacyIDEA does not come with a pre-defined administrator user. If you just installed privacyIDEA, you need to
create a new one by running:

pi-manage admin add admin -e admin@localhost

To configure privacyIDEA, continue with Login to the Web UI.

Note: Administrator accounts are used for various purposes in privacyIDEA. Once you need another administrator
user, you should consider adding an admin policy to set up the permissions correctly. This is described in Admin
policies.

You may also read So what’s the thing with all the admins?.

24 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.3.2 Login to the Web UI

privacyIDEA has only one login form that is used by administrators and normal users to login. Administrators will
be able to configure the system and to manage all tokens, while normal users will only be able to manage their own
tokens.

You should enter your username with the right realm. You need to append the realm to the username like
username@realm.

Login for administrators

Administrators can authenticate at this login form to access the management UI.

Administrators are stored in the database table Admin and can be managed with the tool:

pi-manage admin ...

The administrator just logs in with his username.

Note: You can configure privacyIDEA to authenticate administrators against privacyIDEA itself, so that administra-
tors need to login with a second factor. See So what’s the thing with all the admins? how to do this.

Login for normal users

Normal users authenticate at the login form to be able to manage their own tokens. By default users need to authenticate
with the password from their user source.

E.g. if the users are located in an LDAP or Active Directory the user needs to authenticate with his LDAP/AD
password.

But before a user can login, the administrator needs to configure realms, which is described in the next step Creating
your first realm.

Note: The user my either login with his password from the userstore or with any of his tokens.

Note: The administrator may change this behaviour by creating an according policy, which then requires the user
to authenticate against privacyIDEA itself. I.e. this way the user needs to authenticate with a second factor/token to
access the self service portal. (see the policy section login_mode)

1.3.3 Creating your first realm

Note: When the administrator logs in and no useridresolver and no realm is defined, a popup appears, which asks
you to create a default realm. During these first steps you may say “No”, to get a better understanding.

Users in privacyIDEA are read from existing sources. See Realms for more information.

In these first steps we will simply read the users from your /etc/passwd file.

1.3. First Steps 25

privacyIDEA Authentication System, Release 3.6.2

Create a UserIdResolver

The UserIdResolver is the connector to the user source. For more information see UserIdResolvers.

• Go to Config -> Users to create a UserIdResolver.

Fig. 1: Create the first UserIdResolver

• Choose New passwdresolver and

• Enter the name “myusers”.

• Save it.

Fig. 2: Create the first UserIdResolver

You just created your first connection to a user source.

26 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Create a Realm

User sources are grouped togeather to a so called “realm”. For more information see Realms.

• Go to Config -> Realms

• Enter “realm1” as the new realm name and select the priority 1.

• Check the resolver “myusers” to be included into this realm.

• Save it.

Fig. 3: Create the first Realm

• Go to Users and you will see the users from the /etc/passwd.

Congratulation! You created your first realm.

You are now ready to enroll a token to a user. Read Enrolling your first token.

1.3.4 Enrolling your first token

You may now enroll a new token. In this example we are using the Google Authenticator App, that you need to install
on your smartphone.

• Go to Tokens -> Enroll Token

• Select the username root. When you start typing “r”, “o”. . . the system will find the user root automatically.

• Enter a PIN. I entered “test” . . .

• . . . and click “Enroll Token”.

• After enrolling the token you will see a QR code, that you need to scan with the Google Authenticator App.

• Click on the serial number link at the top of the dialog.

• Now you see the token details.

• Left to the button “Test Token” you can enter the PIN and the OTP value generated by the Google Authenticator.

• Click the button “Test Token”. You should see a green “matching 1 tokens”.

Congratulations! You just enrolled your first token to a user.

1.3. First Steps 27

privacyIDEA Authentication System, Release 3.6.2

Fig. 4: The users from /etc/passwd

Fig. 5: The Token Enrollment Dialog

28 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 6: Enrollment Success

Fig. 7: Test the Token

1.3. First Steps 29

privacyIDEA Authentication System, Release 3.6.2

Now you are ready to attach applications to privacyIDEA in order to add two factor authentication to those applications.
To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

After these first steps you will be able to start attaching applications to privacyIDEA in order to add two factor
authentication to those applications. You can

• use a PAM module to authenticate with OTP at SSH or local login

• or the RADIUS plugin to configure your firewall or VPN to use OTP,

• or use an Apache2 plugin to do Basic Authentication with OTP.

• You can also setup different web applications to use OTP.

To attach applications read the chapter Application Plugins.

You may also go on reading the next chapter which gives an overview on the webui or you directly skip to Configura-
tion to get a deeper insight in the configuration possibilities.

1.4 WebUI

privacyIDEA comes with a web-based user interface which is used to manage and configure the privacyIDEA server.
It is also used a self-service portal for the average user, who manages his own tokens. This section gives an overview
on the interface and links the respective sections in the documentation.

1.4.1 Dashboard

Starting with version 3.4, privacyIDEA includes a basic dashboard, which can be enabled by the WebUI policy ad-
min_dashboard. The dashboard will be displayed as a starting page for administrators and contains information about
token numbers, authentication requests, recent administrative changes, policies, event handlers and subscriptions. It
uses the usual endpoints to fetch the information, so only information to which an administrator has read access is
displayed in the dashboard.

30 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.4.2 Tokens

The administrator can see all the tokens of all realms he is allowed to manage in the tokenview. Each token can be
located in several realms and be assigned to one user. The administrator can see all the details of the token.

Fig. 8: Tokens overview

The administrator can click on one token, to show more details of this token and to perform actions on this token.
Read on in token_details.

1.4.3 Users

The administrator can see all users fetched by UserIdResolvers located in Realms he is allowed to manage.

Note: Users are only visible, if the useridresolver is located within a realm. If you only define a useridresolver but no
realm, you will not be able to see the users!

You can select one of the realms in the left drop down box. The administrator will only see the realms in the drop
down box, that he is allowed to manage.

Fig. 9: The Users view list all users in a realm.

The list shows the users from the select realm. The username, surname, given name, email and phone are filled
according to the definition of the useridresolver.

Even if a realm contains several useridresolvers all users from all resolvers within this realm are displayed.

Read about the functionality of the users view in the following sections.

1.4. WebUI 31

privacyIDEA Authentication System, Release 3.6.2

User Details

When clicking on a username, you can see the users details and perform several actions on the user.

Fig. 10: User Details.

You see a list of the users tokens and change to the token_details.

Enroll tokens

In the users details view you can enroll additional tokens to the user. In the enrollment dialog the user will be selected
and you only need to choose what tokentype you wish to enroll for this user.

Assign tokens

You can assign a new, already existing token to the user. Just start typing the token serial number. The system will
search for tokens, that are not assigned yet and present you a list to choose from.

32 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

View Audit Log

You can also click View user in Audit log which will take you to the Audit log with a filter on this very user, so that
you will only see audit entries regarding this user.

Edit user

If the user is located in a resolver, that is marked as editable, the administrator will also see a button “Edit User”. To
read more about this, see Manage Users.

Manage Users

Since version 2.4 privacyIDEA allows you to edit users in the configured resolvers. At the moment this is possible for
SQL resolvers.

In the resolver definition you need to check the new checkbox Edit user store.

Fig. 11: Users in SQL can be edited, when checking the checkbox.

In the Users Detail view, the administrator then can click the button “Edit” and modify the user data and also set a new
password.

Fig. 12: Edit the attributes of an existing user.

1.4. WebUI 33

privacyIDEA Authentication System, Release 3.6.2

Note: The data of the user will be modified in the user store (database). Thus the users data, which will be returned
by a resolver, is changed. If the resolver is contained in several realms these changes will reflect in all realms.

If you want to add a user, you can click on Add User in the User View.

Fig. 13: Add a new user.

Users are contained in resolvers and added to resolvers. So you need to choose an existing resolver and not a realm.
The user will be visible in all realms, the resolver is contained in.

Note: Of course you can set policies to allow or deny the administrator these rights.

Simple local users setup

You can setup a local users definition quite easily. Run:

pi-manage resolver create_internal test

This will create a database table “users_test” in your token database. And it will create a resolver “test” that refers to
this database table.

Then you can add this resolver to realm:

pi-manage realm create internal_realm test

Which will create a realm “internal_realm” containing the resolver “test”. Now you can start adding users to this
resolver as described above.

Note: This is an example of how to get started with users quite quickly. Of course you do not need to save the users
table in the same database as the tokens. But in scenarios, where you do not have existing user stores or the user stores
are managed by another department or are not accessible easily this may be sensible way.

34 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Additional user attributes

Since version 3.6 privacyIDEA allows to manage additional internal attributes for users read from resolvers. These
additional attributes are stored and managed within privacyIDEA. Administrators can manage attributes of users (see
policies admin_set_user_attributes and admin_delete_user_attributes) and users can manage their attributes them-
selves (see policies user_set_user_attributes and user_delete_user_attributes).

The additional attributes are added to the user object, whenever a user is used. The attributes are also added in the
response of an authentication request. Thus these attributes could be used to pass additional attributes via the RADIUS
protocol.

The user attributes can also be used as additional conditions in policies (see Policy conditions) in the userinfo section.
This way the additional attributes can be used to group users togeather within privacyIDEA and assign distinct policies
to these groups, without the need to rely on information from the user store.

The policy condition uses attributes (userinfo) from the user store and additional user attributes managed in priva-
cyIDEA at the same time.

Note: If the user already has a certain key in the userinfo that is fetched from the resolver, the additional user
attributes can also be used to overwrite the value from the user store!

1.4.4 Machines

In this view Machines are listed which are fetched by the configured machine resolvers. Machines are only necessary
if you plan special use cases like managing SSH keys or doing offline OTP. In most cases there is no need to manage
machines and this view is empty.

Fig. 14: The Machines view.

1.4.5 Config

The configuration tab is the heart of the privacyIDEA server. It contains the general System Config, allows configuring
Policies which are important to configure behavior of the system, manages the Event Handler and lets the user set up
Periodic Tasks.

1.4. WebUI 35

privacyIDEA Authentication System, Release 3.6.2

Fig. 15: The Config section is the heart of the privacyIDEA server.

36 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.4.6 Audit

In this tab, the Audit log is displayed which lists all events the server registers.

Fig. 16: Events can be displayed in the Audit log.

1.4.7 Components

Starting with privacyIDEA 2.15 you can see privacyIDEA components in the Web UI. privacyIDEA collects authen-
ticating clients with their User Agent. Usually this is a type like PAM, FreeRADIUS, Wordpress, OwnCloud, . . . For
more information, you may read on Application Plugins. This overview helps you to understand your network and
keep track which clients are connected to your network.

Fig. 17: The Components display client applications and subscriptions

Subscriptions, e.g. with NetKnights, the company behind privacyIDEA, can also be viewed and managed in this tab.

1.4. WebUI 37

https://netknights.it/en/

privacyIDEA Authentication System, Release 3.6.2

1.5 Configuration

The configuration menu can be used to define useridresolvers and realms, set the system config and the token config.

It also contains a shortcut to the Policies, Event Handler and Periodic Tasks.

1.5.1 UserIdResolvers

Each organisation or company usually has its users managed at a central location. This is why privacyIDEA does not
provide its own user management but rather connects to existing user stores.

UserIdResolvers are connectors to those user stores, the locations, where the users are managed. Nowadays this can
be LDAP directories or especially Active Directory, some times FreeIPA or the Redhat 389 service. But classically
users are also located in files like /etc/passwd on standalone unix systems. Web services often use SQL databases as
user store.

Today with many more online cloud services SCIM is also an uprising protocol to access userstores.

privacyIDEA already comes with UserIdResolvers to talk to all these user stores:

• Flatfile resolver,

• LDAP resolver,

• SQL resolver,

• SCIM resolver.

• HTTP resolver.

Note: New resolver types (python modules) can be added easily. See the module section for this (UserIdResolvers).

You can create as many UserIdResolvers as you wish and edit existing resolvers. When you have added all config-
uration data, most UIs of the UserIdResolvers have a button “Test resolver”, so that you can test your configuration
before saving it.

Starting with privacyIDEA 2.4 resolvers can be editable, i.e. you can edit the users in the user store. Read more about
this at Manage Users.

Note: Using the policy authentication:otppin=userstore users can authenticate with the password from
their user store, being the LDAP password, SQL password or password from flat file.

Flatfile resolver

Flatfile resolvers read files like /etc/passwd.

Note: The file /etc/passwd does not contain the unix password. Thus, if you create a flatfile resolver from this
file the functionality with otppin=userstore is not available. You can create a flatfile with passwords using the
tool privacyidea-create-pwidresolver-user which is usually found in /opt/privacyidea/bin/.

Create a flat file like this:

38 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea-create-pwidresolver-user -u user2 -i 1002 >> /your/flat/file

LDAP resolver

The LDAP resolver can be used to access any kind of LDAP service like OpenLDAP, Active Directory, FreeIPA,
Penrose, Novell eDirectory.

In case of Active Directory connections you might need to check the box No anonymous referral chasing.
The underlying LDAP library is only able to do anonymous referral chasing. Active Directory will produce an error
in this case1.

The Server URI can contain a comma separated list of servers. The servers are used to create a server pool and are
used with a round robin strategy3.

Example:

ldap://server1, ldaps://server2:1636, server3, ldaps://server4

This will create LDAP requests to

• server1 on port 389

• server2 on port 1636 using SSL

• server3 on port 389

• server4 on port 636 using SSL.

The Bind Type with Active Directory can either be chosen as “Simple” or as “NTLM”.

Note: When using bind type “Simple” you need to specify the Bind DN like
cn=administrator,cn=users,dc=domain,dc=name. When using bind type “NTLM” you need to specify Bind
DN like DOMAINNAME\username.

The LoginName attribute is the attribute that holds the loginname. It can be changed to your needs.

Starting with version 2.20 you can provide a list of attributes in LoginName Attribute like:

sAMAccountName, userPrincipalName

This way a user can login with either his sAMAccountName or his principalName.

The searchfilter is used to list all possible users, that can be used in this resolver. The searchfilter is used for
forward and backward search the object in LDAP.

The attribute mapping maps LDAP object attributes to user attributes in privacyIDEA. privacyIDEA knows
the following attributes:

• phone,

• mobile,

• email,

• surname,

• givenname,

1 https://techcommunity.microsoft.com/t5/azure-active-directory-identity/referral-chasing/ba-p/243177
3 https://github.com/cannatag/ldap3/blob/master/docs/manual/source/server.rst#server-pool

1.5. Configuration 39

https://techcommunity.microsoft.com/t5/azure-active-directory-identity/referral-chasing/ba-p/243177
https://github.com/cannatag/ldap3/blob/master/docs/manual/source/server.rst#server-pool

privacyIDEA Authentication System, Release 3.6.2

Fig. 18: LDAP resolver configuration

40 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• password

• accountExpires.

The above attributes are used for privacyIDEA’s normal functionality and are listed in the userview. However, with
a SAML authentication request user attributes can be returned. (see Include SAML attributes in the authentication
response.). To return arbitrary attributes from the LDAP you can add additional keys to the attribute mapping with a
key, you make up and the LDAP attribute like:

"homedir": "homeDirectory",
"studentID": "objectGUID"

“homeDirectory” and “objectGUID” being the attributes in the LDAP directory and “homedir” and “studentID” the
keys returned in a SAML authentication request.

The MULTIVALUEATTRIBUTES config value can be used to specify a list of user attributes, that should return
a list of values. Imagine you have a user mapping like { "phone" : "telephoneNumber", "email"
: "mail", "surname" : "sn", "group": "memberOf"}. Then you could specify ["email",
"group"] as the multi value attribute and the user object would return the emails and the group memberships of the
user from the LDAP server as a list.

Note: If the MULTIVALUEATTRIBUTES is left blank the default setting is “mobile”. I.e. the mobile number will
be returned as a list.

The MULTIVALUEATTRIBUTES can be well used with the samlcheck endpoint (see Validate endpoints) or with
the policy add_user_in_response.

The UID Type is the unique identifier for the LDAP object. If it is left blank, the distinguished name will be used.
In case of OpenLDAP this can be entryUUID and in case of Active Directory objectGUID. For FreeIPA you can use
ipaUniqueID.

Note: The attributes entryUUID, objectGUID, and ipaUniqueID are case sensitive!

The option No retrieval of schema information can be used to disable the retrieval of schema informa-
tion4 in order to improve performance. This checkbox is deactivated by default and should only be activated after
having ensured that schema information are unnecessary.

The CACHE_TIMEOUT configures a short living per process cache for LDAP users. The cache is not shared between
different Python processes, if you are running more processes in Apache or Nginx. You can set this to 0 to deactivate
this cache.

The Server pool retry rounds and Server pool skip timeout settings configure the behavior of the LDAP server pool.
When establishing a LDAP connection, the resolver uses a round-robin strategy to select a LDAP server from the pool.
If the current server is not reachable, it is removed from the pool and will be re-inserted after the number of seconds
specified in the skip timeout. If the pool is empty after a round, a timeout is added before the next round is started.
The ldap3 module defaults system wide to 10 seconds before starting the next round. This timeout can be changed by
setting PI_LDAP_POOLING_LOOP_TIMEOUT to an integer in seconds in pi.cfg. If no reachable server could be
found after the number of rounds specified in the retry rounds, the request fails.

By default, knowledge about unavailable pool servers is not persisted between requests. Consequently, a new request
may retry to reach unavailable servers, even though the skip timeout has not passed yet. If the Per-process server
pool is enabled, knowledge about unavailable servers is persisted within each process. This setting may improve
performance in situations in which a LDAP server from the pool is down for extended periods of time.

4 https://ldap3.readthedocs.io/en/latest/schema.html

1.5. Configuration 41

https://ldap3.readthedocs.io/en/latest/schema.html

privacyIDEA Authentication System, Release 3.6.2

TLS Version

When using TLS, you may specify the TLS version to use. Starting from version 3.6, privacyIDEA offers TLS v1.3
by default.

TLS certificates

When using TLS with LDAP, you can tell privacyIDEA to verify the certificate. The according checkbox is visible in
the WebUI if the target URL starts with ldaps or when using STARTTLS.

You can specify a file with the trusted CA certificate, that signed the TLS certificate. The default CA filename is
/etc/privacyidea/ldap-ca.crt and can contain a list of base64 encoded CA certificates. PrivacyIDEA will use the CA
file if specifed. If you leave the field empty it will also try the system certificate store (/etc/ssl/certs/ca-certificates.crt
or /etc/ssl/certs/ca-bundle.crt).

Modifying users

Starting with privacyIDEA 2.12, you can define the LDAP resolver as editable. I.e. you can create and modify users
from within privacyIDEA.

There are two additional configuration parameters for this case.

DN Template defines how the DN of the new LDAP object should be created. You can use username, surname,
givenname and basedn to create the distiguished name.

Examples:

CN=<givenname> <surname>,<basedn>

CN=<username>,OU=external users,<basedn>

uid=<username>,ou=users,o=example,c=com

Object Classes defines which object classes the user should be assigned to. This is a comma separated list. The
usual object classes for Active Directory are

top, person, organizationalPerson, user, inetOrgPerson

Expired Users

You may set

“accountExpires”: “accountExpires”

in the attribute mapping for Microsoft Active Directories. You can then call the user listing API with the parameter
accountExpires=1 and you will only see expired accounts.

This functionality is used with the script privacyidea-expired-users.

42 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

SQL resolver

The SQL resolver can be used to retrieve users from any kind of SQL database like MySQL, PostgreSQL, Oracle,
DB2 or sqlite.

Fig. 19: SQL resolver configuration

In the upper frame you need to configure the SQL connection. The SQL resolver uses SQLAlchemy internally. In the
field Driver you need to set a driver name as defined by the SQLAlchemy dialects like “mysql” or “postgres”.

In the SQL attributes frame you can specify how the users are identified.

The Database table contains the users.

Note: At the moment, only one table is supported, i.e. if some of the user data like email address or telephone number
is located in a second table, those data can not be retrieved.

The Limit is the SQL limit for a userlist request. This can be important if you have several thousand user entries in
the table.

The Attribute mapping defines which table column should be mapped to which privayIDEA attribute. The
known attributes are:

1.5. Configuration 43

http://sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_9/dialects/

privacyIDEA Authentication System, Release 3.6.2

• userid (mandatory),

• username (mandatory),

• phone,

• mobile,

• email,

• givenname,

• surname,

• password.

The password attribute is the database column that contains the user password. This is used, if you are doing user
authentication against the SQL database.

Note: There is no standard way to store passwords in an SQL database. privacyIDEA supports the most common
ways like Wordpress hashes starting with $P or $S. Secure hashes starting with {SHA} or salted secure hashes starting
with {SSHA}, {SSHA256} or {SSHA512}. Password hashes of length 64 are interpreted as OTRS sha256 hashes.

You can mark the users as Editable. The Password_Hash_Type can be used to determine which hash algorithm
should be used, if a password of an editable user is written to the database.

You can add an additional Where statement if you do not want to use all users from the table.

The poolSize and poolTimeout determine the pooling behaviour. The poolSize (default 5) determine how
many connections are kept open in the pool. The poolTimeout (default 10) specifies how long the application waits
to get a connection from the pool.

Note: The pooling parameters only have an effect if the PI_ENGINE_REGISTRY_CLASS config option is set
to "shared" (see Engine Registry Class). If you then have several SQL resolvers with the same connection and
pooling settings, they will use the same shared connection pool. If you change the connection settings of an existing
connection, the connection pool for the old connection settings will persist until the respective connections are closed
by the SQL server or the web server is restarted.

Note: The Additional connection parameters refer to the SQLAlchemy connection but are not used at
the moment.

SCIM resolver

SCIM is a “System for Cross-domain Identity Management”. SCIM is a REST-based protocol that can be used to ease
identity management in the cloud.

The SCIM resolver is tested in basic functions with OSIAM2, the “Open Source Idenity & Access Management”.

To connect to a SCIM service you need to provide a URL to an authentication server and a URL to the resource server.
The authentication server is used to authenticate the privacyIDEA server. The authentication is based on a Client
name and the Secret for this client.

User information is then retrieved from the resource server.

The available attributes for the Attribute mapping are:
2 http://osiam.github.io

44 Chapter 1. Table of Contents

http://osiam.github.io

privacyIDEA Authentication System, Release 3.6.2

• username (mandatory),

• givenname,

• surname,

• phone,

• mobile,

• email.

HTTP resolver

Starting with version 3.4 the HTTP resolver is available to retrieve user information from any kind of web service API.
privacyIDEA issues a request to the target service and expects a JSON object in return. The configuration of the HTTP
resolver sets the details of the request in the Request Mapping as well as the mapping of the obtained information
as a Response Mapping.

The Request Mapping is used to build the request issued to the remote API from privacyIDEA’s user information.
For example an endpoint definition:

1.5. Configuration 45

privacyIDEA Authentication System, Release 3.6.2

POST /get-user
customerId=<user_id>&accessKey="secr3t!"

will require a request mapping

{ "customerId": "{userid}", "accessKey": "secr3t!" }

The Response Mapping follows the same rules as the attribute mapping of the SQL resolver. The known attributes
are

• username (mandatory),

• givenname,

• surname,

• phone,

• mobile,

• email.

Nested attributes are also supported using pydash deep path for parsing, e.g.

{ "username": "{Username}", "email": "{Email}", "phone": "{Phone_Numbers.Phone} }

For APIs which return 200 OK also for a negative response, Special error handling can be activated to treat
the request as unsuccessful if the response contains certain content.

The above configuration image will throw an error for a response

{ "success": false, "message": "There was an error!" }

because privacyIDEA will match { "success": false }.

Note: If the HTTP response status is >= 400, the resolver will throw an exception.

User Cache

privacyIDEA does not implement local user management by design and relies on UserIdResolvers to connect to exter-
nal user stores instead. Consequently, privacyIDEA queries user stores quite frequently, e.g. to resolve a login name
to a user ID while processing an authentication request, which may introduce a significant slowdown. In order to
optimize the response time of authentication requests, privacyIDEA 2.19 introduces the user cache which is located
in the local database. It can be enabled in the system configuration (see User Cache expiration in seconds).

A user cache entry stores the association of a login name in a specific UserIdResolver with a specific user ID for a
predefined time called the expiration timeout, e.g. for one week. The processing of further authentication requests by
the same user during this timespan does not require any queries to the user store, but only to the user cache.

The user cache should only be enabled if the association of users and user ID is not expected to change often: In case
a user is deleted from the user store, but can still be found in the user cache and still has assigned tokens, the user will
still be able to authenticate during the expiration timeout! Likewise, any changes to the user ID will not be noticed by
privacyIDEA until the corresponding cache entry expires.

Expired cache entries are not deleted from the user cache table automatically. Instead, the tool
privacyidea-usercache-cleanup should be used to delete expired cache entries from the database, e.g.
in a cronjob.

46 Chapter 1. Table of Contents

https://pydash.readthedocs.io/en/latest/deeppath.html

privacyIDEA Authentication System, Release 3.6.2

However, cache entries are removed at some defined events:

• If a UserIdResolver is modified or deleted, all cache entries belonging to this resolver are deleted.

• If a user is modified or deleted in an editable UserIdResolver, all cache entries belonging to this user are deleted.

Note: Realms with multiple UserIdResolvers are a special case: If a user userX tries to authenticate in a realm
with two UserIdResolvers resolverA (with highest priority) and resolverB, the user cache is queried to find the
user ID of userX in the UserIdResolver resolverA. If the cache contains no matching entry, resolverA itself is
queried for a matching user ID! Only if resolverA does not find a corresponding user, the user cache is queried to
determine the user ID of userX in resolverB. If no matching entry can be found, resolverB is queried.

1.5.2 Realms

Users need to be in realms to have tokens assigned. A user, who is not member of a realm can not have a token
assigned and can not authenticate.

You can combine several different UserIdResolvers (see UserIdResolvers) into a realm. The system knows one default
realm. Users within this default realm can authenticate with their username.

Users in realms, that are not the default realm, need to be additionally identified. Therefor the users need to authenticate
with their username and the realm like this:

user@realm

Relate User to a Realm

There are several options to relate a user to a specific realm during authentication. Usually, if only a login name is
given, the user will be searched in the default realm, indicated with defrealm in the mapping table below.

If a realm parameter is given in a /auth or /validate/check request, it supersedes a possible split realm.

The following table shows different combinations of user(name)-parameter and realm-parameter. Depending on the
Use @ sign to split the username and the realm.-setting, the following table shows in which realm the user will be
searched.

Input parameter Use @ sign to split the username and the realm.-setting
user(name) realm true false
user – user defrealm user defrealm
user realm1 user realm1 user realm1
user unknown – –
user@realm1 – user realm1 user@realm1 defrealm
user@realm1 realm1 user realm1 user@realm1 realm1
user@realm1 realm2 user realm2 user@realm1 realm2
user@realm2 realm1 user realm1 user@realm2 realm1
user@realm1 unknown – –
user@unknown – user@unknown defrealm user@unknown defrealm
user@unknown realm1 user@unknown realm1 user@unknown realm1
user@unknown unknown – –

Note: Be aware that if the Use @ sign to split the username and the realm.-setting is true, a realm parameter is given
and a user name with an @-sign is given where the part after the @ denotes a valid realm, the realm parameter will

1.5. Configuration 47

privacyIDEA Authentication System, Release 3.6.2

take precedence.

List of Realms

The realms dialog gives you a list of the already defined realms.

It shows the name of the realms, whether it is the default realm and the names of the resolvers, that are combined to
this realm.

You can delete or edit an existing realm or create a new realm.

Edit Realm

Each realm has to have a unique name. The name of the realm is case insensitive. If you create a new realm with the
same name like an existing realm, the existing realm gets overwritten.

If you click Edit Realm you can select which userresolver should be contained in this realm. A realm can contain
several resolvers.

Fig. 20: Edit a realm

Resolver Priority

Within a realm you can give each resolver a priority. The priority is used to find a user that is located in several
resolvers. If a user is located in more than one resolver, the user will be taken from the resolver with the lowest
number in the priority.

Priorities are numbers between 1 and 999. The lower the number the higher the priority.

Example:

A user “administrator” is located in a resolver “users” which contains all Active Directory users. And the “adminis-
trator” is located in a resolver “admins”, which contains all users in the Security Group “Domain Admins” from the
very same domain. Both resolvers are in the realm “AD”, “admins” with priority 1 and “users” with priority 2.

Thus the user “administrator@AD” will always resolve to the user located in resolver “admins”.

This is useful to create policies for the security group “Domain Admins”.

Note: A resolver has a priority per realm. I.e. a resolver can have a different priority in each realm.

48 Chapter 1. Table of Contents

mailto:administrator@AD

privacyIDEA Authentication System, Release 3.6.2

Autocreate Realm

If you have a fresh installation, no resolver and no realm is defined. To get you up and running faster, the system will
ask you, if it should create the first realm for you.

If you answer “yes”, it will create a resolver named “deflocal” that contains all users from /etc/passwd and a realm
named “defrealm” with this very resolver.

Thus you can immediately start assigning and enrolling tokens.

If you check “Do not ask again” this will be stored in a cookie in your browser.

Note: The realm “defrealm” will be the default realm. So if you create a new realm manually and want this new
realm to be the default realm, you need to set this new realm to be default manually.

1.5.3 System Config

The system configuration has three logical topics: Settings, token default settings and GUI settings.

Settings

Use @ sign to split the username and the realm.

splitAtSign defines if the username like user@company given during authentication should be split into the
loginname user and the realm name company. In most cases this is the wanted behaviour so this is enabled by default.

But given your users log in with email addresses like user@gmail.com and otheruser@outlook.com you probably do
not want to split.

How a user is related to a realm is described here: Relate User to a Realm

This option also affects the login via the Authentication endpoints

1.5. Configuration 49

privacyIDEA Authentication System, Release 3.6.2

Fig. 21: The system config

50 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Increase the failcounter if the wrong PIN was entered.

If during authentication the given PIN matches a token but the OTP value is wrong the failcounter of the tokens for
which the PIN matches, is increased. If the given PIN does not match any token, by default no failcounter is increased.
The latter behaviour can be adapted by FailCounterIncOnFalsePin. If FailCounterIncOnFalsePin is
set and the given OTP PIN does not match any token, the failcounter of all tokens is increased.

Clear failcounter after x minutes

If the failcounter reaches the maximum the token gets a timestamp, when the max fail count was reached. After the
specified amount of minutes in failcounter_clear_timeout the following will clear the failcounter again:

• A successful authentication with correct PIN and correct OTP value

• A successfully triggered challenge (Usually this means a correct PIN)

• An authentication with a correct PIN, but a wrong OTP value (Only if Resetting Failcounter on correct PIN is
set).

A “0” means automatically clearing the fail counter is not used.

Note: After the maximum failcounter is reached, new requests will not update the mentioned timestamp.

Also see How to mitigate brute force and lock tokens.

Resetting Failcounter on correct PIN

After the above mentioned timeout the failcounter is reset by a successful authentication (correct PIN and OTP value)
or by the correct PIN of a challenge response token.

It can be also reset by the correct PIN of any token, when setting ResetFailcounterOnPIN to True. The default
behaviour is, that the correct PIN of a normal token will not reset the failcounter after the clearing timeout.

Prepend the PIN in front of the OTP value.

Defines if the OTP PIN should be given in front (“pin123456”) or in the back (“123456pin”) of the OTP value.

Include SAML attributes in the authentication response.

Return SAML attributes defines if during an SAML authentication request additional SAML attributes should
be returned. Usually an authentication response only returns true or false.

The SAML attributes are the known attributes that are defined in the attribute mapping e.g. of the LDAP resolver like
email, phone, givenname, surname or any other attributes you fetch from the LDAP directory. For more information
read LDAP resolver.

In addition you can set the parameter ReturnSamlAttributesOnFail. In this case the response contains the
SAML attributes of the user, even if the user failed to authenticate.

1.5. Configuration 51

privacyIDEA Authentication System, Release 3.6.2

Automatic resync during authentication

Automatic resync defines if the system should try to resync a token if a user provides a wrong OTP value. AutoResync
works like this:

• If the counter of a wrong OTP value is within the resync window, the system remembers the counter of the OTP
value for this token in the token info field otp1c.

• Now the user needs to authenticate a second time within auto resync timeout with the next successive
OTP value.

• The system checks if the counter of the second OTP value is the successive value to otp1c.

• If it is, the token counter is set and the user is successfully authenticated.

Note: AutoResync works for all HOTP and TOTP based tokens including SMS and Email tokens.

User Cache expiration in seconds

The setting User Cache expiration in seconds is used to enable the user cache and configure its expi-
ration timeout. If its value is set to 0 (which is the default value), the user cache is disabled. Otherwise, the value
determines the time in seconds after which entries of the user cache expire. For more information read User Cache.

Note: If the user cache is already enabled and you increase the expiration timeout, expired entries that still exist in
the user cache could be considered active again!

Override Authorization Client

Override Authorization client is important with client specific policies (see Policies) and RADIUS
servers or other proxies. In case of RADIUS the authenticating client for the privacyIDEA system will always be
the RADIUS server, which issues the authentication request. But you can allow the RADIUS server IP to send another
client information (in this case the RADIUS client) so that the policy is evaluated for the RADIUS client. A RADIUS
server may add the API parameter client with a new IP address. A HTTP reverse proxy may append the respective
client IP to the X-Forwarded-For HTTP header.

This field takes a comma separated list of sequences of IP Networks mapping to other IP networks.

Examples

10.1.2.0/24 > 192.168.0.0/16

Proxies in the sub net 10.1.2.0/24 may mask as client IPs 192.168.0.0/16. In this case the policies for the corresponding
client in 192.168.x.x apply.

172.16.0.1

The proxy 172.16.0.1 may mask as any arbitrary client IP.

10.0.0.18 > 10.0.0.0/8

The proxy 10.0.0.18 may mask as any client in the subnet 10.x.x.x.

Note that the proxy definitions may be nested in order to support multiple proxy hops. As an example:

52 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

10.0.0.18 > 10.1.2.0/24 > 192.168.0.0/16

means that the proxy 10.0.0.18 may map to another proxy into the subnet 10.1.2.x, and a proxy in this subnet may
mask as any client in the subnet 192.168.x.x.

With the same configuration, a proxy 10.0.0.18 may map to an application plugin in the subnet 10.1.2.x, which may
in turn use a client parameter to mask as any client in the subnet 192.168.x.x.

Token default settings

Reset Fail Counter

DefaultResetFailCount will reset the failcounter of a token if this token was used for a successful authentica-
tion. If not checked, the failcounter will not be resetted and must be resetted manually.

Note: The following settings are token specific value which are set during enrollment. If you want to change this
value of a token later on, you need to change this at the tokeninfo dialog.

Maximum Fail Counter

DefaultMaxFailCount is the maximum failcounter a token may get. If the failcounter exceeds this number the
token can not be used unless the failcounter is resetted.

Note: In fact the failcounter will only increase till this maxfailcount. Even if more failed authentication request occur,
the failcounter will not increase anymore.

Sync Window

DefaultSyncWindow is the window how many OTP values will be calculated during resync of the token.

OTP Length

DefaultOtpLen is the length of the OTP value. If no OTP length is specified during enrollment, this value will be
used.

Count Window

DefaultCountWindow defines how many OTP values will be calculated during an authentication request.

1.5. Configuration 53

privacyIDEA Authentication System, Release 3.6.2

Challenge Validity Time

DefaultChallengeValidityTime is the timeout for a challenge response authentication. If the response is set
after the ChallengeValidityTime, the response is not accepted anymore.

SerialLength

The default length of generated serial numbers is an 8 digit hex string. If you need another length, it can be configured
in the database table Config with the key word SerialLength.

No Authenitcation Counter

Usually privacyIDEA keeps track of how often a token is used for authentication and how often this authentication
was successful. This is a per token counter. This information is written to the token database as a parameter of each
token.

The setting “Do not use an authentication counter per token” (no_auth_counter) means that privacyIDEA does
not track this information at all.

1.5.4 CA Connectors

You can use privacyIDEA to enroll certificates and assign certificates to users.

You can define connections to Certifacte Authorities, that are used when enrolling certificates.

When you enroll a Token of type certificate the Certificate Signing Request gets signed by one of the CAs attached to
privacyIDEA by the CA connectors.

The first CA connector that ships with privacyIDEA is a connector to a local openSSL based Certificate Authority as
shown in figure A local CA definition.

When enrolling a certificate token you can choose, which CA should sign the certificate request.

Local CA Connector

The local CA connector calls a local openssl configuration.

Starting with privacyIDEA version 2.12 an example openssl.cnf is provided in /etc/privacyidea/CA/openssl.cnf.

Note: This configuration and also this description is ment to be as an example. When setting up a productive CA,
you should ask a PKI consultant for assistance.

54 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 22: A local CA definition

1.5. Configuration 55

privacyIDEA Authentication System, Release 3.6.2

Fig. 23: Enrolling a certificate token

56 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Manual Setup

1. Modify the parameters in the file /etc/privacyidea/CA/openssl.cnf according to your needs.

2. Create your CA certificate:

openssl req -days 1500 -new -x509 -keyout /etc/privacyidea/CA/ca.key \
-out /etc/privacyidea/CA/ca.crt \
-config /etc/privacyidea/CA/openssl.cnf

chmod 0600 /etc/privacyidea/CA/ca.key
touch /etc/privacyidea/CA/index.txt
echo 01 > /etc/privacyidea/CA/serial
chown -R privacyidea /etc/privacyidea/CA

3. Now set up a local CA connector within privacyIDEA with the directory /etc/privacyidea/CA and the files
accordingly.

Easy Setup

Starting with privacyIDEA version 2.18 it gets easier to setup local CAs.

You can use the The pi-manage Script tool to setup a new CA like this:

pi-manage ca create myCA

This will ask you for all necessary parameters for the CA and then automatically

1. Create the files for this new CA and

2. Create the CA connector in privacyIDEA.

Management

There are different ways to enroll a certificate token. See Certificate Token.

When an administrator revokes a certificate token, the certificate is revoked and a CRL is created.

Note: privacyIDEA does not create the CRL regularly. The CRL usually has a validity period of 30 days. I.e. you
need to create the CRL on a regular basis. You can use openssl to do so or the pi-manage command.

Starting with version 2.18 the pi-manage command has an additional sub-command ca:

pi-manage ca list

lists all configured CA connectors. You can use the -v switch to get more information.

You can create a new CRL with the command:

pi-manage ca create_crl <CA name>

This command will check the overlap period and only create a new CRL if it is necessary. If you want to force the
creation of the CRL, you can use the switch -f.

For more information on pi-manage see The pi-manage Script.

1.5. Configuration 57

privacyIDEA Authentication System, Release 3.6.2

Templates

The local CA supports a kind of certificate templates. These “templates” are predefined combinations of extensions
and validity days, as they are passed to openssl via the parameters -extensions and -days.

This way the administrator can define certificate templates with certain X.509 extensions like keyUsage, extended-
KeyUsage, CDPs or AIAs and certificate validity periods.

The extensions are defined in YAML file and the location of this file is added to the CA connector definition.

The file can look like this, defining three templates “user”, “webserver” and “template3”:

user: days: 365 extensions: “user”

webserver: days: 750 extensions: “server”

template3: days: 10 extensions: “user”

1.5.5 SMTP server configuration

Starting with privacyIDEA 2.10 you can define SMTP server configurations. SMTP server endpoints.

An SMTP server configuration contains the

• server as FQDN or IP address,

• the port (defaults to 25),

• the sender email address,

• a username and password in case of authentication

• an optional description

• a TLS flag.

Each SMTP server configuration is addressed via a unique identifier. You can then use such a configuration for Email
or SMS token, for PIN handling or in policies for User registration.

Under Config->Sytem->SMTP servers you can get a list of all configured SMTP servers, create new server definitions
and delete them.

Fig. 24: The list of SMTP servers.

In the edit dialog you can enter all necessary attributes to talk to the SMTP server. You can also send a test email, to
verify if your settings are correct.

58 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 25: Edit an existing SMTP server definition.

1.5. Configuration 59

privacyIDEA Authentication System, Release 3.6.2

In case a Job Queue is configured, the SMTP server dialog shows a checkbox that enables sending all emails for the
given SMTP server configuration via the job queue. Note that if the checkbox is checked, any test email will also be
sent via the queue. This also means that privacyIDEA will display a success notice when the job has been sent to the
queue successfully, which does not necessarily mean that the mail was actually sent. Thus, it is important to check
that the test email is actually received.

1.5.6 RADIUS server configuration

At config->system->RADIUS servers the administrator can configure a RADIUS servers to which privacyIDEA can
forward authentication requests.

These RADIUS servers can be used with RADIUS tokens and in the Passthru Policy.

Note: This is meant for outgoing RADIUS requests, not for incoming RADIUS requests! To receive RADIUS
requests you need to install the privacyIDEA FreeRADIUS plugin.

60 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 26: privacyIDEA can reveice incoming RADIUS requests and send outgoing RADIUS requests.

1.5.7 privacyIDEA server configuration

At config->system->privacyIDEA servers the administrator can configure a remote privacyIDEA servers. These can
be used in the Remote or in the Federation Handler Module to forward the authentication request to.

1.5.8 SMS Gateway configuration

You can centrally define SMS gateways that can be used to send SMS with SMS Token or to use the SMS gateway for
sending notifications.

There are different providers (gateways) to deliver SMS.

Firebase Provider

The Firebase provider was added in privacyIDEA 3.0. It sends notifications via the Google Firebase service and this
is used for the Push Token. For an exemplary configuration, you may have a look on the articles on the privacyIDEA
community website tagged with push token.

JSON config file

This is the location of the configuration file of the Firebase service. It has to be located on the privacyIDEA
server.

apikey

The API key your Android app should use to connect to the Firebase service.

1.5. Configuration 61

https://www.privacyidea.org/tag/push-token/

privacyIDEA Authentication System, Release 3.6.2

apiios

The API key your iOS app should use to connect to the Firebase service.

appid

The app ID your Android app should use to connect to the Firebase service.

appidios

The app ID your iOS app should use to connect to the Firebase service.

projectid

The project ID of the Firebase project, that is used to connect the app to.

projectnumber*

The project number of the Firebase project, that is used to connect the app to.

You can get all the necessary values JSON config file, project ID, project number, app ID and API key from your
Firebase console.

HTTP provider

The HTTP provider can be used for any SMS gateway that provides a simple HTTP POST or GET request. This is the
most commonly used provider. Each provider type defines its own set of parameters.

The following parameters can be used. These are parameters, that define the behaviour of the SMS Gateway definition.

CHECK_SSL

If the URL is secured via TLS (HTTPS), you can select, if the certificate should be verified or not.

PROXY, HTTP_PROXY and HTTP_PROXY

You can specify a proxy to connect to the HTTP gateway. Use the specific values to separate HTTP and
HTTPS.

REGEXP

Regular expression to modify the phone number to make it compatible with provider.

HTTP_METHOD

Can be GET or POST.

RETURN_FAIL

If the text of RETURN_FAIL is found in the HTTP response of the gateway privacyIDEA assumes that
the SMS could not be sent and an error occurred.

RETURN_SUCCESS

You can either use RETURN_SUCCESS or RETURN_FAIL. If the text of RETURN_SUCCESS is found
in the HTTP response of the gateway privacyIDEA assumes that the SMS was sent successfully.

TIMEOUT

The timeout for contacting the API and receiving a response.

URL

This is the URL for the gateway.

USERNAME and PASSWORD

These are the username and the password if the HTTP request requires basic authentication.

62 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

PARAMETER

This can contain a dictionary of arbitrary fixed additional parameters. Usually this would also contain an
ID or a password to identify you as a sender.

Options

You can define additional options. These are sent as parameters in the GET or POST request.

Note: The fixed parameters and the options can not have the same name! If you need an options, that has the same
name as a parameter, you must not fill in the corresponding parameter.

Note: You can use the tags {phone} to specify the phone number. The tag {otp} will be replaced simply with the
OTP value or with the contents created by the policy smstext.

Examples

Clickatell

In case of the Clickatell provider the configuration will look like this:

• URL: http://api.clickatell.com/http/sendmsg

• HTTP_METHOD: GET

• RETURN_SUCCESS: ID

Set the additional options to be passed as HTTP GET parameters:

• user: YOU

• password: your password

• api_id: you API ID

• text: “Your OTP value is {otp}”

• to: {phone}

This will consturct an HTTP GET request like this:

http://api.clickatell.com/http/sendmsg?user=YOU&password=YOU&\
api_id=YOUR API ID&text=....&to=....

where text and to will contain the OTP value and the mobile phone number. privacyIDEA will assume a successful
sent SMS if the response contains the text “ID”.

1.5. Configuration 63

http://api.clickatell.com/http/sendmsg

privacyIDEA Authentication System, Release 3.6.2

GTX-Messaging

GTX-Messaging is an SMS Gateway located in Germany.

The configuration looks like this (see2):

• URL: https://http.gtx-messaging.net/smsc.php

• HTTP_METHOD: GET

• CHECK_SSL: yes

• RETURN_SUCCESS: 200 OK

You need to set the additional options:

• user: <your account>

• pass: <the account password>

• to: {phone}

• text: Your OTP value is {otp}.

Note: The user and pass are not the credentials you use to login. You can find the required credentials for sending
SMS in your GTX messaging account when viewing the details of your routing account.

Twilio

You can also use the Twilio service for sending SMS.1.

• URL: https://api.twilio.com/2010-04-01/Accounts/B. . . 8/Messages

• HTTP_METHOD: POST

For basic authentication you need:

• USERNAME: your accountSid

• PASSWORD: your password

Set the additional options as POST parameters:

• From: your Twilio phone number

• Body: {otp}

• To: {phone}

2 https://www.gtx-messaging.com/de/api-docs/http/
1 https://www.twilio.com/docs/api/rest/sending-messages

64 Chapter 1. Table of Contents

https://http.gtx-messaging.net/smsc.php
https://api.twilio.com/2010-04-01/Accounts/B...8/Messages
https://www.gtx-messaging.com/de/api-docs/http/
https://www.twilio.com/docs/api/rest/sending-messages

privacyIDEA Authentication System, Release 3.6.2

Sipgate provider

The sipgate provider connects to https://samurai.sipgate.net/RPC2 and takes only two arguments USERNAME and
PASSWORD.

Parameters:

USERNAME

The sipgate username.

PASSWORD

The sipgate password.

PROXY

You can specify a proxy to connect to the HTTP gateway.

It takes not options.

If you activate debug log level you will see the submitted SMS and the response content from the Sipgate gateway.

SMPP Provider

The SMPP provider was added in privacyIDEA 2.22. It uses an SMS Center via the SMPP protocol to deliver SMS to
the users.

You need to specify the SMSC_HOST and SMSC_PORT to talk to the SMS center. privacyIDEA need to authen-
ticate against the SMS center. For this you can add the parameters SYSTEM_ID and PASSWORD. The parameter
S_ADDR is the sender’s number, shown to the users receiving an SMS. For the other parameters contact your SMS
center operator.

SMTP provider

The SMTP provider sends an email to an email gateway. This is a specified, fixed mail address.

The mail should contain the phone number and the OTP value. The email gateway will send the OTP via SMS to the
given phone number.

BODY

This is the body of the email. You can use this to explain the user, what he should do with this email. You
can use the tags {phone} and {otp} to replace the phone number or the one time password.

MAILTO

This is the address where the email with the OTP value will be sent. Usually this is a fixed email address
provided by your SMTP Gateway provider. But you can also use the tags {phone} and {otp} to replace
the phone number or the one time password.

SMTPIDENTIFIED

Here you can select on of your centrally defined SMTP servers.

SUBJECT

This is the subject of the email to be sent. You can use the tags {phone} and {otp} to replace the
phone number or the one time password.

The default SUBJECT is set to {phone} and the default BODY to {otp}. You may change the SUBJECT and the BODY
accordingly.

1.5. Configuration 65

https://samurai.sipgate.net/RPC2

privacyIDEA Authentication System, Release 3.6.2

Script provider

The Script provider calls a script which can take care of sending the SMS. The script takes the phone number as the
only parameter. The message is expected at stdin.

Scripts are located in the directory /etc/privacyidea/scripts/. You can change this default location by
setting the value in PI_SCRIPT_SMSPROVIDER_DIRECTORY in pi.cfg.

In the configuration of the Script provider you can set two attributes.

SCRIPT

This is the file name of the script without the directory part.

BACKGROUND

Here you can choose, whether the sript should be started and run in the background or if the HTTP requests waits for
the script to finish.

1.5.9 Token configuration

Each of the Token types in privacyIDEA can provide its own configuration dialog.

In this configuration dialog you can define default values for these token types. Some token additionally require
Configuration such as the configuration of an SMTP server.

Fig. 27: Examplary token configuration for an SMS Token

66 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Email Token Configuration

Fig. 28: Email Token configuration

For the email token to work, you have to first setup an SMTP server configuration and link it to the Email Token
configuration at Config -> Tokens -> Email. The UI warns the user if one of these requirements is not fulfilled yet.

The Email OTP token creates a OTP value and sends this OTP value to the email address of the uses. The email can
be triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the email is triggered. The user is denied the access.

Seconds step

In the second step the user authenticates with the OTP PIN and the OTP value he received via email. The user is
granted access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

Configuration Parameters

Concurrent Challenges

The config entry email.concurrent_challenges set in The Config File will save the sent OTP value in the
challenge database. This way several challenges can be open at the same time. The user can answer the challenges in
an arbitrary order. Set this to a true value. Defaults to off.

1.5. Configuration 67

privacyIDEA Authentication System, Release 3.6.2

Deprecated Configuration Parameters

There are few more config entries handled, which are deprecated in recent versions of privacyIDEA.

• email.mailserver - The name or IP address of the mail server that is used to send emails.

• email.port - The port of the mail server.

• email.username - If the mail server requires authentication you need to enter a username. If no username
is entered, no authentication is performed on the mail server.

• email.password - The password of the mail username to send emails.

• email.mailfrom - The mail address of the mail sender. This needs to correspond to the Mail User.

• email.validtime - This is the time in seconds, for how long the sent OTP value is valid. If a user tries to
authenticate with the sent OTP value after this time, authentication will fail.

• email.tls - Whether the mail server should use TLS.

HOTP Token Config

Fig. 29: HOTP Token configuration

SMS Token Configuration

The SMS OTP token creates a OTP value and sends this OTP value to the mobile phone of the user. The SMS can be
triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the SMS is triggered. The user is denied the access.

68 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Second step

In the second step the user authenticates with the OTP PIN and the OTP value he received via SMS. The user is granted
access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

A python SMS provider module defines how the SMS is sent. This can be done using an HTTP SMS Gateway.
Most services like Clickatel or sendsms.de provide such a simple HTTP gateway. Another possibility is to send SMS
via sipgate, which provides an XMLRPC API. The third possibility is to send the SMS via an SMTP gateway. The
provider receives a specially designed email and sends the SMS accordingly. The last possibility to send SMS is to
use an attached GSM modem.

Starting with version 2.13 the SMS configuration has been redesigned. You can now centrally define SMS gate-
ways. These SMS gateways can be used for sending SMS OTP token but also for the event notifications. (See User
Notification Handler Module)

For configuring SMS Gateways read SMS Gateway configuration. I this token configuration you can select on defined
gateway to send SMS for authentication.

Configuration Parameters

Concurrent Challenges

If set to True in The Config File, the config entry sms.concurrent_challenges will save the sent OTP value in
the challenge database. This way several challenges can be open at the same time. The user can answer the challenges
in an arbitrary order. Defaults to off.

TiQR Token Configuration

TiQR Registration Server

You need at least enter the TiQR Registration Server. This is the URL of your privacyIDEA installation, that can be
reached from the smartphone during enrollment. So your smartphone needs to be on the same LAN (WLAN) like the
privacyIDEA server or the enrollment URL needs to be accessible from the internet.

You also need to specify the path, which is usually /ttype/tiqr.

During enrollment the parameter action=metadata and action=enrollment is added.

Note: We do not recommend putting the registration URL on the internet.

1.5. Configuration 69

privacyIDEA Authentication System, Release 3.6.2

Fig. 30: TiQR Token configuration

70 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

TiQR Authentication Server

This is the URL that is used during authentication. This can be another URL than the Registration Server. If it is left
blank, the URL of the Registration Server is used.

During authentication the parameter operation=login is added.

TOTP Token Config

Fig. 31: TOTP Token configuration

U2F Token Config

AppId

You need to configure the AppId of the privacyIDEA server. The AppId is define in the FIDO specification1.

The AppId is the URL of your privacyIDEA and used to find or create the right key pair on the U2F device. The AppId
must correspond the the URL that is used to call the privacyIDEA server.

Note: if you register a U2F device with an AppId https://privacyidea.example.com and try to authenticate at https:
//10.0.0.1, the U2F authentication will fail.

Note: The AppId must not contain any trailing slashes!

1 https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

1.5. Configuration 71

https://privacyidea.example.com
https://10.0.0.1
https://10.0.0.1
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

privacyIDEA Authentication System, Release 3.6.2

Facets

If specifying the AppId as the FQDN you will only be able to authenticate at the privacyIDEA server itself or at any
application in a sub directory on the privacyIDEA server. This is OK, if you are running a SAML IdP on the same
server.

But if you also want to use the U2F token with other applications, you need to specify the AppId like this:

https://privacyidea.example.com/pi-url/ttype/u2f

pi-url is the path, if you are running the privacyIDEA instance in a sub folder.

/ttype/u2f is the endpoint that returns a trusted facets list. Trusted facets are other hosts in the domain example.com.
You need to define a policy that contains a list of the other hosts (u2f_facets).

For more information on AppId and trusted facets see1.

For further details and for information how to add U2F to your application you can see the code documentation at U2F
Token.

Workflow

You can use a U2F token on privacyIDEA and other hosts in the same Domain. To do so you need to do the following
steps:

1. Configure the AppId to reflect your privacyIDEA server:

https://pi.your-network.com/ttype/u2f

Add the path /ttype/u2f is crucial. Otherwise privacyIDEA will not return the trusted facets.

2. Define a policy with the list of trusted facets. (see u2f_facets). Add the FQDNs of the hosts to the policy:

saml.your-network.com otherapp.your-network.com vpn.your-network.com

Note: The privacyIDEA plugin for simpleSAMLphp supports U2F with privacyIDEA starting with version
2.8.

3. Now register a U2F token on https://pi.your-network.com. Due to the trusted facets you will also be able to use
this U2F token on the other hosts.

4. Now got to https://saml.your-network.com and you will be able to authenticate with the very U2F token without
any further registering.

WebAuthn Token Config

Trust Anchor Directory

You may define a directory containing trust roots for attestation certificates.

This should be a path to a local directory on the server which privacyIDEA has read access to. Any certificate in this
directory will be trusted to correctly attest authenticators during enrollment.

This does not need to be set for WebAuthn to work, however without this, privacyIDEA can not check, whether an
attestation certificate is actually trusted (it will still be checked for validity). Therefore it is mandatory to set this, if
webauthn_authenticator_attestation_level is set to “trusted” through policy for any user.

72 Chapter 1. Table of Contents

https://privacyidea.example.com/pi-url/ttype/u2f
https://pi.your-network.com/ttype/u2f
https://pi.your-network.com
https://saml.your-network.com

privacyIDEA Authentication System, Release 3.6.2

WebAuthn Required Policies

For WebAuthn to work, a name and ID for the relying party need to be set. The relying party in WebAuthn represents
the entity the user is registering with. In most cases this will be your company. In larger companies it is often helpful to
segment according to department by setting up multiple ID and name policies for WebAuthn which apply to different
users.

Relying Party ID

The ID of the relying party must be a fully-qualified domain name. Every web-service, where the WebAuthn token
should be used needs to be reachable under a domain name which is a superset (i.e. a subdomain) of this ID. This
means that a WebAuthn token enrolled with a relying party ID of example.com may be used to sign in to priva-
cyidea.example.com and owncloud.example.com. However, this token will not be able to sign in to a service under
example.de, or any other webservice that is not hosted on a subdomain of example.com.

See also: webauthn_relying_party_id.

Relying Party Name

This is a human-readable name to go along with the relying party ID. It will usually be either the name of your company
(if there is just one relying party for the entire company), or the name of the department or other organizational unit
the relying party represents.

See also: webauthn_relying_party_name.

Yubico Cloud mode

The Yubico Cloud mode sends the One Time Password emitted by the yubikey to the Yubico Cloud service or another
(possibly self hosted) validation server.

Fig. 32: Configure the Yubico Cloud mode

To contact the Yubico Cloud service you need to get an API key and a Client ID from Yubico and enter these here in
the config dialog. In that case you can leave the Yubico URL blank and privacyidea will use the Yubico servers.

1.5. Configuration 73

privacyIDEA Authentication System, Release 3.6.2

You can use another validation host, e.g. a self hosted validation server. If you use privacyidea token type yu-
bikey, you can use the URL https://<privacyideaserver>/ttype/yubikey, other validation servers might use https:
//<validationserver>/wsapi/2.0/verify. You’ll get the Client ID and API key from the configuration of your valida-
tion server.

You can get your own API key at1.

Yubikey AES mode

The Yubico AES mode uses the same kind of token as the Yubico Cloud service, but validates the OTP in your local
privacyidea server. So the secrets stay local to your system and are not stored in Yubico’s Cloud service.

Fig. 33: Configure the Yubikey AES mode

You can have more than one Client with a Client ID connect to your server. The Client ID starts with yubikey.apiid.
and is followed by the API ID, which you’ll need to configure your clients. With create new API key you
generate a new API for that specific Client ID. The API key is used to sign the validation request sent to the server
and the server signs the answer too. That way tampering or MITM attacks might be detected. It is possible to validate
token without the API key, but then the request and answer can’t be verify against the key. It is useful to use HTTPS
for your validation requests, but this is another kind of protection.

OTP validation can either use the privacyidea API /validate/check or the Yubikey validation protocol /ttype/yubikey or
- if enabled in your webserver configuration - /wsapi/2.0/verify.

1.5.10 privacyIDEA Appliance

privacyIDEA offers an appliance tool to manage your token administrators, RADIUS clients and also setup MySQL
master-master replication. It can be found in a Github repository1.

This tool is supposed to run on Ubuntu 16.04 LTS or 18.04 LTS. You can find a ready install ISO at another Github
reposity2.

1 https://upgrade.yubico.com/getapikey/.
1 https://github.com/NetKnights-GmbH/privacyidea-appliance
2 https://github.com/NetKnights-GmbH/privacyidea-appliance-iso

74 Chapter 1. Table of Contents

https:/
https:/
https:/
https://upgrade.yubico.com/getapikey/
https://github.com/NetKnights-GmbH/privacyidea-appliance
https://github.com/NetKnights-GmbH/privacyidea-appliance-iso

privacyIDEA Authentication System, Release 3.6.2

Note: The ready made Ubuntu package for the appliance tool is only available with a Service Level Agreement from
the company NetKnights3.

To configure the system, login as the user root on your machine and run the command:

pi-appliance

This will bring you to this start screen.

Fig. 34: Start screen of the appliance setup tool.

You can configure privacyidea settings, the log level, administrators, encryption key and much more. You can configure
the webserver settings and RADIUS clients.

Fig. 35: Configure privacyidea

All changes done in this setup tool are directly read from and written to the corresponding configuration files. The
setup tool parses the original nginx and freeradius configuration files. So there is no additional place where this data
is kept.

3 https://netknights.it/en/produkte/privacyidea/

1.5. Configuration 75

https://netknights.it/en/produkte/privacyidea/

privacyIDEA Authentication System, Release 3.6.2

Fig. 36: You can create new token administrators, delete them and change their passwords.

Fig. 37: In the FreeRADIUS settings you can create and delete RADIUS clients.

76 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Note: You can also edit the clients.conf and other configuration files manually. The setup tool will also read those
manual changes!

Backup and Restore

Starting with version 1.5 the setup tool also supports backup and restore. Backups are written to the directory
/var/lib/privacyidea/backup.

The backup contains all privacyIDEA configuration, the contents of the directory /etc/privacyidea, the encryption key,
the configured administrators, the complete token database (MySQL) and Audit log. Furthermore if you are running
FreeRADIUS the backup also contains the /etc/freeradius/clients.conf file.

Schedulded backup

At the configuration point Configure Backup you can define times when a scheduled backup should be performed.
This information is written to the file /etc/crontab.

You can enter minutes, hours, day of month, month and day of week. If the entry should be valid for each e.g. month
or hour, you need to enter a ‘*’.

In this example the 10 17 * * * (minute=10, hour=17) means to perform a backup each day and each month at 17:10
(5:10pm).

The example 1 10 1 * * (minute=1, hour=10, day of month=1) means to perform a backup on the first day of each
month at 10:01 am.

Thus you could also perform backups only once a week at the weekend.

1.5. Configuration 77

privacyIDEA Authentication System, Release 3.6.2

Fig. 38: Scheduled backup

Immediate backup

If you want to run a backup right now you can choose the entry Backup now.

Restore

The entry View Backups will list all the backups available.

Fig. 39: All available backups

You can select a backup and you are asked if you want to restore the data.

78 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Warning: Existing data is overwritten and will be lost.

Database: Setup Redundancy

The appliance-tool is also capable of setting up a redundant setup between two privacyIDEA nodes in master-master
replicatoin. The administrator sets up redundancy on the first configured node. On the second node the same version
of privacyIDEA needs to be installed. No configuration needs to be done on the second node. The configuration and
the token database is completely copied from the first node to the second node. Possible existing configuration on the
second node will be overwritten during the setup. The appliance-tool can also set up an encrypted VPN that is used
for the replication of the database.

Note: If you choose to use the tinc VPN connection between the nodes and an SSH root login, make sure the services
are installed.

Warning: Existing data on the second node is overwritten and will be lost.

Updates

In this menu, you can setup cronjobs for automatic updates which is seldom used in productive setups.

Audit Rotation

In the Audit Rotation menu, you can setup cronjobs for the audit rotation conditioned by age or the number of entries.
The syntax follows the crontab syntax as explained in Backup and Restore.

Note: Keep in mind that the audit log is synchronized between the nodes in a redundant setup. If you chose to rotate
both audit logs, make sure you do it at different times to avoid synchronisation issues.

1.5. Configuration 79

privacyIDEA Authentication System, Release 3.6.2

1.6 Tokens

PrivacyIDEA is a token management system which supports a great variety of different token types. They each
have different requirements concerning configuration and how the authentication works. This chapter explains the
authentication modes, lists the supported hardware and software tokens and explains how the token types can be used
with privacyIDEA. Tools which facilitate and automate token enrollment are found in Enrollment Tools.

1.6.1 Authentication Modes

privacyIDEA supports a variety of tokens that implement different authentication flows. We call these flows authenti-
cation modes. Currently, tokens may implement three authentication modes, namely authenticate, challenge
and outofband.

Application plugins need to implement the three authentication modes separately, as the modes differ in their user
experience. For example:

• The HOTP token type implements the authenticate mode, which is a single-shot authentication flow. For
each authentication request, the user uses their token to generate a new HOTP value and enters it along with
their OTP PIN. The plugin sends both values to privacyIDEA, which decides whether the authentication is valid
or not.

• The E-Mail and SMS token types implement the challenge mode. With such a token, the authentication flow
consists of two steps: In a first step, the plugin triggers a challenge. privacyIDEA sends the challenge response
— a fresh OTP value — to the user via E-Mail or SMS. In a second step, the user responds to the challenge
by entering the respective OTP value in the plugin’s login form. The plugin sends the challenge response to
privacyIDEA, which decides whether the authentication is valid or not.

• The PUSH and TiQR token types implement the outofband mode. With a PUSH token, the authentication
step also consists of two steps: In a first step, the user triggers a challenge. privacyIDEA pushes the challenge
to the user’s smartphone app. In a second step, the user approves the challenge on their phone, and the app
responds to the challenge by communicating with the privacyIDEA server on behalf of the user. The plugin
periodically queries privacyIDEA to check if the challenge has been answered correctly and the authentication
is valid.

80 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

The following describes the authentication flows of the three authentication modes in more detail.

authenticate mode

The Service is an application that is protected with a second factor by privacyIDEA.

• The user enters a OTP PIN along with an OTP value at the Service.

• The plugin sends a request to the /validate/check endpoint of privacyIDEA:

POST /validate/check

user=<user>&pass=<PIN+OTP>

and privacyIDEA returns whether the authentication request has succeeded or not.

1.6. Tokens 81

privacyIDEA Authentication System, Release 3.6.2

challenge mode

• The plugin triggers a challenge, for example via the /validate/triggerchallenge endpoint:

POST /validate/triggerchallenge

user=<user>

Alternatively, a challenge can be triggered via the /validate/check endpoint with the PIN of a challenge-
response token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id and asks the user for
the challenge response.

• The user enters the challenge response, which we call OTP. The plugin forwards the response to privacyIDEA
along with the transaction ID:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=<OTP>

and privacyIDEA returns whether the authentication request succeeded or not.

82 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

outofband mode

• The plugin triggers a challenge, for example via the /validate/triggerchallenge endpoint:

POST /validate/triggerchallenge

user=<user>

or via the /validate/check endpoint with the PIN of a out-of-band token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id. The plugin may now
periodically query the status of the challenge by polling the /validate/polltransaction endpoint:

GET /validate/polltransaction

transaction_id=<transaction_id>

If this endpoint returns false, the challenge has not been answered yet.

1.6. Tokens 83

privacyIDEA Authentication System, Release 3.6.2

• The user approves the challenge on a separate device, e.g. their smartphone app. The app communicates with a
tokentype-specific endpoint of privacyIDEA, which marks the challenge as answered. The exact communication
depends on the token type.

• Once /validate/polltransaction returns true, the plugin must finalize the authentication via the
/validate/check endpoint:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=

For the pass parameter, the plugin sends an empty string.

This step is crucial because the /validate/check endpoint takes defined authentication and authorization
policies into account to decide whether the authentication was successful or not.

Note: The /validate/polltransaction endpoint does not require authentication and does not in-
crease the failcounters of tokens. Hence, attackers may try to brute-force transaction IDs of correctly answered
challenges. Due to the short expiration timeout and the length of the randomly-generated transaction IDs, it is
unlikely that attackers correctly guess a transaction ID in time. Nonetheless, plugins must not allow users to
inject transaction IDs, and plugins must not leak transaction IDs to users.

1.6.2 Hardware and Software Tokens

privacyIDEA supports a wide variety of tokens by different hardware vendors. It also supports token apps on the
smartphone which handle software tokens.

Tokens not listed, will be probably supported, too, since most tokens use standard algorithms.

If in doubt drop your question on the mailing list.

Hardware Tokens

The following hardware tokens are known to work well.

Yubikey. The Yubikey is supported in all modes: AES (Yubikey), HOTP Token and Yubico Cloud. You can initialize
the Yubikey yourself, so that the secret key is not known to the vendor. The process is described in Yubikey Enrollment
Tools.

eToken Pass. The eToken Pass is a push button token by SafeNet. It can be initialized with a special hardware device.
Or you get a seed file, that you need to import to privacyIDEA. The eToken Pass can run as HOTP Token or TOTP
token.

eToken NG OTP. The eToken NG OTP is a push button token by SafeNet. As it has a USB connector, you can
initialize the token via the USB connector. Thus the hardware vendor does not know the secret key.

DaPlug. The DaPlug token is similar to the Yubikey and can be initialized via the USB connector. The secret key is
not known to the hardware vendor.

Smartdisplayer OTP Card. This is a push button card. It features an eInk display, that can be read very good in all
light condition at all angles. The Smartdisplayer OTP card is initialized at the factory and you get a seed file, that you
need to import to privacyIDEA.

Feitian. The C100 and C200 tokens are classical, reasonably priced push button tokens. The C100 is an HOTP Token
token and the C200 a TOTP token. These tokens are initialized at the factory and you get a seed file, that you need to
import to privacyIDEA.

84 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

U2F. The Yubikey and the Daplug token are known U2F devices to work well with privacyIDEA. See U2F.

Smartphone Apps

privacyIDEA Authenticator. Our own privacyIDEA Authenticator is based on the concept of the Google Authenti-
cator and works with the usual QR Code key URI enrollment. But on top it also allows for a more secure enrollment
process (See Two Step Enrollment). It can be used for HOTP Token, TOTP and Push Token.

Google Authenticator. The Google Authenticator is working well in HOTP Token and TOTP mode. If you choose
“Generate OTP Key on the Server” during enrollment, you can scan a QR Code with the Google Authenticator. See
Enrolling your first token to learn how to do this.

FreeOTP. privacyIDEA is known to work well with the FreeOTP App. The FreeOTP App is a TOTP token. So if you
scan the QR Code of an HOTP token, the OTP will not validate.

mOTP. Several mOTP Apps like “Potato”, “Token2” or “DroidOTP” are supported.

1.6.3 Token types in privacyIDEA

The following list is an overview of the supported token types. For more details, consult the respective description
listed in Tokens. Some token require prior configuration as described in Token type details.

• Four Eyes - Meta token that can be used to create a Two Man Rule.

• Certificate Token - A token that represents a client certificate.

• Email - A token that sends the OTP value to the EMail address of the user.

• HOTP Token - event based One Time Password tokens based on RFC4226.

• Indexed Secret Token - a challenge response token that asks the user for random positions from a secret string.

• Daplug - A hardware OTP token similar to the Yubikey.

• mOTP Token - time based One Time Password tokens for mobile phones based on an a public Algorithm.

• OCRA - A basic OATH Challenge Response token.

• Paper Token (PPR) - event based One Time Password tokens that get you list of one time passwords on a sheet
of paper.

• Push Token - A challenge response token, that sends a challenge to the user’s smartphone and the user simply
accepts the request to login.

• Password Token - A password token used for losttoken scenario.

• Questionnaire Token - A token that contains a list of answered questions. During authentication a random
question is presented as challenge from the list of answered questions is presented. The user must give the right
answer.

• Registration - A special token type used for enrollment scenarios (see Registration Code).

• RADIUS - A virtual token that forwards the authentication request to a RADIUS server.

• registration

• Remote - A virtual token that forwards the authentication request to another privacyIDEA server.

• SMS Token - A token that sends the OTP value to the mobile phone of the user.

• Spass - Simple Pass Token - The simple pass token. A token that has no OTP component and just consists of the
OTP pin or (if otppin=userstore is set) of the userstore password.

1.6. Tokens 85

https://en.wikipedia.org/wiki/Two-man_rule
https://tools.ietf.org/html/rfc4226
http://motp.sourceforge.net

privacyIDEA Authentication System, Release 3.6.2

• SSH Keys - An SSH public key that can be managed and used in conjunction with the Machines concept.

• TAN Token -

• TiQR - A Smartphone token that can be used to login by only scanning a QR code.

• TOTP - time based One Time Password tokens based on RFC6238.

• U2F - A U2F device as specified by the FIDO Alliance. This is a USB device to be used for challenge response
authentication.

• VASCO - The proprietary VASCO token.

• WebAuthn - The WebAuthn or FIDO2 token which can use several different mechanisms like USB tokens or
TPMs to authenticate via public key cryptography.

• Yubikey - A Yubikey hardware initialized in the AES mode, that authenticates against privacyIDEA.

• Yubico - A Yubikey hardware that authenticates against the Yubico Cloud service.

Token type details

Detailed information on the different token types used in privacyIDEA can be found in the following sections.

Four Eyes

Starting with version 2.6 privacyIDEA supports 4 Eyes Token. This is a meta token, that can be used to define, that
two or more token must be used to authenticate. This way, you can set up a “two man rule”.

You can define, from which realm how many unique tokens need to be present, when authenticating:

Fig. 40: Enroll a 4 eyes token

In this example authentication will only be possbile if at least two tokens from realm2 and one token from realm sqlite
are present.

Authentication is done by concatenating the OTP PINs and the OTP values of all tokens. The concatenation is split by
the separator character.

86 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc6238

privacyIDEA Authentication System, Release 3.6.2

It does not matter, in which order the tokens from the realms are entered.

Example

Authentication as:

username: "root@r2"
password: "pin123456 secret789434 key098123"

The three blocks separated by the blank are checked, if they match tokens in the realms realm2 and sqlite.

The response looks like this in case of success:

{
"detail": {
"message": "matching 1 tokens",
"serial": "PI4E000219E1",
"type": "4eyes"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"

}

In case of a failed authentication the response looks like this:

{
"detail": {
"foureyes": "Only found 0 tokens in realm themis",
"message": "wrong otp value",
"serial": "PI4E000219E1",
"type": "4eyes"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"

}

1.6. Tokens 87

privacyIDEA Authentication System, Release 3.6.2

Using Challenge Response mode

Starting with version 3.5 it is also possible to use the 4eyes token in multi challenge-response mode. This way in the
first authentication response the users will either enter the OTP PIN of the 4eyes token or (if the 4eyes token has no
PIN) enter the first token (OTP PIN + OTP value) of one of the users. After this a challenge is sent back, that further
tokens need to be entered. Every one of the required tokens is entered separately.

Note: The 4Eyes Token verifies that unique tokens from each realm are used. I.e. if you require 2 tokens from a
realm, you can not use the same token twice.

Warning: But it does not verify, if these two unique tokens belong to the same user. Thus you should create a
poliy, that in such a realm a user may only have on token.

Certificate Token

Starting with version 2.3 privacyIDEA supports certificates. A user can

• submit a certificate signing request (including an attestation certificate),

• upload a certificate or

• he can generate a certificate signing request in the browser.

privacyIDEA does not sign certificate signing requests itself but connects to existing certificate authorities. To do so,
you need to define CA Connectors.

Certificates are attached to the user just like normal tokens. One token of type certificate always contains only one
certificate.

If you have defined a CA connector you can upload a certificate signing request (CSR) via the Token Enroll Dialog in
the WebUI.

Fig. 41: Upload a certificate signing request

You need to choose the CA connector. The certificate will be signed by the CA accordingly. Just like all other tokens
the certificate token can be attached to a user.

88 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Generating Signing Requests

You can also generate the signing request directly in your browser.

Note: This uses the keygen HTML-tag that is not supported by the Internet Explorer!

Fig. 42: Generate a certificate signing request

When generating the certificate signing request this way the RSA keypair is generated on the client side in the browser.

The certificate is signed by the CA connected by the chosen CA connector.

Afterwards the user can install the certificate into the browser.

Note: By requiring OTP authentication for the users to login to the WebUI (see login_mode) you can have two factor
authentication required for the user to be allowed to enroll a certificate.

Email

The token type email sends the OTP value in an email to the users. You can configure the email server in Email Token
Configuration.

When enrolling an email token, you only need to specify the email address of the user.

The email token is a challenge response token. I.e. when using the OTP PIN in the first authentication request, the
sending of the email will be triggered and in a second authentication request the OTP value from the email needs to be
presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation Email Token.

1.6. Tokens 89

privacyIDEA Authentication System, Release 3.6.2

Fig. 43: Download or install the client certificate

Fig. 44: Enroll an email token

90 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

HOTP Token

The HOTP token is - together with the TOTP - the most common token. The HOTP Algorithm is defined in RFC4225.
The HOTP token is an event base token. The HOTP algorithm has some parameter, like if the generated OTP value
will be 6 digits or 8 digits or if the SHA1 oder the SHA256 hashing algorithm is used.

The HOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

Hardware tokens

There are many token vendors out there who are using the official algorithm to build and sell hardware tokens. You
can get HOTP based hardware tokens in different form factors, as a normal key fob for your key ring or as a display
card for your purse.

Preseeded or Seedable

Usually the hardware tokens like keyfobs or display cards contain a secret key that was generated and implanted at the
vendors factory. The vendor ships the tokens and a seed file.

Warning: In this case privacyIDEA can not guarantee that the secret seed of the token is unique and if you are
using a real strong factor.

privacyIDEA also supports the following seedable HOTP tokens:

• SafeNet eToken NG OTP

• SafeNet eToken Pass

• Yubikey in OATH mode (See Yubikey Enrollment Tools on how to enroll Yubikeys in HOTP mode.)

• Daplug

Those tokens can be initialized by privacyIDEA. Thus you can be sure, that only you are in possession of the secret
seed.

Experiences

The above mentioned hardware tokens are known to play well with privacyIDEA. In theory all OATH/HOTP tokens
should work well with privacyIDEA. However, there are good experiences with Smartdisplayer OTP cards1 and Feitian
C2002 tokens.

1 https://netknights.it/en/produkte/smartdisplayer/
2 https://netknights.it/en/produkte/oath-hotptotp/

1.6. Tokens 91

https://tools.ietf.org/html/rfc4226
https://netknights.it/en/produkte/smartdisplayer/
https://netknights.it/en/produkte/oath-hotptotp/

privacyIDEA Authentication System, Release 3.6.2

Software tokens

Besides the hardware tokens there are also software tokens, implemented as Apps for your smartphone. These software
tokens allow are seedable, so there is no vendor, knowing the secret seed of your OTP tokens.

But software tokens are software after all on device prone to security issues.

Experiences

The Google Authenticator can be enrolled easily in HOTP mode using the QR-Code enrollment Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

Enrollment

Default settings for HOTP tokens can be configured at HOTP Token Config.

Fig. 45: Enroll an HOTP token

During enrollment you can choose, if the server should generate the key or if you have a key, that you can enter into
the enrollment page.

As mentioned earlier, you can also choose the OTP length and the hash algoriothm.

After enrolling the token, the QR-Code, containing the secret seed, is displayed, so that you can scan this with your
smartphone and import it to your app.

Indexed Secret Token

The indexed secret token is a simple challenge response token.

A shared secret like “mySecret” is stored in the privacyIDEA server. When the token is used a challenge is sent to the
user like “Give me the 2nd and the 4th position of your secret”.

Then the user needs to respond with the concatenated characters from the given positions. In the example the response
would be “ye”.

92 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 46: If the server generated the secret seed, you can scan the QR-Code

Certain policies can be used to either preset or force the value of the indexed secret during enrollment to the value of
a user attribute. The attribute specified in these policies is a privacyidea attribute from the attribute mapping of the
corresponding user resolver.

Starting with version 3.4 the Indexed Secret Token can work in multi challenge authentication. This way each
position is asked separately in consecutive challenges. To achieve this, the token needs the tokeninfo value
multichallenge=1.

mOTP Token

mOTP is a time based One Time Password token for mobile phones based on a public Algorithm.

OCRA

Starting with version 2.20 privacyIDEA supports common OCRA tokens. OCRA tokens can not be enrolled via the
UI but need to be imported via a seed file. The OATH CSV seed file would look like this:

<serial>, <seed>, ocra, <ocrasuite>

The OCRA token is a challenge/response token. So the first authentication request issues a challenge. This challenge
is the input for the response of the OCRA token.

For more information see OCRA Token.

1.6. Tokens 93

http://motp.sourceforge.net

privacyIDEA Authentication System, Release 3.6.2

DisplayTAN token

privacyIDEA supports the DisplayTAN1, which can be used for securing banking transactions. The OCRA Algorithm
is used to digitally sign transaction data. The transcation data can be verified by the user on an external banking card.
All cryptographical processes are running on the external card, so that an attacker can not interfere with the user’s
component.

The DisplayTAN cards would be imported into privacyIDEA using the token import.

A banking website will use the Validate endpoints API.

The first call will trigger the challenge response mechanism. The first call needs to contain the transaction data: the
recipient’s account number and amount of money to transfer:

<account>~<amount>~

Please note the tilde:

POST https://privacyidea.example.com/validate/check

pass=pin
serial=ocra1234
challenge=1234567890~423,40~
addrandomchallenge=20
hashchallenge=sha1

This will result in a response like this:

{
"jsonrpc": "2.0",
"signature": "128057011582042...408",
"detail": {

"multi_challenge": [
{
"attributes": {
"qrcode": "data:image/png;base64, iVBORw0KG..RK5CYII=",
"original_challenge": "83507112 ~320,

00~cfbGSopfdDROOMjeu3IR",
"challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
},
"serial": "ocra1234",
"transaction_id": "05221757445370623976"

}
],
"threadid": 139847557760768,
"attributes": {
"qrcode": "data:image/png;base64, iVBO...CYII=",
"original_challenge": "83507112 ~320,00~cfbGSopfdDROOMjeu3IR",
"challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
},
"message": "Please answer the challenge",
"serial": "ocra1234",
"transaction_id": "05221757445370623976"

},
"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",

(continues on next page)

1 http://www.display-tan.com/

94 Chapter 1. Table of Contents

http://www.display-tan.com/

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"result": {
"status": true,
"value": false

},
"time": 1504005837.417481,
"id": 1

}

Note: The response also contains the QR code. The banking website should show the QR code, so that the user can
scan it with the DisplayTAN App to transfer the data to the card.

The user can verify the data on the card and transaction data will be digitally signed on the card. The card will calculate
an OTP value for this very transaction.

The banking website can now send the OTP value to privacyIDEA to check, if the user authorized the correct transac-
tion data. The banking site will issue this request:

POST https://privacyidea.example.com/validate/check

serial=ocra1234
transaction_id=05221757445370623976
pass=54006635

privcyIDEA will respond with a usual authentication response:

{
"jsonrpc": "2.0",
"signature": "162....2454851",
"detail": {

"message": "Found matching challenge",
"serial": "ocra1234",
"threadid": 139847549368064

},
"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",
"result": {

"status": true,
"value": true

},
"time": 1504005901.823667,
"id": 1

}

Paper Token (PPR)

The token type paper lets you print out a list of OTP values, which you can use to authenticate and cross of the list.

The paper token is based on the HOTP Token. I.e. you need to use one value after the other.

1.6. Tokens 95

privacyIDEA Authentication System, Release 3.6.2

Customization

CSS

You can customize the look and feel of the printed paper token. You may change the style sheet papertoken.css
which is only loaded for printing.

Header and Footer

Then you may add a header in front and a footer behind the table containing the OTP values.

Create the files

• static/customize/views/includes/token.enrolled.paper.top.html

• static/customize/views/includes/token.enrolled.paper.bottom.html

to display the contents before (top) and behind (bottom) the table.

Within these html templates you may use angular replacements. To get the serial number of the token use:

{{ tokenEnrolled.serial }}

to get the name and realm of the user use:

{{ newUser.user }}
{{ newUser.realm }}

A good example for the token.enrolled.paper.top.html is:

<h1>{{ enrolledToken.serial }}</h1>
<p>

Please use the OTP values of your paper token in order one after the
other. You may scratch of or otherwise mark used values.

</p>

A good example for the token.enrolled.paper.bottom.html is:

<p>
The paper token is a weak second factor. Please assure, that no one gets
hold of this paper and can make a copy of it.

</p>
<p>

Store it at a safe location.
</p>

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

96 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

OTP Table

If you want to change the complete layout of the table you need to overwrite the file static/components/
token/views/token.enrolled.paper.html. The scope variable:

{{ enrolledToken.otps }}

contains an object with the complete OTP value list.

Push Token

The push token uses the privacyIDEA Authenticator app. You can get it from Google Play Store or Apple App Store.

The token type push sends a cryptographic challenge via the Google Firebase service to the smartphone of the user.
This push notification is displayed on the smartphone of the user with a text that tells the user that he or somebody
else requests to login to a service. The user can simply accept this request. The smartphone sends a cryptographically
signed response to the privacyIDEA server and the login request gets marked as confirmed in the privacyIDEA server.
The application checks for this mark and logs the user in automatically. For an example of how the components in a
typical deployment of push tokens interact reference the following diagram.

To allow privacyIDEA to send push notifications, a Firebase service needs to be configured. To do so see Firebase
Provider.

The PUSH token implements the outofband mode.

Configuration

The minimum necessary configuration is an enrollment policy push_firebase_configuration.

With the authentication policies push_text_on_mobile and push_title_on_mobile you can define the contents of
the push notification.

If you want to use push tokens with legacy applications that are not yet set up to be compatible with out-of-band
tokens, you can set the authentication policy push_wait. Please note, that setting this policy can interfere with
other tokentypes and will impact performance, as detailed in the documentation for push_wait.

Enrollment

The enrollment of the push token happens in two steps.

Step 1

The user scans a QR code. This QR code contains the basic information for the push token and a enrollment URL, to
which the smartphone should respond in the enrollment process.

The smartphone stores this data and creates a new key pair.

1.6. Tokens 97

https://play.google.com/store/apps/details?id=it.netknights.piauthenticator
https://apps.apple.com/us/app/privacyidea-authenticator/id1445401301

privacyIDEA Authentication System, Release 3.6.2

Fig. 47: A typical push token deployment
98 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Step 2

The smartphone sends its Firebase ID, the public key of the keypair, the serial number and an enrollment credential
back to the enrollment URL of the privacyIDEA server.

The server responds with it’s public key for this token.

Authentication

Triggering the challenge

The authentication request is triggered by an application just the same like for any challenge response tokens either
with the PIN to the endpoint /validate/check or via the endpoint /validate/triggerchallenge.

privacyIDEA sends a cryptographic challenge with a signature to the Firebase service. The firebase service sends the
notification to the smartphone, which can verify the signature using the public key from enrollment step 2.

Accepting login

The user can now accept the login by tapping on the push notification. The smartphone sends the signed challenge
back to the authentication URL of the privacyIDEA server. The privacyIDEA server verifies the response and marks
this authentication request as successfully answered.

In some cases the push notification does not reach the smartphone. Since version 3.4 the smartphone can also poll for
active challenges.

Login to application

The application can check with the orignial transaction ID with the privacyIDEA server, if the challenge has been
successfully answered and automatically login the user.

More information

For a more detailed insight see the code documentation for the Push Token.

For an in depth view of the protocol see the github issue and the wiki page.

Information on the polling mechanism can be found in the corresponding wiki page.

For recent information and a setup guide, visit the community blog

Password Token

This token is not enrolled by the user. It is automatically created whenever an authorized user initiates a losttoken
scenario.

1.6. Tokens 99

https://github.com/privacyidea/privacyidea/issues/1342
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken).https://www.privacyidea.org/tag/push-token/
https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll
https://www.privacyidea.org/tag/push-token/

privacyIDEA Authentication System, Release 3.6.2

Questionnaire Token

The administrator can define a list of questions and also how many answers to the questions a user needs to define.

During enrollment of such a questionnaire type token, the user answers at least as many questions as specified by the
administrator with answers only he knows.

This token is a challenge response token. During authentication the user gives the token PIN before he is presented
with a random question to which he defined the answer during the token rollout.

Note: By default, no questions are defined, so the administrator has to setup those in “Config->Tokens-
>Questionnaire” before a questionnaire token can be rolled out successfully.

Note: If the administrator changes the questions after a token was enrolled, the enrolled token still works with the
old questions and answers. I.e. an enrolled token is not affected by changing the questions by the administrator.

Note: As for all token, it is not changed after the rollout (see above note), so a change of the answers of an existing
token is not possible.

100 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

RADIUS

The token type RADIUS forwards the authentication request to a RADIUS Server.

When forwarding the authentication request, you can change the username and mangle the password.

Fig. 48: Enroll a RADIUS token

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the RADIUS server.

RADIUS Server configuration

The configuration of the RADIUS server to which the authentication request will be forwarded. The configuration can
be defined in radiusserver_config

RADIUS User

When forwarding the request to the RADIUS server, the authentication request will be issued for this user. If the user
is left empty, the RADIUS request will be sent with the same user currently trying to authenticate.

RADIUS Secret

The RADIUS secret for this RADIUS client.

Note: Using the RADIUS token you can design migration scenarios. When migrating from other (proprietary) OTP
solutions, you can enroll a RADIUS token for the users. The RADIUS token points to the RADIUS server of the
old solution. Thus the user can authenticate against privacyIDEA with the old, proprietary token, till he is enrolled a
new token in privacyIDEA. The interesting thing is, that you also get the authentication request with the proprietary
token in the audit log of privacyIDEA. This way you can have a scenario, where users are still using old tokens and
other users are already using new (privacyIDEA) tokens. You will see all authentication requests in the pricacyIDEA
system.

1.6. Tokens 101

privacyIDEA Authentication System, Release 3.6.2

Registration

(See FAQ Registration Code)

The registration token can be used to create a registration code for a user. This registration code can be sent via postal
mail to the user, so that the user can use this registration code as a second factor to login to a portal.

After a one single use, the registration code is deleted and can not be used a second time.

The length and the contents of the registration code can be configured using the Enrollment policies registra-
tioncode_length and registrationcode_contents.

Note: The registration code can only be enrolled via the API to provide automated smooth workflow to your needs.

For a more detailed insight see the code documentation Registration Code Token.

Remote

The token type remote forwards the authentication request to another privacyIDEA Server.

When forwarding the authentication request, you can

• change the username

• change the resolver

• change the realm

• change the serial number

and mangle the password.

The serial number of the token, that was used on the other privacyIDEA server, is stored in the tokeninfo of the
remote token object in the key last_matching_remote_serial. This serial number can then be used in further
workflows and e.g. be processed in event handlers.

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the remote privacyIDEA server.

Remote Server ID

The other privacyIDEA server, to which the authentication request will be forwarded. You need to configure the
privacyIDEA Server at privacyIDEA server configuration.

Note: You can define a remote server to be localhost. Thus you can assign one token to several users.

Using the direct URL in the remote token is deprecated.

Remote Serial

If the Remote Serial is specified the given password will be checked against the serial number on the remote priva-
cyIDEA server. Usernames will be ignored.

Remote User

When forwarding the request to the remote server, the authentication request will be issued for this user.

Remote Realm

102 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 49: Enroll a Remote token

When forwarding the request to the remote server, the authentication request will be issued for this realm.

Remote Resolver

When forwarding the request to the remote server, the authentication request will be issued for this resolver.

Note: You can use Remote Serial to forward the request to a central privacyIDEA server, that only knows tokens but
has no knowledge of users. Or you can use Remote Serial to forward the request to an existing to on localhost thus
adding a second user to the same token.

SMS Token

The token type sms sends the OTP value via an SMS service. You can configure the SMS service in SMS Token
Configuration.

Fig. 50: Enroll an SMS token

When enrolling an SMS token, you only need to specify the mobile phone number.

1.6. Tokens 103

privacyIDEA Authentication System, Release 3.6.2

SMS token is a challenge response token. I.e. when sending the OTP PIN in the first authentication request, the
sending of the SMS will be triggered and in a second authentication request the OTP value from the SMS needs to be
presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation SMS Token.

Spass - Simple Pass Token

The OTP component of the spass token is always true. Thus the user only needs to provide the OTP pin or the userstore
password - depending on the policy settings.

For a more detailed insight see the code documentation SPass Token.

SSH Keys

The token type sshkey is the public SSH key, that you can upload and assign to a user. The SSH key is only used for
the application type SSH in conjunction with the Machines concept.

A user or the administrator can upload the public SSH key and assign to a user.

Fig. 51: Enroll an SSH key token

Paste the SSH key into the text area. The comment in the SSH key will be used as token comment. You can assign the
SSH key to a user and then use the SSH key in Application Definitions SSH.

104 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Note: This way you can manage SSH keys centrally, as you do not need to distribute the SSH keys to all machines.
You rather store the SSH keys centrally in privacyIDEA and use privacyidea-authorizedkeys to fetch the keys in real
time during the login process.

TAN Token

(added in version 2.23)

The token type tan is related to the Paper Token (PPR).

In contrast to the paper token, a user can use the OTP values of a tan token in any arbitrary order.

A tan token can either be initialized with random OTP values. In this case the HOTP mechanism is used. Or it can be
initialized or imported with a dedicated list of TANs.

After enrollment, you are prompted to print the generated TAN list.

1.6. Tokens 105

privacyIDEA Authentication System, Release 3.6.2

Import of TAN token

The import schema for TAN tokens via the OATH CSV file look like this:

<serial>, <seed>, tan, <white space separated list of tans>

The TANs are located in the 4th column. TANs are separated by blanks or whitespaces. The <seed> is not used with
a TAN token. You can leave this blank or set to any (not used) value.

TiQR

Starting with version 2.6 privacyIDEA supports the TiQR token. The TiQR token is a smartphone token, that can be
used to login by only scanning a QR code.

The TiQR token implements the outofband authentication mode. The configuration is described in TiQR Token Con-
figuration.

The token is also enrolled by scanning a QR code.

Fig. 52: Choose a user for the TiQR token

You can only enroll a TiQR token, when a user is selected.

Note: You can not enroll a TiQR token without assign the token to a user.

For more technical information about the TiQR token please see TiQR Token.

106 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

TOTP

The TOTP token is - together with the HOTP Token - the most common token. The TOTP Algorithm is defined in
RFC6238. The TOTP token is a time based token. Roughly speaking the TOTP algorithm is the same algorithm like
the HOTP, where the event based counter is replaced by the unix timestamp.

The TOTP algorithm has some parameter, like if the generated OTP value will be 6 digits or 8 digits or if the SHA1
oder the SHA256 hashing algorithm is used and the timestep being 30 or 60 seconds.

The TOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

Hardware tokens

The information about preseeded token and seedable tokens is the same as described in the section about HOTP Token.

The only available seedable pushbutton TOTP token is the SafeNet eToken Pass. The Yubikey can be used as a TOTP
token, but only in conjunction with a smartphone app, since the yubikey has not its own clock.

Software tokens

Experiences

The Google Authenticator and the FreeOTP token can be enrolled easily in TOTP mode using the QR-Code enrollment
Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

1.6. Tokens 107

https://tools.ietf.org/html/rfc6238

privacyIDEA Authentication System, Release 3.6.2

Enrollment

Default settings for TOTP tokens can be configured at TOTP Token Config.

The enrollment is the same as described in HOTP Token. However, when enrolling TOTP token, you can specify some
additional parameters.

Fig. 53: Enroll an TOTP token

U2F

Starting with version 2.7 privacyIDEA supports U2F tokens. The administrator or the user himself can register a U2F
device and use this U2F token to login to the privacyIDEA web UI or to authenticate at applications.

When enrolling the token a key pair is generated and the public key is sent to privacyIDEA. During this process the
user needs to prove that he is present by either pressing the button (Yubikey) or by replugging the device (Plug-up
token).

The device is identified and assigned to the user.

Note: This is a normal token object which can also be reassigned to another user.

Note: As the key pair is only generated virtually, you can register one physical device for several users.

For configuring privacyIDEA for the use of U2F token, please see U2F.

For further details and for information how to add this to your application you can see the code documentation at U2F
Token.

108 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

VASCO

Starting with version 2.22 privacyIDEA supports VASCO tokens.

VASCO OTP tokens are a proprietary OTP token. You can import the VASCO blobs from a CSV file or you the
administrator can enroll a single VASCO token.

Note: privacyIDEA uses a proprietary VASCO library vacman to verify the OTP values. Please note that you need to
license this library from VASCO Data Security N.V. directly. The privacyIDEA project does not provide this library.

WebAuthn

Starting with version 3.4 privacyIDEA supports WebAuthn tokens. The administrator or the user himself can register
a WebAuthn device and use this WebAuthn token to login to the privacyIDEA WebUI or to authenticate against
applications.

When enrolling the token, a key pair is generated and the public key is sent to privacyIDEA. During this process, the
user needs to prove that he is present, which typically happens by tapping a button on the token. The user may also be
required by policy to provide some form of verification, which might be biometric or knowledge-based, depending on
the token.

The devices is identified and assigned to the user.

Note: This is a normal token object which can also be reassigned to another user.

Note: As the key pair is only generated virtually, you can register one physical device for several users.

For configuring privacyIDEA for the use of WebAuthn tokens, please see WebAuthn Token Config.

For further details and information how to add this to your application, see the code documentation at WebAuthn Token.

1.6. Tokens 109

privacyIDEA Authentication System, Release 3.6.2

Yubico

The token type yubico authenticates against the Yubico Cloud mode. You need to configure this at Yubico Cloud mode.

Fig. 54: Enroll a Yubico token

The token is enrolled by simply saving the Yubikey token ID in the token object. You can either enter the 12 digit ID
or you can simply press the Yubikey button in the input field, which will also assign the token.

Yubikey

As Yubikey token type, privacyIDEA refers to Yubico’s own AES mode. A Yubikey, configured in this mode outputs
a 44 character OTP value, consisting of a 12 character prefix and a 32 character OTP. But in contrast to the Yubico
Cloud mode, in this mode the secret key is contained within the token and your own privacyIDEA installation. If you
have the time and care about privacy, you should prefer the Yubikey AES mode over the Yubico Cloud mode.

There are several possible ways to enroll a Yubikey token in privacyIDEA. We describe the methods in Yubikey En-
rollment Tools.

Redirect API URLs to /ttype/yubikey

To have a service query not the Yubico Cloud URL, but the privacyIDEA endpoint /ttype/yubikey, you some-
times need to redirect the default API URL via the local webserver. Yubico servers use /wsapi/2.0/verify as
the path in the validation URL. Some tools (e.g. Kolab 2FA) let the user/admin change the API host, but not the
rest of the URL. To redirect the API URL to privacyIDEA’s endpoint /ttype/yubikey, you’ll need to enable the
following two lines in /etc/apache2/site-enabled/privacyidea.conf:

RewriteEngine on
RewriteRule "^/wsapi/2.0/verify" "/ttype/yubikey" [PT]

If you use nginx there is a similar line provided as a comment to the nginx configuration as well.

110 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.7 Policies

Policies can be used to define the reaction and behaviour of the system.

Each policy defines the behaviour in a certain area, called scope. privacyIDEA knows the scopes:

1.7.1 Admin policies

Admin policies are used to regulate the actions that administrators are allowed to do. Technically admin policies
control the use of the REST API Token endpoints, System endpoints, Realm endpoints and Resolver endpoints.

Admin policies are implemented as decorators in Policy Module and Policy Decorators.

The user in the admin policies refers to the name of the administrator.

Starting with privacyIDEA 2.4 admin policies can also store a field “admin realm”. This is used, if you define realms
to be superuser realms. See The Config File for information how to do this. Read So what’s the thing with all the
admins? for more information on the admin realms.

This way it is easy to define administrative rights for big groups of administrative users like help desk users in the IT
department.

All administrative actions also refer to the defined user realm. Meaning an administrator may have many rights in one
user realm and only a few rights in another realm.

Creating a policy with scope:admin, admin-realm:helpdesk, user:frank, action:enable and
realm:sales means that the administrator frank in the admin-realm helpdesk is allowed to enable tokens in the
user-realm sales.

Note: As long as no admin policy is defined all administrators are allowed to do everything.

The following actions are available in the scope admin:

tokenlist

type: bool

This allows the administrator to list existing tokens in the specified user realm. Note, that the resolver in this policy is
ignored.

If the policy with the action tokenlist is not bound to any user realm, this acts as a wild card and the admin is
allowed to list all tokens.

If the action tokenlist is not active, but admin policies exist, then the admin is not allowed to list any tokens.

Note: As with all boolean policies, multiple tokenlist policies add up to create the resulting rights of the administrator.
So if there are multiple matching policies for different realms, the admin will have list rights on all mentioned realms
independent on the priority of the policies.

1.7. Policies 111

privacyIDEA Authentication System, Release 3.6.2

Fig. 55: The Admin scope provides an additional field ‘admin realm’.

112 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

init

type: bool

There are init actions per token type. Thus you can create policy that allow an administrator to enroll SMS tokens
but not to enroll HMAC tokens.

enable

type: bool

The enable action allows the administrator to activate disabled tokens.

disable

type: bool

Tokens can be enabled and disabled. Disabled tokens can not be used to authenticate. The disable action allows
the administrator to disable tokens.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.

set

type: bool

Tokens can have additional token information, which can be viewed in the token_details.

If the set action is defined, the administrator allowed to set those token information.

setpin

type: bool

If the setpin action is defined, the administrator is allowed to set the OTP PIN of a token.

setrandompin

type: bool

If the setrandompin action is defined, the administrator is allowed to call the endpoint, that sets a random token
PIN.

1.7. Policies 113

privacyIDEA Authentication System, Release 3.6.2

enrollpin

type: bool

If the action enrollpin is defined, the administrator can set a token PIN during enrollment. If the action is not
defined and the administrator tries to set a PIN during enrollment, this PIN is deleted from the request.

otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the admin is allowed to use when setting the OTP PIN.

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the admin must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the admin sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [[].:,;-_<>+*!/()=?$§%&#~^].

[allowedchars] is a specific list of allowed characters.

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would require the admin to
choose OTP PINs that consist of letters and digits which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would not be a valid OTP PIN.

The logic of the otp_pin_contents can be enhanced and reversed using the characters + and -.

-cn (denial)

The PIN must not contain a character and must not contain a number. test1234 would not be a valid
PIN, since it does contains numbers and characters. test/// would not be a valid PIN, since it contains
characters.

-s (denial)

114 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

The PIN must not contain a special character. **test1234* would be a valid PIN. test12$$ would not.

+cn (grouping)

combines the two required groups. I.e. the OTP PIN should contain characters from the sum of the two
groups. test1234, test12$$, test and 1234 would all be valid OTP PINs. Note, how this is different to -s,
since it allows special characters to be included.

[123456]

allows the digtits 1-6 to be used. 1122 would be a valid PIN. 1177 would not be a valid PIN.

otp_pin_set_random

type: integer

range: 1-31

The administrator can set a random pin for a token with the endpoint token/setrandompin. This policy is needed
to define how long the PIN will be.

Note: The PIN will consist of digits and letters.

resync

type: bool

If the resync action is defined, the administrator is allowed to resynchronize a token.

assign

type: bool

If the assign action is defined, the administrator is allowed to assign a token to a user. This is used for assigning an
existing token to a user but also to enroll a new token to a user.

Without this action, the administrator can not create a connection (assignment) between a user and a token.

unassign

type: bool

If the unassign action is defined, the administrator is allowed to unassign tokens from a user. I.e. the administrator
can remove the link between the token and the user. The token still continues to exist in the system.

1.7. Policies 115

privacyIDEA Authentication System, Release 3.6.2

import

type: bool

If the import action is defined, the administrator is allowed to import token seeds from a token file, thus creating
many new token objects in the systems database.

The right to upload tokens can be limited to certain realms. Thus the administrator could only upload tokens into realm
he is allowed to manage.

remove

type: bool

If the remove action is defined, the administrator is allowed to delete a token from the system.

Note: If a token is removed, it can not be recovered.

Note: All audit entries of this token still exist in the audit log.

userlist

type: bool

If the userlist action is defined, the administrator is allowed to view the user list in a realm. An administrator
might not be allowed to list the users, if he should only work with tokens, but not see all users at once.

Note: If an administrator has any right in a realm, the administrator is also allowed to view the token list.

checkstatus

type: bool

If the checkstatus action is defined, the administrator is allowed to check the status of open challenge requests.

manageToken

type: bool

If the manageToken action is defined, the administrator is allowed to manage the realms of a token.

A token may be located in multiple realms. This can be interesting if you have a pool of spare tokens and several
realms but want to make the spare tokens available to several realm administrators. (Administrators, who have only
rights in one realm)

Then all administrators can see these tokens and assign the tokens. But as soon as the token is assigned to a user in
one realm, the administrator of another realm can not manage the token anymore.

116 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

getserial

type: bool

If the getserial action is defined, the administrator is allowed to calculate the token serial number for a given OTP
value.

getrandom

type: bool

The getrandom action allows the administrator to retrieve random keys from the endpoint getrandom. This is an
endpoint in System endpoints.

getrandom can be used by the client, if the client has no reliable random number generator. Creating API keys for the
Yubico Validation Protocol uses this endpoint.

getchallenges

type: bool

This policy allows the administrator to retrieve a list of active challenges of a challenge response tokens. The admin-
istrator can view these challenges in the web UI.

losttoken

type: bool

If the losttoken action is defined, the administrator is allowed to perform the lost token process.

To only perform the lost token process the actions copytokenuser and copytokenpin are not necessary!

adduser

type: bool

If the adduser action is defined, the administrator is allowed to add users to a user store.

Note: The user store still must be defined as editable, otherwise no users can be added, edited or deleted.

updateuser

type: bool

If the updateuser action is defined, the administrator is allowed to edit users in the user store.

1.7. Policies 117

privacyIDEA Authentication System, Release 3.6.2

deleteuser

type: bool

If the deleteuser action is defined, the administrator is allowed to delete an existing user from the user store.

copytokenuser

type: bool

If the copytokenuser action is defined, the administrator is allowed to copy the user assignment of one token to
another.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

copytokenpin

type: bool

If the copytokenpin action is defined, the administrator is allowed to copy the OTP PIN from one token to another
without knowing the PIN.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

smtpserver_write

type: bool

To be able to define new SMTP server configuration or delete existing ones, the administrator needs this rights
smtpserver_write.

smtpserver_read

type: bool

Allow the administrator to read the SMTP server configuration.

smsgateway_write

type: bool

To be able to define new SMS Gateway configuration or delete existing ones, the administrator needs the right
smsgateway_write.

118 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

smsgateway_read

type: bool

Allow the administrator to read the SMS Gateway configuration.

periodictask_write

type: bool

Allow the administrator to write or delete Periodic Tasks definitions.

periodictask_read

type: bool

Allow the administrator to read the Periodic Tasks definitions.

eventhandling_write

type: bool

Allow the administrator to configure Event Handler.

eventhandling_read

type: bool

Allow the administrator to read Event Handler.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read event handlers,
will allow the administrator to see all event handler definitions.

policywrite, policyread, policydelete

type: bool

Allow the administrator to write, read or delete policies.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read policies, will allow
the administrator to see all policies.

1.7. Policies 119

privacyIDEA Authentication System, Release 3.6.2

resolverwrite, resolverread, resolverdelete

type: bool

Allow the administrator to write, read or delete user resolvers and realms.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read resolvers, will
allow the administrator to see all resolvers and realms.

mresolverwrite, mresolverread, mresolverdelete

type: bool

Allow the administrator to write, read or delete machine resolvers.

configwrite, configread, configdelete

type: bool

Allow the administrator to write, read or delete system configuration.

auditlog

type: bool

The administrators are allowed to view the audit log. If the policy contains a user realm, than the administrator is only
allowed to see entries which contain this very user realm. A list of user realms may be defined.

To learn more about the audit log, see Audit.

auditlog_download

type: bool

The administrator is allowed to download the audit log.

Note: The download is not restricted to filters, hidden columns and audit age. Thus, if you want to avoid, that an
administrator can see older logs or columns, hidden by hide_audit_columns, you need to disallow downloading the
data. Otherwise he may download the audit log and look at older entries manually.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the
administrator is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

120 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

hide_audit_columns

type: string

This species a blank separated list of audit columns, that should be removed from the response and also from the
WebUI. For example a value sig_check log_level will hide these two columns.

The list of available columns can be checked by examining the response of the request to the Audit endpoint.

trigger_challenge

type: bool

If set the administrator is allowed to call the API /validate/triggerchallenge. This API can be used to send
an OTP SMS to user without having specified the PIN of the SMS token.

The usual setup that one administrative account has only this single policy and is only used for triggering challenges.

New in version 2.17.

hotp_2step and totp_2step

type: string

This allows or forces the administrator to enroll a smartphone based token in two steps. In the second step the
smartphone generates a part of the OTP secret, which the administrator needs to enter. (see Two Step Enrollment).
Possible values are allow and force. This works in conjunction with the enrollment parameters {type}_2step_clientsize,
{type}_2step_serversize, {type}_2step_difficulty.

Such a policy can also be set for the user. See hotp_2step and totp_2step.

New in version 2.21

hotp_hashlib and totp_hashlib

type: string

Force the admin to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled in the web UI. Possible values are sha1, sha256 and sha512, default is sha1.

New in 3.2

hotp_otplen and totp_otplen

type: int

Force the admin to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled in the web UI. Possible values are 6 or 8, default is 6.

New in 3.2

1.7. Policies 121

privacyIDEA Authentication System, Release 3.6.2

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

New in 3.2

system_documentation

type: bool

The administrator is allowed to export a complete system documentation including resolvers and realm. The docu-
mentation is created as restructured text.

sms_gateways

type: string

Usually an SMS token sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank-separated list of configured SMS gateways. It allows the administrator to define an individual
SMS gateway during token enrollment.

New in version 3.0.

indexedsecret_force_attribute

type: string

If an administrator enrolls an indexedsecret token then the value of the given user attribute is set as the secret. The
admin does not know the secret and can not change the secret.

For more details of this token type see Indexed Secret Token.

New in version 3.3.

certificate_trusted_Attestation_CA_path

type: string

An administrator can enroll a certificate token for a user. If an attestation certificate is provided in addition, this policy
holds the path to a directory, that contains trusted CA paths. Each PEM encoded file in this directory needs to contain
the root CA certificate at the first position and the consecutive intermediate certificates.

An additional enrollment policy certificate_require_attestation, if an attestation certificate is required.

New in version 3.5.

122 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

set_custom_user_attributes

type: string

New in version 3.6

This policy defines which additional attributes an administrator is allowed to set. It can also define, to which value the
admin is allowed to set such attribute. For allowing all values, the asterisk (“*”) is used.

Note: Commas are not allowed in policy actions value, so the setting has to be defined by separating colons (“:”) and
spaces.

Each key is enclosed in colons and followed by a list of values separated by whitespaces, thus values are not allowed
to contain whitespaces.

Example:

department sales finance :city: * :*: 1 2

:department: sales financemeans that the administrator can set an additional attribute “department” with
the allowed values of “sales” or “finance”.

:city: * means that the administrator can set an additional attribute “city” to any value.

:*: 1 2 means that the administrator can set any other additional attribute either to the value “1” or to the value
“2”.

delete_custom_user_attributes

type: string

This takes a space separated list of attributes that the administrator is allowed to delete. You can use the asterisk “*”
to indicate, that this policy allows the administrator to delete any additional attribute.

Example:

attr1 attr2 department

The administrator is allowed to delete the attributes “attr1”, “attr2” and the attributes “department” of the correspond-
ing users.

Note: If this policy is not set, the admin is not allowed to delete any custom user attributes.

New in version 3.6

1.7.2 User Policies

In the Web UI users can manage their own tokens. User can login to the Web UI with the username of their useridre-
solver. I.e. if a user is found in an LDAP resolver pointing to Active Directory the user needs to login with his domain
password.

User policies are used to define, which actions users are allowed to perform.

The user policies also respect the client input, where you can enter a list of IP addresses and subnets (like
10.2.0.0/16).

1.7. Policies 123

privacyIDEA Authentication System, Release 3.6.2

Using the client parameter you can allow different actions in if the user either logs in from the internal network or
remotely from the internet via the firewall.

Technically user policies control the use of the REST API Token endpoints and are checked using Policy Module and
Policy Decorators.

Note: If no user policy is defined, the user has all actions available to him, to manage his tokens.

The following actions are available in the scope user:

enroll

type: bool

There are enroll actions per token type. Thus you can create policies that allow the user to enroll SMS tokens but
not to enroll HMAC tokens.

assgin

type: bool

The user is allowed to assgin an existing token, that is located in his realm and that does not belong to any other user,
by entering the serial number.

disable

type: bool

The user is allowed to disable his own tokens. Disabled tokens can not be used to authenticate.

enable

type: bool

The user is allowed to enable his own tokens.

delete

type: bool

The user is allowed to delete his own tokens from the database. Those tokens can not be recovered. Anyway, the audit
log concerning these tokens remains.

124 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

unassign

type: bool

The user is allowed to drop his ownership of the token. The token does not belong to any user anymore and can be
reassigned.

resync

type: bool

The user is allowed to resynchronize the token if it has got out of synchronization.

reset

type: bool

The user is allowed to reset the failcounter of the token.

setpin

type: bool

The user is allowed to set the OTP PIN for his tokens.

setrandompin

type: bool

If the setrandompin action is defined, the user is allowed to call the endpoint, that sets a random PIN on his
specified token.

setdescription

type: bool

The user is allowed to set the description of his tokens.

enrollpin

type: bool

If the action enrollpin is defined, the user can set a token PIN during enrollment. If the action is not defined and
the user tries to set a PIN during enrollment, this PIN is deleted from the request.

1.7. Policies 125

privacyIDEA Authentication System, Release 3.6.2

otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the user is allowed to use when setting the OTP PIN.

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the user must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the user sets it.

This takes the same values like the admin policy otp_pin_contents.

auditlog

type: bool

This action allows the user to view and search the audit log for actions with his own tokens.

To learn more about the audit log, see Audit.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the user
is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

126 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

hide_audit_columns

type: string

This species a blank separated list of audit columns, that should be removed from the response (Audit endpoint) and
also from the WebUI. For example a value sig_check log_level will hide these two columns.

The list of available columns can be checked by examining the response of the request to the Audit endpoint.

updateuser

type: bool

If the updateuser action is defined, the user is allowed to change his attributes in the user store.

Note: To be able to edit the attributes, the resolver must be defined as editable.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.

password_reset

type: bool

Introduced in version 2.10.

If the user is located in an editable user store, this policy can define, if the user is allowed to perform a password reset.
During the password reset an email with a link to reset the password is sent to the user.

hotp_2step and totp_2step

type: string

This allows or forces the user to enroll a smartphone based token in two steps. In the second step the smartphone
generates a part of the OTP secret, which the user needs to enter. (see Two Step Enrollment). Possible values are allow
and force. This works in conjunction with the enrollment parameters {type}_2step_clientsize, {type}_2step_serversize,
{type}_2step_difficulty.

Such a policy can also be set for the administrator. See hotp_2step and totp_2step.

New in version 2.21

1.7. Policies 127

privacyIDEA Authentication System, Release 3.6.2

sms_gateways

type: string

Usually an SMS tokens sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank separated list of configured SMS gateways. It allows the user to define an individual SMS gateway
during token enrollment.

New in version 3.0.

hotp_hashlib and totp_hashlib

type: string

Force the user to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled/hidden in the web UI. Possible values are sha1, sha256 and sha512, default is sha1.

hotp_otplen and totp_otplen

type: int

Force the user to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled/hidden in the web UI. Possible values are 6 or 8, default is 6.

hotp_force_server_generate and totp_force_server_generate

type: bool

Enforce the key generation on the server. A corresponding input field for the key data will be disabled/hidden in the
web UI. Default value is false.

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

indexedsecret_force_attribute

type: string

If a user enrolls an indexedsecret token then the value of the given user attribute is set as the secret. The user does not
see the value and can not change the value.

For more details of this token type see Indexed Secret Token.

New in version 3.3.

128 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

certificate_trusted_Attestation_CA_path

type: string

A user can enroll a certificate token. If an attestation certificate is provided in addition, this policy holds the path to
a directory, that contains trusted CA paths. Each PEM encoded file in this directory needs to contain the root CA
certificate at the first position and the consecutive intermediate certificates.

An additional enrollment policy certificate_require_attestation, if an attestation certificate is required.

New in version 3.5.

set_custom_user_attributes

type: string

This defines how a user is allowed to set his own attributes. It uses the same setting as the admin policy
set_custom_user_attributes.

Note: Using a ‘*’ in this setting allows the user to set any attribute or any value and thus the user can overwrite
existing attributes from the user store. If policies, depending on user attributes are defined, then the user would be able
to change the matching of the policies. Use with CAUTION!

New in version 3.6

delete_custom_user_attributes

type: string

This defines how a user is allowed to delete his own attributes. It uses the same setting as the admin policy
delete_custom_user_attributes.

Note: Using a ‘*’ in this setting allows the user to delete any attribute and thus the user can change overwritten
attributes and revert to the user store attributes. If policies, depending on user attributes are defined, then the user
would be able to change the matching of the policies. Use with CAUTION!

New in version 3.6

1.7.3 Authentication policies

The scope authentication gives you more detailed possibilities to authenticate the user or to define what happens during
authentication.

Technically the authentication policies apply to the REST API Validate endpoints and are checked using Policy Module
and Policy Decorators.

The following actions are available in the scope authentication:

1.7. Policies 129

privacyIDEA Authentication System, Release 3.6.2

otppin

type: string

This action defines how the fixed password part during authentication should be validated. Each token has its own
OTP PIN, but you can choose how the authentication should be processed:

otppin=tokenpin

This is the default behaviour. The user needs to pass the OTP PIN concatenated with the OTP value.

otppin=userstore

The user needs to pass the user store password concatenated with the OTP value. It does not matter if
the OTP PIN is set or not. If the user is located in an Active Directory the user needs to pass his domain
password together with the OTP value.

Note: The domain password is checked with an LDAP bind right at the moment of authentication. So if the user is
locked or the password was changed authentication will fail.

otppin=none

The user does not have to pass any fixed password. Authentication is only done via the OTP value.

passthru

type: str

If the user has no token assigned, he will be authenticated against the userstore or against the given RADIUS configu-
ration. I.e. the user needs to provide the LDAP- or SQL-password or valid credentials for the RADIUS server.

Note: This is a good way to do a smooth enrollment. Users having a token enrolled will have to use the token, users
not having a token, yet, will be able to authenticate with their domain password.

It is also a way to do smooth migrations from other OTP systems. The authentication request of users without a token
is forwarded to the specified RADIUS server.

Note: The passthru policy overrides the authorization policy for tokentype. I.e. a user may authenticate due to the
passthru policy (since he has no token) although a tokentype policy is active!

Warning: If the user has the right to delete his tokens in selfservice portal, the user could delete all his tokens
and then authenticate with his static password again.

130 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

passthru_assign

type: str

This policy is only evaluated, if the policy passthru is set. If the user is authenticated against a RADIUS server,
then privacyIDEA splits the sent password into PIN and OTP value and tries to find an unassigned token, that is in the
user’s realm by using the OTP value. If it can identify this token, it assigns this token to the user and sets the sent PIN.

The policy is configured with a string value, that contains * the position of the PIN * the OTP length and * the number
of OTP values tested for each unassigned token (optional, default=100).

Examples are

• 8:pin would be an eight digit OTP value followed by the PIN

• pin:6:10000 would be the PIN followed by an 6 digit OTP value, 10.000 otp values would be checked for
each token.

Note: This method can be used to automatically migrated tokens from an old system to privacyIDEA. The adminis-
trator needs to import all seeds of the old tokens and put the tokens in the user’s realm.

Warning: This can be very time consuming if the OTP values to check is set to high!

passOnNoToken

type: bool

If the user has no token assigned an authentication request for this user will always be true.

Warning: Only use this if you know exactly what you are doing.

passOnNoUser

type: bool

If the user does not exist, the authentication request is successful.

Warning: Only use this if you know exactly what you are doing.

smstext

type: string

This is the text that is sent via SMS to the user trying to authenticate with an SMS token. You can use the tags <otp>
and <serial>. Texts containing whitespaces must be enclosed in single quotes.

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Starting with version 3.6 the smstext can contain a lot more tags similar to the policy emailtext:

1.7. Policies 131

privacyIDEA Authentication System, Release 3.6.2

• {otp} or <otp> the One-Time-Password

• {serial} or <serial> the serial number of the token.

• {user} the given name of the token owner.

• {givenname} the given name of the token owner.

• {surname} the surname of the token owner.

• {username} the loginname of the token owner.

• {userrealm} the realm of the token owner.

• {tokentype} the type of the token.

• {recipient_givenname} the given name of the recipient.

• {recipient_surname} the surname of the recipient.

• {time} the current server time in the format HH:MM:SS.

• {date} the current server date in the format YYYY-MM-DD

In the SMS Gateway configuration the tag {otp} will be replaced by the custom message, set with this policy.

Default: <otp>

Note: The length of an SMS is limited to 140 characters due to the definition of SMS. You should take care, that the
smstext does not exceed this limit. SMS gateways could reject too long messages or the delivery could fail.

Note: Some apps may be able to handle incoming OTPs as a so called origin-bound one-time code in the format:

Your OTP is {otp}
@privacyidea.mydomain.com #{otp}

smsautosend

type: bool

A new OTP value will be sent via SMS if the user authenticated successfully with his SMS token. Thus the user does
not have to trigger a new SMS when he wants to login again.

emailtext

type: string

This is the text that is sent via Email to be used with Email Token. This text should contain the OTP tag.

The text can contain the following tags, that will be filled:

• {otp} or <otp> the One-Time-Password

• {serial} or <serial> the serial number of the token.

• {user} the given name of the token owner.

• {givenname} the given name of the token owner.

• {surname} the surname of the token owner.

132 Chapter 1. Table of Contents

https://github.com/wicg/sms-one-time-codes

privacyIDEA Authentication System, Release 3.6.2

• {username} the loginname of the token owner.

• {userrealm} the realm of the token owner.

• {tokentype} the type of the token.

• {recipient_givenname} the given name of the recipient.

• {recipient_surname} the surname of the recipient.

• {time} the current server time in the format HH:MM:SS.

• {date} the current server date in the format YYYY-MM-DD

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Default: <otp>

You can also provide the filename to an email template. The filename must be prefixed with file: like file:/
etc/privacyidea/emailtemplate.html. The template is an HTML file.

Note: If a message text is supplied directly, the email is sent as plain text. If the email template is read from a file, a
HTML-only email is sent instead.

emailsubject

type: string

This is the subject of the Email sent by the Email Token. You can use the same tags as mentioned in emailtext.

Default: Your OTP

emailautosend

type: bool

If set, a new OTP Email will be sent, when successfully authenticated with an Email Token.

mangle

type: string

The mangle policy can mangle the authentication request data before they are processed. I.e. the parameters user,
pass and realm can be modified prior to authentication.

This is useful if either information needs to be stripped or added to such a parameter. To accomplish that, the mangle
policy can do a regular expression search and replace using the keyword user, pass (password) and realm.

A valid action could look like this:

action: mangle=user/.*(.{4})/user\\1/

This would modify a username like “userwithalongname” to “username”, since it would use the last four characters of
the given username (“name”) and prepend the fixed string “user”.

1.7. Policies 133

privacyIDEA Authentication System, Release 3.6.2

This way you can add, remove or modify the contents of the three parameters. For more information on the regular
expressions see1.

Note: You must escape the backslash as \\ to refer to the found substrings.

Example: A policy to remove whitespace characters from the realm name would look like this:

action: mangle=realm/\\s//

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

action: mangle=pass/.*(.{6})/\\1/

Example: If you want to strip a string from the front of a username, for example to have “admin_username” resolve
to just “username”, it would look like this:

action: mangle=user/admin_(.*)/\\1/

challenge_response

type: string

This is a list of token types for which challenge response can be used during authentication. The list is separated by
whitespaces like “hotp totp”.

change_pin_via_validate

type: bool

This works with the enrollment policies change_pin_on_first_use and change_pin_every. When a PIN change is due,
then a successful authentication will start a challenge response mechanism in which the user is supposed to enter a
new PIN two times.

Only if the user successfully changes the PIN the authentication process is finished successfully. E.g. if the user enters
two different new PINs, the authentication process will fail.

Note: The application must support several consecutive challenge response requests.

u2f_facets

type: string

This is a white space separated list of domain names, that are trusted to also use a U2F device that was registered with
privacyIDEA.

You need to specify a list of FQDNs without the https scheme like:

“host1.example.com host2.example.com firewall.example.com”

For more information on configuring U2F see U2F.

1 https://docs.python.org/2/library/re.html

134 Chapter 1. Table of Contents

https://docs.python.org/2/library/re.html

privacyIDEA Authentication System, Release 3.6.2

reset_all_user_tokens

type: bool

If a user authenticates successfully all failcounter of all of his tokens will be reset. This can be important, if using
empty PINs or otppin=None.

auth_cache

type: string

The Authentication Cache caches the credentials of a successful authentication and allows to use the same credentials
- also with an OTP value - for the specified amount of time and optionally for a specified number of authentications.

The time to cache the credentials can be specified like “4h”, “5m”, “2d”, “3s” (hours, minutes, days, seconds). The
number of allowed authentications can be specified as a whole number, greater than zero.

The notation “4h/5m” means, that credentials are cached for 4 hours, but may only be used again, if every 5 minutes the
authentication occurs. If the authentication with the same credentials would not occur within 5 minutes, the credentials
can not be used anymore.

The notation “2m/3” means, that credentials are cached for 2 minutes, but may only be used 3 times in this timeframe.

In future implementations the caching of the credentials could also be dependent on the clients IP address and the user
agent.

Note: Cache entries are written to the database table authcache. Please note that expired entries are automatically
deleted only when the user attempts to log in with the same expired credentials again. In all other cases, expired entries
need to be deleted from this table manually by running:

pi-manage authcache cleanup --minutes MIN

which deletes all cache entries whose last authentication has occurred at least MIN minutes ago. As an example:

pi-manage authcache cleanup --minutes 300

will delete all authentication cache entries whose last authentication happened more than 5 hours ago.

It may make sense to create a cronjob that periodically cleans up old authentication cache entries.

Note: The AuthCache only works for user authentication, not for authentication with serials.

push_text_on_mobile

type: string

This is the text that should be displayed on the push notification during the login process with a Push Token. You can
choose different texts for different users or IP addresses. This way you could customize push notifications for different
applications.

1.7. Policies 135

privacyIDEA Authentication System, Release 3.6.2

push_title_on_mobile

type: string

This is the title of the push notification that is displayed on the user’s smartphone during the login process with a Push
Token.

push_wait

type: int

This can be set to a number of seconds. If this is set, the authentication with a push token is only performed via one
request to /validate/check. The HTTP request to /validate/check will wait up to this number of seconds
and check, if the push challenge was confirmed by the user.

This way push tokens can be used with any non-push-capable applications.

Sensible numbers might be 10 or 20 seconds.

Note: This behaviour can interfere with other tokentypes. Even if the user also has a normal HOTP token, the
/validate/check request will only return after this number of seconds.

Warning: Using simple webserver setups like Apache WSGI this actually can block all available worker threads,
which will cause privacyIDEA to become unresponsive if the number of open PUSH challenges exceeds the num-
ber of available worker threads!

push_allow_polling

type: string

This policy configures if push tokens are allowed to poll the server for open challenges (e.g. when the the third-party
push service is unavailable or unreliable).

The following options are available:

allow

Allow push tokens to poll for challenges.

deny

Deny push tokens to poll for challenges. This basically returns a 403 error when requesting the poll
endpoint.

token

Allow / Deny polling based on the individual token. The tokeninfo key polling_allowed is checked.
If the value evaluates to False, polling is denied for this token. If it evaluates to True or is not set,
polling is allowed for this token.

The default is to allow polling

136 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

challenge_text, challenge_text_header, challenge_test_footer

Using these policies the administrator can modify the challenge texts of e.g. Email-Token or SMS-Token. The action
challenge_text changes the challenge text in general, no matter which challenge response token is used.

If the challenge_text_header is set and if there are more matching challenge response tokens, then the texts of all
tokens are concatenated together. Double challenge texts are reduced to one text only.

The challenge_text_header and challenge_text_footer may contain HTML. If the challenge_text_header ends with
an or , then all the challenge texts are formatted as an ordered or unordered list. In this case the chal-
lenge_text_footer also should contain the closing tag.

Note: The footer will only be used, if the header is also set.

indexedsecret_challenge_text

The Indexed Secret Token asks the user to provide the characters of the secret from certain positions. The default text
is:

Please enter the position 3,1,6,7 from your secret.

with 3,1,6,7 being the positions of the characters, the user is supposed to enter. This text can be changed with this
policy setting. The text needs to contain the python formatting tag {0!s} which will be replaced with the list of the
requested positions.

For more details of this token type see Indexed Secret Token.

indexedsecret_count

The Indexed Secret Token asks the used for a number of characters from a shared secret. The default number to ask is
2.

The number of requested positions can be changed using this policy.

webauthn_allowed_transports

type: string

This action determines, which transports may be used to communicate with the authenticator, during authentication.
For instance, if the authenticators used support both an USB connection and NFC wireless communication, they can
be limited to USB only using this policy. The allowed transports are given as a space-separated list.

The default is to allow all transports (equivalent to a value of usb ble nfc internal).

1.7. Policies 137

privacyIDEA Authentication System, Release 3.6.2

webauthn_timeout

type: integer

This action sets the time in seconds the user has to confirm an authentication request on his WebAuthn authenticator.

This is a client-side setting, that governs how long the client waits for the authenticator. It is independent of the time
for which a challenge for a challenge response token is valid, which is governed by the server and controlled by a
separate setting. This means, that if you want to increase this timeout beyond two minutes, you will have to also
increase the challenge validity time, as documented in Challenge Validity Time.

This setting is a hint. It is interpreted by the client and may be adjusted by an arbitrary amount in either direction, or
even ignored entirely.

The default timeout is 60 seconds.

Note: If you set this policy you may also want to set webauthn_timeout.

webauthn_user_verification_requirement

type: string

This action configures whether the user’s identity should be checked when authenticating with a WebAuthn token. If
this is set to required, any user signing in with their WebAuthn token will have to provide some form of verification.
This might be biometric identification, or knowledge-based, depending on the authenticator used.

This defaults to preferred, meaning user verification will be performed if supported by the token.

Note: User verification is different from user presence checking. The presence of a user will always be confirmed
(by asking the user to take action on the token, which is usually done by tapping a button on the authenticator). User
verification goes beyond this by ascertaining, that the user is indeed the same user each time (for example through
biometric means), only set this to required, if you know for a fact, that you have authenticators, that actually support
some form of user verification (these are still quite rare in practice).

Note: If you configure this, you will likely also want to configure webauthn_user_verification_requirement.

question_number

type: integer

The questionnaire token can ask more than one question during one authentication process. It will ask the first question,
verify the answer, ask the next question and verify the answer. This policy setting defines how many questions the
user needs to answer. (default: 1)

Note: A question will be asked only once, unless the policy requires more questions to be asked, than the token has
available answers.

138 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.7.4 Authorization policies

The scope authorization provides means to define what should happen if a user proved his identity and authenticated
successfully.

Authorization policies take the realm, the user and the client into account.

Technically the authorization policies apply to the Validate endpoints and are checked using Policy Module and Policy
Decorators.

The following actions are available in the scope authorization:

authorized

This is the basic authorization, that either grants the user access or denies access via the /validate endpoints (see
Validate endpoints). The default behaviour is to grant access, if and after the user has authenticated successfully.

Using authorized=deny_access specific authentication requests can be denied, even if the user has provided
the correct credentials.

In combination with different IP addresses and policy priorities the adminitator can generically deny_access with the
lowest policy priority and grant_access for specific requests e.g. originating from specific IP addresses to certain users
by defining higher policy priorities.

Note: Since authorized is checked as a postpolicy the OTP value used during an authentication attempt will be
invalidated even if the authorized policy denies the access.

Note: The actual “success” of the authentication can be changed to “failed” by this postpolicy. I.e. pre-event handlers
(Pre and Post Handling) would still see the request as successful before it would be changed by this policy and match
the event handler condition result value == True.

tokentype

type: string

Users will only be authorized with this very tokentype. The string can hold a space separated list of case sensitive
tokentypes. It should look like:

hotp totp spass

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with one
special token type while allowing access to less sensitive areas with other token types.

1.7. Policies 139

privacyIDEA Authentication System, Release 3.6.2

application_tokentype

type: bool

If this policy is set, an application may add a parameter type as tokentype in the authentication request like
validate/check, validate/samlcheck or validate/triggerchallenge.

Then the application can determine via this parameter, which tokens of a user should be checked.

E.g. when using this in triggerchallenge, an application could assure, that only SMS tokens are used for authentication.

serial

type: string

Users will only be authorized with the serial number. The string can hold a regular expression as serial number.

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with hardware
tokens like the Yubikey, while allowing access to less secure areas also with a Google Authenticator.

tokeninfo

type: string

Users will only be authorized if the tokeninfo field of the token matches this regular expression.

This is checked after the authentication request, so that a valid OTP value can not be used anymore, even if authoriza-
tion is forbidden.

A valid action could look like

action = key/regexp/

Example:

action = last_auth/^2018.*/

This would mean the tokeninfo field needs to start with “2018”.

setrealm

type: string

This policy is checked before the user authenticates. The realm of the user matching this policy will be set to the realm
in this action.

Note: This can be used if the user can not pass his realm when authenticating at a certain client, but the realm needs
to be available during authentication since the user is not located in the default realm.

140 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

no_detail_on_success

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user authenticated successfully this additional information will not be returned.

no_detail_on_fail

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user fails to authenticate this additional information will not be returned.

api_key_required

type: bool

This policy is checked before the user is validated.

You can create an API key, that needs to be passed to use the validate API. If an API key is required, but no key is
passed, the authentication request will not be processed. This is used to avoid denial of service attacks by a rogue user
sending arbitrary requests, which could result in the token of a user being locked.

You can also define a policy with certain IP addresses without issuing API keys. This would result in “blocking” those
IP addresses from using the validate endpoint.

You can issue API keys like this:

pi-manage api createtoken -r validate

The API key (Authorization token) which is generated is valid for 365 days.

The authorization token has to be used as described in Authentication endpoints.

auth_max_success

type: string

Here you can specify how many successful authentication requests a user is allowed to perform during a given time.
If this value is exceeded, the authentication attempt is canceled.

Specify the value like 2/5m meaning 2 successful authentication requests per 5 minutes. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

1.7. Policies 141

privacyIDEA Authentication System, Release 3.6.2

auth_max_fail

type: string

Here you can specify how many failed authentication requests a user is allowed to perform during a given time.

If this value is exceeded, authentication is not possible anymore. The user will have to wait.

If this policy is not defined, the normal behaviour of the failcounter applies. (see Reset Fail Counter)

Specify the value like 2/1m meaning 2 successful authentication requests per minute. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

last_auth

type: string

You can define if an authentication should fail, if the token was not successfully used for a certain time.

Specify a value like 12h, 123d or 2y to disallow authentication, if the token was not successfully used for 12 hours,
123 days or 2 years.

The date of the last successful authentication is store in the tokeninfo field of a token and denoted in UTC.

u2f_req

type: string

Only the specified U2F devices are authorized to authenticate. The administrator can specify the action like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information from the attestation certificate is stored in the tokeninfo. Only if the regexp matches this
value, the authentication with such U2F device is authorized.

add_user_in_response

type: bool

In case of a successful authentication additional user information is added to the response. A dictionary containing
user information is added in detail->user.

142 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

add_resolver_in_response

type: bool

In case of a successful authentication the resolver and realm of the user are added to the response. The names are
added in detail->user-resolver and detail->user-realm.

webauthn_authenticator_selection_list

type: string

This action configures a whitelist of authenticator models which may be authorized. It is a space-separated list of
AAGUIDs. An AAGUID is a hexadecimal string (usually grouped using dashes, although these are optional) identi-
fying one particular model of authenticator. To limit enrollment to a few known-good authenticator models, simply
specify the AAGUIDs for each model of authenticator that is acceptable. If multiple policies with this action apply,
the set of acceptable authenticators will be the union off all authenticators allowed by the various policies.

If this action is not configured, all authenticators will be deemed acceptable, unless limited through some other action.

Note: If you configure this, you will likely also want to configure webauthn_authenticator_selection_list

webauthn_req

type: string

This action allows filtering of WebAuthn tokens by the fields of the attestation certificate.

The action can be specified like this:

webauthn_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of
the WebAuthn authenticator the information is fetched from the attestation certificate. Only if the attribute in the
attestation certificate matches accordingly the token can be enrolled.

Note: If you configure this, you will likely also want to configure webauthn_req

1.7.5 Enrollment policies

The scope enrollment defines what happens during enrollment either by an administrator or during the user self enroll-
ment.

Enrollment policies take the realms, the client (see Policies) and the user settings into account.

Technically enrollment policies control the use of the REST API Token endpoints and specially the init and assign-
methods.

Technically the decorators in API Policies are used.

The following actions are available in the scope enrollment:

1.7. Policies 143

privacyIDEA Authentication System, Release 3.6.2

max_token_per_realm

type: int

This is the maximum allowed number of tokens in the specified realm.

Note: If you have several realms with realm admins and you imported a pool of hardware tokens you can thus limit
the consumed hardware tokens per realm.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_token_per_user

type: int

Limit the maximum number of tokens per user in this realm.

There are also token type specific policies to limit the number of tokens of a specific token type, that a user is allowed
to have assigned.

Note: If you do not set this action, a user may have unlimited tokens assigned.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_active_token_per_user

type: int

Limit the maximum number of active tokens per user.

There are also token type specific policies to limit the number of tokens of a specific token type, that a user is allowed
to have assigned.

Note: Inactive tokens will not be taken into account. If the token already exists, it can be recreated if the token is
already active.

144 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

tokenissuer

type: string

This sets the issuer label for a newly enrolled Google Authenticator. This policy takes a fixed string, to add additional
information about the issuer of the soft token.

Starting with version 2.20 you can use the tags {user}, {realm}, {serial} and as new tags {givenname}
and {surname} in the field issuer.

Note: A good idea is to set this to the instance name of your privacyIDEA installation or the name of your company.

tokenlabel

type: string

This sets the label for a newly enrolled Google Authenticator. Possible tags to be replaces are <u> for user, <r> for
realm an <s> for the serial number.

The default behaviour is to use the serial number.

Note: This is useful to identify the token in the Authenticator App.

Note: Starting with version 2.19 the usage of <u>, <s> and <r> is deprecated. Instead you should use {user},
{realm}, {serial} and as new tags {givenname} and {surname}.

Warning: If you are only using <u> or {user} as tokenlabel and you enroll the token without a user, this will
result in an invalid QR code, since it will have an empty label. You should rather use a label like “{user}@{realm}”,
which would result in “@”.

autoassignment

type: string

allowed values: any_pin, userstore

Users can assign a token just by using this token. The user can take a token from a pool of unassigned tokens. When
this policy is set, and the user has no token assigned, autoassignment will be done: The user authenticates with a new
PIN or his userstore password and an OTP value from the token. If the OTP value is correct the token gets assigned to
the user and the given PIN is set as the OTP PIN.

Note: Requirements are:

1. The user must have no other tokens assigned.

2. The token must be not assigned to any user.

3. The token must be located in the realm of the authenticating user.

4. (The user needs to enter the correct userstore password)

1.7. Policies 145

mailto:\protect \T1\textbraceleft user\protect \T1\textbraceright @\protect \T1\textbraceleft realm

privacyIDEA Authentication System, Release 3.6.2

Warning: If you set the policy to any_pin the token will be assigned to the user no matter what pin he enters. In
this case assigning the token is only a one-factor-authentication: the possession of the token.

otp_pin_random

type: int

Generates a random OTP PIN of the given length during enrollment. Thus the user is forced to set a certain OTP PIN.

Note: To use the random PIN, you also need to define a pinhandling policy.

pinhandling

type: string

If the otp_pin_random policy is defined, you can use this policy to define, what should happen with the random pin.
The action value take the class of a PinHandler like privacyidea.lib.pinhandling.base.PinHandler.
The base PinHandler just logs the PIN to the log file. You can add classes to send the PIN via EMail or print it in a
letter.

For more information see the base class PinHandler.

change_pin_on_first_use

type: bool

If the administrator enrolls a token or resets a PIN of a token, then the PIN of this token is marked to be changed on
the first (or next) use. When the user authenticates with the old PIN, the user is authenticated successfully. But the
detail-response contains the keys “next_pin_change” and “pin_change”. If “pin_change” is True the authenticating
application must trigger the change of the PIN using the API /token/setpin. See Token endpoints.

Note: If the application does not honour the “pin_change” attribute, then the user can still authenticate with his old
PIN.

Note: Starting with version 3.4 privacyIDEA also allows to force the user to change the PIN in such a case using the
policy change_pin_via_validate.

146 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

change_pin_every

type: string

This policy requires the user to change the PIN of his token on a regular basis. Enter a value follewed by “d”, e.g.
change the PIN every 180 days will be “180d”.

The date, when the PIN needs to be changed, is returned in the API response of /validate/check. For more information
see change_pin_first_use. To specify the contents of the PIN see User Policies.

otp_pin_encrypt

type: bool

If set the OTP PIN of a token will be encrypted. The default behaviour is to hash the OTP PIN, which is safer.

registration.length

type: int

This is the length of the generated registration codes.

registration.contents

type: string

contents: cns

This defines what characters the registrationcodes should contain.

This takes the same values like the admin policy otp_pin_contents.

lostTokenPWLen

type: int

This is the length of the generated password for the lost token process.

lostTokenPWContents

type: string

This is the contents that a generated password for the lost token process should have. You can use

• c: for lowercase letters

• n: for digits

• s: for special characters (!#$%&()*+,-./:;<=>?@[]^_)

• C: for uppercase letters

• 8: Base58 character set

1.7. Policies 147

privacyIDEA Authentication System, Release 3.6.2

Example:

The action lostTokenPWLen=10, lostTokenPWContents=Cns could generate a password like AC#!49MK)).

Note: If you combine 8 with e.g. C there will be double characters like “A”, “B”. . . Thus, those characters will have
a higher probability of being part of the password. Also C would again add the character “I”, which is not part of
Base58.

lostTokenValid

type: int

This is how many days the replacement token for the lost token should be valid. After this many days the replacement
can not be used anymore.

yubikey_access_code

type: string

This is a 12 character long access code in hex format to be used to initialize yubikeys. If no access code is set,
yubikeys can be re-initialized by everybody. You can choose a company wide access code, so that Yubikeys can only
be re-initialized by your own system.

You can add two access codes separated by a colon to change from one access code to the other.

313233343536:414243444546

papertoken_count

type: int

This is a specific action of the paper token. Here the administrator can define how many OTP values should be printed
on the paper token.

tantoken_count

type: int

This is a specific action for the TAN token. The administrator can define how many TANs will be generated and
printed.

u2f_req

type: string

Only the specified U2F devices are allowed to be registered. The action can be specified like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information is fetched from the attestation certificate. Only if the attribute in the attestation certificate
matches accordingly the token can be registered.

148 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

u2f_no_verify_certificate

type: bool

By default the validity period of the attestation certificate of a U2F device gets verified during the registration process.
If you do not want to verify the validity period, you can check this action.

{type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty

type: string

These are token type specific parameters. They control the key generation during the 2step token enrollment (see Two
Step Enrollment).

The serversize is the optional size (in bytes) of the server’s key part. The clientsize is the size (in bytes) of
the smartphone’s key part. The difficulty is a parameter for the key generation. In the implementation in version
2.21 PBKDF2 is used. In this case the difficulty specifies the number of rounds.

This is new in version 2.21.

type: bool

During enrollment of a privacyIDEA Authenticator smartphone app this policy is used to force the user to protect the
token with a PIN.

Note: This only works with the privacyIDEA Authenticator. This policy has no effect, if the QR code is scanned with
other smartphone apps.

This is new in version 3.1.

push_firebase_configuration

type: string

For enrolling a Push Token, the administrator can select which Firebase configuration should be used. The adminis-
trator can create several connections to the Firebase service (see Firebase Provider). This way even different Firebase
configurations could be used depending on the user’s realm or the IP address.

This is new in version 3.0.

Starting with version 3.6, if the push token is supposed to run in poll-only mode, then the entry “poll only” can be
selected instead of a firebase configuration. In this mode, neither the privacyIDEA server nor the smartphone app will
connect to Google Firebase during enrollment or authentication. Note, that you also need to set the authentication
policy push_allow_polling to allow the push token to poll for challenges.

1.7. Policies 149

privacyIDEA Authentication System, Release 3.6.2

push_registration_url

type: string

This is the URL of your privacyIDEA server, which the push App should connect to for the second registration step.
This URL usually ends with /ttype/push. Note, that the smartphone app may connect to a different privacyIDEA
URL than the URL of the privacyIDEA Web UI.

push_ttl

This is the time (in minutes) how long the privacyIDEA server accepts the response of the second registration step.
The smartphone could have connection issues, so the second step could take some time to happen.

webauthn_relying_party_id

type: string

This action sets the relying party id to use for the enrollment of new WebAuthn tokens, at defined by the WebAuthn
specification1. Please note, that a token will be rolled out with one particular ID and that the relying party of an
existing token can not be changed. In order to change the relying party id for existing tokens, they need to be deleted
and new tokens need to be enrolled. This is a limitation of the WebAuthn standard and is unlikely to change in the
future.

The relying party id is a valid domain string that identifies the WebAuthn Relying Party on whose behalf a given
registration or authentication ceremony is being performed. A public key credential can only be used for authentication
with the same entity (as identified by RP ID) it was registered with.

This id needs to be a registrable suffix of or equal to the effective domain for each webservice the tokens should be
used with. This means if the token is being enrolled on – for example – https://login.example.com, them the relying
party ID may be either login.example.com, or example.com, but not – for instance – m.login.example.com, or com.
Similarly, a token enrolled with a relying party ID of login.example.com might be used by https://login.example.com,
or even https://m.login.example.com:1337, but not by https://example.com (because the RP ID login.example.com is
not a valid relying party ID for the domain example.com).

Note: This action needs to be set to be able to enroll WebAuthn tokens. For an overview of all the settings required
for the use of WebAuthn, see WebAuthn Token Config.

webauthn_relying_party_name

type: string

This action sets the human-readable name for the relying party, as defined by the WebAuthn specification2. It should
be the name of the entity whose web applications the WebAuthn tokens are used for.

Note: This action needs to be set to be able to enroll WebAuthn tokens. For an overview of all the settings required
for the use of WebAuthn, see WebAuthn Token Config.

1 https://w3.org/TR/webauthn-2/#rp-id
2 https://w3.org/TR/webauthn-2/#webauthn-relying-party

150 Chapter 1. Table of Contents

https://w3.org/TR/webauthn-2/#rp-id
https://w3.org/TR/webauthn-2/#webauthn-relying-party

privacyIDEA Authentication System, Release 3.6.2

webauthn_timeout

type: integer

This action sets the time in seconds the user has to confirm enrollment on his WebAuthn authenticator.

This is a client-side setting, that governs how long the client waits for the authenticator. It is independent of the time
for which a challenge for a challenge response token is valid, which is governed by the server and controlled by a
separate setting. This means, that if you want to increase this timeout beyond two minutes, you will have to also
increase the challenge validity time, as documented in Challenge Validity Time.

This setting is a hint. It is interpreted by the client and may be adjusted by an arbitrary amount in either direction, or
even ignored entirely.

The default timeout is 60 seconds.

Note: If you set this policy you may also want to set webauthn_timeout.

webauthn_authenticator_attachment

type: string

This action configures whether to limit roll out of WebAuthn tokens to either only platform authenticators, or only
platform authenticators. Cross-platform authenticators are authenticators, that are intended to be plugged into different
devices, whereas platform authenticators are those, that are built directly into one particular device and can not (easily)
be removed and plugged into a different device.

The default is to allow both platform and cross-platform attachment for authenticators.

webauthn_authenticator_selection_list

type: string

This action configures a whitelist of authenticator models which may be enrolled. It is a space-separated list of
AAGUIDs. An AAGUID is a hexadecimal string (usually grouped using dashes, although these are optional) identi-
fying one particular model of authenticator. To limit enrollment to a few known-good authenticator models, simply
specify the AAGUIDs for each model of authenticator that is acceptable. If multiple policies with this action apply,
the set of acceptable authenticators will be the union off all authenticators allowed by the various policies.

If this action is not configured, all authenticators will be deemed acceptable, unless limited through some other action.

Note: If you configure this, you will likely also want to configure webauthn_authenticator_selection_list.

webauthn_user_verification_requirement

type: string

This action configures whether the user’s identity should be checked when rolling out a new WebAuthn token. If this
is set to required, any user rolling out a new WebAuthn token will have to provide some form of verification. This
might be biometric identification, or knowledge-based, depending on the authenticator used.

This defaults to preferred, meaning user verification will be performed if supported by the token.

1.7. Policies 151

privacyIDEA Authentication System, Release 3.6.2

Note: User verification is different from user presence checking. The presence of a user will always be confirmed
(by asking the user to take action on the token, which is usually done by tapping a button on the authenticator). User
verification goes beyond this by ascertaining, that the user is indeed the same user each time (for example through
biometric means), only set this to required, if you know for a fact, that you have authenticators, that actually support
some form of user verification (these are still quite rare in practice).

Note: If you configure this, you will likely also want to configure webauthn_user_verification_requirement.

webauthn_public_key_credential_algorithm_preference

type: string

This action configures which algorithms should be preferred for the creation of WebAuthn asymmetric cryptography
key pairs, and in which order. privacyIDEA currently supports ECDSA as well as RSASSA-PSS. Please check back
with the manufacturer of your authenticators to get information on which algorithms are acceptable to your model of
authenticator.

The default is to allow both ECDSA and RSASSA-PSS, but to prefer ECDSA over RSASSA-PSS.

Note: Not all authenticators will supports all algorithms. It should not usually be necessary to configure this action.
Do not change this preference, unless you are sure you know what you are doing!

webauthn_authenticator_attestation_form

type: string

This action configures whether to request attestation data when enrolling a new WebAuthn token. Attestation is used
to verify, that the authenticator being enrolled has been made by a trusted manufacturer. Since depending on the
authenticator this may include personally identifying information, indirect attestation can be requested. If indirect
attestation is requested the client may pseudonymize the attestation data. Attestation can also be turned off entirely.

The default is to request direct (full) attestation from the authenticator.

Note: In a normal business-context it will not be necessary to change this. If this is set to none, webau-
thn_authenticator_attestation_level must also be none.

Note: Authenticators enrolled with this option set to none can not be filtered using webauthn_req and webau-
thn_authenticator_selection_list or webauthn_req and webauthn_authenticator_selection_list, respectively. Applying
these filters is not possible without attestation information, since the fields these actions rely upon will be miss-
ing. With indirect attestation, checking may be possible (depending on the client). If any of webauthn_req, we-
bauthn_authenticator_selection_list, webauthn_req, or webauthn_authenticator_selection_list are set and apply to a
request for a token without attestation information, access will be denied.

152 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

webauthn_authenticator_attestation_level

type: string

This action determines whether and how strictly to check authenticator attestation data. Set this to none, to allow
any authenticator, even if the attestation information is missing completely. If this is set to trusted, strict checking is
performed. No authenticator is allowed, unless it contains attestation information signed by a certificate trusted for
attestation.

Note: Currently the certificate that signed the attestation needs to be trusted directly. Traversal of the trust path is not
yet supported!

The default is untrusted. This will perform the attestation check like normal, but will not fail the attestation, if the
attestation is self-signed, or signed by an unknown certificate.

Note: In order to be able to use trusted attestation, a directory needs to be provided, containing the certificates trusted
for attestation. See WebAuthn Token Config for details.

Note: If this is set to untrusted, a manipulated token could send a self-signed attestation message with
modified a modified AAGUID and faked certificate fields in order to bypass webauthn_req and webau-
thn_authenticator_selection_list, or webauthn_req and webauthn_authenticator_selection_list, respectively. If this
is of concern for your attack scenarios, please make sure to properly configure your attestation roots!

webauthn_req

type: string

This action allows filtering of WebAuthn tokens by the fields of the attestation certificate.

The action can be specified like this:

webauthn_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of
the WebAuthn authenticator the information is fetched from the attestation certificate. Only if the attribute in the
attestation certificate matches accordingly the token can be enrolled.

Note: If you configure this, you will likely also want to configure webauthn_req.

certificate_require_attestation

type: string

When enrolling a certificate token, privacyIDEA can require that an attestation certificate is passed along to verify, if
the key pair was generated on a (PIV) smartcard.

This policy can be set to:

• ignore (default): Ignore any existence of an attestation certificate

• verify: If an attestation certificate is passed along during enrollment, the attestation ceritificate gets verified.

1.7. Policies 153

privacyIDEA Authentication System, Release 3.6.2

• require_and_verify: An attestation certificate is required and verified. If no attestation certificate is
provided, the enrollment will fail.

The trusted root certificate authorities and intermediate certificate authorities can be configured via the policies certifi-
cate_trusted_Attestation_CA_path and :ref:`user_trusted_attestation_CA

1.7.6 WebUI Policies

login_mode

type: string

allowed values: “userstore”, “privacyIDEA”, “disable”

If set to userstore (default), users and administrators need to authenticate with the password of their userstore, being
an LDAP service or an SQL database.

If this action is set to login_mode=privacyIDEA, the users and administrators need to authenticate against privacyIDEA
when logging into the WebUI. I.e. they can not login with their domain password anymore but need to authenticate
with one of their tokens.

If set to login_mode=disable the users and administrators of the specified realms can not login to the UI anymore.

Warning: If you set this action and the user deletes or disables all his tokens, he will not be able to login anymore.

Note: Administrators defined in the database using the pi-manage command can still login with their normal pass-
words.

Note: A sensible way to use this, is to combine this action in a policy with the client parameter: requiring the
users to login to the Web UI remotely from the internet with OTP but still login from within the LAN with the domain
password.

Note: Another sensible way to use this policy is to disable the login to the web UI either for certain IP addresses
(client) or for users in certain realms.

remote_user

type: string

This policy defines, if the login to the privacyIDEA using the web servers integrated authentication (like basic authen-
tication or digest authentication) should be allowed.

Possible values are “disable”, “allowed” and “force”.

If set to “allowed” a user can choose to use the REMOTE_USER or login with credentials. If set to “force”, the user
can not switch to login with credentials but can only login with the REMOTE_USER from the browser.

154 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Note: The policy is evaluated before the user is logged in. At this point in time there is no realm known, so a policy
to allow remote_user must not select any realm.

Note: The policy setting “force” only works on the UI level. On the API level the user could still log in with
credentials! If you want to avoid this, see the next note.

Note: The policy login_mode and remote_user work independent of each other. I.e. you can disable login_mode and
allow remote_user.

You can use this policy to enable Single-Sign-On and integration into Kerberos or Active Directory. Add the following
template into you apache configuration in /etc/apache2/sites-available/privacyidea.conf:

<Directory />
For Apache 2.4 you need to set this:
Require all granted
Options FollowSymLinks
AllowOverride None

SSLRequireSSL
AuthType Kerberos
AuthName "Kerberos Login"
KrbMethodNegotiate On
KrbMethodK5Passwd On
KrbAuthRealms YOUR-REALM
Krb5KeyTab /etc/apache2/http.keytab
KrbServiceName HTTP
KrbSaveCredentials On
<RequireAny>

Either we need a URL with no authentication or we need a valid user
<RequireAny>

Any of these URL do NOT need a basic authentication
Require expr %{REQUEST_URI} =~ m#^/validate#
Require expr %{REQUEST_URI} =~ m#^/ttype#

</RequireAny>
Require valid-user

</RequireAny>
</Directory>

logout_time

type: int

Set the timeout, after which a user in th WebUI will be logged out. The default timeout is 120 seconds.

Being a policy this time can be set based on clients, realms and users.

1.7. Policies 155

privacyIDEA Authentication System, Release 3.6.2

token_page_size

type: int

By default 15 tokens are displayed on one page in the token view. On big screens you might want to display more
tokens. Thus you can define in this policy how many tokens should be displayed.

user_page_size

type: int

By default 15 users are displayed on one page in the user view. On big screens you might want to display more users.
Thus you can define in this policy how many users should be displayed.

policy_template_url

type: str

Here you can define a URL from where the policies should be fetched. The default URL is a Github repository1.

Note: When setting a template_url policy the modified URL will only get active after the user has logged out and in
again.

default_tokentype

type: str

You can define which is the default tokentype when enrolling a new token in the Web UI. This is the token, which will
be selected, when entering the enrollment dialog.

tokenwizard

type: bool

If this policy is set and the user has no token, then the user will only see an easy token wizard to enroll his first token.
If the user has enrolled his first token and he logs in to the web UI, he will see the normal view.

The user will enroll a token defined in default_tokentype.

Other sensible policies to combine are in User Policies the OTP length, the TOTP timestep and the HASH-lib.

You can add a prologue and epilog to the enrollment wizard in the greeting and after the token is enrolled and e.g. the
QR code is displayed.

Create the files

• static/customize/views/includes/token.enroll.pre.top.html

• static/customize/views/includes/token.enroll.pre.bottom.html

• static/customize/views/includes/token.enroll.post.top.html

• static/customize/views/includes/token.enroll.post.bottom.html

1 https://github.com/privacyidea/policy-templates/.

156 Chapter 1. Table of Contents

https://github.com/privacyidea/policy-templates/

privacyIDEA Authentication System, Release 3.6.2

to display the contents in the first step (pre) or in the second step (post).

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

realm_dropdown

type: str

If this policy is activated the web UI will display a realm dropdown box. Of course this policy can not filter for users
or realms, since the user is not known at this moment.

The type of this action was changed to “string” in version 2.16. You can set a space separated list of realm names.
Only these realmnames are displayed in the dropdown box.

Note: The realm names in the policy are not checked, if they really exist!

search_on_enter

type: bool

The searching in the user list is performed as live search. Each time a key is pressed, the new substring is searched in
the user store.

Sometimes this can be too time consuming. You can use this policy to change the bahaviour that the administrator
needs to press enter to trigger the search.

(Since privacyIDEA 2.17)

custom_baseline

type: str

The administrator can replace the file templates/baseline.html with another template. This way he can
change the links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/
mybase.html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specify
different baselines for different client IP addresses.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

1.7. Policies 157

privacyIDEA Authentication System, Release 3.6.2

custom_menu

type: str

The administrator can replace the file templates/menu.html with another template. This way he can change the
links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/mymenu.
html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specify
different menus for different client IP addresses.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

hide_buttons

type: bool

Buttons for actions that a user is not allowed to perform, are hidden instead of being disabled.

(Since privacyIDEA 3.0)

token_rollover

type: str

This is a whitespace separated list of tokentypes, for which a rollover button is displayed in the token details. This
button will generate a new token secret for the displayed token.

This e.g. enables a user to transfer a softtoken to a new device while keeping the token number restricted to 1.

(Since privacyIDEA 3.6)

login_text

type: str

This way the text “Please sign in” on the login dialog can be changed. Since the policy can also depend on the IP
address of the client, you can also choose different login texts depending on from where a user tries to log in.

(Since privacyIDEA 3.0)

show_android_privacyidea_authenticator

type: bool

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the Google Play Store where he can directly install the privacyIDEA Authenticator App for Android devices.

(Since privacyIDEA 3.3)

158 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

show_ios_privacyidea_authenticator

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the Apple App Store where he can directly install the privacyIDEA Authenticator App for iOS devices.

type: bool

(Since privacyIDEA 3.3)

show_custom_authenticator

type: str

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the given URL.

The idea is, that an organization running privacyIDEA can create its own URL, where the user is taken to, e.g.

• Show information about the used Authenticator apps. . .

• Do a device identification and automatically redirect the user to Google Play Store or Apple App Store. Thus
only need the user to show one QR code. . .

• If an organization has it’s own customized app or chooses to use another app, lead the user to another App in
the Google Play Store or Apple App Store.

Other scenarios are possible.

(Since privacyIDEA 3.3)

show_node

type: bool

If this policy is activated the UI will display the name of the privacyIDEA node in the top left corner next to the logo.

This is useful, if you have a lot of different privacyIDEA nodes in a redundant setup or if you have test instances and
prodcutive instances. This way you can easily distinguish the different instances.

(Since privacyIDEA 3.5)

indexedsecret_preset_attribute

type: str

The secret in the enrollment dialog of the tokentype indexedsecret is preset with the value of the given user attribute.

For more details of this token type see Indexed Secret Token.

(Since privacyIDEA 3.3)

1.7. Policies 159

privacyIDEA Authentication System, Release 3.6.2

admin_dashboard

type: bool

If this policy is activated, the static dashboard can be accessed by administrators. It is displayed as a starting page
in the WebUI and contains information about token numbers, authentication requests, recent administrative changes,
policies, event handlers and subscriptions.

(Since privacyIDEA 3.4)

1.7.7 Register Policy

User registration

Starting with privacyIDEA 2.10 users are allowed to register with privacyIDEA. I.e. a user that does not exist in a
given realm and resolver can create a new account.

Note: Registering new users is only possible, if there is a writeable resolver and if the necessary policy in the scope
register is defined. For editable UserIdResolvers see UserIdResolvers.

If a register policy is defined, the login window of the Web UI gets a new link “Register”.

Fig. 56: Next to the login button is a new link ‘register’, so that new users are able to register.

A user who clicks the link to register a new account gets this registration dialog:

During registration the user is also enrolled Registration token. This registration code is sent to the user via a notifica-
tion email.

Note: Thus - using the right policies in scope webui and authentication - the user could login with the password he
set during registration an the registration code he received via email.

160 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 57: Registration form

1.7. Policies 161

privacyIDEA Authentication System, Release 3.6.2

Policy settings

In the scope register several settings define the behaviour of the registration process.

Fig. 58: Creating a new registration policy

realm

type: string

This is the realm, in which a new user will be registered. If this realm is not specified, the user will be registered in the
default realm.

resolver

type: string

This is the resolver, in which the new user will be registered. If this resolver is not specified, registration is not
possible!

Note: This resolver must be an editable resolver, otherwise the user can not be created in this resolver.

162 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

smtpconfig

type: string

This is the unique identifier of the SMTP server configuration. This SMTP server is used to send the notification email
with the registration code during the registration process.

Note: If there is no smtpconfig or set to a wrong identifier, the user will get no notification email.

requiredemail

type: string

This is a regular expression according to1.

Only email addresses matching this regular expression are allowed to register.

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

action: requiredemail=/.*@mydomain\..*/

This will allow all email addresses from the domains mydomain.com, mydomain.net etc. . .

You can define as many policies as you wish to. The logic of the policies in the scopes is additive.

Fig. 59: Policy Definition

Starting with privacyIDEA 2.5 you can use policy templates to ease the setup.

1 https://docs.python.org/2/library/re.html

1.7. Policies 163

https://docs.python.org/2/library/re.html

privacyIDEA Authentication System, Release 3.6.2

1.7.8 Policy Templates

Policy templates are defined in a Github repository which can be changed using a WebUI policy policy_template_url.
The templates are fetched from the given repository URL during runtime.

The policy templates are json files, which can contain common settings, that can be used to start your own polices.
When creating a new policy, you can select an existing policy template as a starting point.

You may also fork the github repository and commit pull request to improve the policy templates. Or you may fork
the github repository and use your own policy template URL for your policy templates.

A policy templates looks like this:

{
"name": "template_name1",
"scope": "enrollment",
"action": {

"tokenlabel": "<u>@<r>/<s>",
"autoassignment": true

}
}

realms, resolver and clients are not used in the templates.

A template must be referenced in a special index.json file:

{
"template_name1": "description1",
"template_name2": "description2"

}

where the key is the name of the template file and the value is a description displayed in the WebUI.

Each policy can contain the following attributes:

164 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

policy name

A unique name of the policy. The name is the identifier of the policy. If you create a new policy with the
same name, the policy is overwritten.

Note: In the web UI and the API policies can only be created with the characters 0-9, a-z, A-Z, “_”, “-“,
” ” and “.”. On a library level or during migration scripts policies with other characters could be created.

scope

The scope of the policy as described above.

action

This is the important part of the policy. Each scope provides its own set of actions. An ac-
tion describes that something is allowed or that some behaviour is configured. A policy can con-
tain several actions. Actions can be of type boolean, string or integer. Boolean actions are
enabled by just adding this action - like scope=user:action=disable, which allows the
user to disable his own tokens. string and integer actions require an additional value - like
scope=authentication:action='otppin=userstore'.

user

This is the user, for whom this policy is valid. Depending on the scope the user is either an administrator
or a normal authenticating user.

If this field is left blank, this policy is valid for all users.

resolver

This policy will be valid for all users in this resolver.

If this field is left blank, this policy is valid for all resolvers.

Note: Starting with version 2.17 you can use the parameter check_all_resolvers. This is Check
all possible resolvers of a user to match the resolver in this policy in the Web UI.

Assume a user user@realm1 is contained in resolver1 and resolver2 in the realm realm1, where resolver1
is the resolver with the highest priority. If the user authenticates as user@realm1, only policies for re-
solver1 will match, since the user is identified as user.resolver1@realm1.

If you also want to match a policy with resolver=resolver2, you need to select Check all possible
resolvers in this policy. Thus this policy will match for all users, which are als contained in resolver2 as
a secondary resolver.

realm

This is the realm, for which this policy is valid.

If this field is left blank, this policy is valid for all realms.

client

This is the requesting client, for which this action is valid. I.e. you can define different policies if the user
access is allowed to manage his tokens from different IP addresses like the internal network or remotely
via the firewall.

You can enter several IP addresses or subnets divided by comma. Exclude item by prepending a minus
sign (like 10.2.0.0/16, -10.2.0.1, 192.168.0.1).

privacyIDEA Node

1.7. Policies 165

privacyIDEA Authentication System, Release 3.6.2

(added in privacyIDEA 3.4)

If you have a redundant setup requests can hit different dedicated nodes of your privacyIDEA cluster. If
you want a policy to only be valid for certain privacyIDEA Nodes, you can set a list of allowed nodes.

This can be useful if you e.g. only want certain administrative actions on dedicated nodes.

The nodes are configured in pi.cfg. See The Config File.

time

(added in privacyIDEA 2.12)

In the time field of a policy you can define a list of time ranges. A time range can consist of day of weeks
(dow) and of times in 24h format. Possible values are:

<dow>: <hh>-<hh>
<dow>: <hh:mm>-<hh:mm>
<dow>-<dow>: <hh:mm>-<hh:mm>

You may use any combination of these. Like:

Mon-Fri: 8-18

to define certain policies to be active throughout working hours.

Note: If the time of a policy does not match, the policy is not found. Thus you can get effects you did
not plan. So think at least twice before using time restricted policies.

priority

(added in privacyIDEA 2.23)

The priority field of policies contains a positive number and defaults to 1. In case of policy conflicts,
policies with a lower priority number take precedence.

It can be used to resolve policy conflicts. An example is the passthru policy: Assume there
are two passthru policies pol1 and pol2 that define different action values, e.g. pol1 defines
passthru=userstore and pol2 defines passthru=radius1. If multiple policies match for
an incoming authentication request, the priority value is used to determine the policy that should take
precedence: Assuming pol1 has a priority of 3 and pol2 has a priority of 2, privacyIDEA will honor
only the pol2 policy and authenticate the user against the RADIUS server radius1.

Policy conflicts can still occur if multiple policies with the same priority specify different values for the
same action.

additional conditions

(added in privacyIDEA 3.1)

Using conditions, you can specify more advanced rules that determine whether a policy is valid for a
request.

Conditions are described in

166 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.7.9 Policy conditions

Since privacyIDEA 3.1, policy conditions allow to define more advanced rules for policy matching, i.e. for determining
which policies are valid for a specific request.

Conditions can be added to a policy via the WebUI. In order for a policy to take effect during the processing of a
request, the request has to match not only the ordinary policy attributes (see Policies), but also all additionally defined
conditions that are currently active. If no active conditions are defined, only the ordinary policy attributes are taken
into account.

Each policy condition performs a comparison of two values. The left value is taken from the current request. The
comparison operator (called Comparator) and the right value are entered in the policy definition. Each condition
consists of five parts:

• Active determines if the condition is currently active.

• Section refers to an aspect of the incoming request on which the condition is applied. The available sections
are predefined, see Sections.

• The meaning of Key depends on the chosen Section. Typically, it determines the exact property of the
incoming request on which the condition is applied.

• Comparator defines the comparison to be performed. The available comparators are predefined, see Com-
parators.

• Value determines the value the property should be compared against.

Sections

privacyIDEA implements three sections userinfo, token, tokeninfo and HTTP Request Headers.

userinfo

The section userinfo can be used to define conditions that are checked against attributes of the current user in the
request (the so-called handled user). The validity of a policy condition with section userinfo is determined as
follows:

• privacyIDEA retrieves the userinfo of the currently handled user. These are the user attributes as they are
determined by the respective resolver. This is configured via the attribute mappings of resolvers (see UserIdRe-
solvers).

• Then, it retrieves the userinfo attribute given by Key

• Finally, it uses the Comparator to compare the contents of the userinfo attribute with the given Value. The
result of the comparison determines if the request matches the condition or not.

Note: There are situations in which the currently handled user cannot be determined. If privacyIDEA encounters a
policy with userinfo conditions in such a situation, it throws an error and the current request is aborted.

Likewise, privacyIDEA raises an error if Key refers to an unknown userinfo attribute, or if the condition definition is
invalid due to some other reasons. More detailed information are then written to the logfile.

As an example for a correct and useful userinfo condition, let us assume that you have configured a realm ldaprealm
with a single LDAP resolver called ldapres. This resolver is configured to fetch users from a OpenLDAP server, with
the following attribute mapping:

1.7. Policies 167

privacyIDEA Authentication System, Release 3.6.2

{ "phone": "telephoneNumber",
"mobile": "mobile",
"email": "mailPrimaryAddress",
"groups": "memberOf",
"surname": "sn",
"givenname": "givenName" }

You can further define groups to be a multi-value attribute by setting the Multivalue Attributes option to
["groups"].

According to this mapping, users of ldaprealm will have userinfo entries phone, mobile, email, groups,
surname and givenname which are filled with the respective values from the LDAP directory.

You can now configure a policy that disables the WebUI login for all users in the LDAP group cn=Restricted
Login,cn=groups,dc=test,dc=intranet with an email address ending in @example.com:

• Scope: webui

• Action: login_mode=disable

• 1) additional condition (active):

– Section: userinfo

– Key: email

– Comparator: matches

– Value: .*@example.com

2) additional condition (active):

– Section: userinfo

– Key: groups

– Comparator: contains

– Value: cn=Restricted Login,cn=groups,dc=test,dc=intranet

The policy only takes effect if the user that is trying to log in has a matching email address and is a member of the
specified group. In other words, members of the group with an email address ending in @privacyidea.org will
still be allowed to log in.

Note: Keep in mind that changes in the LDAP directory may not be immediately visible to privacyIDEA due to
caching settings (see LDAP resolver).

If the userinfo of the user that is trying to log in does not contain attributes email or groups (due to a resolver
misconfiguration, for example), privacyIDEA throws an error and the request is aborted.

168 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

tokeninfo

The tokeninfo condition works the same way as userinfo but matches the tokeninfo instead.

Note: Similar to the userinfo condition, a policy with an active tokeninfo condition will throw an exception whenever
the token object cannot be determined (usually from the serial).

token

The token condition works on the database columns of the token. This would be description, otplen, count,
serial, active but most importantly also failcount and tokentype.

Note: A policy with an active tokeninfo condition will throw an exception whenever the token object cannot be
determined. It will also throw an error, if the request Key does not exist as a database column.

Note: The matching is case sensitive. Note, that e.g. token types are stored in lower case in the database.

Example: The administrator could define a dedicated policy in the scope user with the action delete and the token
condition active, <, 1. For an inactive token the attribute active would evaluate to 0 and thus be smaller than 1.
An active token would evaluate to 1. This would allow the user to delete only inactive tokens, but not still active
tokens.

HTTP Request Header

The section HTTP Request header can be used to define conditions that are checked against the request header
key-value pairs.

The Key specifies the request header key. It is case-sensitive.

privacyIDEA uses the Comparator to check if the value of a header is equal or a substring of the required value.

Note: privacyIDEA raises an error if Key refers to an unknown request header. If the header in question is missing,
the policy can not get completely evaluated. Be aware that requests, that do not contain the header Key will always
fail! Thus, if you are using uncommon headers you should in addition restrict the policy e.g. to client IPs, to assure,
that a request from this certain IP address will always contain the header, that is to be checked.

Comparators

The following comparators can be used in definitions of policy conditions:

• equals evaluates to true if the left value is equal to the right value, according to Python semantics. !equals
evaluates to true if this is not the case.

• contains evaluates to true if the left value (a list) contains the right value as a member. !contains evaluates
to true if this is not the case.

1.7. Policies 169

privacyIDEA Authentication System, Release 3.6.2

• in evaluates to true if the left value is contained in the list of values given by the right value. The right value is
a comma-separated list of values. Individual values can be quoted using double-quotes. !in evaluates to true if
the left value is not found in the list given by the right value.

• matches evaluates to true if the left value completely matches the regular expression given by the right value.
!matches evaluates to true if this is not the case.

Error Handling

privacyIDEA’s error handling when checking policy conditions is quite strict, in order to prevent policy misconfigura-
tion from going unnoticed. If privacyIDEA encounters a policy condition that evaluates neither to true nor false, but
simply invalid due to a misconfiguration, privacyIDEA throws an error and the current request is aborted.

1.8 Event Handler

Added in version 2.12.

What is the difference between Policies and event handlers?

Policies are used to define the behaviour of the system. With policies you can change the way the system reacts.

With event handlers you do not change the way the system reacts. But on certain events you can trigger a new action
in addition to the behaviour defined in the policies.

These additional actions are also logged to the audit log. These actions are marked as EVENT in the audit log and you
can see, which event triggered these actions. Thus a single API call can cause several audit log entries: One for the
API call and more for the triggered actions.

1.8.1 Events

Each API call is an event and you can bind arbitrary actions to each event as you like.

Internally events are marked by a decorator “event” with an event identifier. At the moment not all events might be
tagged. Please drop us a note to tag all further API calls.

Fig. 60: An action is bound to the event token_init.

170 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.8.2 Pre and Post Handling

Added in Version 2.23.

With most event handlers you can decide if you want the action to be taken before the actual event or after the actual
event. I.e. if all conditions would trigger certain actions the action is either triggered before (pre) the API request is
processed or after (post) the request is processed.

Up to version 2.22 all actions where triggered after the request. In this case additional information from the response
is available. E.g. if a user successfully authenticated the event will know the serial number of the token, which the
user used to authenticate.

If the action is triggered before the API request is processed, the event can not know if the authentication request will
be successful or which serial number a token would have. However, triggering the action before the API request is
processed can have some interesting other advantages:

Example for Pre Handling

The administrator can define an event definition that would trigger on the event validate/check in case the the
authenticating user does not have any token assigned.

The pre event definition could call the Tokenhandler with the enroll action and enroll an email token with dy-
namic_email for this very user.

When the API request validate/check is now processed, the user actually now has an email token and can
authenticate via challenge response with this very email token without an administrator ever enrolling or assigning a
token for this user.

1.8.3 Handler Modules and Actions

The actions are defined in handler modules. So you bind a handler module and the action, defined in the handler
module, to the events.

The handler module can define several actions and each action in the handler module can require additional options.

1.8.4 Conditions

Added in version 2.14

An event handler module may also contain conditions. Only if all conditions are fulfilled, the action is triggered.
Conditions are defined in the class property conditions and checked in the method check_condition. The base class for
event handlers currently defines those conditions. So all event handlers come with the same conditions.

Note: In contrast to other conditions, the condition checking for tokenrealms, tokenresolvers, serial
and user_token_number also evaluates to true, if this information can not be checked. I.e. if a request does not
contain a serial or if the serial can not be determined, this condition will be evaluated as fulfilled.

Event Handlers are a mighty and complex tool to tweek the functioning of your privacyIDEA system. We recommend
to test your definitions thoroughly to assure your expected outcome.

1.8. Event Handler 171

privacyIDEA Authentication System, Release 3.6.2

Fig. 61: The event sendmail requires the option emailconfig.

Basic conditions

The basic event handler module has the following conditions.

client_ip

The action is triggered if the client IP matches this value. The value can be a comma-separated list of single addresses
or networks. To exclude entries, put a minus sign:

192.168.0.0/24,-192.168.0.12,10.0.0.2

count_auth

This can be ‘>100’, ‘<99’, or ‘=100’, to trigger the action, if the tokeninfo field ‘count_auth’ is bigger than 100, less
than 99 or exactly 100.

count_auth_fail

This can be ‘>100’, ‘<99’, or ‘=100’, to trigger the action, if the difference between the tokeninfo field ‘count_auth’
and ‘count_auth_success is bigger than 100, less than 99 or exactly 100.

count_auth_success

This can be ‘>100’, ‘<99’, or ‘=100’, to trigger the action, if the tokeninfo field ‘count_auth_success’ is bigger than
100, less than 99 or exactly 100.

failcounter

This is the failcount of the token. It is increased on failed authentication attempts. If it reaches max_failcount
increasing will stop and the token is locked. See Reset Fail Counter.

The condition can be set to ‘>9’, ‘=10’, or ‘<5’ and it will trigger the action accordingly.

172 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

detail_error_message

This condition checks a regular expression against the detail section in the API response. The field
detail->error->message is evaluated.

Error messages can be manyfold. In case of authentication you could get error messages like:

“The user can not be found in any resolver in this realm!”

With token/init you could get:

“missing Authorization header”

Note: The field detail->error->message is only available in case of an internal
error, i.e. if the response status is ``False.

detail_message

This condition checks a regular expression against the detail section in the API response. The field
detail->message is evaluated.

Those messages can be manyfold like:

“wrong otp pin”

“wrong otp value”

“Only 2 failed authentications per 1:00:00”

Note: The field detail->message is available in case of status True, like an authentication request that was
handled successfully but failed.

detail_message

Here you can enter a regular expression. The condition only applies if the regular expression matches the detail-
>message in the response.

last_auth

This condition checks if the last authentication is older than the specified time delta. The timedelta is specified with
“h” (hours), “d” (days) or “y” (years). Specifying 180d would mean, that the action is triggered if the last successful
authentication with the token was performed more than 180 days ago.

This can be used to send notifications to users or administrators to inform them, that there is a token, that might be
orphaned.

logged_in_user

This condition checks if the logged in user is either an administrator or a normal user. This way the administrator can
bind actions to events triggered by normal users or e.g. by help desk users. If a help desk user enrolls a token for a
user, the user might get notified.

If a normal user enrolls some kind of token, the administrator might get notified.

otp_counter

The action is triggered, if the otp counter of a token has reached the given value. The value can either be an exact
match or greater (‘>100’) or less (‘<200’) then a specified limit.

The administrator can use this condition to e.g. automatically enroll a new paper token for the user or notify the user
that nearly all OTP values of a paper token have been spent.

1.8. Event Handler 173

privacyIDEA Authentication System, Release 3.6.2

realm

The condition realm matches the user realm. The action will only trigger, if the user in this event is located in the
given realm.

This way the administrator can bind certain actions to specific realms. E.g. some actions will only be triggered, if the
event happens for normal users, but not for users in admin- or helpdesk realms.

resolver

The resolver of the user, for which this event should apply.

result_status

The result.status within the response is True or False.

result_value

This condition checks the result of an event.

E.g. the result of the event validate_check can be a failed authentication. This can be the trigger to notify either the
token owner or the administrator.

rollout_state

This is the rollout_state of a token. A token can be rolled out in several steps like the 2step HOTP/TOTP token. In this
case the attribute “rollout_state” of the token contains certain values like ‘clientwait’ or ‘enrolled’. This way actions
can be triggered, depending on the step during an enrollment process.

serial

The action will only be triggered, if the serial number of the token in the event does match the regular expression.

This is a good idea to combine with other conditions. E.g. only tokens with a certain kind of serial number like Google
Authenticator will be deleted automatically.

token_has_owner

The action is only triggered, if the token is or is not assigned to a user.

token_is_orphaned

The action is only triggered, if the user, to whom the token is assigned, does not exist anymore.

token_locked

The action is only triggered, if the token in the event is locked, i.e. the maximum failcounter is reached. In such a case
the user can not use the token to authenticate anymore. So an action to notify the user or enroll a new token can be
triggered.

token_validity_period

Checks if the token is in the current validity period or not. Can be set to True or False.

Note: token_validity_period==False will trigger an action if either the validitiy period is either over or
has not started, yet.

tokeninfo

The tokeninfo condition can compare any arbitrary tokeninfo field against a fixed value. You can compare strings and
integers. Integers are converted automatically. Valid compares are:

myValue == 1000 myValue > 1000 myValue < 99 myTokenInfoField == EnrollmentState myTokenIn-
foField < ABC myTokenInfoField > abc

174 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

“myValue” and “myTokenInfoField” being any possible tokeninfo fields.

Starting with version 2.20 you can also compare dates in the isoformat like that:

myValue > 2017-10-12T10:00+0200 myValue < 2020-01-01T00:00+0000

In addition you can also use the tag {now} to compare to the curren time and you can add offsets to {now} in seconds,
minutes, hours or days:

myValue < {now} myValue > {now}+10d myValue < {now}-5h

Which would match if the tokeninfo myValue is a date, which is later than 10 days from now or it the tokeninfo
myValue is a date, which is 5 more than 5 hours in the past.

tokenrealm

In contrast to the realm this is the realm of the token - the tokenrealm. The action is only triggered, if the token within
the event has the given tokenrealm. This can be used in workflows, when e.g. hardware tokens which are not assigned
to a user are pushed into a kind of storage realm.

tokenresolver

The resolver of the token, for which this event should apply.

tokentype

The action is only triggered if the token in this event is of the given type. This way the administrator can design
workflows for enrolling and reenrolling tokens. E.g. the tokentype can be a registration token and the registration code
can be easily and automatically sent to the user.

user_token_number

The action is only triggered, if the user in the event has the given number of tokens assigned.

This can be used to e.g. automatically enroll a token for the user if the user has no tokens left (token_number == 0) of
to notify the administrator if the user has to many tokens assigned.

counter

The counter condition can compare the value of any arbitrary event counter against a fixed value. Valid compares are:

myCounter == 1000 myCounter > 1000 myCounter < 1000

“myCounter” being any event counter set with the Counter Handler Module.

Note: A non-existing counter value will compare as 0 (zero).

1.8.5 Managing Events

Using the command pi-manage events you can list, delete, enable and disable events. You can also export the
complete event definitions to a file or import the event definitions from a file again. During import you can specify
if you want to remove all existing events or if you want to add the events from the file to the existing events in the
database.

Note: Events are identified by an id! Due to database restrictions the id is ignored during import. So importing an
event with the same name will create a second event with the same name but another id.

1.8. Event Handler 175

privacyIDEA Authentication System, Release 3.6.2

1.8.6 Available Handler Modules

User Notification Handler Module

The user notification handler module is used to send emails token owners or administrators in case of any event.

Possible Actions

sendmail

The sendmail action sends an email to the specified email address each time the event handler is triggered.

emailconfig

• required Option

The email is sent via this SMTP server configuration.

To

• required Option

This specifies to which type of user the notification should be sent. Possible recipient types are:

• token owner,

• logged in user,

• admin realm,

• internal admin,

• email address.

Depending on the recipient type you can enter additional information. The recipient type email takes a comma sepa-
rated list of email addresses.

reply_to

Adds the specified Reply-To header to the email.

subject

The subject can take the same tags as the body, except for the {googleurl_img}.

mimetype

Possible mime types are:

• plain (default)

• html

You can choose if the email should be sent as plain text or HTML. If the email is sent as HTML, you can do the
following:

Your new token

Which will create a clickable link. Clicked on the smartphone, the token will be imported to the smartphone app.

You can also do this:

176 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

This will add the QR Code as an inline data image into the HTML email.

Warning: The KEY URI and the QR Code contain the secret OTP key in plain text. Everyone who receives this
data has a detailed copy of this token. Thus we very much recommend to never send these data in an unencrypted
email!

attach_qrcode

Instead of sending the QR-Code as an inline data image (which is not supported by some email clients (i.e. Outlook)
or GMail1), enabling this option sends the email as a multipart message with the QR-Code image as an attachment.
The attached image can be referenced in a HTML body via CID URL2 with the Content-ID token_image:

sendsms

The sendsms action sends an SMS to the specified number each time the event handler is triggered.

To

• required Option

Possible recipients are:

• tokenowner

smsconfig

• required Option

The SMS Gateway configuration for sending the notification.

savefile

The savefile action saves a file to a spool directory. Each time the event handler is triggered a new file is saved.

In the pi.cfg file you can use the setting PI_NOTIFICATION_HANDLER_SPOOLDIRECTORY to configure a
spool directory, where the notification files will be written. The default file location is /var/lib/privacyidea/
notifications/. The directory needs to be writable for the user privacyidea.

filename

• required option

• The filename of the saved file. It can contain the tag {random} which will create a 16 characters long alpha
numeric string. Thus you could have a filename like notification-{random}.csv.

In addition you can use all tags that can be used in the body also in the filename (some of them might not make a lot
of sense!).

Note: Existing files are overwritten.

1 https://stackoverflow.com/a/42014708/7036742
2 https://tools.ietf.org/html/rfc2392

1.8. Event Handler 177

https://stackoverflow.com/a/42014708/7036742
https://tools.ietf.org/html/rfc2392

privacyIDEA Authentication System, Release 3.6.2

Body for all actions

All actions take the common option body:

body

• optional for sendmail and sendsms

• required for savefile

Here the administrator can specify the body of the notification, that is sent or saved. The body may contain the
following tags

• {admin} name of the logged in user.

• {realm} realm of the logged in user.

• {action} the action that the logged in user performed.

• {serial} the serial number of the token.

• {url} the URL of the privacyIDEA system.

• {user} the given name of the token owner.

• {givenname} the given name of the token owner.

• {surname} the surname of the token owner.

• {username} the loginname of the token owner.

• {userrealm} the realm of the token owner.

• {tokentype} the type of the token.

• {registrationcode} the registration code in the detail response.

• {recipient_givenname} the given name of the recipient.

• {recipient_surname} the surname of the recipient.

• {googleurl_value} is the KEY URI for a google authenticator.

• {googleurl_img} is the data image source of the google authenticator QR code.

• {time} the current server time in the format HH:MM:SS.

• {date} the current server date in the format YYYY-MM-DD

• {client_ip} the client IP of the client, which issued the original request.

• {ua_browser} the user agent of the client, which issued the original request.

• {ua_string} the complete user agent string (including version number), which issued the original request.

• {pin} the PIN of the token when set with /token/setrandompin. You can remove the PIN from the
response using the response mangler.

178 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Code

This is the event handler module for user notifications. It can be bound to each event and can perform the action:

• sendmail: Send an email to the user/token owner

• sendsms: We can also notify the user with an SMS.

• savefile: Create a file which can be processed later

The module is tested in tests/test_lib_eventhandler_usernotification.py

class privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
Allowed token owner

ADMIN_REALM = 'admin realm'

EMAIL = 'email'

INTERNAL_ADMIN = 'internal admin'

LOGGED_IN_USER = 'logged_in_user'

TOKENOWNER = 'tokenowner'

class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandling definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This eventhandler notifies the user about actions on his tokens'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'UserNotification'

1.8. Event Handler 179

privacyIDEA Authentication System, Release 3.6.2

Token Handler Module

The token event handler module is used to perform actions on tokens in certain events.

This way you can define workflows to automatically modify tokens, delete or even create new tokens.

Possible Actions

set tokenrealm

Here you can set the token realms of the token.

E.g. You could use this action to automatically put all newly enrolled tokens into a special realm by attaching
this action to the event token_init.

delete

The token which was identified in the request will be deleted if all conditions are matched.

unassign

The token which was identified in the request will be unassign from the user if all conditions are matched.

disable

The token which was identified in the request will be disabled if all conditions are matched.

enable

The token which was identified in the request will be enabled if all conditions are matched.

enroll

If all conditions are matched a new token will be enrolled. This new token can be assigned to a user, which was
identified in the request.

The administrator can specify the tokentype and the realms of the new token. By default the generation of the token
will use the parameter genkey, to generate the otp key. (see Token endpoints).

The action enroll also can take the options dynamic_phone (in case of tokentype SMS) and dynamic_email (in
case of tokentype email). Then these tokens are created with a dynamic loadable phone number or email address, that
is read from the user store on each authentication request.

Finally the administrator can specify the option additional_params. This needs to be a dictionary with parameters,
that get passed to the init request. You can specify all parameters, that would be used in a /token/init request:

{“hashlib”: “sha256”, “type”: “totp”, “genkey”: 0, “otpkey”: “31323334”}

180 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

would create a TOTP token, that uses the SHA256 hashing algorithm instead of SHA1. genkey: 0 overrides the
default behaviour of generating an OTP secret. Instead the fixed OTP secret “31323334” (otpkey) is used.

If the tokentype is set to “email” or “sms”, you can also specify an SMTP server or SMS gateway configuration for
the token enrolled by selecting a configuration in the corresponding field (smtp_identifier or sms_identifier). If none
is selected, then the default system configuration will be used.

set description

If all conditions are matched the description of the token identified in the request will be set.

You can use the tag {current_time} or {now} to set the current timestamp. In addition you can append an offset
to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days in the passt
or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s (seconds), m
(minutes), h (hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent.

set validity

If all conditions are matched the validity period of the token will be set.

There are different possibilities to set the start and the end of the validity period. The event definition can either contain
a fixed date and time or if can contain a time offset.

Fixed Time

A fixed time can be specified in the following formats.

Only date without time:

• 2016/12/23

• 23.12.2016

Date with time:

• 2016/12/23 9:30am

• 2016/12/23 11:20:pm

• 23.12.2016 9:30

• 23.12.2016 23:20

Starting with version 2.19 we recommend setting the fixed time in the ISO 8601 corresponding time format

• 2016-12-23T15:30+0600

Time Offset

You can also specify a time offset. In this case the validity period will be set such many days after the event occurred.
This is indicated by using a “+” and a specifier for days (d), hours (h) and minutes (m).

E.g. +30m will set to start the validity period in 30 minutes after the event occurred.

+30d could set the validity period to end 30 days after an event occurred.

Note: This way you could easily define a event definition, which will set newly enrolled tokens to be only valid for a
certain amount of days.

1.8. Event Handler 181

privacyIDEA Authentication System, Release 3.6.2

set countwindow

Here the count window of a token can be set. This requires an integer value.

set tokeninfo

Using the action set tokeninfo you can set any arbitrary tokeninfo attribute for the token. You need to specify
the key of the tokeninfo and the value.

In the value field you can use the tag {current_time} to set the current timestamp. In addition you can append
an offset to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days
in the passt or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s
(seconds), m (minutes), h (hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent and {username} and {realm} for information on the user in the parameters.

Note: Some tokens have token specific attributes that are stored in the tokeninfo. The TOTP token type has a
timeWindow. The TOTP and the HOTP token store the hashlib in the tokeninfo, the SMS token stores the
phone number.

Note: You can use this to set the timeWindow of a TOTP token for Automatic initial synchronization.

set failcounter

Using the action set failcounter you can reset the fail counter by setting it to 0 or also “block” the token by
setting the fail counter to what ever value the “max_fail” is, e.g. 10. Only integer values are allowed.

See Reset Fail Counter.

change failcounter

Using the action change failcounter you can increase or decrease the fail counter. Positive and negative integer
values are allowed. Positive values will increase the fail counter, negative values will decrease it.

Note: To limit a token handler in decreasing the fail counter, you may use the event handler condition failcounter (c.f.
Conditions) and set it to e.g. “>-5”. Once this condition is not met anymore, the event handler will not be triggered.

182 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

set max failcount

Using the action set max failcount you can set the maximum failcounter of a token to the specific value. Only
integer values are allowed.

See Reset Fail Counter.

set random pin

Sets a random PIN for the handled token. The PIN is then added to the response in detail->pin. This can be used
in the notification handler. Please take care, that probably the PIN needs to be removed from the response using the
response mangler handler after handling it with the notification handler.

Code

This is the event handler module for token actions. You can attach token actions like enable, disable, delete, unas-
sign,. . . of the

• current token

• all the user’s tokens

• all unassigned tokens

• all disabled tokens

• . . .

class privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
Allowed actions

CHANGE_FAILCOUNTER = 'change failcounter'

DELETE = 'delete'

DELETE_TOKENINFO = 'delete tokeninfo'

DISABLE = 'disable'

ENABLE = 'enable'

INIT = 'enroll'

SET_COUNTWINDOW = 'set countwindow'

SET_DESCRIPTION = 'set description'

SET_FAILCOUNTER = 'set failcounter'

SET_MAXFAIL = 'set max failcount'

SET_RANDOM_PIN = 'set random pin'

SET_TOKENINFO = 'set tokeninfo'

SET_TOKENREALM = 'set tokenrealm'

SET_VALIDITY = 'set validity'

UNASSIGN = 'unassign'

1.8. Event Handler 183

privacyIDEA Authentication System, Release 3.6.2

class privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can trigger new actions on tokens.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'Token'

class privacyidea.lib.eventhandler.tokenhandler.VALIDITY
Allowed validity options

END = 'valid till'

START = 'valid from'

Script Handler Module

The script event handler module is used to trigger external scripts in case of certain events.

This way you can even add external actions to your workflows. You could trigger a database dump, an external printing
device, a backup and much more.

Possible Actions

The actions of the script event handler are the scripts located in a certain script directory. The default script directory
is /etc/privacyidea/scripts.

You can change the location of the script directory and give the new directory in the parameter
PI_SCRIPT_HANDLER_DIRECTORY in your pi.cfg file.

184 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Possible Options

Options can be passed to the script. Your script has to take care of the parsing of these parameters.

logged_in_role

Add the role of the logged in user. This can be either admin or user. If there is no logged in user, none will be passed.

The script will be called with the parameter:

--logged_in_role <role>

logged_in_user

Add the logged in user. If there is no logged in user, none will be passed.

The script will be called with the parameter:

--logged_in_user <username>@<realm>

realm

Add --realm <realm> as script parameter. If no realm is given, none will be passed.

serial

Add --serial <serial number> as script parameter. If no serial number is given, none will be passed.

sync_to_database

Finish current transaction before running the script. This is useful if changes to the database should be made available
to the script or the running request.

user

Add --serial <username>' as script parameter. If no username is given, none will be passed.

Note: A possible script you could call is the privacyidea-get-unused-tokens.

1.8. Event Handler 185

privacyIDEA Authentication System, Release 3.6.2

Counter Handler Module

The counter event handler module is used to count certain events. You can define arbitrary counter names and each
occurrence of an event will modify the counter in the counter table according to the selected action.

These counters can be used to graph time series of failed authentication, assigned tokens, user numbers or any other
data with any condition over time.

Possible Actions

increase_counter

This action increases the counter in the database table eventcounter. If the counter does not exists, it will be
created and increased.

decrease_counter

This action decreases the counter in the database table eventcounter. If the counter does not exists, it will be
created and decreased.

Note: This action will not decrease the counter beyond zero unless the option allow_negative_values is
enabled.

reset_counter

This action resets the counter in the database table eventcounter to zero.

Possible Options

counter_name

This is the name of the counter in the database. You can have as many counters in as many event handlers as you like.

allow_negative_values

Only available for the decrease_counter action. Allows the counter to become negative. If set to False
(default) decreasing stops at zero. .. note:: Since the option allow_negative_values is an attribute of
the counter event handler action (and not the counter itself in the database) it is possible to define multiple event
handler accessing the same counter. Thus if a negative counter is accessed by an event handler with the option
allow_negative_values set to true, the counter will be reset to zero

186 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Federation Handler Module

The federation event handler can be used to configure relations between several privacyIDEA instances. Requests can
be forwarded to child privacyIDEA instances.

Note: The federation event handler can modify the original response. If the response was modified a new field
origin will be added to the detail section in the response. The origin will contain the URL of the privacyIDEA
server that finally handled the request.

Possible Actions

forward

A request (usually an authentication request validate_check) can be forwarded to another privacyIDEA instance. The
administrator can define privacyIDEA instances centrally at config -> privacyIDEA servers.

In addition to the privacyIDEA instance the action forward takes the following parameters:

client_ip The original client IP will be passed to the child privacyIDEA server. Otherwise the child privacyIDEA
server will use the parent privacyIDEA server as client.

Note: You need to configure the allow override client in the child privacyIDEA server.

realm The forwarding request will change the realm to the specified realm. This might be necessary since the
child privacyIDEA server could have different realms than the parent privacyIDEA server.

resolver The forwarding request will change the resolver to the specified resolver. This might be necessary since
the child privacyIDEA server could have different resolvers than the parent privacyIDEA server.

One simple possibility would be, that a user has a token in the parent privacyIDEA server and in the child privacyIDEA
server. Configuring a forward event handler on the parent with the condition result_value = False would
have the effect, that the user can either authenticate with the parent’s token or with the child’s token on the parent
privacyIDEA server.

Federation can be used, if privacyIDEA was introduced in a subdivision of a larger company. When privacyIDEA
should be enrolled to the complete company you can use federation. Instead of dropping the privacyIDEA instance
in the subdivision and installing on single central privacyIDEA, the subdivision can still go on using the original
privacyIDEA system (child) and the company will install a new top level privacyIDEA system (parent).

Using the federation handler you can setup many other, different scenarios we can not think of, yet.

Code

This is the event handler module for privacyIDEA federations. Requests can be forwarded to other privacyIDEA
servers.

class privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE
Allowed actions

FORWARD = 'forward'

class privacyidea.lib.eventhandler.federationhandler.FederationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

1.8. Event Handler 187

privacyIDEA Authentication System, Release 3.6.2

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

description = 'This event handler can forward the request to other privacyIDEA servers'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'Federation'

RequestMangler Handler Module

The RequestMangler is a special handler module, that can modify the request parameters of an HTTP request. This
way privacyIDEA can change the data that is processed within the request.

Usually this handler is used in the pre location. However there might be occasions when you want to modify param-
eters only before passing them to the next post handler. In this case you can also use the RequestMangler handler in
the post location.

Possible Actions

delete

This action simply deletes the given parameter from the request.

E.g. you could in certain cases delete the transaction_id from a /validate/check request. This way you
would render challenge response inactive.

set

This action is used to add or modify additional request parameters.

You can set a parameter with the value or substrings of another parameter.

This is why this action takes the additional options value, match_parameter and match_pattern. match_pattern always
needs to match the complete value of the match_parameter.

If you simply want to set a parameter to a fixed value you only need the options:

• parameter: as the name of the parameter you want to set and

• value: to set to a fixed value.

188 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

If you can to set a parameter based on the value of another parameter, you can use the regex notation () and the python
string formatting tags {0}, {1}.

Example 1

To set the realm based on the username parameter:

parameter: realm
match_parameter: username
match_pattern: .*@(.*)
value: {0}

A request like:

username=surname.givenname@example.com
realm=

with an empty realm will be modified to:

username=surname.givenname@example.com
realm=example.com

since, the pattern .*@(.*) will match the email address and extract the domain after the “@” sign. The python tag
“{0}” will be replaced with the matching domainname.

Example 2

To simply change the domain name in the very same parameter:

parameter: username
match_parameter: username
match_pattern: (.*)@example.com
value: {0}@newcompany.com

A request like:

username=surname.givenname@example.com

will be modified to:

username=surname.givenname@newcompany.com

Note: The match_pattern in the above example will not match “surname.givenname@example.company”, since it
always matches the complete value as mentioned above.

Code

This is the event handler module modifying request parameters.

class privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE
Allowed actions

DELETE = 'delete'

SET = 'set'

1.8. Event Handler 189

mailto:surname.givenname@example.company

privacyIDEA Authentication System, Release 3.6.2

class privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can modify the parameters in the request.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'RequestMangler'

ResponseMangler Handler Module

The ResponseMangler is a special handler module, that can modify the response of an HTTP request. This way
privacyIDEA can change the data sent back to the client, depending on certain conditions.

All actions take a JSON pointer, which looks like a path variable like /result/value.

Possible Actions

delete

This action simply deletes the given JSON pointer from the response.

Note: All keys underneath a node are deleted as well. So if the event handler deletes /detail, the entries /
detail/message and /detail/error will also be deleted.

Example

You can use this to delete /detail/googleurl, /detail/oathurl and /detail/otpkey in a /token/
init event to hide the created QR code from the helpdesk admin. This way the QR code could be used internally,
but could be hidden from the administrator.

190 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

set

This action is used to add additional pointers to the JSON response or to modify existing entries. Existing entries are
overwritten.

This action takes the additional attributes type and value.

The value can be returned as a string, an integer or a boolean.

Code

This is the event handler module that can mangle the JSON response. We can add or delete key or even subtrees in the
JSON response of a request.

The key is identified by a JSON Pointer (see https://tools.ietf.org/html/rfc6901)

class privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE
Allowed actions

DELETE = 'delete'

SET = 'set'

class privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. The ResponseMangler can only be
located at the “post” position

Returns list of allowed positions

description = 'This event handler can mangle the JSON response.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'ResponseMangler'

1.8. Event Handler 191

https://tools.ietf.org/html/rfc6901

privacyIDEA Authentication System, Release 3.6.2

Logging Handler Module

The logging event handler can be used to log the occurrence of an event to the python logging facility. You can log
arbitrary events with a configurable log message, loglevel and logger instance. Several tags are available to customize
the log message.

The configuration to handle the log messages can be defined in detail with the Advanced Logging.

Possible Actions

logging

Emit a log message to the python logging facility when the specified event gets triggered (and the conditions match).

name

• default: pi-eventlogger

The name of the logger to use when emitting the log message. This can be used for a fine-grained control of the log
messages via Advanced Logging.

Note: Logger names beginning with privacyidea will be handled by the default privacyIDEA logger and will
end up in the privacyIDEA log.

level

• default: INFO

The log level for the emitted log message. The following levels are available:

• ERROR

• WARNING

• INFO

• DEBUG

message

• default: "event={action} triggered"

The message to send to the logging facility. This message can be customized with the following tags:

• {admin} The logged in user.

• {realm} The realm of the logged in user.

• {action} The action which triggered this event.

• {serial} The serial of a token used in this event.

• {url} The URL of the privacyIDEA system.

• {user} The given name of the token owner.

• {surname} The surname of the token owner.

• {givenname} The given name of the token owner.

• {username} The login of the token owner.

• {userrealm} The realm of the token owner.

192 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• {tokentype} The type of the token.

• {time} The current server time (format: HH:MM:SS).

• {date} The current server date (format: YYYY-MM-DD).

• {client_ip} The IP of the client who triggered the event.

• {ua_browser} The user agent of the client, which issued the original request.

• {ua_string} The complete user agent string (including version number) which issued the original request.

Note: Not all tags are available in every event. It depends on the called API-Endpoint and passed parameter which
tags exist. If a tag does not exist during the event handling, an empty string will be inserted.

1.9 Periodic Tasks

Starting with version 2.23, privacyIDEA comes with the ability to define periodically recurring tasks in the Web UI.
The purpose of such tasks is to periodically execute certain processes automatically. The administrator defines which
tasks should be executed using task modules. Currently there are task modules for simple statistics and for handling
recorded events. Further task modules can be added easily.

As privacyIDEA is a web application, it can not actually execute the defined periodic tasks itself. For that, priva-
cyIDEA comes with a script privacyidea-cron which must be invoked by the system cron daemon. This can,
for example, be achieved by creating a file /etc/cron.d/privacyidea with the following contents (this is done
automatically by the Ubuntu package):

*/5 * * * * privacyidea privacyidea-cron run_scheduled -c

This tells the system cron daemon to invoke the privacyidea-cron script every five minutes. At each invocation,
the privacyidea-cron script determines which tasks should be executed and execute the scheduled tasks. The
-c option tells the script to be quiet and only print to stderr in case of an error (see The privacyidea-cron script).

Periodic tasks can be managed in the WebUI by navigating to Config->Periodic Tasks:

Fig. 62: Periodic task definitions

Every periodic task has the following attributes:

description A human-readable, unique identifier

active A boolean flag determining whether the periodic task should be run or not.

1.9. Periodic Tasks 193

privacyIDEA Authentication System, Release 3.6.2

order A number (at least zero) that can be used to rearrange the order of periodic tasks. This is used by
privacyidea-cron to determine the running order of tasks if multiple periodic tasks are scheduled to be
run. Tasks with a lower number are run first.

interval The periodicity of the task. This uses crontab notation, e.g. */30 * * * * runs the task every 30 minutes.

Keep in mind that the entry in the system crontab determines the minimal resolution of periodic tasks: If you
specify a periodic task that should be run every two minutes, but the privacyidea-cron script is invoked
every five minutes only, the periodic task will actually be executed every five minutes!

nodes The names of the privacyIDEA nodes on which the periodic task should be executed. This is useful in a
redundant master-master setup, because database-related tasks should then only be run on one of the nodes
(because the replication will take care of propagating the database changes to the other node). The name of the
local node as well as the names of remote nodes are configured in The Config File.

taskmodule The task module determines the actual activity of the task. privacyIDEA comes with several task mod-
ules, see Task Modules.

options The options are a set of key-value pairs that configure the behavior of the task module. Each task module can
have it’s own allowed options.

1.9.1 Task Modules

privacyIDEA comes with the following task modules:

SimpleStats

The SimpleStats task module is a Periodic Tasks to collect some basic statistics from the token database and write
them to the time series database table MonitoringStats.

Options

The SimpleStats task module provides the following boolean options:

total_tokens

If activated, the total number of tokens in the token database will be monitored.

hardware_tokens

If activated, the total number of hardware tokens in the token database will be monitored.

software_tokens

If activated, the total number of software tokens in the token database will be monitored.

unassigned_hardware_tokens

If activated, the number of hardware tokens in the token database which are not assigned to a user will be
monitored.

assigned_tokens

If activated, the number of tokens in the token database which are assigned to users will be monitored.

user_with_token

If activated, the number of users which have at least one token assigned will be monitored.

194 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Note: The statistics key, with which the time series is identified in the MonitoringStats table, is the same as the
option name.

Using a statistic with the same key in a different module, which writes to the MonitoringStats table, will corrupt
the data.

Note: For each of these basic statistic values the token database will be queried. To avoid excessive load on the
database, the SimpleStats task should not be executed too often.

EventCounter

The Event Counter task module can be used with the Periodic Tasks to create time series of certain events. An event
could be a failed authentication request. Using the Event Counter, privacyIDEA can create graphs that display the
development of failed authentication requests over time.

To do this, the Event Counter task module reads a counter value from the database table EventCounter and adds
this current value in a time series in the database table MonitoringStats. As the administrator can use the event
handler Counter Handler Module to record any arbitrary event under any condition, this task module can be used
to graph any metrics in privacyIDEA, be it failed authentication requests per time unit, the number of token delete
requests or the number of PIN resets per month.

Options

The Event Counter task module provides the following options:

event_counter

This is the name of the event counter key, that was defined in a Counter Handler Module definition and
that is read from the database table EventCounter.

stats_key

This is the name of the statistics key that is written to the MonitoringStats database table. The event
counter key stores the current number of counted events, the stats_key takes the current number and
stores it with the timestamp as a time series.

reset_event_counter

This is a boolean value. If it is set to true (the checkbox is checked), then the event counter will be reset
to zero, after the task module has read the key.

Resetting the the event counter results in a time series of “events per time interval”. The time
intervall is specified by the time intervall in which the Event Counter task module is called. If
reset_event_counter is not checked, then the event handler will continue to increase the counter
value. Use this, if you want to create a time series, that displays the absolute number of events.

1.9. Periodic Tasks 195

privacyIDEA Authentication System, Release 3.6.2

1.9.2 The privacyidea-cron script

The privacyidea-cron script is used to execute periodic tasks defined in the Web UI. The run_scheduled
command collects all active jobs that are scheduled to run on the current node and executes them. The order is
determined by their ordering values (tasks with low values are executed first). The -c option causes the script to
is useful if the script is executed via the system crontab, as it causes the script to only print to stderr in case of errors.

The list command can be used to get an overview of defined jobs, and the run_manually command can be used
to manually invoke tasks even though they are not scheduled to be run.

1.10 Audit

The systems provides a sophisticated audit log, that can be viewed in the WebUI.

Fig. 63: Audit Log

privacyIDEA comes with a default SQL audit module (see Audit log).

Starting with version 3.2 privacyIDEA also provides a Logger Audit and a Container Audit which can be used to send
privacyIDEA audit log messages to services like splunk or logstash.

1.10.1 SQL Audit

Cleaning up entries

The sqlaudit module writes audit entries to an SQL database. For performance reasons the audit module does no
log rotation during the logging process.

But you can set up a cron job to clean up old audit entries. Since version 2.19 audit entries can be either cleaned up
based on the number of entries or based on on the age.

Cleaning based on the age takes precedence:

You can specify a highwatermark and a lowwatermark. To clean up the audit log table, you can call pi-manage at
command line:

196 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

pi-manage rotate_audit --highwatermark 20000 --lowwatermark 18000

This will, if there are more than 20.000 log entries, clean all old log entries, so that only 18000 log entries remain.

Cleaning based on the age:

You can specify the number of days, how old an audit entry may be at a max.

pi-manage rotate_audit –age 365

will delete all audit entries that are older than one year.

Cleaning based on the config file:

Using a config file you can define different retention times for the audit data. E.g. this way you can define, that audit
entries about token listings can be deleted after one month, while the audit information about token creation will only
deleted after ten years.

The config file is a YAML format and looks like this:

DELETE auth requests of nils after 10 days
- rotate: 10

user: nils
action: .*/validate/check.*

DELETE auth requests of friedrich after 7 days
- rotate: 7

user: friedrich
action: .*/validate/check.*

Delete nagios user test auth directly
- rotate: 0

user: nagiosuser
action: POST /validate/check.*

Delete token listing after one month
- rotate: 30

action: ^GET /token

Delete audit logs for token creating after 10 years
- rotate: 3650

action: POST /token/init

Delete everything else after 6 months
- rotate: 180

action: .*

This is a list of rules. privacyIDEA iterates over all audit entries. The first matching rule for an entry wins. If the rule
matches, the audit entry is deleted if the entry is older than the days specified in “rotate”.

If is a good idea to have a catch-all rule at the end.

Note: The keys “user”, “action”. . . correspond to the column names of the audit table. You can use any column name
here like “date”, “action”, “action_detail”, “success”, “serial”, “administrator”, “user”, “realm”. . . for a complete list
see the model definition. You may use Python regular expressions for matching.

You can the add a call like

pi-manage rotate_audit –config /etc/privacyidea/audit.yaml

1.10. Audit 197

privacyIDEA Authentication System, Release 3.6.2

in your crontab.

Access rights

You may also want to run the cron job with reduced rights. I.e. a user who has no read access to the original pi.cfg
file, since this job does not need read access to the SECRET or PEPPER in the pi.cfg file.

So you can simply specify a config file with only the content:

PI_AUDIT_SQL_URI = <your database uri>

Then you can call pi-manage like this:

PRIVACYIDEA_CONFIGFILE=/home/cornelius/src/privacyidea/audit.cfg \
pi-manage rotate_audit

This will read the configuration (only the database uri) from the config file audit.cfg.

Table size

Sometimes the entries to be written to the database may be longer than the column in the database. You should set

PI_AUDIT_SQL_TRUNCATE = True

in pi.cfg. This will truncate each entry to the defined column length.

However, if you sill want to fetch more information in the audit log, you can increase the column length directly in
the database by the usual database means. However, privacyIDEA does not know about this, and will still truncate the
entries to the originally defined length.

To avoid this, you need to tell privacyIDEA about the changes. In :ref:cfgfile pi.cfg add the setting like:

PI_AUDIT_SQL_COLUMN_LENGTH = {“user”: 100, “policies”: 1000}

which will increase truncation of the user column to 100 and the policies column to 1000. Check the database schema
for the available columns.

1.10.2 Logger Audit

The Logger Audit module can be used to write audit log information to the Python logging facility and thus write log
messages to a plain file, a syslog daemon, an email address or any destination that is supported by the Python logging
mechanism. The log message passed to the python logging facility is a JSON-encoded string of the fields of the audit
entry.

You can find more information about this in Advanced Logging.

To activate the Logger Audit module you need to configure the following settings in your pi.cfg file:

PI_AUDIT_MODULE = "privacyidea.lib.auditmodules.loggeraudit"
PI_AUDIT_SERVERNAME = "your choice"
PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

You can optionally set a custom logging name for the logger audit with:

PI_AUDIT_LOGGER_QUALNAME = "pi-audit"

198 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

It defaults to the module name privacyidea.lib.auditmodules.loggeraudit. In contrast to the SQL
Audit you need a PI_LOGCONFIG otherwise the Logger Audit will not work correctly.

In the logging.cfg you then need to define the audit logger:

[logger_audit]
handlers=audit
qualname=privacyidea.lib.auditmodules.loggeraudit
level=INFO

[handler_audit]
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=INFO
args=('/var/log/privacyidea/audit.log',)

Note, that the level always needs to be INFO. In this example the audit log will be written to the file /var/log/
privacyidea/audit.log.

Finally you need to extend the following settings with the defined audit logger and audit handler:

[handlers]
keys=file,audit

[loggers]
keys=root,privacyidea,audit

Note: The Logger Audit only allows to write audit information. It can not be used to read data. So if you are only
using the Audit Logger, you will not be able to view audit information in the privacyIDEA Web UI! To still be able to
read audit information, take a look at the Container Audit.

Note: The policies auth_max_success and auth_max_fail depend on reading the audit log. If you use a non readable
audit log like the Logger Audit these policies will not work.

1.10.3 Container Audit

The Container Audit module is a meta audit module, that can be used to write audit information to more than one audit
module.

It is configured in the pi.cfg like this:

PI_AUDIT_MODULE = 'privacyidea.lib.auditmodules.containeraudit'
PI_AUDIT_CONTAINER_WRITE = ['privacyidea.lib.auditmodules.sqlaudit','privacyidea.lib.
→˓auditmodules.loggeraudit']
PI_AUDIT_CONTAINER_READ = 'privacyidea.lib.auditmodules.sqlaudit'

The key PI_AUDIT_CONTAINER_WRITE contains a list of audit modules, to which the audit information should be
written. The listed audit modules need to be configured as mentioned in the corresponding audit module description.

The key PI_AUDIT_CONTAINER_READ contains one single audit module, that is capable of reading information.
In this case the SQL Audit module can be used. The Logger Audit module can not be used for reading!

1.10. Audit 199

privacyIDEA Authentication System, Release 3.6.2

Using the Container Audit module you can on the one hand send audit information to external services using the
Logger Audit but also keep the audit information visible within privacyIDEA using the SQL Audit module.

1.11 Machines

privacyIDEA lets you define Machine Resolvers to connect to existing machine stores. The idea is for users to be
able to authenticate on those client machines. Not in all cases an online authentication request is possible, so that
authentication items can be passed to those client machines.

In addition you need to define, which application on the client machine the user should authenticate to. Different
application require different authentication items.

Therefore privacyIDEA can define application types. At the moment privacyIDEA knows the application luks,
offline and ssh. You can write your own application class, which is defined in Application Class.

You need to assign an application and a token to a client machine. Each application type can work with certain token
types and each application type can use additional parameters.

Note: Not all tokens work well with all applications!

1.11.1 SSH

Currently working token types: SSH

Parameters:

user (optional, default=root)

When the SSH token type is assigned to a client, the user specified in the user parameter can login with the private key
of the SSH token.

In the sshd_config file you need to configure the AuthorizedKeysCommand. Set it to:

privacyidea-authorizedkeys

This will fetch the SSH public keys for the requesting machine.

The command expects a configuration file /etc/privacyidea/authorizedkeyscommand which looks like this:

[Default]
url=https://localhost
admin=admin
password=test
nosslcheck=False

Note: To disable a SSH key for all servers, you simple can disable the SSH token in privacyIDEA.

Warning: In a productive environment you should not set nosslcheck to true, otherwise you are vulnerable to
man in the middle attacks.

200 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.11.2 LUKS

Currently working token types: Yubikey Challenge Response

Parameters:

slot The slot to which the authentication information should be written

partition The encrypted partition (usually /dev/sda3 or /dev/sda5)

These authentication items need to be pulled on the client machine from the privacyIDEA server.

Thus, the following script need to be executed with root rights (able to write to LUKS) on the client machine:

privacyidea-luks-assign @secrets.txt --clearslot --name salt-minion

For more information please see the man page of this tool.

1.11.3 Offline

Currently working token types: HOTP.

Parameters:

user The local user, who should authenticate. (Only needed when calling machine/get_auth_items)

count The number of OTP values passed to the client.

The offline application also triggers when the client calls a /validate/check. If the user authenticates successfully with
the correct token (serial number) and this very token is attached to the machine with an offline application the response
to validate/check is enriched with a “auth_items” tree containing the salted SHA512 hashes of the next OTP values.

The client can cache these values to enable offline authentication. The caching is implemented in the privacyIDEA
PAM module.

The server increases the counter to the last offline cached OTP value, so that it will not be possible to authenticate with
those OTP values available offline on the client side.

1.12 Workflows and Tools

This section describes workflows and tools.

1.12.1 Import

Seed files that contain the secret keys of hardware tokens can be imported to the system via the menu Import.

The default import options are to import SafeNet XML file, OATH CSV files, Yubikey CSV files or PSKC files.

1.12. Workflows and Tools 201

privacyIDEA Authentication System, Release 3.6.2

GPG Encryption

Starting with privacyIDEA 2.14 you can import GPG encrypted seed files. All files mentioned below can be encrypted
this way.

privacyIDEA needs its own GPG key. You may create one like this:

mkdir /etc/privacyidea/gpg
GNUPGHOME=/etc/privacyidea/gpg gpg --gen-key

Then make sure, that the directory /etc/privacyidea/gpg is chown 700 for the user privacyidea.

Now you can export the public key and hand it to your token vendor:

GNUPGHOME=/etc/privacyidea/gpg gpg -a --export <keyid>

Now the token vendor can send the seed file GPG encrypted. You do not need to decrypt the file and store the decrypted
file on a network folder. Just import the GPG encrypted file to privacyIDEA!

Note: Using the key PI_GNUPG_HOME in pi.cfg you can change the default above mentioned GNUPGHOME
directory.

Note: privacyIDEA imports an ASCII armored file. The file needs to be encrypted like this:

gpg -e -a -r <keyid> import.csv

OATH CSV

This is a very simple CSV file to import HOTP, TOTP or OATH tokens. You can also convert your seed easily to this
file format, to import the tokens.

The file format for TOTP tokens looks like this:

<serial>, <seed>, TOTP, <otp length>, <time step>

For HOTP tokens like:

<serial>, <seed>, [HOTP, <otp length>, <counter>]

For OCRA tokens it looks like this:

<serial>, <seed>, OCRA, <ocra suite>

serial is the serial number of the token that will also be used to identify the token in the database. Importing the same
serial number twice will overwrite the token data.

seed is the secret key, that is used to calculate the OTP value. The seed is provided in a hexadecimal notation.
Depending on the length either the SHA1 or SHA256 hash algorithm is identified.

type is either HOTP, TOTP or OCRA.

otp length is the length of the OTP value generated by the token. This is usually 6 or 8.

time step is the time step of TOTP tokens. This is usually 30 or 60.

202 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

ocra suite is the ocra suite of the OCRA token according to1.

For TAN tokens it looks like this:

<serial>, <n/a>, TAN, <list of tans>

The list of tans is a whitespace separated list.

Note: The Hash algorithm (SHA1, SHA256, SHA512) is derived from the length of the seed. If the length of the
seed does not match any Hash algorithm, the default SHA1 is used.

Import format version 2

A new import format allows to prepend a user, to whom the imported token should be assigned.

The file format needs to start with the first line

version: 2

and the first three colums will be the user:

<username>, <resolver>, <realm>, <serial>, <seed>, <type>, . . .

Note: The import will bail out, if a specified user does not exist.

Yubikey CSV

Here you can import the CSV file that is written by the ykpersgui2. privacyIDEA can import all Yubikey modes, either
Yubico mode or HOTP mode.

Note: The Yubikey in HOTP mode defaults to the Hash algorithm SHA1.

For more information about enrolling Yubikeys see Yubikey Enrollment Tools.

PSKC

The Portable Symmetric Key Container is specified in3. OATH compliant token vendors provide the token seeds in a
PSKC file. privacyIDEA lets you import PSKC files. All necessary information (OTP length, Hash algorithm, token
type) are read from the file.

Note: In PSKC the Hash algorithm is specified in the <Suite> tag. If it is not specified, SHA1 is used as the default.
The length of the seed is not used to determine the Hash algorithm.

PSKC files can be encrypted - either with a password or an AES key. You can provide this during the upload.

1 http://tools.ietf.org/html/rfc6287#section-6
2 http://www.yubico.com/products/services-software/personalization-tools/use/
3 https://tools.ietf.org/html/rfc6030

1.12. Workflows and Tools 203

http://tools.ietf.org/html/rfc6287#section-6
http://www.yubico.com/products/services-software/personalization-tools/use/
https://tools.ietf.org/html/rfc6030

privacyIDEA Authentication System, Release 3.6.2

SafeNet XML

Safenet or former Aladdin provided seed files in their own XML format. This is the format to choose, if you have a
file, that looks like this:

<Tokens>
<Token serial="00040008CFA5">
<CaseModel>5</CaseModel>
<Model>101</Model>
<ProductionDate>02/19/2009</ProductionDate>
<ProductName>Safeword Alpine</ProductName>
<Applications>
<Application ConnectorID="{ab1397d2-ddb6-4705-b66e-9f83f322deb9}">
<Seed>123412354</Seed>
<MovingFactor>1</MovingFactor>
</Application>
</Applications>
</Token>

<Token ...>
...
</Token>

</Tokens>

Note: The HASH algorithm defaults to SHA1. Unless the length of the seed is 64 characters, then SHA256 is
assumed.

204 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Note: This format is deprecated. Safenet nowadays might provide you an XML file, which is probably a PKCS file.
Please check the file contents!

1.12.2 Token Enrollment Wizard

The enrollment wizard helps the user to enroll his first token. When enrolling the first token, we assume, that the user
is not very familiar with the privacyIDEA web UI. So the enrollment wizard only contains a very reduced API.

Necessary requirements for the enrollment wizard

• The enrollment wizard will only be displayed, if the user has no token assigned, yet. Thus the user must be able
to login to the web UI with his userstore password. This is the default behaviour or set the corresponding policy.

• Set a policy in scope webui and activate the policy action tokenwizard.

• The user will not be able to choose a token type. But the default token type will be enrolled.

You can see the token enrollment wizard in action here: https://www.youtube.com/watch?v=diAGbsiG8_A

Customization

There are two dialog windows in the wizard. You can configure the text in the wizard in your html templates defined
in these files:

Before the token is enrolled you can add your custom text in these two files static/customize/views/includes/token.enroll.pre.top.html
static/customize/views/includes/token.enroll.pre.bottom.html

When it is enrolled and the user needs to do something (e.g. scanning the qr-code), you can modify the text here:
static/customize/views/includes/token.enroll.post.top.html static/customize/views/includes/token.enroll.post.bottom.html

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

Example

Your privacyIDEA system is running in the URL sub path /pi. The files could be addressed via a path component
mydesign (in this case pi/mydesign). Thus the WebUI will look for the files in the URL path /pi/mydesign/
views/includes/.

So you set in pi.cfg:

PI_CUSTOMIZATION = “/mydesign”

Your customized files are located in /etc/privacyidea/customize/views/includes/. In the Apache
webserver you need to map /pi/mydesign to /etc/privacyidea/customize:

Alias /pi/mydesign /etc/privacyidea/customize

1.12. Workflows and Tools 205

https://www.youtube.com/watch?v=diAGbsiG8_A

privacyIDEA Authentication System, Release 3.6.2

1.12.3 Enrollment Tools

This section describes the usage of several software tools to facilitate and automate token enrollment with priva-
cyIDEA. This is especially important for hardware tokens whose secrets have to be brought to the system.

Yubikey Enrollment Tools

The Yubikey can be used with privacyIDEA in Yubico’s own AES mode (Yubico OTP), in the HOTP mode (OATH-
HOTP) or the seldom used static password mode.

This section describes tools which can be used to initialize and enroll a Yubikey with privacyIDEA.

If not using the Yubico mode, the Yubikey has to be initialized/configured which creates a new secret on the device
that has to be imported to privacyIDEA.

privacyIDEA ships tools to (mass-)enroll Yubikeys in AES mode (Yubikey Token) or HOTP mode (HOTP Token).

privacyidea CLI tool

For Linux Clients, there is the privacyidea command line client1, to initialize the Yubikeys. You can use the mass
enrollment, which eases the process of initializing a whole bunch of tokens.

Run the command like this:

privacyidea -U https://your.privacyidea.server -a admin token \
yubikey_mass_enroll --yubimode YUBICO

This command initializes the device and creates a new token with the AES secret and prefix in privacyIDEA. You can
enroll Yubikeys in HOTP mode by using the option --yubimode HOTP which is also the default. You can choose
the slot with --yubislot. For further help call privacyidea yubikey_mass_enroll with the --help
option and refer to the documentation of the tool2.

You can also use yubikey_mass_enroll with the option --filename to write the token configuration to the
specified file, which can be imported later via the privacyIDEA WebUI at Select Tokens -> Import Tokens. There,
select OATH CSV and the file you just created.

Yubikey Personalization GUI

You can also initialize the Yubikey with the official Yubico personalization GUI3 and use the obtained secret to enroll
the Yubikey with privacyIDEA. For both AES (Yubico OTP) and OATH-HOTP mode, there are two possibilities to
initialize the Yubikey with privacyIDEA.

1 https://github.com/privacyidea/privacyideaadm/
2 https://github.com/privacyidea/privacyideaadm/blob/master/doc/index.rst
3 https://www.yubico.com/products/services-software/download/yubikey-personalization-tools/

206 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyideaadm/
https://github.com/privacyidea/privacyideaadm/blob/master/doc/index.rst
https://www.yubico.com/products/services-software/download/yubikey-personalization-tools/

privacyIDEA Authentication System, Release 3.6.2

Manual token enrollment

To initialize a single Yubikey in AES mode (Yubico OTP) use the Quick button and copy the displayed secret labeled
with “Secret Key (16 bytes Hex)” to the field OTP Key on the enrollment form in the privacyIDEA WebUI.

Fig. 64: Initialize a Yubikey in AES mode (Yubikey OTP)

Fig. 65: Enroll a Yubikey AES mode token in privacyIDEA

In the field “Test Yubikey” touch the Yubikey button. This will determine the length of the OTP value and the field
OTP length is automatically filled.

Note: The length of the unique passcode for each OTP is 32 characters at the end of the OTP value. The remaining
characters at the beginning of the OTP value form the Public ID of the device. They remain constant for each OTP4.

4 https://developers.yubico.com/OTP/OTPs_Explained.html

1.12. Workflows and Tools 207

https://developers.yubico.com/OTP/OTPs_Explained.html

privacyIDEA Authentication System, Release 3.6.2

privacyIDEA takes care of separating these parts but it needs to know the complete length of the OTP value to work
correctly.

The process is similar for the HOTP mode. You have to deselect OATH Token Identifier. Copy the displayed secret to
the HOTP Enrollment form in privacyIDEA.

Fig. 66: To initialize a single Yubikey in HOTP mode, deselect OATH Token Identifier.

Note: In the case of HOTP mode privacyIDEA can not necessarily distinguish a Yubikey in HOTP mode from a
smartphone App in HOTP mode. Using the above mentioned mass-enrollment, the token serial number is used to
distinguish these tokens.

Mass enrollment

To initialize one or more Yubikeys it is convenient to write the created token secrets to a file which can be imported
in the privacyIDEA WebUI. To do this, activate Settings -> Log configuration output. We recommend to select Yubico
format since here privacyIDEA is able to detect the Yubikey mode and sets the serial accordingly prepending UBOM
or UBAM. PSKC format is also supported upon import. You may also use the Flexible format to set custom token
serials upon import with OATH CSV .

To set a custom serial for Yubikey Tokens, set the Flexible format to:

YUBIAES{serial}_{configSlot},{secretKeyTxt},yubikey

For Yubikeys in HOTP mode, set the output format as:

YUBIHOTP{serial}_{configSlot},{secretKeyTxt},hotp,{hotpDigits}

Upon clicking Write Configuration for the first time, you will be prompted to select an output file name and the
generated configuration is written both to the device and to the selected file. In the Advanced mode select Program
Multiple Yubikeys and Automatically program Yubikeys when inserted to program each Yubikey automatically after
you insert it.

208 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Fig. 67: Write Configuration initializes the Yubikey

1.12. Workflows and Tools 209

privacyIDEA Authentication System, Release 3.6.2

During this process the token secrets are automatically appended to the selected export file. Note again, that for HOTP,
you have to deselect OATH Token Identifier.

After mass-initialization, the token secrets have to be imported to privacyIDEA according to the output format (see
Import).

1.12.4 Tools

privacyIDEA comes with a list of command line tools, which also help to automate tasks.

privacyidea-token-janitor

Starting with version 2.19 privacyIDEA comes with a token janitor script. This script can find orphaned tokens, unused
tokens or tokens of specific type, description or token info.

It can unassign, delete or disable those tokens and it can set additional tokeninfo or descriptions.

Starting with version 3.4 it can also set the tokenrealms of the found tokens.

If you are unsure to directly delete orphaned tokens, because there might be a glimpse in the connection to your user
store, you could as well in a first step mark the orphaned tokens. A day later you could run the script again and delete
those tokens, which are (still) orphaned and marked.

privacyidea-get-unused-tokens

The script privacyidea-get-unused-tokens allows you to search for tokens, which were not used for au-
thentication for a while. These tokens can be listed, disabled, marked or deleted.

You can specify how old the last authentication of such a token has to be. You can use the tags h (hours), d (day) and
y (year). Sepcifying 180d will find tokens, that were not used for authentication for the last 180 days.

The command:

privacyidea-get-unused-tokens disable 180d

will disable those tokens.

This script can be well used with the Script Handler Module.

1.12.5 Two Step Enrollment

Starting with version 2.21 privacyIDEA allows to enroll smartphone based tokens in a 2step enrollment.

With the rise of the smartphones and the fact that every user has a smartphone, carries it with him all the time and
cares about it a lot, using the smartphone for authentication gets more and more attractive to IT departments.

Google came up with the Key URI1 to use a QR code to easily enroll a smartphone token, i.e. transport the OTP secret
from the server to the phone. However this bears some security issues as already pointed out2.

This is why privacyIDEA allows to generate the OTP secret from a server component and from a client component
(generated by the smartphone). This way the enrolled token is more tightly bound to this single smartphone and can
not be copied that easily anymore.

1 https://github.com/google/google-authenticator/wiki/Key-Uri-Format
2 https://netknights.it/en/the-problem-with-the-google-authenticator/

210 Chapter 1. Table of Contents

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://netknights.it/en/the-problem-with-the-google-authenticator/

privacyIDEA Authentication System, Release 3.6.2

Workflow

In a two step enrollment process the user clicks in the Web UI to enroll a token. The server generates a QR code and
the user will scan this QR code with his smartphone app. The QR code contains the server component of the key and
the information, that a second component is needed.

The smartphone generates the second component and displays this to the user.

The user enters this second component into the privacyIDEA Web UI.

Both the smartphone and the server calculate the OTP secret from both components.

Two Step policies

Two step enrollment is controlled by policies in the admin/user scope and in the enrollment scope.

Thus the administrator can allow or force a user (or other administrators) to do a two step enrollment. This way it is
possible to avoid the enrollment of insecure Google Authenticator QR codes in the complete installation. (hotp_2step
and totp_2step).

The default behaviour is to not allow a two step enrollment. Only if a corresponding admin or user policy is defined,
two step enrollment is possible.

Key generation

In addition the administrator can define an enrollment policy to specify necessary parameters for the key genera-
tion.

Two step enrollment is possible for HOTP and TOTP tokens. Thus the administrator can define token type
specific policies in the scope enrollment: hotp_2step_clientsize, totp_2step_clientsize,
hotp_2step_difficulty. . . see {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

privacyIDEA Authenticator

The privacyIDEA Authenticator3 that is available from the Google Play Store supports the two step enrollment.

Specification

The two step enrollment simply adds some parameters to the original Key URI.

2step_output

This is the resulting key size, which the smartphone should generate (in bytes).

2step_salt

This is the length of the client component that the smartphone should generate (in bytes).

2step_difficulty

This is the number of rounds for the PBKDF2 that the smartphone should use to generate the OTP secret.

The secret parameter of the Key URI contains the server component.

The smartphone app then generates the client component, which is 2step_salt random bytes. It is then displayed
in a human-readable format called base32check:

3 https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

1.12. Workflows and Tools 211

https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

privacyIDEA Authentication System, Release 3.6.2

b32encode(sha1(client_component).digest()[0:4] + client_component).strip("=")

In other words, the first four bytes of the client component’s SHA-1 hash are concatenated with the actual client
component. The result is encoded using base32, whereas trailing padding characters are removed.

The second step of the enrollment process is realized as another request to the /token/init endpoint:

POST /token/init

serial=<token serial>
otpkey=<base32check(client_component)>
otpkeyformat=base32check

Server and smartphone app then use PBKDF2 to generate the final secret (see4 for parameter names):

secret = PBKDF2(P=hexlify(<server component>),
S=<client component>,
c=<2step_difficulty>
dkLen=<2step_output>)

whereas hexlify(<server component>) denotes a hex-encoding (using lowercase letters) of the byte array
which comprises the server component.

Note: Please note that the two-step enrollment process is currently not designed to protect against malicious attackers.
Depending on the choice of iteration count and salt size, an attacker who knows the server component and an OTP
value may be able to obtain the client component with a brute-force approach. However, two-step enrollment is still
an improvement to the status quo, as a simple copy of the QR code does not immediately leak the OTP secret and
obtaining the OTP secret using brute-force is not trivial.

1.13 Job Queue

privacyIDEA workflows often entail some time-consuming tasks, such as sending mails or SMS or saving usage
statistics. Executing such tasks during the handling of API requests negatively affects performance. Starting with
version 3.0, privacyIDEA allows to delegate certain tasks to external worker processes by using a job queue.

As an example, assume that privacyIDEA receives an authentication request by a user with an email token (see Email)
via HTTP. privacyIDEA will send a one-time password via E-Mail. In order to do so, it communicates with a SMTP
server. Normally, privacyIDEA handles all communication during the processing of the original authentication request,
which increases the response time for the HTTP request, especially if the SMTP server is at a remote location.

A job queue can help to reduce the response time as follows. Instead of communicating with the SMTP server during
request handling, privacyIDEA stores a so-called job in a job queue which says “Send an E-Mail to xyz@example.com
with content ‘. . . ’”. privacyIDEA does not wait for the E-Mail to be actually sent, but already sends an HTTP response.
An external worker process then retrieves the job from the queue and actually sends the corresponding E-Mail.

Using a job queue may improve the performance of your privacyIDEA server in case of a flaky connection to the
SMTP server. Authentication requests that send E-Mails are then handled faster (because the privacyIDEA server
does not actually communicate with the SMTP server), which means that the corresponding web server worker thread
can handle the next request faster.

privacyIDEA 3.0 implements a job queue based on huey which uses a Redis server to store jobs. As of version 3.0,
privacyIDEA allows to offload sending mails to the queue. Other jobs will be implemented in future versions.

4 https://www.ietf.org/rfc/rfc2898.txt

212 Chapter 1. Table of Contents

mailto:xyz@example.com
https://huey.readthedocs.io/en/latest/
https://redis.io/
https://www.ietf.org/rfc/rfc2898.txt

privacyIDEA Authentication System, Release 3.6.2

1.13.1 Configuration

The job queue is disabled by default. In order to enable it, add the following configuration option to pi.cfg:

PI_JOB_QUEUE_CLASS = 'privacyidea.lib.queues.huey_queue.HueyQueue'

After a server restart, you will be able to instruct individual SMTP servers to send all mails via the job queue by
checking a corresponding box in the SMTP server configuration (see SMTP server configuration). This means that
you can have separate SMTP server configurations, some of which send mails via the job queue, some of which send
mails during the request processing.

Note that you need to run a Redis server which is reachable for the privacyIDEA server. By default, huey assumes a
locally running Redis server. You can use a configuration option to provide a different URL (see here for information
on the URL format):

PI_JOB_QUEUE_URL = 'redis://somehost'

In addition to the privacyIDEA server, you will have to run a worker process which fetches jobs from the queue and
executes them. You can start it as follows:

privacyidea-queue-huey

By default, the worker process logs to privacyidea-queue.log in the current working directory. You can pass
a different logfile by using the -l option:

privacyidea-queue-huey -l /var/log/queue.log

As the script is heavily based on the huey consumer script, you can find information about additional options in the
huey documentation.

Note that a side-effect of the queue is that the privacyIDEA server will not throw or log errors if a mail could not be
sent. Hence, it is important to monitor the queue log file for errors.

1.14 Application Plugins

privacyIDEA comes with application plugins. These are plugins for applications like PAM, OTRS, Apache2, FreeRA-
DIUS, ownCloud, simpleSAMLphp or Keycloak which enable these application to authenticate users against priva-
cyIDEA.

You may also write your own application plugin or connect your own application to privacyIDEA. This is quite simple
using a REST API Validate endpoints. In order to support more sophisticated token types like challenge-response or
out-of-band tokens, you should take a look at the various Authentication Modes.

1.14.1 Pluggable Authentication Module

The PAM module of privacyIDEA directly communicates with the privacyIDEA server via the API. The PAM module
also supports offline authentication. In this case you need to configure an offline machine application. (See Offline)

You can install the PAM module by using the source code file. It is a python module, that requires python-pam:

git clone https://github.com/privacyidea/pam_python.git
cd pam_python
pip install -r requirements.txt
python ./setup.py install

1.14. Application Plugins 213

https://redis.io/
https://redis-py.readthedocs.io/en/latest/#redis.ConnectionPool.from_url
https://huey.readthedocs.io/en/latest/consumer.html#options-for-the-consumer
https://github.com/privacyidea/pam_python

privacyIDEA Authentication System, Release 3.6.2

The configuration could look like this:

... pam_python.so /path/to/privacyidea_pam.py
url=https://localhost prompt=privacyIDEA_Authentication

The URL parameter defaults to https://localhost. You can also add the parameters realm= and debug.

If you want to disable certificate validation, which you should not do in a productive environment, you can use the
parameter nosslverify.

A new parameter cacerts= lets you define a CA Cert-Bundle file, that contains the trusted certificate authorities in
PEM format.

The default behaviour is to trigger an online authentication request. If the request was successful, the user is logged
in. If the request was done with a token defined for offline authentication, then in addition all offline information is
passed to the client and cached on the client so that the token can be used to authenticate without the privacyIDEA
server available.

try_first_pass

Starting with version 2.8 privacyidea_pam supports try_first_pass. In this case the password that exists in the PAM
stack will be sent to privacyIDEA. If this password is successfully validated, than the user is logged in without addi-
tional requests. If the password is not validated by privacyIDEA, the user is asked for an additional OTP value.

Note: This can be used in conjunction with the passthru policy. In this case users with no tokens will be able to login
with only the password in the PAM stack.

Use cases SSH and VPN

PrivacyIDEA can be easily used to setup a secure SSH login combining SSH keys with a second factor. The configu-
ration is given in SSH Keys and OTP: Really strong two factor authentication on the privacyIDEA website.

Read more about how to use PAM to do openvpn.

1.14.2 Using pam_yubico

If you are using yubikey tokens you might also use pam_yubico. You can use Yubikey tokens for two more or
less distinct applications. The first is using privacyideas PAM module as described above. In this case privacyidea
handles the policies for user access and password validation. This works fine, when you only use privacyidea for token
validation.

The second mode is using the standard PAM module for yubikeys from Yubico pam_yubico to handle the token
validation. The upside ist that you can use the PAM module included with you distribution, but there are downsides as
well.

• You can’t set a token PIN in privacyidea, because pam_yubico tries to use the token PIN entered by the user
as a system password (which is likely to fail), i.e. the PIN will be stripped by pam_yubico and will not reach
the privacyIDEA system.

• Setting the policy which tokens are valid for which users is done either in ~/.yubico/authorized_keys
or in the file given by the authfile option in the PAM configuration. The api server will only validate the
token, but not check any kind of policy.

You can work around the restrictions by using a clever combination of tokentype yubikey and yubico as follows:

214 Chapter 1. Table of Contents

https://www.privacyidea.org/ssh-keys-and-otp-really-strong-two-factor-authentication/

privacyIDEA Authentication System, Release 3.6.2

• enroll a yubikey token with yubikey_mass_enroll --mode YUBICO.

• do not set a token password.

• do not assign the token to a user.

• please make a note of yubikey.prefix (12 characters starting with vv).

Now the token can be used with pam_yubico, but will not allow any user access in privacyidea. If you want to use
the token with pam_yubico see the manual page for details. You’ll want something like the following in your PAM
config:

auth required pam_yubico.so id=<apiid> key=<API key> \
urllist=https://<privacyidea-server>/ttype/yubikey authfile=/etc/yubikeys/

→˓authorized_yubikeys

The file /etc/yubikeys/authorized_yubikeys contains a line for each user with the username and the
allowed tokens delimited by “:”, for example:

<username>:<serial number1>:<prefix1>:<prefix2>

Now create a second token representing the Yubikey, but this time use the Yubico Cloud mode. Go to Tokens ->
Enroll Token and select Yubico Cloud mode. Enter the 12 characters prefix you noted above and assign this token
to a user and possibly set a token PIN. It would be nice to have the the serial number of the UBCM token correspond
to the UBAM token, but this is right now not possible with the WebUI.

In the WebUI, test the UBAM token without a Token PIN, test the UBCM token with the stored Token PIN, and check
the token info afterwards. Check the yubikey token via /ttype/yubikey, for example with:

ykclient --debug --url https://<privacyidea>/ttype/yubikey --apikey "<API key>" "apiid
→˓" <otp>

There should be successful authentications (count_auth_success), but no failures.

1.14.3 FreeRADIUS

Starting with privacyIDEA 2.19, there are two ways to integrate FreeRADIUS:

• Using a Perl-based privacyIDEA plugin, which is available for FreeRADIUS 2.0.x and above. It supports
advanced use cases (such as challenge-response authentication or attribute mapping). Read more about it at
rlm_perl.

• Using the rlm_rest plugin provided by FreeRADIUS 3.0.x and above. However, this setup does not support
challenge-response or attribute mapping. Read more about it at rlm_rest.

With either setup, you can test the RADIUS setup using a command like this:

echo "User-Name=user, User-Password=password" | radclient -sx yourRadiusServer \
auth topsecret

Note: Do not forget to configure the clients.conf accordingly.

1.14. Application Plugins 215

privacyIDEA Authentication System, Release 3.6.2

1.14.4 Microsoft NPS server

You can also use the Microsoft Network Protection Server with privacyIDEA. A full featured integration guide can be
found at the NetKnights webpage.

1.14.5 simpleSAMLphp Plugin

You can install the plugin for simpleSAMLphp using the source files from the GitHub Repository simplesamplphp-
module-privacyidea.

Follow the simpleSAMLphp instructions to configure your authsources.php. A usual configuration will look like this:

'example-privacyidea' => array(
'privacyidea:privacyidea',

/*
* The name of the privacyidea server and the protocol

* A port can be added by a colon

* Required.

*/
'privacyideaserver' => 'https://your.server.com',

/*
* Check if the hostname matches the name in the certificate

* Optional.

*/
'sslverifyhost' => False,

/*
* Check if the certificate is valid, signed by a trusted CA

* Optional.

*/
'sslverifypeer' => False,

/*
* The realm where the user is located in.

* Optional.

*/
'realm' => '',

/*
* This is the translation from privacyIDEA attribute names to

* SAML attribute names.

*/
'attributemap' => array('username' => 'samlLoginName',

'surname' => 'surName',
'givenname' => 'givenName',
'email' => 'emailAddress',
'phone' => 'telePhone',
'mobile' => 'mobilePhone',
),

),

216 Chapter 1. Table of Contents

https://netknights.it/en/nps-2012-for-two-factor-authentication-with-privacyidea/
https://github.com/privacyidea/simplesamlphp-module-privacyidea
https://github.com/privacyidea/simplesamlphp-module-privacyidea

privacyIDEA Authentication System, Release 3.6.2

1.14.6 Keycloak

With the privacyIDEA keycloak-provider, there is a plugin available for the Keycloak identity manager. It is available
from the GitHub repository keycloak-provider.

Like simpleSAMLphp, it can be used to realize single sign-on use cases with a strong second factor authentication.

1.14.7 TYPO3

You can install the privacyIDEA extension from the TYPO3 Extension Repository. The privacyIDEA extension is
easily configured.

privacyIDEA Server URL

This is the URL of your privacyIDEA installation. You do not need to add the path validate/check. Thus the URL for
a common installation would be https://yourServer/.

Check certificate

Whether the validity of the SSL certificate should be checked or not.

Warning: If the SSL certificate is not checked, the authentication request could be modified and the answer to
the request can be modified, easily granting access to an attacker.

Enable privacyIDEA for backend users

If checked, a user trying to authenticate at the backend, will need to authenticate against privacyIDEA.

Enable privacyIDEA for frontend users

If checked, a user trying to authenticate at the frontend, will need to authenticate against privacyIDEA.

Pass to other authentication module

If the authentication at privacyIDEA fails, the credential the user entered will be verified against the next authentication
module.

This can come in handy, if you are setting up the system and if you want to avoid locking yourself out.

Anyway, in a productive environment you probably want to uncheck this feature.

1.14.8 OTRS

The OTRS Plugin can be found in its own GitHub Repository.

This perl module needs to be installed to the directory Kernel/System/Auth.

To activate the OTP authentication you need to add the following to Kernel/Config.pm:

$Self->{'AuthModule'} = 'Kernel::System::Auth::privacyIDEA';
$Self->{'AuthModule::privacyIDEA::URL'} = \

"https://localhost/validate/check";
$Self->{'AuthModule::privacyIDEA::disableSSLCheck'} = "yes";

Note: As mentioned earlier you should only disable the checking of the SSL certificate if you are in a test environment.
For productive use you should never disable the SSL certificate checking.

1.14. Application Plugins 217

https://github.com/privacyidea/keycloak-provider
https://github.com/privacyidea/otrs

privacyIDEA Authentication System, Release 3.6.2

Note: This plugin requires, that you also add the path validate/check to the URL.

1.14.9 Apache2

The Apache plugin uses mod_wsgi and redis to provide a basic authentication on Apache2 side and validating the
credentials against privacyIDEA.

You need the authentication script privacyidea_apache.py and a valid configuration in /etc/
privacyidea/apache.conf. Both can be found on GitHub.

To activate the OTP authentication on a “Location” or “Directory” you need to configure Apache2 like this:

<Directory /var/www/html/secretdir>
AuthType Basic
AuthName "Protected Area"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/share/pyshared/privacyidea_apache.py
Require valid-user

</Directory>

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the
same one time password with each request. Thus the authentication module needs to cache the password when the
authentication is successful. Redis is used for caching the password.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The cached
credentials are stored as pbkdf2+sha512 hash.

1.14.10 NGINX

The NGINX plugin uses the internal scripting language lua of the NGINX webserver and redis as caching backend
to provide basic authentication against privacyIDEA.

You can retrieve the nginx plugin from GitHub.

To activate the OTP authentication on a “Location” you need to include the lua script that basically verifies the
given credentials against the caching backend. New authentications will be sent to a different (internal) location via
subrequest which points to the privacyIDEA authentication backend (via proxy_pass).

For the basic configuration you need to include the following lines to your location block:

location / {
additional plugin configuration goes here
access_by_lua_file 'privacyidea.lua';

}
location /privacyidea-validate-check {

internal;
proxy_pass https://privacyidea/validate/check;

}

218 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/tree/master/authmodules/apache2
https://github.com/dhoffend/lua-nginx-privacyidea

privacyIDEA Authentication System, Release 3.6.2

You can customize the authentication plugin by setting some of the following variables in the secured location
block:

redis host:port
set $privacyidea_redis_host "127.0.0.1";
set $privacyidea_redis_post 6379;

how long are accepted authentication allowed to be cached
if expired, the user has to reauthenticate
set $privacyidea_ttl 900;

privacyIDEA realm. leave empty == default
set $privacyidea_realm 'somerealm'; # (optional)

pointer to the internal validation proxy pass
set $privacyidea_uri "/privacyidea-validate-check";

the http realm presented to the user
set $privacyidea_http_realm "Secure zone (use PIN + OTP)";

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the same
one time password with each reqeust. Thus the authentication module needs to cache the password as the successful
authentication. Redis is used for caching the password similar to the Apache2 plugin.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The
cached credentials are stored as SHA1_HMAC hash. If you prefer a stronger hashing method feel free to
extend the given password_hash/verify functions using additional lua libraries (for example by using
lua-resty-string).

1.14.11 ownCloud

The ownCloud plugin is a ownCloud user backend. The directory user_privacyidea needs to be copied to your
owncloud apps directory.

Fig. 68: Activating the ownCloud plugin

You can then activate the privacyIDEA ownCloud plugin by checking Use privacyIDEA to authenticate the users. All
users now need to be known to privacyIDEA and need to authenticate using the second factor enrolled in privacyIDEA
- be it an OTP token, Google Authenticator or SMS/Smartphone.

1.14. Application Plugins 219

privacyIDEA Authentication System, Release 3.6.2

Checking Also allow users to authenticate with their normal passwords. lets the user choose if he wants to authenticate
with the OTP token or with his original password from the original user backend.

Note: At the moment using a desktop client with a one time password is not supported.

ownCloud 9.1 and Nextcloud 10 come with a new two factor framework. The new privacyIDEA ownCloud App
allows you to add a second factor, that is centrally managed by privacyIDEA to the ownCloud or Nextcloud installation.

The ownCloud privacyIDEA App is available from the ownCloud App Store.

The App requires a subscription file to work for more than ten users. You can get the subscription file from NetKnights.

1.14.12 Django

You can add two factor authentication with privacyIDEA to Django using this Django plugin.

You can simply add PrivacyIDEA class to the AUTHENTICATION_BACKENDS settings of Django.

1.14.13 OpenVPN

Read more about how to use OpenVPN with privacyidea at openvpn.

1.14.14 Windows

Credential Provider

The privacyIDEA Credential Provider adds two factor authentication to the Windows desktop or Terminal server. See
http://privacyidea-credential-provider.readthedocs.io

Provider Class

There is a dot Net provider class, which you can use to integrate privacyIDEA authentication into other products and
worflows. See https://github.com/sbidy/privacyIDEA_dotnetProvider

1.14.15 Further plugins

You can find further plugins for Dokuwiki, Wordpress, Contao and Django at cornelinux Github page.

1.15 Code Documentation

The code roughly has three levels: API, LIB and DB.

220 Chapter 1. Table of Contents

https://marketplace.owncloud.com/apps/twofactor_privacyidea
https://netknights.it/en/produkte/privacyidea-owncloud-app/
https://github.com/jeweber/django-privacyidea-auth
http://privacyidea-credential-provider.readthedocs.io
https://github.com/sbidy/privacyIDEA_dotnetProvider
https://github.com/cornelinux?tab=repositories

privacyIDEA Authentication System, Release 3.6.2

1.15.1 API level

The API level is used to access the system. For some calls you need to be authenticated as administrator, for some calls
you can be authenticated as normal user. These are the token and the audit endpoint. For calls to the validate
API you do not need to be authenticated at all.

At this level Authentication is performed. In the lower levels there is no authentication anymore.

The object g.logged_in_user is used to pass the authenticated user. The client gets a JSON Web Token to
authenticate every request.

API functions are decorated with the decorators admin_required and user_required to define access rules.

REST API

This is the REST API for privacyidea. It lets you create the system configuration, which is denoted in the system
endpoints.

Special system configuration is the configuration of

• the resolvers

• the realms

• the defaultrealm

• the policies.

Resolvers are dynamic links to existing user sources. You can find users in LDAP directories, SQL databases, flat
files or SCIM services. A resolver translates a loginname to a user object in the user source and back again. It is also
responsible for fetching all additional needed information from the user source.

Realms are collections of resolvers that can be managed by administrators and where policies can be applied.

Defaultrealm is a special endpoint to define the default realm. The default realm is used if no user realm is specified. If
a user from realm1 tries to authenticate or is addressed, the notation user@realm1 is used. If the @realm1 is omitted,
the user is searched in the default realm.

Policies are rules how privacyidea behaves and which user and administrator is allowed to do what.

Start to read about authentication to the API at Authentication endpoints.

Now you can take a look at the several REST endpoints. This REST API is used to authenticate the users. A user
needs to authenticate when he wants to use the API for administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

1.15. Code Documentation 221

mailto:user@realm1

privacyIDEA Authentication System, Release 3.6.2

Audit endpoint

GET /audit/
return a paginated list of audit entries.

Params can be passed as key-value-pairs.

Httpparam timelimit A timelimit, that limits the recent audit entries. This param gets overwritten
by a policy auditlog_age. Can be 1d, 1m, 1h.

Example request:

GET /audit?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

"serial": "....",
"missing_line": "..."

}
]

},
"version": "privacyIDEA unknown"

}

GET /audit/(csvfile)
Download the audit entry as CSV file.

Params can be passed as key-value-pairs.

Example request:

GET /audit/audit.csv?realm=realm1 HTTP/1.1
Host: example.com
Accept: text/csv

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

(continues on next page)

222 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"serial": "....",
"missing_line": "..."

}
]

},
"version": "privacyIDEA unknown"

}

Authentication endpoints

This REST API is used to authenticate the users. A user needs to authenticate when he wants to use the API for
administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

GET /auth/rights
This returns the rights of the logged in user.

Request Headers

• Authorization – The authorization token acquired by /auth request

POST /auth
This call verifies the credentials of the user and issues an authentication token, that is used for the later API
calls. The authentication token has a validity, that is usually 1 hour.

JSON Parameters

• username – The username of the user who wants to authenticate to the API.

• password – The password/credentials of the user who wants to authenticate to the API.

• realm – The realm where the user will be searched.

Return A json response with an authentication token, that needs to be used in any further request.

Status Codes

• 200 OK – in case of success

• 401 Unauthorized – if authentication fails

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

username=admin
password=topsecret

Example Authentication Response:

1.15. Code Documentation 223

https://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"token": "eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM"
}

},
"version": "privacyIDEA unknown"

}

Response for failed authentication:

HTTP/1.1 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 203

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"error": {
"code": -401,
"message": "missing Authorization header"

},
"status": false

},
"version": "privacyIDEA unknown",
"config": {

"logout_time": 30
}

}

Example Request:

Requests to privacyidea then should use this security token in the Authorization field in the header.

GET /users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM

224 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Validate endpoints

This module contains the REST API for doing authentication. The methods are tested in the file
tests/test_api_validate.py

Authentication is either done by providing a username and a password or a serial number and a password.

Authentication workflow

Authentication workflow is like this:

In case of authenticating a user:

• privacyidea.lib.token.check_user_pass()

• privacyidea.lib.token.check_token_list()

• privacyidea.lib.tokenclass.TokenClass.authenticate()

• privacyidea.lib.tokenclass.TokenClass.check_pin()

• privacyidea.lib.tokenclass.TokenClass.check_otp()

In case if authenitcating a serial number:

• privacyidea.lib.token.check_serial_pass()

• privacyidea.lib.token.check_token_list()

• privacyidea.lib.tokenclass.TokenClass.authenticate()

• privacyidea.lib.tokenclass.TokenClass.check_pin()

• privacyidea.lib.tokenclass.TokenClass.check_otp()

POST /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• serial – The serial number of the token.

• type – The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
"signature": "1939...146964",
"detail": {"transaction_ids": ["03921966357577766962"],

"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",
"version": "privacyIDEA unknown",
"result": {"status": true,

(continues on next page)

1.15. Code Documentation 225

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"value": 1},
"time": 1482223663.517212,
"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []},

"id": 1,
"jsonrpc": "2.0",
"result": {"status": true,

"value": 0},
"signature": "205530282...54508",
"time": 1484303812.346576,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,
"id": 1,
"jsonrpc": "2.0",
"result": {"error": {"code": 905,

"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},
"signature": "14468...081555",
"time": 1484303933.72481,
"version": "privacyIDEA 2.17"}

GET /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• serial – The serial number of the token.

• type – The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
"signature": "1939...146964",

(continues on next page)

226 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"detail": {"transaction_ids": ["03921966357577766962"],
"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",
"version": "privacyIDEA unknown",
"result": {"status": true,

"value": 1},
"time": 1482223663.517212,
"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []},

"id": 1,
"jsonrpc": "2.0",
"result": {"status": true,

"value": 0},
"signature": "205530282...54508",
"time": 1484303812.346576,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,
"id": 1,
"jsonrpc": "2.0",
"result": {"error": {"code": 905,

"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},
"signature": "14468...081555",
"time": 1484303933.72481,
"version": "privacyIDEA 2.17"}

GET /validate/polltransaction/(transaction_id)

GET /validate/polltransaction
Given a mandatory transaction ID, check if any non-expired challenge for this transaction ID has been answered.
In this case, return true. If this is not the case, return false. This endpoint also returns false if no challenge with
the given transaction ID exists.

This is mostly useful for out-of-band tokens that should poll this endpoint to determine when to send an authen-
tication request to /validate/check.

JSON Parameters

• transaction_id – a transaction ID

POST /validate/offlinerefill
This endpoint allows to fetch new offline OTP values for a token, that is already offline. According to the
definition it will send the missing OTP values, so that the client will have as much otp values as defined.

Parameters

1.15. Code Documentation 227

privacyIDEA Authentication System, Release 3.6.2

• serial – The serial number of the token, that should be refilled.

• refilltoken – The authorization token, that allows refilling.

• pass – the last password (maybe password+OTP) entered by the user

Return

POST /validate/samlcheck

POST /validate/radiuscheck

POST /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns
result->value: true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• type – The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

• pass – The password, that consists of the OTP PIN and the OTP value.

• otponly – If set to 1, only the OTP value is verified. This is used in the management UI.
Only used with the parameter serial.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

(continues on next page)

228 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

Example response for this first part of a challenge response authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"serial": "PIEM0000AB00",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEM0000AB00",

"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},

{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}

]
},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

Example response for a successful authentication with /samlcheck:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",

(continues on next page)

1.15. Code Documentation 229

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {

"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": "/data/file/home/koelbel",
"resolver": "themis",
"surname": "Kölbel",
"givenname": "Cornelius",
"email": null},

"auth": true}
},
"version": "privacyIDEA unknown"

}

The response in value->attributes can contain additional attributes (like “myOwn”) which you can define in the
LDAP resolver in the attribute mapping.

GET /validate/samlcheck

GET /validate/radiuscheck

GET /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns
result->value: true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• type – The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

• pass – The password, that consists of the OTP PIN and the OTP value.

• otponly – If set to 1, only the OTP value is verified. This is used in the management UI.
Only used with the parameter serial.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

230 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

Example response for this first part of a challenge response authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"serial": "PIEM0000AB00",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEM0000AB00",

"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},

{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}

]
},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},

(continues on next page)

1.15. Code Documentation 231

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"version": "privacyIDEA unknown"
}

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

Example response for a successful authentication with /samlcheck:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {

"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": "/data/file/home/koelbel",
"resolver": "themis",
"surname": "Kölbel",
"givenname": "Cornelius",
"email": null},

"auth": true}
},
"version": "privacyIDEA unknown"

}

The response in value->attributes can contain additional attributes (like “myOwn”) which you can define in the
LDAP resolver in the attribute mapping.

System endpoints

This is the REST API for system calls to create and read system configuration.

The code of this module is tested in tests/test_api_system.py

GET /system/names/caconnector
Return a list of defined CA connectors. Each item of the list is a dictionary with the CA connector information,
including the name and defined templates, but excluding the CA connector data. This endpoint requires the
enrollCERTIFICATE right.

GET /system/names/radius
Return the list of identifiers of all defined RADIUS servers. This endpoint requires the enrollRADIUS right.

232 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

GET /system/documentation
returns an restructured text document, that describes the complete configuration.

POST /system/setDefault
define default settings for tokens. These default settings are used when new tokens are generated. The default
settings will not affect already enrolled tokens.

JSON Parameters

• DefaultMaxFailCount – Default value for the maximum allowed authentication fail-
ures

• DefaultSyncWindow – Default value for the synchronization window

• DefaultCountWindow – Default value for the counter window

• DefaultOtpLen – Default value for the OTP value length – usually 6 or 8

• DefaultResetFailCount – Default value, if the FailCounter should be reset on suc-
cessful authentication [True|False]

Return a json result with a boolean “result”: true

POST /system/setConfig
set a configuration key or a set of configuration entries

parameter are generic keyname=value pairs.

remark In case of key-value pairs the type information could be provided by an additional parameter with
same keyname with the postfix “.type”. Value could then be ‘password’ to trigger the storing of the value
in an encrypted form

JSON Parameters

• key – configuration entry name

• value – configuration value

• type – type of the value: int or string/text or password. password will trigger to store the
encrypted value

• description – additional information for this config entry

or

JSON Parameters

• pairs (key-value) – pair of &keyname=value pairs

Return a json result with a boolean “result”: true

Example request 1:

POST /system/setConfig
key=splitAtSign
value=true

Host: example.com
Accept: application/json

Example request 2:

1.15. Code Documentation 233

privacyIDEA Authentication System, Release 3.6.2

POST /system/setConfig
BINDDN=myName
BINDPW=mySecretPassword
BINDPW.type=password

Host: example.com
Accept: application/json

GET /system/gpgkeys
Returns the GPG keys in the config directory specified by PI_GNUPG_HOME.

Return A json list of the public GPG keys

GET /system/random
This endpoint can be used to retrieve random keys from privacyIDEA. In certain cases the client might need
random data to initialize tokens on the client side. E.g. the command line client when initializing the yubikey
or the WebUI when creating Client API keys for the yubikey.

In this case, privacyIDEA can create the random data/keys.

Query Parameters

• len – The length of a symmetric key (byte)

• encode – The type of encoding. Can be “hex” or “b64”.

Return key material

POST /system/hsm
Set the password for the security module

GET /system/hsm
Get the status of the security module.

GET /system/(key)

GET /system/
This endpoint either returns all config entries or only the value of the one config key.

This endpoint can be called by the administrator but also by the normal user, so that the normal user gets
necessary information about the system config

Parameters

• key – The key to return.

Return A json response or a single value, when queried with a key.

Rtype json or scalar

POST /system/test/(tokentype)
The call /system/test/email tests the configuration of the email token.

DELETE /system/(key)
delete a configuration key

JSON Parameters

• key – configuration key name

Returns a json result with the deleted value

234 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Resolver endpoints

The code of this module is tested in tests/test_api_system.py

POST /resolver/test
Send the complete parameters of a resolver to the privacyIDEA server to test, if these settings will result in a
successful connection. If you are testing existing resolvers, you can send the “__CENSORED__” password.
privacyIDEA will use the already stored password from the database.

Return a json result with True, if the given values can create a working resolver and a description.

GET /resolver/(resolver)

GET /resolver/
returns a json list of the specified resolvers. The passwords of resolvers (e.g. Bind PW of the LDAP resolver or
password of the SQL resolver) will be returned as “__CENSORED__”. You can run a POST request to update
the data and privacyIDEA will ignore the “__CENSORED__” password or you can even run a testresolver.

Parameters

• resolver (str) – the name of the resolver

• type (str) – Only return resolvers of type (like passwdresolver..)

• editable (str) – Set to “1” if only editable resolvers should be returned.

Return a json result with the configuration of resolvers

POST /resolver/(resolver)
This creates a new resolver or updates an existing one. A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (str) – the name of the resolver.

• type – the type of the resolver. Valid types are passwdresolver,

ldapresolver, sqlresolver, scimresolver :type type: str :return: a json result with the value being the database id
(>0)

Additional parameters depend on the resolver type.

LDAP:

• LDAPURI

• LDAPBASE

• AUTHTYPE

• BINDDN

• BINDPW

• TIMEOUT

• CACHE_TIMEOUT

• SIZELIMIT

• LOGINNAMEATTRIBUTE

• LDAPSEARCHFILTER

1.15. Code Documentation 235

privacyIDEA Authentication System, Release 3.6.2

• LDAPFILTER

• LOGINNAMEATTRIBUTE

• MULTIVALUEATTRIBUTES

• USERINFO

• UIDTYPE

• NOREFERRALS - True|False

• NOSCHEMAS - True|False

• EDITABLE - True|False

• START_TLS - True|False

• TLS_VERIFY - True|False

• TLS_VERSION

SQL:

• Database

• Driver

• Server

• Port

• User

• Password

• Table

• Map

Passwd

• Filename

DELETE /resolver/(resolver)
This function deletes an existing resolver. A resolver can not be deleted, if it is contained in a realm

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

Realm endpoints

The realm endpoints are used to define realms. A realm groups together many users. Administrators can manage the
tokens of the users in such a realm. Policies and tokens can be assigned to realms.

A realm consists of several resolvers. Thus you can create a realm and gather users from LDAP and flat file source
into one realm or you can pick resolvers that collect users from different points from your vast LDAP directory and
group these users into a realm.

You will only be able to see and use user object, that are contained in a realm.

The code of this module is tested in tests/test_api_system.py

236 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

GET /realm/superuser
This call returns the list of all superuser realms as they are defined in pi.cfg. See The Config File for more
information about this.

Return a json result with a list of realms

Example request:

GET /superuser HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": ["superuser",

"realm2"]
}

},
"version": "privacyIDEA unknown"

}

GET /realm/
This call returns the list of all defined realms. It takes no arguments.

Return a json result with a list of realms

Example request:

GET / HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {
"realm1_with_resolver": {
"default": true,
"resolver": [

{
"name": "reso1_with_realm",
"type": "passwdresolver"

}
]

(continues on next page)

1.15. Code Documentation 237

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

}
}

},
"version": "privacyIDEA unknown"

}

POST /realm/(realm)
This call creates a new realm or reconfigures a realm. The realm contains a list of resolvers.

In the result it returns a list of added resolvers and a list of resolvers, that could not be added.

Parameters

• realm – The unique name of the realm

• resolvers (string or list) – A comma separated list of unique resolver names or
a list object

• priority – Additional parameters priority.<resolvername> define the priority of the re-
solvers within this realm.

Return a json result with a list of Realms

Example request:

To create a new realm “newrealm”, that consists of the resolvers “reso1_with_realm” and “reso2_with_realm”
call:

POST /realm/newrealm HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

resolvers=reso1_with_realm, reso2_with_realm
priority.reso1_with_realm=1
priority.reso2_with_realm=2

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"added": ["reso1_with_realm", "reso2_with_realm"],
"failed": []

}
}
"version": "privacyIDEA unknown"

}

DELETE /realm/(realm)
This call deletes the given realm.

Parameters

238 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• realm – The name of the realm to delete

Return a json result with value=1 if deleting the realm was successful

Example request:

DELETE /realm/realm_to_delete HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

Default Realm endpoints

These endpoints are used to define the default realm, retrieve it and delete it.

DELETE /defaultrealm
This call deletes the default realm.

Return a json result with either 1 (success) or 0 (fail)

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

GET /defaultrealm
This call returns the default realm

Return a json description of the default realm with the resolvers

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,

(continues on next page)

1.15. Code Documentation 239

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"value": {
"defrealm": {
"default": true,
"resolver": [
{
"name": "defresolver",
"type": "passwdresolver"

}
]

}
}

},
"version": "privacyIDEA unknown"

}

POST /defaultrealm/(realm)
This call sets the default realm.

Parameters

• realm – the name of the realm, that should be the default realm

Return a json result with either 1 (success) or 0 (fail)

Token endpoints

The token API can be accessed via /token.

You need to authenticate to gain access to these token functions. If you are authenticated as administrator, you can
manage all tokens. If you are authenticated as normal user, you can only manage your own tokens. Some API calls
are only allowed to be accessed by adminitrators.

To see how to authenticate read Authentication endpoints.

POST /token/setrandompin/(serial)

POST /token/setrandompin
Set the OTP PIN for a specific token to a random value.

The token is identified by the unique serial number.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

Return In “value” returns the number of PINs set. The detail-section contains the key “pin” with
the set PIN.

Rtype json object

POST /token/description/(serial)

POST /token/description
This endpoint can be used by the user or by the admin to set the description of a token.

JSON Parameters

• description (basestring) – The description for the token

Parameters

• serial –

240 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Return

GET /token/challenges/(serial)

GET /token/challenges/
This endpoint returns the active challenges in the database or returns the challenges for a single token by its
serial number

Query Parameters

• serial – The optional serial number of the token for which the challenges should be
returned

• sortby – sort the output by column

• sortdir – asc/desc

• page – request a certain page

• pagesize – limit the number of returned tokens

• transaction_id – only returns challenges for this transaction_id. This is useful when
working with push or tiqr tokens.

Return json

POST /token/unassign
Unssign a token from a user. You can either provide “serial” as an argument to unassign this very token or you
can provide user and realm, to unassign all tokens of a user.

Return In case of success it returns the number of unassigned tokens in “value”.

Rtype JSON object

POST /token/copyuser
Copy the token user from one token to the other.

JSON Parameters

• from (basestring) – the serial number of the token, from where you want to copy the
pin.

• to (basestring) – the serial number of the token, from where you want to copy the pin.

Return returns value=True in case of success

Rtype bool

POST /token/disable/(serial)

POST /token/disable
Disable a single token or all the tokens of a user either by providing the serial number of the single token or a
username and realm.

Disabled tokens can not be used to authenticate but can be enabled again.

JSON Parameters

• serial (basestring) – the serial number of the single token to disable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of disabled tokens in “value”.

Rtype json object

1.15. Code Documentation 241

privacyIDEA Authentication System, Release 3.6.2

POST /token/copypin
Copy the token PIN from one token to the other.

JSON Parameters

• from (basestring) – the serial number of the token, from where you want to copy the
pin.

• to (basestring) – the serial number of the token, from where you want to copy the pin.

Return returns value=True in case of success

Rtype bool

POST /token/assign
Assign a token to a user.

JSON Parameters

• serial – The token, which should be assigned to a user

• user – The username of the user

• realm – The realm of the user

Return In case of success it returns “value”: True.

Rtype json object

POST /token/revoke/(serial)

POST /token/revoke
Revoke a single token or all the tokens of a user. A revoked token will usually be locked. A locked token can
not be used anymore. For certain token types additional actions might occur when revoking a token.

JSON Parameters

• serial (basestring) – the serial number of the single token to revoke

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of revoked tokens in “value”.

Rtype JSON object

POST /token/enable/(serial)

POST /token/enable
Enable a single token or all the tokens of a user.

JSON Parameters

• serial (basestring) – the serial number of the single token to enable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of enabled tokens in “value”.

Rtype json object

POST /token/resync/(serial)

POST /token/resync
Resync the OTP token by providing two consecutive OTP values.

242 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• otp1 (basestring) – First OTP value

• otp2 (basestring) – Second OTP value

Return In case of success it returns “value”=True

Rtype json object

POST /token/setpin/(serial)

POST /token/setpin
Set the the user pin or the SO PIN of the specific token. Usually these are smartcard or token specific PINs. E.g.
the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• userpin (basestring) – The user PIN of a smartcard

• sopin (basestring) – The SO PIN of a smartcard

• otppin (basestring) – The OTP PIN of a token

Return In “value” returns the number of PINs set.

Rtype json object

POST /token/reset/(serial)

POST /token/reset
Reset the failcounter of a single token or of all tokens of a user.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns “value”=True

Rtype json object

POST /token/init
create a new token.

JSON Parameters

• otpkey – required: the secret key of the token

• genkey – set to =1, if key should be generated. We either need otpkey or genkey

• keysize – the size (byte) of the key. Either 20 or 32. Default is 20

• serial – the serial number/identifier of the token

• description – A description for the token

• pin – the pin of the token. “OTP PIN”

• user – the login user name. This user gets the token assigned

1.15. Code Documentation 243

privacyIDEA Authentication System, Release 3.6.2

• realm – the realm of the user.

• type – the type of the token

• tokenrealm – additional realms, the token should be put into

• otplen – length of the OTP value

• hashlib – used hashlib sha1, sha256 or sha512

• validity_period_start – The beginning of the validity period

• validity_period_end – The end of the validity period

• 2stepinit – set to =1 in conjunction with genkey=1 if you want a 2 step initialization
process. Additional policies have to be set see Two Step Enrollment.

• otpkeyformat – used to supply the OTP key in alternate formats, currently hex or
base32check (see Two Step Enrollment)

Return a json result with a boolean “result”: true

Depending on the token type there can be additional parameters. In the tokenclass you can see additional
parameters in the method update when looking for getParam functions.

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"googleurl": {
"description": "URL for google Authenticator",
"img": "<img width=250 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/
→˓ToAAADsUlEQVR4nO2czY3bMBCF34QCfKSALcClyB2kpCAlpQOxlBQQgDwaoPBy4I+p9W4OSRaWF28OgizxgylgMJw/
→˓0oi/k/
→˓DlL0FApEiRIkWKFCnyeKRVmdrjNAFh3srTMuSS2qjLg2cr8pDkQpKMgF3SBITz1QA4YolVfQA4kiT35CNmK/
→˓JQZLM8aQaWH+3pEkEgTZlhBojksgGAAS7/83+K/ORkOF/
→˓NLtismiCfYXbOd+AxZivygCTXdCLCDJRLfTbhTo4wW5FHIJtyeAJIAJb4AobLBIP/
→˓ZQRAwMcyakxIPtd3ivw4EqObXJzody9t1EKS63N9p8iPI4sO3QTwGSSbA1Q0x+cWunWRDolsUjSnxvau6VB0xMIMrp4EPAnAkWsjpEMiu+ysD1mUZomuKk1/
→˓i6WtedIhkXupS1MEsMRmaVafh7dVfXwGV0D+kMj3yXDOsIsngXQiV59R0tZIE7jC0b4VA3WE2Yo8CtkTPy7b8sPA8HWbWML6dCKAqxG4GgADw+weOVuRRyTHuGztbk+PwdqQPIzTWibyDbJWVdOJQDLj9xkod4yOCK2gbzZvVpyip/
→˓xOkR9B4maCbnF8c53vHGuuLVaTHRLZpBgYgweAVP0hLPElA+mFtVrvf3W/
→˓aTM+brYij0j23o8JthAweNc1J5cCmSFNYDCAS5wfOVuRRyT7QpVL9F6XLN/
→˓zjhG4ZSAHj1trmcgmLcfoWoq6/
→˓B4LZLeqBxmVpxb5WobYfl8vaxfU7DSA4mdLh0S+TW5W2xXTiaWZ0WbALqiXmi5KU/
→˓n5tN8p8r+TzaqUH936MKNW6/2uIkvZIZF/IEleDfAZZnYi1zSB/
→˓DmVpa2YJZtVLxP5JmnfWCutty5qwNcFrWSsV2xGxs3+03+K/
→˓Cxk74WtTWflDr652L0XtoZuylOLvJNb9H7XPzQ0DOX9RTokcpAhAzRYpN4LO5TsI1rQLx0SOci4z7VcSuvQZgxWX1gfbfBX1ctEvhLupbZSe5bNQK0Jv/
→˓dTe9U6RL6WtoIBqDs33NA7Xdey3SYzrWUi99L8IfJW4cC4pYNjg+Ow/
→˓+O5vlPkx5OpnSsUzler2cbS29g8pmBmWH6elGMU+UqaFwS0NBBa9O45Rmhr26Mof0jkTt440MNlC9aOGQqzA8McaQs34xJfsv3rf4r8XOTduR+lezHN5fyh0sdY76qz/
→˓cDZijwwGcxqs0c9gNFx5w9t7e18hNmKPBRZ7NDtXKF6V1qp2e9qtZ7DkOf6TpEiRYoUKVKkyPfkNyq7YXtdjZCIAAAAAElFTkSuQmCC
→˓"/>",

"value": "otpauth://hotp/mylabel?
→˓secret=GEZDGNBVGY3TQOJQGEZDGNBVGY3TQOJQ&counter=0"

},
"oathurl": {
"description": "URL for OATH token",
"img": "<img width=250 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/
→˓ToAAADfElEQVR4nO2cTYrjMBCFX40EvZRvkKPIN5gz9c3so/
→˓QBBqxlwObNQpIlp2cYaBI6zrxamDjyhywo6leyEV+T+ccXQUCkSJEiRYoUKfL5SCviy7+zmZWBAbARmwGpPjXeZU6RL0ZGkuQCAMkMCCTmqlJ8HwAb4UiSPJJfn1Pki5Fpty8AED/
→˓MEBeAU/JoA52pOuk6Rd6f9H/
→˓60xBWbwCMyG7Mg0j3mlPky5OOiB9v5AQACCQnONr4yDlFnpisdigQQAIM4WpE2oyAWy0umyfCku1QX5A81zpFPo5EHybDEXH566U+FUlyOtc6RT6OzHao2RfOgwMQVqBYJADz5WrFVN1jTpGvRRY7FLmCExwR8y3JKbAm84HkFFawieyQyCpFJRagaMniikqRK4C9KpSVa3GULxN5lGZp8n3kinrr2H5xCmsZlQ6JPEiLqbPzKh5sRefL4uJILq4MyJeJPEjzZb2jQnFopQmSH3FZw2SHRB6lC3bQeatDiI2wghOAaoykQyKb7L2OzQPpjZjNEUgDDNiMSAMAOFpchjvNKfK1yGqHlkNetofYxclVs5RzNfkykZ/
→˓J4rc+So+++S2zy1ofDVezMXmURtoZ1ynyEeRuh1xXSiwJPtCFRyUygupDIm+l5fa9Q+Na0rT8yCG3lw6JPEqtMZaCUNfmyPWhBajtMx46Iedap8jHkV2/
→˓DK0cDWBXqapczY0ptxd5kFZjLEqzlJi6C4WyHYJjHZAOieyk2aGsSNyjoF2l0Jsg9TpE/
→˓oVMHpgvK8wupRZkIwDMQy0S5QMfbVfsOdcp8v5kF1M3N9ZaGrX/sbf2g+yQyFtpPdW2/
→˓75pTtGX5tWCcnuRt9L1OtguLcFve9DazmrpkMheOn3Ju4aA4tX6gVopiurbi7yV3Lc3IJ+vh0VuHoBbAWyeSH41hF+fzzKea50iH012QdE8OPJ92MzG9HY4NJRDpqt9+9uKfEayffeDU/
→˓J7z3UzG8PVSlqfPMrlm99W5FOSsUY8Noarmdkb+T7UTSF7Wv8kbyvyqcguL+u23k/
→˓7cDvdmm9Vpxb5LzLbobErObbc/
→˓lFzijw3eZtvcR4WAtjKx2Lmn1djztBAWN5ZPX3X24p8RrI719HcWNnsEVoz1vWPyJeJ7KXYoTln7A4Wcz6/
→˓eQL7xxxyRr95IlwNskMiezF941ykSJEiRYoU+Z+TvwF49nApsKFZZAAAAABJRU5ErkJggg==
→˓"/>",

(continues on next page)

244 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"value": "oathtoken:///addToken?name=mylabel&lockdown=true&
→˓key=3132333435363738393031323334353637383930"

},
"otpkey": {
"description": "OTP seed",
"img": "<img width=200 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAUoAAAFKAQAAAABTUiuoAAAB70lEQVR4nO2aTY6jQAyFPw9IWYI0B+ijwNHhKH0DWLZU6PXCVYSOZkF6xM/
→˓CXkQkfIsnWRU/22ViZ4x/9pIQaKCBBhpooEeilqPGrAWzdjGYy8/
→˓94QICfQftJEkTAIsBlYBKkqSf6DECAn0HnfMRkj4fnjfrATOrzxEQ6I6oX74bYGJuzxIQ6H9kqySqSjCfISDQX6CNpKE8mX18lT9GpXMEBLofHc3M7WA/
→˓19B9PgQsbgnPEBDonrCXyZMB/HMaFZOnu6DWz2aMZqaBZ79Vw9gu0W/
→˓dBsU7qm4CL16aKq9geonhcq2BlqR4jirRSYImoaF8eO8c2boeXR38YnRavIwJkNFUsg1xudZAy5ywreSFyqcabgxr8lE7XECgu8JPjpj/
→˓Ao2AJtXAYoIEYzsVi3i51kBz3Rq8O658RFhKVn4Rdesu6MYTemZoEm468kh+TejlWgNdjXoeMGVjOJXXnVJk6zboa1uFb7Wm1csTZ+tu6HN3TKcEYwvZIlLJ+sMFBPoO+twdjz7GXQy8Mf6Kqe7t0HV37FaDSp630R7Rb90WtR6ytxiaFPute6Gvu2OY6wRzC92EtguUy7UGWvqtzWgX8DtPZZ8cnvAuKNs7aH4v7ZnBPH6PWcZd0DInLPHjqSTvSAGBBhpooIEG+gb6DeDWV0l+Ofz2AAAAAElFTkSuQmCC
→˓"/>",

"value": "seed://3132333435363738393031323334353637383930"
},
"serial": "OATH00096020"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

2 Step Enrollment

Some tokens might need a 2 step initialization process like a smartphone app. This way you can create a shared
secret from a part generated by the privacyIDEA server and from a second part generated by the smartphone
app/client.

The first API call would be

POST /token/init

2stepinit=1

The response would contain the otpkey generated by the server and the serial number of the token. At this
point, the token is deactivated and marked as being in an enrollment state. The client would also generated a
component of the key and send his component to the privacyIDEA server:

The second API call would be

POST /token/init

serial=<serial from the previous response>
otpkey=<key part generated by the client>

Each tokenclass can define its own way to generate the secret key by overwriting the method
generate_symmetric_key. The Base Tokenclass contains an extremely simple way by concatenating
the two parts. See generate_symmetric_key()

POST /token/set/(serial)

POST /token/set
This API is only to be used by the admin! This can be used to set token specific attributes like

• description

1.15. Code Documentation 245

privacyIDEA Authentication System, Release 3.6.2

• count_window

• sync_window

• count_auth_max

• count_auth_success_max

• hashlib,

• max_failcount

• validity_period_start

• validity_period_end

The token is identified by the unique serial number or by the token owner. In the later case all tokens of the
owner will be modified.

The validity period needs to be provided in the format YYYY-MM-DDThh:mm+oooo

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The username of the token owner

• realm (basestring) – The realm name of the token owner

Return returns the number of attributes set in “value”

Rtype json object

GET /token/
Display the list of tokens. Using different parameters you can choose, which tokens you want to get and also in
which format you want to get the information (outform).

Query Parameters

• serial – Display the token data of this single token. You can do a not strict matching by
specifying a serial like “OATH”.

• type – Display only token of type. You ca do a non strict matching by specifying a token-
type like “otp”, to file hotp and totp tokens.

• user – display tokens of this user

• tokenrealm – takes a realm, only the tokens in this realm will be displayed

• description (basestring) – Display token with this kind of description

• sortby – sort the output by column

• sortdir – asc/desc

• page – request a certain page

• assigned – Only return assigned (True) or not assigned (False) tokens

• active – Only return active (True) or inactive (False) tokens

• pagesize – limit the number of returned tokens

• user_fields – additional user fields from the userid resolver of the owner (user)

• outform – if set to “csv”, than the token list will be given in CSV

Return a json result with the data being a list of token dictionaries:

246 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

{ "data": [{ <token1> }, { <token2> }]}

Rtype json

GET /token/getserial/(otp)
Get the serial number for a given OTP value. If the administrator has a token, he does not know to whom it
belongs, he can type in the OTP value and gets the serial number of the token, that generates this very OTP
value.

Query Parameters

• otp – The given OTP value

• type – Limit the search to this token type

• unassigned – If set=1, only search in unassigned tokens

• assigned – If set=1, only search in assigned tokens

• count – if set=1, only return the number of tokens, that will be searched

• serial – This can be a substring of serial numbers to search in.

• window – The number of OTP look ahead (default=10)

Return The serial number of the token found

POST /token/realm/(serial)
Set the realms of a token. The token is identified by the unique serial number

You can call the function like this: POST /token/realm?serial=<serial>&realms=<something> POST /to-
ken/realm/<serial>?realms=<hash>

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• realms (basestring) – The realms the token should be assigned to. Comma separated

Return returns value=True in case of success

Rtype bool

POST /token/info/(serial)/
key Add a specific tokeninfo entry to a token. Already existing entries with the same key are overwritten.

Parameters

• serial – the serial number/identifier of the token

• key – token info key that should be set

Query Parameters

• value – token info value that should be set

Return returns value=True in case the token info could be set

Rtype bool

DELETE /token/info/(serial)/
key Delete a specific tokeninfo entry of a token.

Parameters

• serial – the serial number/identifier of the token

1.15. Code Documentation 247

privacyIDEA Authentication System, Release 3.6.2

• key – token info key that should be deleted

Return returns value=True in case a matching token was found, which does not necessarily mean

that the matching token had a tokeninfo value set in the first place. :rtype: bool

POST /token/load/(filename)
The call imports the given file containing token definitions. The file can be an OATH CSV file, an aladdin XML
file or a Yubikey CSV file exported from the yubikey initialization tool.

The function is called as a POST request with the file upload.

JSON Parameters

• filename – The name of the token file, that is imported

• type – The file type. Can be “aladdin-xml”, “oathcsv” or “yubikeycsv”.

• tokenrealms – comma separated list of realms.

• psk – Pre Shared Key, when importing PSKC

• pskcValidateMAC – Determines how invalid MACs should be handled when importing
PSKC. Allowed values are ‘no_check’, ‘check_fail_soft’ and ‘check_fail_hard’.

Return The number of the imported tokens

Rtype int

POST /token/lost/(serial)
Mark the specified token as lost and create a new temporary token. This new token gets the new serial number
“lost<old-serial>” and a certain validity period and the PIN of the lost token.

This method can be called by either the admin or the user on his own tokens.

You can call the function like this: POST /token/lost/serial

JSON Parameters

• serial (basestring) – the serial number of the lost token.

Return returns value=dictionary in case of success

Rtype bool

DELETE /token/(serial)
Delete a token by its serial number.

JSON Parameters

• serial – The serial number of a single token.

Return In case of success it return the number of deleted tokens in “value”

Rtype json object

248 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

User endpoints

The user endpoints is a subset of the system endpoint.

GET /user/editable_attributes/
The resulting editable custom attributes according to the policies are returned. This can be a user specific result.
When a user is calling the endpoint the parameters will be implicitly set.

Httpparam user The username of the user, for whom the attribute should be set

Httpparam resolver The resolver of the user (optional)

Httpparam realm The realm of the user (optional)

Works for admins and normal users. :return:

POST /user/attribute
Set a custom attribute for a user. The user is specified by the usual parameters user, resolver and realm. When a
user is calling the endpoint the parameters will be implicitly set.

Httpparam user The username of the user, for whom the attribute should be set

Httpparam resolver The resolver of the user (optional)

Httpparam realm The realm of the user (optional)

Httpparam key The name of the attributes

Httpparam value The value of the attribute

Httpparam type an optional type of the attribute

The database id of the attribute is returned. The return value thus should be >=0.

GET /user/attribute
Return the custom attribute of the given user. This does not return the user attributes which are contained in the
user store! The user is specified by the usual parameters user, resolver and realm. When a user is calling the
endpoint the parameters will be implicitly set.

Httpparam user The username of the user, for whom the attribute should be set

Httpparam resolver The resolver of the user (optional)

Httpparam realm The realm of the user (optional)

Httpparam key The optional name of the attribute. If it is not specified all custom attributes of the
user are returned.

GET /user/
list the users in a realm

A normal user can call this endpoint and will get information about his own account.

Parameters

• realm – a realm that contains several resolvers. Only show users from this realm

• resolver – a distinct resolvername

• <searchexpr> – a search expression, that depends on the ResolverClass

Return json result with “result”: true and the userlist in “value”.

Example request:

1.15. Code Documentation 249

privacyIDEA Authentication System, Release 3.6.2

GET /user?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"description": "Cornelius Kölbel,,+49 151 2960 1417,+49 561 3166797,

→˓cornelius.koelbel@netknights.it",
"email": "cornelius.koelbel@netknights.it",
"givenname": "Cornelius",
"mobile": "+49 151 2960 1417",
"phone": "+49 561 3166797",
"surname": "Kölbel",
"userid": "1009",
"username": "cornelius",
"resolver": "name-of-resolver"

}
]

},
"version": "privacyIDEA unknown"

}

POST /user/

POST /user
Create a new user in the given resolver.

Example request:

POST /user
user=new_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

PUT /user/

PUT /user
Edit a user in the user store. The resolver must have the flag editable, so that the user can be deleted. Only
administrators are allowed to edit users.

250 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Example request:

PUT /user
user=existing_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

Note: Also a user can call this function to e.g. change his password. But in this case the parameter “user” and
“resolver” get overwritten by the values of the authenticated user, even if he specifies another username.

DELETE /user/attribute/(attrkey)/
username/realm Delete a specified custom attribute from the user. The user is specified by the positional
parameters user and realm.

Httpparam user The username of the user, for whom the attribute should be set

Httpparam realm The realm of the user

Httpparam key The name of the attribute that should be deleted from the user.

Returns the number of deleted attributes.

DELETE /user/(resolvername)/
username Delete a User in the user store. The resolver must have the flag editable, so that the user can be
deleted. Only administrators are allowed to delete users.

Delete a user object in a user store by calling

Example request:

DELETE /user/<resolvername>/<username>
Host: example.com
Accept: application/json

The code of this module is tested in tests/test_api_system.py

Policy endpoints

The policy endpoints are a subset of the system endpoint.

You can read more about policies at Policies.

GET /policy/check
This function checks, if the given parameters would match a defined policy or not.

Query Parameters

• user – the name of the user

1.15. Code Documentation 251

privacyIDEA Authentication System, Release 3.6.2

• realm – the realm of the user or the realm the administrator want to do administrative tasks
on.

• resolver – the resolver of a user

• scope – the scope of the policy

• action – the action that is done - if applicable

• client (IP_Address) – the client, from which this request would be issued

Return a json result with the keys allowed and policy in the value key

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

GET /policy/check?user=admin&realm=r1&client=172.16.1.1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "172.16.0.0/16",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

GET /policy/defs/(scope)

GET /policy/defs
This is a helper function that returns the POSSIBLE policy definitions, that can be used to define your policies.

If the given scope is “conditions”, this returns a dictionary with the following keys:

• "sections", containing a dictionary mapping each condition section name to a dictionary with the
following keys:

252 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

– "description", a human-readable description of the section

• "comparators", containing a dictionary mapping each comparator to a dictionary with the following keys:

– "description", a human-readable description of the comparator

if the scope is “pinodes”, it returns a list of the configured privacyIDEA nodes.

Query Parameters

• scope – if given, the function will only return policy definitions for the given scope.

Return The policy definitions of the allowed scope with the actions and action types. The top level
key is the scope.

Rtype dict

GET /policy/export/(export)

GET /policy/(name)

GET /policy/
this function is used to retrieve the policies that you defined. It can also be used to export the policy to a file.

Query Parameters

• name – will only return the policy with the given name

• export – The filename needs to be specified as the third part of the URL like policy.cfg.
It will then be exported to this file.

• realm – will return all policies in the given realm

• scope – will only return the policies within the given scope

• active – Set to true or false if you only want to display active or inactive policies.

Return a json result with the configuration of the specified policies

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
(continues on next page)

1.15. Code Documentation 253

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "1.1.1.1",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

POST /policy/disable/(name)
Disable a given policy by its name.

JSON Parameters

• name – The name of the policy

Return ID in the database

POST /policy/enable/(name)
Enable a given policy by its name.

JSON Parameters

• name – Name of the policy

Return ID in the database

POST /policy/import/(filename)
This function is used to import policies from a file.

JSON Parameters

• filename – The name of the file in the request

Form Parameters

• file – The uploaded file contents

Return A json response with the number of imported policies.

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

POST /policy/import/backup-policy.cfg HTTP/1.1
Host: example.com
Accept: application/json

Example response:

254 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 2

},
"version": "privacyIDEA unknown"

}

POST /policy/(name)
Creates a new policy that defines access or behaviour of different actions in privacyIDEA

JSON Parameters

• name (basestring) – name of the policy

• scope – the scope of the policy like “admin”, “system”, “authentication” or “selfservice”

• adminrealm – Realm of the administrator. (only for admin scope)

• adminuser – Username of the administrator. (only for admin scope)

• action – which action may be executed

• realm – For which realm this policy is valid

• resolver – This policy is valid for this resolver

• user – The policy is valid for these users. string with wild cards or list of strings

• time – on which time does this policy hold

• client (IP address with subnet) – for which requesting client this should be

• active – bool, whether this policy is active or not

• check_all_resolvers – bool, whether all all resolvers in which the user exists should
be checked with this policy.

• conditions – a (possibly empty) list of conditions of the policy. Each condition
is encoded as a list with 5 elements: [section (string), key (string),
comparator (string), value (string), active (boolean)] Hence,
the conditions parameter expects a list of lists. When privacyIDEA checks if a defined
policy should take effect, all conditions of the policy must be fulfilled for the policy to
match. Note that the order of conditions is not guaranteed to be preserved.

Return a json result with success or error

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

1.15. Code Documentation 255

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

POST /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

scope=admin
realm=realm1
action=enroll, disable

The policy POST request can also take the parameter of conditions. This is a list of conditions sets: [[“userinfo”,
“memberOf”, “equals”, “groupA”, “true”], [. . .]] With the entries being the section, the key, the
comparator, the value and active. For more on conditions see Policy conditions.

Example response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"setPolicy pol1": 1

}
},
"version": "privacyIDEA unknown"

}

DELETE /policy/(name)
This deletes the policy of the given name.

JSON Parameters

• name – the policy with the given name

Return a json result about the delete success. In case of success value > 0

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

DELETE /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,

(continues on next page)

256 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

Event endpoints

This endpoint is used to create, modify, list and delete Event Handling Configuration. Event handling configuration is
stored in the database table “eventhandling”

The code of this module is tested in tests/test_api_events.py

GET /event/(eventid)

GET /event/
returns a json list of the event handling configuration

Or

returns a list of available events when calling as /event/available

Or

the available handler modules when calling as /event/handlermodules

POST /event
This creates a new event handling definition

Parameters

• name – A describing name of the event.bool

• id – (optional) when updating an existing event you need to specify the id

• event – A comma separated list of events

• handlermodule – A handlermodule

• action – The action to perform

• ordering – An integer number

• position – “pre” or “post”

• conditions – Conditions, when the event will trigger

• options. – A list of possible options.

GET /event/conditions/(handlermodule)
Return the list of conditions a handlermodule provides.

Parameters

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

GET /event/positions/(handlermodule)
Return the list of positions a handlermodule provides.

Parameters

1.15. Code Documentation 257

privacyIDEA Authentication System, Release 3.6.2

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

GET /event/actions/(handlermodule)
Return the list of actions a handlermodule provides.

Parameters

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

POST /event/disable/(eventid)
Disable a given policy by its name.

JSON Parameters

• name – The name of the policy

Return ID in the database

POST /event/enable/(eventid)
Enable a given event by its id.

JSON Parameters

• eventid – ID of the event

Return ID in the database

DELETE /event/(eid)
this function deletes an existing event handling configuration

Parameters

• eid – The id of the event handling configuration

Return json with success or fail

This endpoint is used to create, modify, list and delete Machine Resolvers. Machine Resolvers fetch machine infor-
mation from remote machine stores like a hosts file or an Active Directory.

The code of this module is tested in tests/test_api_machineresolver.py

Machine Resolver endpoints

POST /machineresolver/test
This function tests, if the given parameter will create a working machine resolver. The Machine Resolver Class
itself verifies the functionality. This can also be network connectivity to a Machine Store.

Return a json result with bool

GET /machineresolver/
returns a json list of all machine resolver.

Parameters

• type – Only return resolvers of type (like “hosts”. . .)

POST /machineresolver/(resolver)
This creates a new machine resolver or updates an existing one. A resolver is uniquely identified by its name.

258 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (basestring) – the name of the resolver.

• type (string) – the type of the resolver. Valid types are. . . “hosts”

Return a json result with the value being the database id (>0)

Additional parameters depend on the resolver type.

hosts:

• filename

DELETE /machineresolver/(resolver)
this function deletes an existing machine resolver

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

GET /machineresolver/(resolver)
This function retrieves the definition of a single machine resolver.

Parameters

• resolver – the name of the resolver

Return a json result with the configuration of a specified resolver

This REST API is used to list machines from Machine Resolvers.

The code is tested in tests/test_api_machines

Machine endpoints

POST /machine/tokenoption
This sets a Machine Token option or deletes it, if the value is empty.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return

GET /machine/authitem/(application)

GET /machine/authitem
This fetches the authentication items for a given application and the given client machine.

Parameters

1.15. Code Documentation 259

privacyIDEA Authentication System, Release 3.6.2

• challenge (basestring) – A challenge for which the authentication item is calcu-
lated. In case of the Yubikey this can be a challenge that produces a response. The authen-
tication item is the combination of the challenge and the response.

• hostname (basestring) – The hostname of the machine

Return dictionary with lists of authentication items

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": { "ssh": [{ "username": "....",

"sshkey": "...."
}

],
"luks": [{ "slot": ".....",

"challenge": "...",
"response": "...",
"partition": "..."

]
}

},
"version": "privacyIDEA unknown"

}

POST /machine/token
Attach an existing token to a machine with a certain application.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return json result with “result”: true and the machine list in “value”.

Example request:

POST /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
"machienid": "12313098",
"resolver": "machineresolver1",
"serial": "tok123",
"application": "luks" }

260 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

GET /machine/token
Return a list of MachineTokens either for a given machine or for a given token.

Parameters

• serial – Return the MachineTokens for a the given Token

• hostname – Identify the machine by the hostname

• machineid – Identify the machine by the machine ID and the resolver name

• resolver – Identify the machine by the machine ID and the resolver name

Return

GET /machine/
List all machines that can be found in the machine resolvers.

Parameters

• hostname – only show machines, that match this hostname as substring

• ip – only show machines, that exactly match this IP address

• id – filter for substring matching ids

• resolver – filter for substring matching resolvers

• any – filter for a substring either matching in “hostname”, “ip” or “id”

Return json result with “result”: true and the machine list in “value”.

Example request:

GET /hostname?hostname=on HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"id": "908asljdas90ad0",
"hostname": ["flavon.example.com", "test.example.com"],
"ip": "1.2.3.4",
"resolver_name": "machineresolver1"

},
{
"id": "1908209x48x2183",
"hostname": ["london.example.com"],
"ip": "2.4.5.6",
"resolver_name": "machineresolver1"

}
]

},

(continues on next page)

1.15. Code Documentation 261

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"version": "privacyIDEA unknown"
}

DELETE /machine/token/(serial)/
machineid/resolver/application Detach a token from a machine with a certain application.

Parameters

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Return json result with “result”: true and the machine list in “value”.

Example request:

DELETE /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
"resolver": "machineresolver1",
"application": "luks" }

privacyIDEA Server endpoints

This endpoint is used to create, update, list and delete privacyIDEA server definitions. privacyIDEA server definitions
can be used for Remote-Tokens and for Federation-Events.

The code of this module is tested in tests/test_api_privacyideaserver.py

POST /privacyideaserver/test_request
Test the privacyIDEA definition :return:

GET /privacyideaserver/
This call gets the list of privacyIDEA server definitions

POST /privacyideaserver/(identifier)
This call creates or updates a privacyIDEA Server definition

Parameters

• identifier – The unique name of the privacyIDEA server definition

• url – The URL of the privacyIDEA server

• tls – Set this to 0, if tls should not be checked

• description – A description for the definition

DELETE /privacyideaserver/(identifier)
This call deletes the specified privacyIDEA server configuration

Parameters

• identifier – The unique name of the privacyIDEA server definition

262 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

CA Connector endpoints

This is the REST API for managing CA connector definitions. The CA connectors are written to the database table
“caconnector”.

The code is tested in tests/test_api_caconnector.py.

GET /caconnector/(name)

GET /caconnector/
returns a json list of the available CA connectors

POST /caconnector/(name)
Create a new CA connector

DELETE /caconnector/(name)
Delete a specific CA connector

Recover endpoints

This module provides the REST API for th password recovery for a user managed in privacyIDEA.

The methods are also tested in the file tests/test_api_register.py

POST /recover/reset
reset the password with a given recovery code. The recovery code was sent by get_recover_code and is bound
to a certain user.

JSON Parameters

• recoverycode – The recoverycode sent the the user

• password – The new password of the user

Return a json result with a boolean “result”: true

POST /recover
This method requests a recover code for a user. The recover code it sent via email to the user.

Query Parameters

• user – username of the user

• realm – realm of the user

• email – email of the user

Return JSON with value=True or value=False

Register endpoints

This module contains the REST API for registering as a new user. This endpoint can be used without any authentica-
tion, since a new user can register.

The methods are tested in the file tests/test_api_register.py

GET /register
This endpoint returns the information if registration is allowed or not. This is used by the UI to either display
the registration button or not.

Return JSON with value=True or value=False

1.15. Code Documentation 263

privacyIDEA Authentication System, Release 3.6.2

POST /register
Register a new user in the realm/userresolver. To do so, the user resolver must be writeable like an SQLResolver.

Registering a user in fact creates a new user and also creates the first token for the user. The following values
are needed to register the user:

• username (mandatory)

• givenname (mandatory)

• surname (mandatory)

• email address (mandatory)

• password (mandatory)

• mobile phone (optional)

• telephone (optional)

The user receives a registration token via email to be able to login with his self chosen password and the
registration token.

JSON Parameters

• username – The login name of the new user. Check if it already exists

• givenname – The givenname of the new user

• surname – The surname of the new user

• email – The email address of the new user

• password – The password of the new user. This is the resolver password of the new user.

• mobile – The mobile phone number

• phone – The phone number (land line) of the new user

Return a json result with a boolean “result”: true

Monitoring endpoints

This endpoint is used fetch monitoring/statistics data

The code of this module is tested in tests/test_api_monitoring.py

GET /monitoring/(stats_key)

GET /monitoring/
return a list of all available statistics keys in the database if no stats_key is specified.

If a stats_key is specified it returns the data of this key. The parameters “start” and “end” can be used to specify
a time window, from which the statistics data should be fetched.

GET /monitoring/(stats_key)/last
Get the last value of the stats key

DELETE /monitoring/(stats_key)
Delete the statistics data of a certain stats_key.

You can specify the start date and the end date when to delete the monitoring data. You should specify the dates
including the timezone. Otherwise your client could send its local time and the server would interpret it as its
own local time which would result in deleting unexpected entries.

You can specify the dates like 2010-12-31 22:00+0200

264 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Periodic Task endpoints

These endpoints are used to create, modify and delete periodic tasks.

This module is tested in tests/test_api_periodictask.py

GET /periodictask/taskmodules/
Return a list of task module identifiers.

GET /periodictask/nodes/
Return a list of available nodes

GET /periodictask/
Return a list of objects of defined periodic tasks.

POST /periodictask/
Create or replace an existing periodic task definition.

Parameters

• id – ID of an existing periodic task definition that should be updated

• name – Name of the periodic task

• active – true if the periodic task should be active

• retry_if_failed – privacyIDEA will retry to execute the task if failed

• interval – Interval at which the periodic task should run (in cron syntax)

• nodes – Comma-separated list of nodes on which the periodic task should run

• taskmodule – Task module name of the task

• ordering – Ordering of the task, must be a number >= 0.

• options – A dictionary (possibly JSON) of periodic task options, mapping unicodes to
unicodes

Return ID of the periodic task

GET /periodictask/options/(taskmodule)
Return the available options for the given taskmodule.

Parameters

• taskmodule – Identifier of the task module

Return a dictionary mapping option keys to description dictionaries

POST /periodictask/disable/(ptaskid)
Disable a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

POST /periodictask/enable/(ptaskid)
Enable a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

1.15. Code Documentation 265

privacyIDEA Authentication System, Release 3.6.2

GET /periodictask/(ptaskid)
Return the dictionary describing a periodic task.

Parameters

• ptaskid – ID of the periodic task

DELETE /periodictask/(ptaskid)
Delete a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

This endpoint is used to get the information from the server, which application types are known and which options
these applications provide.

Applications are used to attach tokens to machines.

The code of this module is tested in tests/test_api_applications.py

Application endpoints

GET /application/
returns a json list of the available applications

Tokentype endpoints

This API endpoint is a generic endpoint that can be used by any token type.

The tokentype needs to implement a classmethod api_endpoint and can then be called by /ttype/<tokentype>. This
way, each tokentype can create its own API without the need to change the core API.

The TiQR Token uses this API to implement its special functionalities. See TiQR Token.

POST /ttype/(ttype)
This is a special token function. Each token type can define an additional API call, that does not need authenti-
cation on the REST API level.

Return Token Type dependent

GET /ttype/(ttype)
This is a special token function. Each token type can define an additional API call, that does not need authenti-
cation on the REST API level.

Return Token Type dependent

266 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

SMTP server endpoints

This endpoint is used to create, update, list and delete SMTP server definitions. SMTP server definitions can be used
for several purposes like EMail-Token, SMS Token with SMTP gateway, notification like PIN handler and registration.

The code of this module is tested in tests/test_api_smtpserver.py

POST /smtpserver/send_test_email
Test the email configuration :return:

GET /smtpserver/
This call gets the list of SMTP server definitions

POST /smtpserver/(identifier)
This call creates or updates an SMTP server definition.

Parameters

• identifier – The unique name of the SMTP server definition

• server – The FQDN or IP of the mail server

• port – The port of the mail server

• username – The mail username for authentication at the SMTP server

• password – The password for authentication at the SMTP server

• tls – If the server should do TLS

• description – A description for the definition

DELETE /smtpserver/(identifier)
This call deletes the specified SMTP server configuration

Parameters

• identifier – The unique name of the SMTP server definition

SMS Gateway endpoints

This endpoint is used to create, modify, list and delete SMS gateway definitions. These gateway definitions are written
to the database table “smsgateway” and “smsgatewayoption”.

The code of this module is tested in tests/test_api_smsgateway.py

GET /smsgateway/(gwid)

GET /smsgateway/
returns a json list of the gateway definitions

Or

returns a list of available sms providers with their configuration /smsgateway/providers

POST /smsgateway
This creates a new SMS gateway definition or updates an existing one.

JSON Parameters

• name – The unique identifier of the SMS gateway definition

• module – The providermodule name

• description – An optional description of the definition

1.15. Code Documentation 267

privacyIDEA Authentication System, Release 3.6.2

• option.* – Additional options for the provider module (module specific)

• header.* – Additional headers for the provider module (module specific)

DELETE /smsgateway/option/(gwid)/
key this function deletes an option of a gateway definition

Parameters

• gwid – The id of the sms gateway definition

Return json with success or fail

DELETE /smsgateway/(identifier)
this function deletes an existing smsgateway definition

Parameters

• identifier – The name of the sms gateway definition

Return json with success or fail

RADIUS server endpoints

This endpoint is used to create, update, list and delete RADIUS server definitions. RADIUS server definitions can be
used for several purposes like RADIUS-Token or RADIUS-passthru policies.

The code of this module is tested in tests/test_api_radiusserver.py

POST /radiusserver/test_request
Test the RADIUS definition :return:

GET /radiusserver/
This call gets the list of RADIUS server definitions

POST /radiusserver/(identifier)
This call creates or updates a RADIUS server definition.

Parameters

• identifier – The unique name of the RADIUS server definition

• server – The FQDN or IP of the RADIUS server

• port – The port of the RADIUS server

• secret – The RADIUS secret of the RADIUS server

• description – A description for the definition

DELETE /radiusserver/(identifier)
This call deletes the specified RADIUS server configuration

Parameters

• identifier – The unique name of the RADIUS server definition

268 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Subscriptions endpoints

This is the controller API for client component subscriptions like ownCloud plugin or RADIUS Credential Provider.

GET /subscriptions/(application)

GET /subscriptions/
Return the subscription object as JSON.

POST /subscriptions/
Upload a new subscription file

DELETE /subscriptions/(application)
Delete an existing subscription

1.15.2 LIB level

At the LIB level all library functions are defined. There is no authentication on this level. Also there is no
flask/Web/request code on this level.

Request information and the logged_in_user need to be passed to the functions as parameters, if they are needed.

If possible, policies are checked with policy decorators.

library functions

Based on the database models, which are tested in tests/test_db_model.py, there are different modules.

resolver.py contains functions to simply deal with resolver definitions. On this level users and realms are not know,
yet.

realm.py contains functions to deal with realm. Realms are a list of several resolvers. So prior to bother the realm.py,
the resolver.py should be understood and working. On this level, users are not known, yet.

user.py contains functions to deal with users. A user object is an entity in a realm. And of course the user object itself
can be found in a resolver. But you need to have working resolver.py and realm.py to be able to work with user.py

For further details see the following modules:

Users

There are the library functions for user functions. It depends on the lib.resolver and lib.realm.

There are and must be no dependencies to the token functions (lib.token) or to webservices!

This code is tested in tests/test_lib_user.py

class privacyidea.lib.user.User(login='', realm='', resolver='')

The user has the attributes login, realm and resolver.

Usually a user can be found via “login@realm”.

A user object with an empty login and realm should not exist, whereas a user object could have an empty
resolver.

property attributes
returns the custom attributes of a user :return: a dictionary of attributes with keys and values

1.15. Code Documentation 269

mailto:login@realm

privacyIDEA Authentication System, Release 3.6.2

check_password(password)
The password of the user is checked against the user source

Parameters password – The clear text password

Returns the username of the authenticated user. If unsuccessful, returns None

Return type string/None

delete()
This deletes the user in the user store. I.e. the user in the SQL database or the LDAP gets deleted.

Returns True in case of success

delete_attribute(attrkey=None)
Delete the given key as custom user attribute. If no key is given, then all attributes are deleted

Parameters attrkey – The key to delete

Returns The number of deleted rows

exist()
Check if the user object exists in the user store :return: True or False

get_ordererd_resolvers()
returns a list of resolvernames ordered by priority. The resolver with the lowest priority is the first. If
resolvers have the same priority, they are ordered alphabetically.

Returns list or resolvernames

get_search_fields()
Return the valid search fields of a user. The search fields are defined in the UserIdResolver class.

Returns searchFields with name (key) and type (value)

Return type dict

get_user_identifiers()
This returns the UserId information from the resolver object and the resolvertype and the resolvername
(former: getUserId) (former: getUserResolverId) :return: The userid, the resolver type and the resolver
name

like (1000, “passwdresolver”, “resolver1”)

Return type tuple

get_user_phone(phone_type='phone', index=None)
Returns the phone number or a list of phone numbers of a user.

Parameters

• phone_type (string) – The type of the phone, i.e. either mobile or phone (land line)

• index – The index of the selected phone number of list of the phones of the user. If the
index is given, this phone number as string is returned. If the index is omitted, all phone
numbers are returned.

Returns list with phone numbers of this user object

get_user_realms()
Returns a list of the realms, a user belongs to. Usually this will only be one realm. But if the user object
has no realm but only a resolver, than all realms, containing this resolver are returned. This function is
used for the policy module

Returns realms of the user

270 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Return type list

property info
return the detailed information for the user

Returns a dict with all the userinformation

Return type dict

is_empty()

login = ''

realm = ''

resolver = ''

set_attribute(attrkey, attrvalue, attrtype=None)
Set a custom attribute for a user

Parameters

• attrkey – The key of the attribute

• attrvalue – The value of the attribute

Returns The id of the attribute setting

update_user_info(attributes, password=None)
This updates the given attributes of a user. The attributes can be “username”, “surname”, “givenname”,
“email”, “mobile”, “phone”, “password”

Parameters

• attributes (dict) – A dictionary of the attributes to be updated

• password – The password of the user

Returns True in case of success

privacyidea.lib.user.create_user(resolvername, attributes, password=None)
This creates a new user in the given resolver. The resolver must be editable to do so.

The attributes is a dictionary containing the keys “username”, “email”, “phone”, “mobile”, “surname”, “given-
name”, “password”.

We return the UID and not the user object, since the user could be located in several realms!

Parameters

• resolvername (basestring) – The name of the resolver, in which the user should be
created

• attributes (dict) – Attributes of the user

• password – The password of the user

Returns The uid of the user object

privacyidea.lib.user.get_attributes(uid, resolver, realm_id)
Returns the attributes for the given user.

Parameters

• uid – The UID of the user

• resolver – The name of the resolver

• realm_id – The realm_id

1.15. Code Documentation 271

privacyIDEA Authentication System, Release 3.6.2

Returns A dictionary of key/values

privacyidea.lib.user.get_user_from_param(param, optionalOrRequired=True)
Find the parameters user, realm and resolver and create a user object from these parameters.

An exception is raised, if a user in a realm is found in more than one resolvers.

Parameters param (dict) – The dictionary of request parameters

Returns User as found in the parameters

Return type User object

privacyidea.lib.user.get_user_list(param=None, user=None, custom_attributes=False)
This function returns a list of user dictionaries.

Parameters

• param (dict) – search parameters

• user (User object) – a specific user object to return

• custom_attributes (bool) – Set to True, if you want to receive custom attributes of
external users.

Returns list of dictionaries

privacyidea.lib.user.get_username(userid, resolvername)
Determine the username for a given id and a resolvername.

Parameters

• userid (string) – The id of the user in a resolver

• resolvername – The name of the resolver

Returns the username or “” if it does not exist

Return type string

privacyidea.lib.user.is_attribute_at_all()
Check if there are custom user attributes at all :return: bool

privacyidea.lib.user.log_used_user(user, other_text='')
This creates a log message combined of a user and another text. The user information is only added, if user.login
!= user.used_login

Parameters

• user (User object) – A user to log

• other_text – Some additional text

Returns str

privacyidea.lib.user.split_user(username)
Split the username of the form user@realm into the username and the realm splitting mye-
mail@emailprovider.com@realm is also possible and will return (myemail@emailprovider.com, realm).

If for a user@domain the “domain” does not exist as realm, the name is not split, since it might be the
user@domain in the default realm

If the Split@Sign configuration is disabled, the username won’t be split and the username and an empty realm
will be returned.

We can also split realmuser to (user, realm)

Parameters username (string) – the username to split

272 Chapter 1. Table of Contents

mailto:user@realm
mailto:myemail@emailprovider
mailto:myemail@emailprovider
mailto:myemail@emailprovider.com
mailto:user@domain
mailto:user@domain
mailto:Split@Sign

privacyIDEA Authentication System, Release 3.6.2

Returns username and realm

Return type tuple

Token Class

The following token types are known to privacyIDEA. All are inherited from the base tokenclass describe below.

4 Eyes Token

class privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass(db_token)
The FourEyes token can be used to implement the Two Man Rule. The FourEyes token defines how many tokens
of which realms are required like:

• 2 tokens of RealmA

• 1 token of RealmB

Then users (the owners of those tokens) need to login by everyone entering their OTP PIN and OTP value.
It does not matter, in which order they enter the values. All their PINs and OTPs are concatenated into one
password field but need to be separated by the splitting sign.

The FourEyes token again splits the password value and tries to authenticate each of the these passwords in the
realms using the function check_realm_pass.

The FourEyes token itself does not provide an OTP PIN.

The token is initialized using additional parameters at token/init:

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=4eyes
user=cornelius
realm=realm1
4eyes=realm1:2,realm2:1
separator=%20

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_challenge_response(user=None, passw=None, options=None)
This method verifies if the given response is the PIN + OTP of one of the remaining tokens. In case of
success it then returns 1

Parameters

1.15. Code Documentation 273

privacyIDEA Authentication System, Release 3.6.2

• user (User object) – the requesting user

• passw (string) – the password: PIN + OTP

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return 1 if the answer to the challenge is correct, -1 otherwise.

Return type int

static convert_realms(realms)
This function converts the realms as given by the API parameter to a dictionary:

"realm1:2,realm2:1" -> {"realm1":2,
"realm2":1}

Parameters realms (str) – a serialized list of realms

Returns dict of realms

Return type dict

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
return the token type prefix

static get_class_type()
return the class type identifier

has_further_challenge(options=None)
Check if there are still more tokens to be authenticated :param options: Options dict :return: True, if further
challenge is required.

274 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

is_challenge_request(passw, user=None, options=None)
The 4eyes token can act as a challenge response token.

Either

• if the first passw given is the PIN of the 4eyes token or

• if the first passw given is the complete PIN+OTP from one of the admintokens.

Parameters

• passw (str) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

static realms_dict_to_string(realms)
This function converts the realms - if it is a dictionary - to a string:

{"realm1": {"selected": True,
"count": 1 },

"realm2": {"selected": True,
"count": 2}}

-> "realm1:1,realm2:2"

Parameters realms (dict) – the realms as they are passed from the WebUI

Returns realms

Return type str

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Certificate Token

class privacyidea.lib.tokens.certificatetoken.CertificateTokenClass(aToken)
Token to implement an X509 certificate. The certificate can be enrolled by sending a CSR to the server or the
keypair is created by the server. If the server creates the keypair, the user can download a PKCS12 file. The
OTP PIN is used as passphrase for the PKCS12 file.

privacyIDEA is capable of working with different CA connectors.

Valid parameters are request or certificate, both PEM encoded. If you pass a request you also need to pass the
ca that should be used to sign the request. Passing a certificate just uploads the certificate to a new token object.

A certificate token can be created by an administrative task with the token/init api like this:

Example Initialization Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

(continues on next page)

1.15. Code Documentation 275

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

type=certificate
user=cornelius
realm=realm1
request=<PEM encoded request>
attestation=<PEM encoded attestation certificate>
ca=<name of the ca connector>

Example Initialization Request, key generation on servers side

In this case the certificate is created on behalf of another user.

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
generate=1
ca=<name of the ca connector>

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"certificate": "...PEM..."
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

get_as_dict()
This returns the token data as a dictionary. It is used to display the token list at /token/list.

The certificate token can add the PKCS12 file if it exists

Returns The token data as dict

Return type dict

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

276 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

static get_class_prefix()

static get_class_type()

classmethod get_default_settings(g, params)
This method returns a dictionary with additional settings for token enrollment. The settings that are eval-
uated are SCOPE.ADMIN|SCOPE.USER, action=trusted_Assertion_CA_path It sets a list of configured
paths.

The returned dictionary is added to the parameters of the API call. :param g: context object, see documen-
tation of Match :param params: The call parameters :type params: dict :return: default parameters

get_init_detail(params=None, user=None)
At the end of the initialization we return the certificate and the PKCS12 file, if the private key exists.

hKeyRequired = False

revoke()
This revokes the token. We need to determine the CA, which issues the certificate, contact the connector
and revoke the certificate

Some token types may revoke a token without locking it.

set_pin(pin, encrypt=False)
set the PIN of a token. The PIN of the certificate token is stored encrypted. It is used as passphrase for the
PKCS12 file.

Parameters

• pin (basestring) – the pin to be set for the token

• encrypt (bool) – If set to True, the pin is stored encrypted and can be retrieved from
the database again

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

using_pin = False

Daplug Token

class privacyidea.lib.tokens.daplugtoken.DaplugTokenClass(a_token)
daplug token class implementation

check_otp(anOtpVal, counter=None, window=None, options=None)
checkOtp - validate the token otp against a given otpvalue

Parameters

• anOtpVal (string, format: efekeiebekeh) – the otpvalue to be verified

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

1.15. Code Documentation 277

privacyIDEA Authentication System, Release 3.6.2

check_otp_exist(otp, window=10)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

Returns counter or -1 if otp does not exist

Return type int

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

static get_class_type()
return the token type shortname

Returns ‘hotp’

Return type string

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

WARNING: the dict that is returned contains a sequence number as key. This it NOT the otp
counter!

Parameters

• count (int) – how many otp values should be returned

• epoch_start – Not used in HOTP

• epoch_end – Not used in HOTP

• curTime – Not used in HOTP

• timestamp – not used in HOTP

• counter_index – whether the counter should be used as index

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None)
return the next otp value

Parameters curTime – Not Used in HOTP

Returns next otp value and PIN if possible

Return type tuple

278 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

resync(otp1, otp2, options=None)
resync the token based on two otp values - external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

split_pin_pass(passw, user=None, options=None)
Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the OTP value. The splitting can be dependent of
certain policies. The policies may depend on the user.

Each token type may define its own way to slit the PIN and the OTP value.

Parameters

• passw – the password to split

• user (User object) – The user/owner of the token

• options (dict) – can be used be the token types.

Returns tuple of pin and otp value

Returns tuple of (split status, pin, otp value)

Return type tuple

Email Token

class privacyidea.lib.tokens.emailtoken.EmailTokenClass(aToken)
Implementation of the EMail Token Class, that sends OTP values via SMTP. (Similar to SMSTokenClass)

EMAIL_ADDRESS_KEY = 'email'

check_otp(anOtpVal, counter=None, window=None, options=None)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data You can pass exception=1 to raise
an exception, if the SMS could not be sent. Otherwise the message is contained in the
response.

1.15. Code Documentation 279

privacyIDEA Authentication System, Release 3.6.2

Returns

tuple of (success, message, transactionid, attributes)

• success: if submit was successful

• message: the text submitted to the user

• transactionid: the given or generated transactionid

• attributes: additional attributes, which are displayed in the output

Return type tuple(bool, str, str, dict)

static get_class_info(key=None, ret='all')
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

static get_class_type()
return the generic token class identifier

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the HOTP-Token

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

classmethod test_config(params=None)
This method is used to test the token config. Some tokens require some special token configuration like
the SMS-Token or the Email-Token. To test this configuration, this classmethod is used.

It takes token specific parameters and returns a tuple of a boolean and a result description.

Parameters params (dict) – token specific parameters

Returns success, description

Return type tuple

update(param, reset_failcount=True)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

280 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

HOTP Token

class privacyidea.lib.tokens.hotptoken.HotpTokenClass(db_token)
hotp token class implementation

check_otp(anOtpVal, counter=None, window=None, options=None)
check if the given OTP value is valid for this token.

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

check_otp_exist(otp, window=10, symetric=False, inc_counter=True)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

Returns counter or -1 if otp does not exist

Return type int

generate_symmetric_key(server_component, client_component, options=None)
Generate a composite key from a server and client component using a PBKDF2-based scheme.

Parameters

• server_component (hex string) – The component usually generated by priva-
cyIDEA

• client_component (hex string) – The component usually generated by the client
(e.g. smartphone)

• options –

Returns the new generated key as hex string

Return type str

static get_class_info(key=None, ret='all')
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

1.15. Code Documentation 281

privacyIDEA Authentication System, Release 3.6.2

static get_class_type()
return the token type shortname

Returns ‘hotp’

Return type string

classmethod get_default_settings(g, params)
This method returns a dictionary with default settings for token enrollment. These default settings are
defined in SCOPE.USER or SCOPE.ADMIN and are hotp_hashlib, hotp_otplen. If these are set, the user
or admin will only be able to enroll tokens with these values.

The returned dictionary is added to the parameters of the API call. :param g: context object, see documen-
tation of Match :param params: The call parameters :type params: dict :return: default parameters

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

get_init_detail(params=None, user=None)
to complete the token initialization some additional details should be returned, which are displayed at the
end of the token initialization. This is the e.g. the enrollment URL for a Google Authenticator.

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None,
counter_index=False)

return a dictionary of multiple future OTP values of the HOTP/HMAC token

WARNING: the dict that is returned contains a sequence number as key. This it NOT the otp
counter!

Parameters

• count (int) – how many otp values should be returned

• epoch_start – Not used in HOTP

• epoch_end – Not used in HOTP

• curTime – Not used in HOTP

• timestamp – not used in HOTP

• counter_index – whether the counter should be used as index

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None)
return the next otp value

Parameters curTime – Not Used in HOTP

Returns next otp value and PIN if possible

Return type tuple

static get_setting_type(key)
This function returns the type of the token specific config/setting. This way a tokenclass can define settings,
that can be “public” or a “password”. If this setting is written to the database, the type of the setting is set
automatically in set_privacyidea_config

The key name needs to start with the token type.

Parameters key – The token specific setting key

282 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Returns A string like “public”

static get_sync_timeout()
get the token sync timeout value

Returns timeout value in seconds

Return type int

property hashlib

is_previous_otp(otp, window=10)
Check if the OTP values was previously used.

Parameters

• otp –

• window –

Returns

resync(otp1, otp2, options=None)
resync the token based on two otp values

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

update(param, reset_failcount=True)
process the initialization parameters

Do we really always need an otpkey? the otpKey is handled in the parent class :param param: dict of
initialization parameters :type param: dict

Returns nothing

mOTP Token

class privacyidea.lib.tokens.motptoken.MotpTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (str) – the to be verified otpvalue

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

1.15. Code Documentation 283

privacyIDEA Authentication System, Release 3.6.2

static get_class_info(key=None, ret='all')
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : dict or string

static get_class_prefix()

static get_class_type()

get_init_detail(params=None, user=None)
to complete the token normalisation, the response of the initialization should be build by the token specific
method, the getInitDetails

update(param, reset_failcount=True)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

OCRA Token

The OCRA token is the base OCRA functionality. Usually it is created by importing a CSV or PSKC file.

This code is tested in tests/test_lib_tokens_tiqr.

Implementation

class privacyidea.lib.tokens.ocratoken.OcraTokenClass(db_token)
The OCRA Token Implementation

check_otp(otpval, counter=None, window=None, options=None)
This function is invoked by TokenClass.check_challenge_response and checks if the given
password matches the expected response for the given challenge.

Parameters

• otpval – the password (pin + otp)

• counter – ignored

• window – ignored

• options – dictionary that must contain “challenge”

Returns >=0 if the challenge matches, -1 otherwise

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

284 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: OCRA :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: ocra :rtype: basestring

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

This function is not decorated with @challenge_response_allowed

as the OCRA token is always a challenge response token!

Parameters

• passw – The PIN of the token.

• options – dictionary of additional request parameters

Returns returns true or false

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

verify_response(passw=None, challenge=None)
This method verifies if the passw is the valid OCRA response to the challenge. In case of success we
return a value > 0

Parameters passw (string) – the password (pin+otp)

1.15. Code Documentation 285

privacyIDEA Authentication System, Release 3.6.2

Returns return otp_counter. If -1, challenge does not match

Return type int

Paper Token

class privacyidea.lib.tokens.papertoken.PaperTokenClass(db_token)
The Paper Token allows to print out the next e.g. 100 OTP values. This sheet of paper can be used to authenticate
and strike out the used OTP values.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: PPR

static get_class_type()
return the token type shortname

Returns ‘paper’

Return type string

update(param, reset_failcount=True)
process the initialization parameters

Do we really always need an otpkey? the otpKey is handled in the parent class :param param: dict of
initialization parameters :type param: dict

Returns nothing

PasswordToken

class privacyidea.lib.tokens.passwordtoken.PasswordTokenClass(aToken)
This Token does use a fixed Password as the OTP value. In addition, the OTP PIN can be used with this token.
This Token can be used for a scenario like losttoken

class SecretPassword(secObj)

check_password(password)
Parameters password (str) –
Returns result of password check: 0 if success, -1 if failed
Return type int

get_password()

check_otp(anOtpVal, counter=None, window=None, options=None)
This checks the static password

Parameters anOtpVal – This contains the “OTP” value, which is the static

286 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

password :return: result of password check, 0 in case of success, -1 if fail :rtype: int

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()

static get_class_type()

set_otplen(otplen=0)
sets the OTP length to the length of the password

Parameters otplen (int) – This is ignored in this class

Result None

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Push Token

class privacyidea.lib.tokens.pushtoken.PushTokenClass(db_token)
The Push Token uses the firebase service to send challenges to the user’s smartphone. The user confirms on the
smartphone, signs the challenge and sends it back to privacyIDEA.

The enrollment occurs in two enrollment steps:

Step 1: The device is enrolled using a QR code, which encodes the following URI:

otpauth://pipush/PIPU0006EF85?url=https://yourprivacyideaserver/enroll/this/
→˓token&ttl=120

Step 2: In the QR code is a URL, where the smartphone sends the remaining data for the enrollment:

POST /ttype/push HTTP/1.1
Host: https://yourprivacyideaserver/

enrollment_credential=<hex nonce>
serial=<token serial>
fbtoken=<firebase token>
pubkey=<public key>

For more information see:

• https://github.com/privacyidea/privacyidea/issues/1342

• https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken

classmethod api_endpoint(request, g)
This provides a function which is called by the API endpoint /ttype/push which is defined in Token-
type endpoints

1.15. Code Documentation 287

https://github.com/privacyidea/privacyidea/issues/1342
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken

privacyIDEA Authentication System, Release 3.6.2

The method returns a tuple ("json", {})

This endpoint provides several functionalities:

• It is used for the 2nd enrollment step of the smartphone. It accepts the following parameters:

POST /ttype/push HTTP/1.1
Host: https://yourprivacyideaserver

serial=<token serial>
fbtoken=<firebase token>
pubkey=<public key>

• It is also used when the smartphone sends the signed response to the challenge during authentication.
The following parameters ar accepted:

POST /ttype/push HTTP/1.1
Host: https://yourprivacyideaserver

serial=<token serial>
nonce=<the actual challenge>
signature=<the signed nonce>

• In some cases the Firebase service changes the token of a device. This needs to be communicated
to privacyIDEA through this endpoint (https://github.com/privacyidea/privacyidea/wiki/concept%
3A-pushtoken-poll#update -firebase-token):

POST /ttype/push HTTP/1.1
Host: https://yourprivacyideaserver

new_fb_token=<new firebase token>
serial=<token serial>
timestamp=<timestamp>
signature=SIGNATURE(<new_fb_token>|<serial>|<timestamp>)

• And it also acts as an endpoint for polling challenges:

GET /ttype/push HTTP/1.1
Host: https://yourprivacyideaserver

serial=<tokenserial>
timestamp=<timestamp>
signature=SIGNATURE(<tokenserial>|<timestamp>)

More on polling can be found here: https://github.com/privacyidea/privacyidea/wiki/concept%
3A-pushtoken-poll

Parameters

• request – The Flask request

• g – The Flask global object g

Returns The json string representing the result dictionary

Return type tuple(“json”, str)

authenticate(passw, user=None, options=None)
High level interface which covers the check_pin and check_otp This is the method that verifies single shot

288 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll#update
https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll#update
https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll
https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll

privacyIDEA Authentication System, Release 3.6.2

authentication. The challenge is send to the smartphone app and privacyIDEA waits for the response to
arrive.

Parameters

• passw (string) – the password which could be pin+otp value

• user (User object) – The authenticating user

• options (dict) – dictionary of additional request parameters

Returns

returns tuple of

1. true or false for the pin match,

2. the otpcounter (int) and the

3. reply (dict) that will be added as additional information in the JSON response of /
validate/check.

Return type tuple

check_challenge_response(user=None, passw=None, options=None)
This function checks, if the challenge for the given transaction_id was marked as answered correctly. For
this we check the otp_status of the challenge with the transaction_id in the database.

We do not care about the password

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_if_disabled = False

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret='all')
returns all or a subtree of the token definition

1.15. Code Documentation 289

privacyIDEA Authentication System, Release 3.6.2

Parameters

• key (str) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()

static get_class_type()
return the generic token class identifier

get_init_detail(params=None, user=None)
This returns the init details during enrollment.

In the 1st step the QR Code is returned.

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the base class

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

mode = ['authenticate', 'challenge', 'outofband']

update(param, reset_failcount=True)
process the initialization parameters

We need to distinguish the first authentication step and the second authentication step.

1. step: param contains:

• type

• genkey

2. step: param contains:

• serial

• fbtoken

• pubkey

Parameters param (dict) – dict of initialization parameters

Returns nothing

290 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Questionnaire Token

class privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass(db_token)
This is a Questionnaire Token. The token stores a list of questions and answers in the tokeninfo database table.
The answers are encrypted. During authentication a random answer is selected and presented as challenge. The
user has to remember and pass the right answer.

check_answer(given_answer, challenge_object)
Check if the given answer is the answer to the sent question. The question for this challenge response was
stored in the challenge_object.

Then we get the answer from the tokeninfo.

Parameters

• given_answer – The answer given by the user

• challenge_object – The challenge object as stored in the database

Returns in case of success: 1

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching question for the given passw and also verifies if the answer is
correct.

It then returns the the otp_counter = 1

Parameters

• user (User object) – the requesting user

• passw (string) – the password - in fact it is the answer to the question

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return 1 if the answer to the question is correct, -1 otherwise.

Return type int

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

The challenge is a randomly selected question of the available questions for this token.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

classmethod get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

1.15. Code Documentation 291

privacyIDEA Authentication System, Release 3.6.2

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: QUST :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: qust :rtype: basestring

static get_setting_type(key)
The setting type of questions is public, so that the user can also read the questions.

Parameters key – The key of the setting

Returns “public” string

has_further_challenge(options=None)
Check if there are still more questions to be asked.

Parameters options – Options dict

Returns True, if further challenge is required.

is_challenge_request(passw, user=None, options=None)
The questionnaire token is always a challenge response token. The challenge is triggered by providing the
PIN as the password.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

RADIUS Token

class privacyidea.lib.tokens.radiustoken.RadiusTokenClass(db_token)

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

This is only called after it is verified, that the upper level is no challenge-request or challenge-response

The “options” are read-only in this method. They are not modified here. authenticate is the last method in
the loop check_token_list.

292 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

communication with RADIUS server: yes, if is no previous “radius_result” If there is a “radius” re-
sult in the options, we do not query the radius server

modification of options: options can be modified if we query the radius server. However, this is not
important since authenticate is the last call.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching question for the given passw and also verifies if the answer is
correct.

It then returns the the otp_counter = 1

Parameters

• user (User object) – the requesting user

• passw (string) – the password - in fact it is the answer to the question

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_otp(otpval, counter=None, window=None, options=None)
Originally check_otp returns an OTP counter. I.e. in a failed attempt we return -1. In case of success we
return 1 :param otpval: :param counter: :param window: :param options: :return:

property check_pin_local
lookup if pin should be checked locally or on radius host

Returns bool

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

This method is called after is_challenge_request has verified, that a challenge needs to be created.

communication with RADIUS server: no modification of options: no

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

1.15. Code Documentation 293

privacyIDEA Authentication System, Release 3.6.2

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()
return the token type prefix

static get_class_type()
return the class type identifier

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge. It depends on the way, the pin is checked -
either locally or remotely. In addition, the RADIUS token has to be configured to allow challenge response.

communication with RADIUS server: yes modification of options: The communication with the RADIUS
server can

change the options, radius_state, radius_result, radius_message

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

is_challenge_response(passw, user=None, options=None)
This method checks, if this is a request, that is the response to a previously sent challenge. But we do not
query the RADIUS server.

This is the first method in the loop check_token_list.

communication with RADIUS server: no modification of options: The “radius_result” key is set to None

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

split_pin_pass(passw, user=None, options=None)
Split the PIN and the OTP value. Only if it is locally checked and not remotely.

update(param)
second phase of the init process - updates parameters

Parameters param – the request parameters

Returns

294 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• nothing -

Registration Code Token

class privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass(aToken)
Token to implement a registration code. It can be used to create a registration code or a “TAN” which can be
used once by a user to authenticate somewhere. After this registration code is used, the token is automatically
deleted.

The idea is to provide a workflow, where the user can get a registration code by e.g. postal mail and then use
this code as the initial first factor to authenticate to the UI to enroll real tokens.

A registration code can be created by an administrative task with the token/init api like this:

Example Authentication Request:

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=registration
user=cornelius
realm=realm1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"registrationcode": "12345808124095097608"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()

static get_class_type()

get_init_detail(params=None, user=None)
At the end of the initialization we return the registration code.

1.15. Code Documentation 295

privacyIDEA Authentication System, Release 3.6.2

post_success()
Delete the registration token after successful authentication

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Remote Token

class privacyidea.lib.tokens.remotetoken.RemoteTokenClass(db_token)
The Remote token forwards an authentication request to another privacyIDEA server. The request can be for-
warded to a user on the other server or to a serial number on the other server. The PIN can be checked on the
local privacyIDEA server or on the remote server.

Using the Remote token you can assign one physical token to many different users.

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_otp(otpval, counter=None, window=None, options=None)
run the http request against the remote host

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

property check_pin_local
lookup if pin should be checked locally or on remote host

Returns bool

static get_class_info(key=None, ret='all')

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

296 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

static get_class_prefix()
return the token type prefix

static get_class_type()
return the class type identifier

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge. It depends on the way, the pin is checked
- either locally or remote

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

update(param)
second phase of the init process - updates parameters

Parameters param – the request parameters

Returns

• nothing -

SMS Token

class privacyidea.lib.tokens.smstoken.SmsTokenClass(db_token)
The SMS token sends an SMS containing an OTP via some kind of gateway. The gateways can be an SMTP or
HTTP gateway or the special sipgate protocol. The Gateways are defined in the SMSProvider Modules.

The SMS token is a challenge response token. I.e. the first request needs to contain the correct OTP PIN. If the
OTP PIN is correct, the sending of the SMS is triggered. The second authentication must either contain the OTP
PIN and the OTP value or the transaction_id and the OTP value.

Example 1st Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"transaction_id": "xyz"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

(continues on next page)

1.15. Code Documentation 297

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

After this, the SMS is triggered. When the SMS is received the second part of authentication looks like this:

Example 2nd Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
transaction_id=xyz
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

check_otp(anOtpVal, counter=None, window=None, options=None)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data You can pass exception=1 to raise an ex-
ception, if the SMS could not be sent. Otherwise the message is contained in the response.

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

298 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

static get_class_info(key=None, ret='all')
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : s.o.

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

static get_class_type()
return the generic token class identifier

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the HOTP-Token

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

update(param, reset_failcount=True)
process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

SPass Token

class privacyidea.lib.tokens.spasstoken.SpassTokenClass(db_token)
This is a simple pass token. It does have no OTP component. The OTP checking will always succeed. Of
course, an OTP PIN can be used.

authenticate(passw, user=None, options=None)
in case of a wrong passw, we return a bad matching pin, so the result will be an invalid token

check_otp(otpval, counter=None, window=None, options=None)
As we have no otp value we always return true. (counter == 0)

static get_class_info(key=None, ret='all')
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()

1.15. Code Documentation 299

privacyIDEA Authentication System, Release 3.6.2

static get_class_type()

static is_challenge_request(passw, user, options=None)
The spass token does not support challenge response :param passw: :param user: :param options: :return:

static is_challenge_response(passw, user, options=None, challenges=None)
This method checks, if this is a request that is supposed to be the answer to a previous challenge.

The default behaviour to check if this is the response to a previous challenge is simply by checking if
the request contains a parameter state or transactionid i.e. checking if the options parameter
contains a key state or transactionid.

This method does not try to verify the response itself! It only determines, if this is a response for a
challenge or not. If the challenge still exists, is checked in has_db_challenge_response. The response is
verified in check_challenge_response.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

update(param)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

SSHKey Token

class privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass(db_token)
The SSHKeyTokenClass provides a TokenClass that stores the public SSH key. This can be used to manage
SSH keys and retrieve the public ssh key to import it to authorized keys files.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dictionary

static get_class_prefix()

static get_class_type()

get_sshkey()
returns the public SSH key

Returns SSH pub key

Return type string

300 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

mode = ['authenticate']

update(param)
The key holds the public ssh key and this is required

The key probably is of the form “ssh-rsa BASE64 comment”

using_pin = False

TiQR Token

The TiQR token is a special App based token, which allows easy login and which is based on OCRA.

It generates an enrollment QR code, which contains a link with the more detailed enrollment information.

For a description of the TiQR protocol see

• https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf

• https://github.com/SURFnet/tiqr/wiki/Protocol-documentation.

• https://tiqr.org

The TiQR token is based on the OCRA algorithm. It lets you authenticate with your smartphone by scanning a QR
code.

The TiQR token is enrolled via /token/init, but it requires no otpkey, since the otpkey is generated on the smartphone
and pushed to the privacyIDEA server in a seconds step.

Enrollment

1. Start enrollment with /token/init

2. Scan the QR code in the details of the JSON result. The QR code contains a link to /ttype/tiqr?action=metadata

3. The TiQR Smartphone App will fetch this link and get more information

4. The TiQR Smartphone App will push the otpkey to a link /ttype/tiqr?action=enrollment and the token will be
ready for use.

Authentication

An application that wants to use the TiQR token with privacyIDEA has to use the token in challenge response.

1. Call /validate/check?user=<user>&pass=<pin> with the PIN of the TiQR token

2. The details of the JSON response contain a QR code, that needs to be shown to the user. In addition the
application needs to save the transaction_id in the response.

3. The user scans the QR code.

4. The TiQR App communicates with privacyIDEA via the API /ttype/tiqr. In this step the response of the App to
the challenge is verified. The successful authentication is stored in the Challenge DB table. (No need for the
application to take any action)

5. Now, the application needs to poll /validate/polltransaction?
transaction_id=<transaction_id> to check the transaction status. If the endpoint returns
false, the challenge has not been answered yet.

1.15. Code Documentation 301

https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf
https://github.com/SURFnet/tiqr/wiki/Protocol-documentation
https://tiqr.org

privacyIDEA Authentication System, Release 3.6.2

6. Once /validate/polltransaction returns true, the application needs to finalize the authentication with
a request /validate/check?user=<user>&transaction_id=<transaction_id>&pass=.
The pass can be empty. If value=true is returned, the user authenticated successfully with the TiQR token.

This code is tested in tests/test_lib_tokens_tiqr.

Implementation

class privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass(db_token)
The TiQR Token implementation.

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/<tokentype> which is defined in
api/ttype.py See Tokentype endpoints.

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

check_challenge_response(user=None, passw=None, options=None)
This function checks, if the challenge for the given transaction_id was marked as answered correctly. For
this we check the otp_status of the challenge with the transaction_id in the database.

We do not care about the password

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

302 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: TiQR :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: tiqr :rtype: basestring

get_init_detail(params=None, user=None)
At the end of the initialization we return the URL for the TiQR App.

mode = ['authenticate', 'challenge', 'outofband']

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

TOTP Token

class privacyidea.lib.tokens.totptoken.TotpTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter – the counter state, that should be verified. For TOTP

this is the unix system time (seconds) divided by 30/60 :type counter: int :param window: the counter
+window (sec), which should be checked :type window: int :param options: the dict, which could contain
token specific info :type options: dict :return: the counter or -1 :rtype: int

check_otp_exist(otp, window=None, options=None, symetric=True, inc_counter=True)
checks if the given OTP value is/are values of this very token at all. This is used to autoassign and to
determine the serial number of a token. In fact it is a check_otp with an enhanced window.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter in seconds!!!

Returns counter or -1 if otp does not exist

Return type int

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

1.15. Code Documentation 303

privacyIDEA Authentication System, Release 3.6.2

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: TOTP

static get_class_type()
return the token type shortname

Returns ‘totp’

Return type string

classmethod get_default_settings(g, params)
This method returns a dictionary with default settings for token enrollment. These default settings are
defined in SCOPE.USER or SCOPE.ADMIN and are totp_hashlib, totp_timestep and totp_otplen. If these
are set, the user or admin will only be able to enroll tokens with these values.

The returned dictionary is added to the parameters of the API call. :param g: context object, see documen-
tation of Match :param params: The call parameters :type params: dict :return: default parameters

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

Parameters

• count (int) – how many otp values should be returned

• epoch_start – not implemented

• epoch_end – not implemented

• curTime (datetime) – Simulate the servertime

• timestamp (epoch time) – Simulate the servertime

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None, do_truncation=True, time_seconds=None, challenge=None)
get the next OTP value

Parameters current_time – the current time, for which the OTP value

should be calculated for. :type current_time: datetime object :param time_seconds: the current time, for
which the OTP value should be calculated for (date +%s) :type: time_seconds: int, unix system time
seconds :return: next otp value, and PIN, if possible :rtype: tuple

static get_setting_type(key)
This function returns the type of the token specific config/setting. This way a tokenclass can define settings,
that can be “public” or a “password”. If this setting is written to the database, the type of the setting is set
automatically in set_privacyidea_config

The key name needs to start with the token type.

Parameters key – The token specific setting key

304 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Returns A string like “public”

property hashlib

resync(otp1, otp2, options=None)
resync the token based on two otp values external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

resyncDiffLimit = 1

property timeshift

property timestep

property timewindow

update(param, reset_failcount=True)
This is called during initialization of the token to add additional attributes to the token object.

Parameters param (dict) – dict of initialization parameters

Returns nothing

U2F Token

U2F is the “Universal 2nd Factor” specified by the FIDO Alliance. The register and authentication process is described
here:

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

But you do not need to be aware of this. privacyIDEA wraps all FIDO specific communication, which should make it
easier for you, to integrate the U2F tokens managed by privacyIDEA into your application.

U2F Tokens can be either

• registered by administrators for users or

• registered by the users themselves.

Enrollment

The enrollment/registering can be completely performed within privacyIDEA.

But if you want to enroll the U2F token via the REST API you need to do it in two steps:

1.15. Code Documentation 305

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

privacyIDEA Authentication System, Release 3.6.2

1. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=u2f

This step returns a serial number.

2. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=u2f
serial=U2F1234578
clientdata=<clientdata>
regdata=<regdata>

clientdata and regdata are the values returned by the U2F device.

You need to call the javascript function

u2f.register([registerRequest], [], function(u2fData) {});

and the responseHandler needs to send the clientdata and regdata back to privacyIDEA (2. step).

Authentication

The U2F token is a challenge response token. I.e. you need to trigger a challenge e.g. by sending the OTP
PIN/Password for this token.

Get the challenge

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=tokenpin

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"attributes": {
"hideResponseInput": true,
"img": ...imageUrl...

(continues on next page)

306 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"u2fSignRequest": {
"challenge": "...",
"appId": "...",
"keyHandle": "...",
"version": "U2F_V2"

}
},

"message": "Please confirm with your U2F token (Yubico U2F EE ...)"
"transaction_id": "02235076952647019161"

},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": false,

},
"version": "privacyIDEA unknown"

}

Send the Response

The application now needs to call the javascript function u2f.sign with the u2fSignRequest from the response.

var signRequests = [error.detail.attributes.u2fSignRequest]; u2f.sign(signRequests, function(u2fResult)
{});

The response handler function needs to call the /validate/check API again with the signatureData and clientData
returned by the U2F device in the u2fResult:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=
transaction_id=<transaction_id>
signaturedata=signatureData
clientdata=clientData

Implementation

class privacyidea.lib.tokens.u2ftoken.U2fTokenClass(db_token)
The U2F Token implementation.

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/u2f

The u2f token can return the facet list at this URL.

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

1.15. Code Documentation 307

privacyIDEA Authentication System, Release 3.6.2

check_otp(otpval, counter=None, window=None, options=None)
This checks the response of a previous challenge. :param otpval: N/A :param counter: The authentication
counter :param window: N/A :param options: contains “clientdata”, “signaturedata” and

“transaction_id”

Returns A value > 0 in case of success

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: U2F :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: u2f :rtype: basestring

get_init_detail(params=None, user=None)
At the end of the initialization we ask the user to press the button

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

This function is not decorated with @challenge_response_allowed

as the U2F token is always a challenge response token!

Parameters

• passw – The PIN of the token.

• options – dictionary of additional request parameters

308 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Returns returns true or false

update(param, reset_failcount=True)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

Vasco Token

WebAuthn Token

WebAuthn is the Web Authentication API specified by the FIDO Alliance. The register and authentication process is
described here:

https://w3c.github.io/webauthn/#sctn-rp-operations

But you do not need to be aware of this. privacyIDEA wraps all FIDO specific communication, which should make it
easier for you, to integrate the U2F tokens managed by privacyIDEA into your application.

WebAuthn tokens can be either

• registered by administrators for users or

• registered by the users themselves.

Beware the WebAuthn tokens can only be used if the privacyIDEA server and the applications and services the user
needs to access all reside under the same domain or subdomains thereof.

This means a WebAuthn token registered by privacyidea.mycompany.com can be used to sign in to sites like my-
company.com and vpn.mycompany.com, but not (for example) mycompany.someservice.com.

Enrollment

The enrollment/registering can be completely performed within privacyIDEA.

But if you want to enroll the WebAuthn token via the REST API you need to do it in two steps:

1. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=webauthn

This step returns a nonce, a relying party (containing a name and an ID generated from your domain), and a serial
number, along with a transaction ID, and a message to display to the user. It will also pass some additional options
regarding timeout, which authenticators are acceptable, and what key types are acceptable to the server.

1.15. Code Documentation 309

https://w3c.github.io/webauthn/#sctn-rp-operations

privacyIDEA Authentication System, Release 3.6.2

2. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=webauthn
transaction_id=<transaction_id>
description=<description>
clientdata=<clientDataJSON>
regdata=<attestationObject>
registrationclientextensions=<registrationClientExtensions>

clientDataJSON and attestationObject are the values returned by the WebAuthn authenticator. description is an op-
tional description string for the new token.

You need to call the javascript function

navigator .credentials .create({

challenge: <nonce>, rp: <relyingParty>, user: {

id: Uint8Array.from(<serialNumber>, c => c.charCodeAt(0)), name: <name>,
displayName: <displayName>

}, pubKeyCredParams: [

{ alg: <preferredAlgorithm>, type: “public-key”

}, {

alg: <alternativeAlgorithm>, type: “public-key”

}

], authenticatorSelection: <authenticatorSelection>, timeout: <timeout>, attestation: <at-
testation>, extensions: {

authnSel: <authenticatorSelectionList>

}

}) .then(function(credential) { <responseHandler> }) .catch(function(error) { <errorHandler> });

Here nonce, relyingParty, serialNumber, preferredAlgorithm, alternativeAlgorithm, authenticatorSelection, timeout,
attestation, authenticatorSelectionList, name, and displayName are the values provided by the server in the webAu-
thnRegisterRequest field in the response from the first step. alternativeAlgorithm, authenticatorSelection, timeout,
attestation, and authenticatorSelectionList are optional. If attestation is not provided, the client should default to di-
rect attestation. If timeout is not provided, it may be omitted, or a sensible default chosen. Any other optional values
must be omitted, if the server has not sent them. Please note that the nonce will be a binary, encoded using the web-safe
base64 algorithm specified by WebAuthn, and needs to be decoded and passed as Uint8Array.

If an authenticationSelectionList was given, the responseHandler needs to verify, that the field authnSel of creden-
tial.getExtensionResults() contains true. If this is not the case, the responseHandler should abort and call the er-
rorHandler, displaying an error telling the user to use his company-provided token.

The responseHandler needs to then send the clientDataJSON, attestationObject, and registrationClientExtensions
contained in the response field of the credential (2. step) back to the server. If enrollment succeeds, the server will
send a response with a webAuthnRegisterResponse field, containing a subject field with the description of the newly
created token.

310 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

The server expects the clientDataJSON and attestationObject encoded as web-safe base64 as defined by the WebAuthn
standard. This encoding is similar to standard base64, but ‘-‘ and ‘_’ should be used in the alphabet instead of ‘+’ and
‘/’, respectively, and any padding should be omitted.

The registrationClientExtensions are optional and should simply be omitted, if the client does not provide them. It
the registrationClientExtensions are available, they must be encoded as a utf-8 JSON string, then sent to the server as
web-safe base64.

Please beware that the btoa() function provided by ECMA-Script expects a 16-bit encoded string where all charac-
ters are in the range 0x0000 to 0x00FF. The attestationObject contains CBOR-encoded binary data, returned as an
ArrayBuffer.

The problem and ways to solve it are described in detail in this MDN-Article:

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#The_Unicode_
Problem

Authentication

The WebAuthn token is a challenge response token. I.e. you need to trigger a challenge, either by sending the OTP
PIN/Password for this token to the /validate/check endpoint, or by calling the /validate/triggerchallenge endpoint using
a service account with sufficient permissions.

Get the challenge (using /validate/check)

The /validate/check endpoint can be used to trigger a challenge using the PIN for the token (without requiring any
special permissions).

Request

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=<username>
pass=<password>

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"attributes": {
"hideResponseInput": true,
"img": <imageUrl>,
"webAuthnSignRequest": {

"challenge": <nonce>,
"allowCredentials": [{

"id": <credentialId>,
"type": <credentialType>,
"transports": <allowedTransports>,

}],
"rpId": <relyingPartyId>,
"userVerification": <userVerificationRequirement>,

(continues on next page)

1.15. Code Documentation 311

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#The_Unicode_Problem
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#The_Unicode_Problem

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

"timeout": <timeout>
}

},
"message": "Please confirm with your WebAuthn token",
"transaction_id": <transactionId>

},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": false

},
"versionnumber": <privacyIDEAversion>

}

Get the challenge (using /validate/triggerchallenge)

The /validate/triggerchallenge endpoint can be used to trigger a challenge using a service account (without requiring
the PIN for the token).

Request

POST /validate/triggerchallenge HTTP/1.1
Host: example.com
Accept: application/json
PI-Authorization: <authToken>

user=<username>
serial=<tokenSerial>

Providing the tokenSerial is optional. If just a user is provided, a challenge will be triggered for every challenge
response token the user has.

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"attributes": {
"hideResponseInput": true,
"img": <imageUrl>,
"webAuthnSignRequest": {

"challenge": <nonce>,
"allowCredentials": [{

"id": <credentialId>,
"type": <credentialType>,
"transports": <allowedTransports>,

}],
"rpId": <relyingPartyId>,
"userVerification": <userVerificationRequirement>,
"timeout": <timeout>

}

(continues on next page)

312 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

},
"message": "Please confirm with your WebAuthn token",
"messages": ["Please confirm with your WebAuthn token"],
"multi_challenge": [{

"attributes": {
"hideResponseInput": true,
"img": <imageUrl>,
"webAuthnSignRequest": {

"challenge": <nonce>,
"allowCredentials": [{

"id": <credentialId>,
"type": <credentialType>,
"transports": <allowedTransports>,

}],
"rpId": <relyingPartyId>,
"userVerification": <userVerificationRequirement>,
"timeout": <timeout>

}
},
"message": "Please confirm with your WebAuthn token",
"serial": <tokenSerial>,
"transaction_id": <transactionId>,
"type": "webauthn"

}],
"serial": <tokenSerial>,
"threadid": <threadId>,
"transaction_id": <transactionId>,
"transaction_ids": [<transactionId>],
"type": "webauthn"

},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"versionnumber": <privacyIDEAversion>

}

Send the Response

The application now needs to call the javascript function navigator.credentials.get with publicKeyCredentialRe-
questOptions built using the nonce, credentialId, allowedTransports, userVerificationRequirement and timeout from
the server. The timeout is optional and may be omitted, if not provided, the client may also pick a sensible default.
Please note that the nonce will be a binary, encoded using the web-safe base64 algorithm specified by WebAuthn, and
needs to be decoded and passed as Uint8Array.

const publicKeyCredentialRequestOptions = { challenge: <nonce>, allowCredentials: [{

id: Uint8Array.from(<credentialId>, c=> c.charCodeAt(0)), type: <credentialType>,
transports: <allowedTransports>

}], userVerification: <userVerificationRequirement>, rpId: <relyingPartyId>, timeout: <timeout>

} navigator

1.15. Code Documentation 313

privacyIDEA Authentication System, Release 3.6.2

.credentials .get({publicKey: publicKeyCredentialRequestOptions}) .then(function(assertion)
{ <responseHandler> }) .catch(function(error) { <errorHandler> });

The responseHandler needs to call the /validate/check API providing the serial of the token the user is signing in with,
and the transaction_id, for the current challenge, along with the id, returned by the WebAuthn device in the assertion
and the authenticatorData, clientDataJSON and signature, userHandle, and assertionClientExtensions contained in
the response field of the assertion.

clientDataJSON, authenticatorData and signature should be encoded as web-safe base64 without padding. For more
detailed instructions, refer to “2. Step” under “Enrollment” above.

The userHandle and assertionClientExtensions are optional and should be omitted, if not provided by the authenticator.
The assertionClientExtensions – if available – must be encoded as a utf-8 JSON string, and transmitted to the server as
web-safe base64. The userHandle is simply passed as a string, note – however – that it may be necessary to re-encode
this to utf-16, since the authenticator will return utf-8, while the library making the http request will likely require all
parameters in the native encoding of the language (usually utf-16).

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=<user>
pass=
transaction_id=<transaction_id>
credentialid=<id>
clientdata=<clientDataJSON>
signaturedata=<signature>
authenticatordata=<authenticatorData>
userhandle=<userHandle>
assertionclientextensions=<assertionClientExtensions>

Implementation

class privacyidea.lib.tokens.webauthntoken.WebAuthnTokenClass(db_token)
The WebAuthn Token implementation.

check_otp(otpval, counter=None, window=None, options=None)
This checks the response of a previous challenge.

Since this is not a traditional token, otpval and window are unused. The information from the client is
instead passed in the fields serial, id, assertion, authenticatorData, clientDataJSON, and signature of the
options dictionary.

Parameters

• otpval (None) – Unused for this token type

• counter (int) – The authentication counter

• window (None) – Unused for this token type

• options (dict) – Contains the data from the client, along with policy configurations.

Returns A numerical value where values larger than zero indicate success.

Return type int

create_challenge(transactionid=None, options=None)
Create a challenge for challenge-response authentication.

314 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

This method will return a tuple containing a bool value, indicating whether a challenge was successfully
created, along with a message to display to the user, the transaction id, and a dictionary containing all
parameters and data needed to respond to the challenge, as per the api.

Parameters

• transactionid (basestring) – The id of this challenge

• options (dict) – The request context parameters and data

Returns Success status, message, transaction id and response details

Return type (bool, basestring, basestring, dict)

decrypt_otpkey()
This method fetches a decrypted version of the otp_key.

This method becomes necessary, since the way WebAuthn is implemented in PrivacyIdea, the otpkey of a
WebAuthn token is the credential_id, which may encode important information and needs to be sent to the
client to allow the client to create an assertion for the authentication process.

Returns The otpkey decrypted and encoded as WebAuthn base64.

Return type basestring

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers.

Returns WAN

Return type basestring

static get_class_type()
Returns the internal token type identifier

Returns webauthn

Return type basestring

get_init_detail(params=None, user=None)
At the end of the initialization we ask the user to confirm the enrollment with his token.

This will prepare all the information the client needs to build the publicKeyCredentialCreationOptions to
call navigator.credentials.create() with. It will then be called again, once the token is created and provide
confirmation of the successful enrollment to the client.

Parameters

1.15. Code Documentation 315

privacyIDEA Authentication System, Release 3.6.2

• params (dict) – A dictionary with parameters from the request.

• user (User) – The user enrolling the token.

Returns The response detail returned to the client.

Return type dict

static get_setting_type(key)
Fetch the type of a setting specific to WebAuthn tokens.

The WebAuthn token defines several public settings. When these are written to the database, the type of
the setting is automatically stored along with the setting by set_privacyidea_config().

The key name needs to be in WEBAUTHN_TOKEN_SPECIFIC_SETTINGS.keys() and match /^webau-
thn./. If the specified setting does not exist, a ValueError will be thrown.

Parameters key (basestring) – The token specific setting key

Returns The setting type

Return type “public”

is_challenge_request(passw, user=None, options=None)
Check if the request would start a challenge.

Every request that is not a response needs to spawn a challenge.

Note: This function does not need to be decorated with @challenge_response_allowed, as the WebAuthn
token is always a challenge response token!

Parameters

• passw (basestring) – The PIN of the token

• user (User) – The User making the request

• options (dict) – Dictionary of additional request parameters

Returns Whether to trigger a challenge

Return type bool

update(param, reset_failcount=True)
This method is called during the initialization process.

Parameters

• param (dict) – Parameters from the token init.

• reset_failcount (bool) – Whether to reset the fail count.

Returns Nothing

Return type None

316 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Yubico Token

class privacyidea.lib.tokens.yubicotoken.YubicoTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
Here we contact the Yubico Cloud server to validate the OtpVal.

static get_class_info(key=None, ret='all')

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()

static get_class_type()

update(param)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

Yubikey Token

class privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass(db_token)
The Yubikey Token in the Yubico AES mode

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/yubikey which is defined in api/ttype.py

The endpoint /ttype/yubikey is used for the Yubico validate request according to https://developers.yubico.
com/yubikey-val/Validation_Protocol_V2.0.html

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

Required query parameters

Query id The id of the client to identify the correct shared secret

Query otp The OTP from the yubikey in the yubikey mode

Query nonce 16-40 bytes of random data

Optional parameters h, timestamp, sl, timeout are not supported at the moment.

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

1.15. Code Documentation 317

https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html
https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html

privacyIDEA Authentication System, Release 3.6.2

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state. It is not used by the Yubikey because the current
counter value is sent encrypted inside the OTP value

• window (int) – the counter +window, which is not used in the Yubikey because the
current counter value is sent encrypted inside the OTP, allowing a simple comparison
between the encrypted counter value and the stored counter value

• options (dict) – the dict, which could contain token specific info

Returns the counter state or an error code (< 0):

-1 if the OTP is old (counter < stored counter) -2 if the private_uid sent in the OTP is wrong (different
from the one stored with the token) -3 if the CRC verification fails :rtype: int

check_otp_exist(otp, window=None)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

static check_yubikey_pass(passw)
if the Token has set a PIN the user must also enter the PIN for authentication!

This checks the output of a yubikey in AES mode without providing the serial number. The first 12 (of
44) or 16 of 48) characters are the tokenid, which is stored in the tokeninfo yubikey.tokenid or the prefix
yubikey.prefix.

Parameters passw (string) – The password that consist of the static yubikey prefix and the
otp

Returns True/False and the User-Object of the token owner

Return type dict

static get_class_info(key=None, ret='all')
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type s.o.

static get_class_prefix()

static get_class_type()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

update(param, reset_failcount=True)
Update the token object

318 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

class privacyidea.lib.tokenclass.TokenClass(db_token)

add_init_details(key, value)
(was addInfo) Adds information to a volatile internal dict

add_tokeninfo(key, value, value_type=None)
Add a key and a value to the DB tokeninfo

Parameters

• key –

• value –

Returns

add_user(user, report=None)
Set the user attributes (uid, resolvername, resolvertype) of a token.

Parameters

• user – a User() object, consisting of loginname and realm

• report – tbdf.

Returns None

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/<tokentype> which is defined in
api/ttype.py

The method should return return “json”, {}

or return “text”, “OK”

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

authenticate(passw, user=None, options=None)
High level interface which covers the check_pin and check_otp This is the method that verifies single shot
authentication like they are done with push button tokens.

It is a high level interface to support other tokens as well, which do not have a pin and otp separation - they
could overwrite this method

If the authentication succeeds an OTP counter needs to be increased, i.e. the OTP value that was used for
this authentication is invalidated!

Parameters

• passw (string) – the password which could be pin+otp value

• user (User object) – The authenticating user

• options (dict) – dictionary of additional request parameters

1.15. Code Documentation 319

privacyIDEA Authentication System, Release 3.6.2

Returns

returns tuple of

1. true or false for the pin match,

2. the otpcounter (int) and the

3. reply (dict) that will be added as additional information in the JSON response of /
validate/check.

Return type tuple(bool, int, dict)

static challenge_janitor()
Just clean up all challenges, for which the expiration has expired.

Returns None

check_all(message_list)
Perform all checks on the token. Returns False if the token is either: * auth counter exceeded * not active
* fail counter exceeded * validity period exceeded

This is used in the function token.check_token_list

Parameters message_list – A list of messages

Returns False, if any of the checks fail

check_auth_counter()
This function checks the count_auth and the count_auth_success. If the counters are less or equal than the
maximum allowed counters it returns True. Otherwise False.

Returns success if the counter is less than max

Return type bool

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching challenge for the given passw and also verifies if the response
is correct.

It then returns the new otp_counter of the token.

In case of success the otp_counter will be >= 0.

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transactionid”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_failcount()
Checks if the failcounter is exceeded. It returns True, if the failcounter is less than maxfail

Returns True or False

Return type bool

check_if_disabled = True

320 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

check_last_auth_newer(last_auth)
Check if the last successful authentication with the token is newer than the specified time delta which is
passed as 10h, 7d or 1y.

It returns True, if the last authentication with this token is newer* than the specified delta.

Parameters last_auth (basestring) – 10h, 7d or 1y

Returns bool

check_otp(otpval, counter=None, window=None, options=None)
This checks the OTP value, AFTER the upper level did the checkPIN

In the base class we do not know, how to calculate the OTP value. So we return -1. In case of success, we
should return >=0, the counter

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

check_otp_exist(otp, window=None)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp – the OTP value

• window (int) – The look ahead window

Returns True or a value > 0 in case of success

check_pin(pin, user=None, options=None)
Check the PIN of the given Password. Usually this is only dependent on the token itself, but the user object
can cause certain policies.

Each token could implement its own PIN checking behaviour.

Parameters

• pin (string) – the PIN (static password component), that is to be checked.

• user (User object) – for certain PIN policies (e.g. checking against the user store)
this is the user, whose password would be checked. But at the moment we are checking
against the userstore in the decorator “auth_otppin”.

• options – the optional request parameters

Returns If the PIN is correct, return True

Return type bool

check_reset_failcount()
Checks if we should reset the failcounter due to the FAILCOUNTER_CLEAR_TIMEOUT

Returns True, if the failcounter was resetted

1.15. Code Documentation 321

privacyIDEA Authentication System, Release 3.6.2

check_validity_period()
This checks if the datetime.now() is within the validity period of the token.

Returns success

Return type bool

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static decode_otpkey(otpkey, otpkeyformat)
Decode the otp key which is given in a specific format.

Supported formats:

• hex, in which the otpkey is returned verbatim

• base32check, which is specified in decode_base32check

In case the OTP key is malformed or if the format is unknown, a ParameterError is raised.

Parameters

• otpkey – OTP key passed by the user

• otpkeyformat – “hex” or “base32check”

Returns hex-encoded otpkey

del_tokeninfo(key=None)

delete_token()
delete the database token

enable(enable=True)

generate_symmetric_key(server_component, client_component, options=None)
This method generates a symmetric key, from a server component and a client component. This key
generation could be based on HMAC, KDF or even Diffie-Hellman.

The basic key-generation is simply replacing the last n byte of the server component with bytes of the
client component.

Parameters

• server_component (str) – The component usually generated by privacyIDEA. This
is a hex string

• client_component (str) – The component usually generated by the client (e.g.
smartphone). This is a hex string.

322 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• options –

Returns the new generated key as hex string

Return type str

get_as_dict()
This returns the token data as a dictionary. It is used to display the token list at /token/list.

Returns The token data as dict

Return type dict

static get_class_info(key=None, ret='all')

static get_class_prefix()

static get_class_type()

get_count_auth()
Return the number of all authentication tries

get_count_auth_max()
Return the number of maximum allowed authentications

get_count_auth_success()
Return the number of successful authentications

get_count_auth_success_max()
Return the maximum allowed successful authentications

get_count_window()

classmethod get_default_settings(g, params)
This method returns a dictionary with default settings for token enrollment. These default settings depend
on the token type and the defined policies.

The returned dictionary is added to the parameters of the API call.

Parameters

• g – context object, see documentation of Match

• params (dict) – The call parameters

Returns default parameters

get_failcount()

static get_hashlib(hLibStr)
Returns a hashlib function for a given string

Parameters hLibStr (string) – the hashlib

Returns the hashlib

Return type function

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

get_init_detail(params=None, user=None)
to complete the token initialization, the response of the initialisation should be build by this token specific
method. This method is called from api/token after the token is enrolled

1.15. Code Documentation 323

privacyIDEA Authentication System, Release 3.6.2

get_init_detail returns additional information after an admin/init like the QR code of an HOTP/TOTP
token. Can be anything else.

Parameters

• params (dict) – The request params during token creation token/init

• user (User object) – the user, token owner

Returns additional descriptions

Return type dict

get_init_details()
return the status of the token rollout

Returns return the status dict.

Return type dict

get_max_failcount()

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
This returns a dictionary of multiple future OTP values of a token.

Parameters

• count – how many otp values should be returned

• epoch_start – time based tokens: start when

• epoch_end – time based tokens: stop when

• curTime (datetime object) – current time for TOTP token (for selftest)

• timestamp (int) – unix time, current time for TOTP token (for selftest)

Returns True/False, error text, OTP dictionary

Return type Tuple

get_otp(current_time='')
The default token does not support getting the otp value will return a tuple of four values a negative value
is a failure.

Returns something like: (1, pin, otpval, combined)

get_otp_count()

get_otp_count_window()

get_otplen()

get_pin_hash_seed()

get_realms()
Return a list of realms the token is assigned to

Returns realms

Return type list

get_serial()

static get_setting_type(key)
This function returns the type of the token specific config/setting. This way a tokenclass can define settings,
that can be “public” or a “password”. If this setting is written to the database, the type of the setting is set
automatically in set_privacyidea_config

324 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

The key name needs to start with the token type.

Parameters key – The token specific setting key

Returns A string like “public”

get_sync_window()

get_tokeninfo(key=None, default=None)
return the complete token info or a single key of the tokeninfo. When returning the complete token info
dictionary encrypted entries are not decrypted. If you want to receive a decrypted value, you need to call
it directly with the key.

Parameters

• key (string) – the key to return

• default (string) – the default value, if the key does not exist

Returns the value for the key

Return type int or str or dict

get_tokentype()

get_type()

get_user_displayname()
Returns a tuple of a user identifier like user@realm and the displayname of “givenname surname”.

Returns tuple

get_user_id()

get_validity_period_end()
returns the end of validity period (if set) if not set, “” is returned.

Returns the end of the validity period

Return type str

get_validity_period_start()
returns the start of validity period (if set) if not set, “” is returned.

Returns the start of the validity period

Return type str

hKeyRequired = False

has_db_challenge_response(passw, user=None, options=None)
This method checks, if the given transaction_id is actually the response to a real challenge. To do so, it
verifies, if there is a DB entry for the given serial number and transaction_id. This is to avoid side effects
by passing non-existent transaction_ids.

This method checks, if the token still has a challenge

Parameters

• passw –

• user –

• options –

Returns

1.15. Code Documentation 325

mailto:user@realm

privacyIDEA Authentication System, Release 3.6.2

has_further_challenge(options=None)
Returns true, if a token requires more than one challenge during challenge response authentication. This
could be a 4eyes token or indexed secret token, that queries more than on input.

Parameters options – Additional options from the request

Returns True, if this very token requires further challenges

inc_count_auth()
Increase the counter, that counts authentications - successful and unsuccessful

inc_count_auth_success()
Increase the counter, that counts successful authentications Also increase the auth counter

inc_failcount()

inc_otp_counter(counter=None, increment=1, reset=True)
Increase the otp counter and store the token in the database

Before increasing the token.count the token.count can be set using the parameter counter.

Parameters

• counter (int) – if given, the token counter is first set to counter and then increased by
increment

• increment (int) – increase the counter by this amount

• reset (bool) – reset the failcounter if set to True

Returns the new counter value

is_active()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge.

The default behaviour to trigger a challenge is, if the passw parameter only contains the correct token
pin and the request contains a data or a challenge key i.e. if the options parameter contains a key
data or challenge.

Each token type can decide on its own under which condition a challenge is triggered by overwriting this
method.

Note: in case of pin policy == 2 (no pin is required) the check_pin would always return true!
Thus each request containing a data or challenge would trigger a challenge!

The Challenge workflow is like this.

When an authentication request is issued, first it is checked if this is a request which will create a new
challenge (is_challenge_request) or if this is a response to an existing challenge (is_challenge_response).
In these two cases during request processing the following functions are called:

is_challenge_request or is_challenge_response <-------+
| | |
V V |

create_challenge check_challenge_response create_challenge
| | ^
| | |
| has_further_challenge [yes] ---+
| [no]
| |

(continues on next page)

326 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

(continued from previous page)

V V
challenge_janitor challenge_janitor

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

is_challenge_response(passw, user=None, options=None)
This method checks, if this is a request that is supposed to be the answer to a previous challenge.

The default behaviour to check if this is the response to a previous challenge is simply by checking if
the request contains a parameter state or transactionid i.e. checking if the options parameter
contains a key state or transactionid.

This method does not try to verify the response itself! It only determines, if this is a response for a
challenge or not. If the challenge still exists, is checked in has_db_challenge_response. The response is
verified in check_challenge_response.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

is_fit_for_challenge(messages, options=None)
This method is called if a cryptographically matching response to a challenge was found. This method
may implement final checks, if there is anything that should deny the success of the authentication with
the response to the challenge.

The options dictionary can also contain the transaction_id, so even the challenge table for this token can
be used for checking.

Parameters

• options (dict) –

• messages (list) – This is a list of messages. This method can append new information
to this message list.

Returns True or False

is_locked()
Check if the token is in a locked state A locked token can not be modified

Returns True, if the token is locked.

is_orphaned()
Return True if the token is orphaned.

An orphaned token means, that it has a user assigned, but the user does not exist in the user store (anymore)

1.15. Code Documentation 327

privacyIDEA Authentication System, Release 3.6.2

Returns True / False

Return type bool

classmethod is_outofband()

is_pin_change(password=False)
Returns true if the pin of the token needs to be changed.

Parameters password (bool) – Whether the password needs to be changed.

Returns True or False

is_previous_otp(otp, window=10)
checks if a given OTP value is a previous OTP value, that lies in the past or has a lower counter.

This is used in case of a failed authentication to return the information, that this OTP values was used
previously and is invalid.

Parameters

• otp (basestring) – The OTP value.

• window (int) – A counter window, how far we should look into the past.

Returns bool

is_revoked()
Check if the token is in the revoked state

Returns True, if the token is revoked

mode = ['authenticate', 'challenge']

post_success()
Run anything after a token was used for successful authentication

reset()
Reset the failcounter

resync(otp1, otp2, options=None)

revoke()
This revokes the token. By default it 1. sets the revoked-field 2. set the locked field 3. disables the token.

Some token types may revoke a token without locking it.

save()
Save the database token

set_count_auth(count)
Sets the counter for the occurred login attepms as key “count_auth” in token info

Parameters count (int) – a number

set_count_auth_max(count)
Sets the counter for the maximum allowed login attempts as key “count_auth_max” in token info

Parameters count (int) – a number

set_count_auth_success(count)
Sets the counter for the occurred successful logins as key “count_auth_success” in token info

Parameters count (int) – a number

328 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

set_count_auth_success_max(count)
Sets the counter for the maximum allowed successful logins as key “count_auth_success_max” in token
info

Parameters count (int) – a number

set_count_window(countWindow)

set_defaults()
Set the default values on the database level

set_description(description)
Set the description on the database level

Parameters description (string) – description of the token

set_failcount(failcount)
Set the failcounter in the database

set_hashlib(hashlib)

set_init_details(details)

set_maxfail(maxFail)

set_next_pin_change(diff=None, password=False)
Sets the timestamp for the next_pin_change. Provide a difference like 90d (90 days).

Parameters

• diff (basestring) – The time delta.

• password – Do no set next_pin_change but next_password_change

Returns None

set_otp_count(otpCount)

set_otpkey(otpKey)

set_otplen(otplen)

set_pin(pin, encrypt=False)
set the PIN of a token. Usually the pin is stored in a hashed way.

Parameters

• pin (basestring) – the pin to be set for the token

• encrypt (bool) – If set to True, the pin is stored encrypted and can be retrieved from
the database again

set_pin_hash_seed(pinhash, seed)

set_realms(realms, add=False)
Set the list of the realms of a token.

Parameters

• realms (list) – realms the token should be assigned to

• add (boolean) – if the realms should be added and not replaced

set_so_pin(soPin)

set_sync_window(syncWindow)

1.15. Code Documentation 329

privacyIDEA Authentication System, Release 3.6.2

set_tokeninfo(info)
Set the tokeninfo field in the DB. Old values will be deleted.

Parameters info (dict) – dictionary with key and value

Returns

set_type(tokentype)
Set the tokentype in this object and also in the underlying database-Token-object.

Parameters tokentype (string) – The type of the token like HOTP or TOTP

set_user_pin(userPin)

set_validity_period_end(end_date)
sets the end date of the validity period for a token

Parameters end_date (str) – the end date in the format YYYY-MM-DDTHH:MM+OOOO
if the format is wrong, the method will throw an exception

set_validity_period_start(start_date)
sets the start date of the validity period for a token

Parameters start_date (str) – the start date in the format YYYY-MM-
DDTHH:MM+OOOO if the format is wrong, the method will throw an exception

split_pin_pass(passw, user=None, options=None)
Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the OTP value. The splitting can be dependent of
certain policies. The policies may depend on the user.

Each token type may define its own way to slit the PIN and the OTP value.

Parameters

• passw – the password to split

• user (User object) – The user/owner of the token

• options (dict) – can be used be the token types.

Returns tuple of pin and otp value

Returns tuple of (split status, pin, otp value)

Return type tuple

status_validation_fail()
callback to enable a status change, if auth failed

status_validation_success()
callback to enable a status change, if auth succeeds

static test_config(params=None)
This method is used to test the token config. Some tokens require some special token configuration like
the SMS-Token or the Email-Token. To test this configuration, this classmethod is used.

It takes token specific parameters and returns a tuple of a boolean and a result description.

Parameters params (dict) – token specific parameters

Returns success, description

Return type tuple

330 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

update(param, reset_failcount=True)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

property user
return the user (owner) of a token If the token has no owner assigned, we return None

Returns The owner of the token

Return type User object or None

using_pin = True

Token Functions

This module contains all top level token functions. It depends on the models, lib.user and lib.tokenclass (which depends
on the tokenclass implementations like lib.tokens.hotptoken)

This is the middleware/glue between the HTTP API and the database

privacyidea.lib.token.add_tokeninfo(serial, info, value=None, value_type=None, user=None)
Sets a token info field in the database. The info is a dict for each token of key/value pairs.

Parameters

• serial (basestring) – The serial number of the token

• info – The key of the info in the dict

• value – The value of the info

• value_type (basestring) – The type of the value. If set to “password” the value is
stored encrypted

• user (User object) – The owner of the tokens, that should be modified

Returns the number of modified tokens

Return type int

privacyidea.lib.token.assign_token(serial, user, pin=None, encrypt_pin=False,
err_message=None)

Assign token to a user. If the PIN is given, the PIN is reset.

Parameters

• serial (basestring) – The serial number of the token

• user (User object) – The user, to whom the token should be assigned.

• pin (basestring) – The PIN for the newly assigned token.

• encrypt_pin (bool) – Whether the PIN should be stored in an encrypted way

• err_message (basestring) – The error message, that is displayed in case the token
is already assigned

privacyidea.lib.token.check_otp(serial, otpval)
This function checks the OTP for a given serial number

Parameters

1.15. Code Documentation 331

privacyIDEA Authentication System, Release 3.6.2

• serial –

• otpval –

Returns tuple of result and dictionary containing a message if the verification failed

Return type tuple(bool, dict)

privacyidea.lib.token.check_realm_pass(realm, passw, options=None, include_types=None,
exclude_types=None)

This function checks, if the given passw matches any token in the given realm. This can be used for the 4-eyes
token. Only tokens that are assigned are tested.

The options dictionary may contain a key/value pair ‘exclude_types’ or ‘include_types’ with the value contain-
ing a list of token types to exclude/include from/in the search.

It returns the res True/False and a reply_dict, which contains the serial number of the matching token.

Parameters

• realm – The realm of the user

• passw – The password containing PIN+OTP

• options (dict) – Additional options that are passed to the tokens

• include_types (list or str) – List of token types to use for the check

• exclude_types (list or str) – List to token types not to use for the check

Returns tuple of bool and dict

privacyidea.lib.token.check_serial(serial)
This checks, if the given serial number can be used for a new token. it returns a tuple (result, new_serial) result
being True if the serial does not exist, yet. new_serial is a suggestion for a new serial number, that does not
exist, yet.

Parameters serial (str) – Serial number to check if it can be used for a new token.

Result result of check and (new) serial number

Return type tuple(bool, str)

privacyidea.lib.token.check_serial_pass(serial, passw, options=None)
This function checks the otp for a given serial

If the OTP matches, True is returned and the otp counter is increased.

The function tries to determine the user (token owner), to derive possible additional policies from the user.

Parameters

• serial (basestring) – The serial number of the token

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

Return type tuple

privacyidea.lib.token.check_token_list(tokenobject_list, passw, user=None, options=None,
allow_reset_all_tokens=False)

this takes a list of token objects and tries to find the matching token for the given passw. It also tests, * if the
token is active or * the max fail count is reached, * if the validity period is ok. . .

This function is called by check_serial_pass, check_user_pass and check_yubikey_pass.

332 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters

• tokenobject_list – list of identified tokens

• passw – the provided passw (mostly pin+otp)

• user – the identified use - as class object

• options – additional parameters, which are passed to the token

• allow_reset_all_tokens – If set to True, the policy reset_all_user_tokens is evalu-
ated to reset all user tokens accordingly. Note: This parameter is used in the decorator.

Returns tuple of success and optional response

Return type (bool, dict)

privacyidea.lib.token.check_user_pass(user, passw, options=None)
This function checks the otp for a given user. It is called by the API /validate/check

If the OTP matches, True is returned and the otp counter is increased.

Parameters

• user (User object) – The user who is trying to authenticate

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

Return type tuple

class privacyidea.lib.token.clob_to_varchar(*clauses, **kwargs)

name = 'clob_to_varchar'

privacyidea.lib.token.copy_token_pin(serial_from, serial_to)
This function copies the token PIN from one token to the other token. This can be used for workflows like lost
token.

In fact the PinHash and the PinSeed are transferred

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.copy_token_realms(serial_from, serial_to)
Copy the realms of one token to the other token

Parameters

• serial_from – The token to copy from

• serial_to – The token to copy to

Returns None

privacyidea.lib.token.copy_token_user(serial_from, serial_to)
This function copies the user from one token to the other token. In fact the user_id, resolver and resolver type
are transferred.

1.15. Code Documentation 333

privacyIDEA Authentication System, Release 3.6.2

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.create_challenges_from_tokens(token_list, reply_dict, op-
tions=None)

Get a list of active tokens and create challenges for these tokens. The reply_dict is modified accordingly. The
transaction_id and the messages are added to the reply_dict.

Parameters

• token_list – The list of the token objects, that can do challenge response

• reply_dict – The dictionary that is passed to the API response

• options – Additional options. Passed from the upper layer

Returns None

privacyidea.lib.token.create_tokenclass_object(db_token)
(was createTokenClassObject) create a token class object from a given type If a tokenclass for this type does not
exist, the function returns None.

Parameters db_token (database token object) – the database referenced token

Returns instance of the token class object

Return type tokenclass object

privacyidea.lib.token.delete_tokeninfo(serial, key, user=None)
Delete a specific token info field in the database.

Parameters

• serial (basestring) – The serial number of the token

• key – The key of the info in the dict

• user (User object) – The owner of the tokens, that should be modified

Returns the number of tokens matching the serial and user. This number also includes tokens that
did not have the token info key set in the first place!

Return type int

privacyidea.lib.token.enable_token(serial, enable=True, user=None)
Enable or disable a token, or all tokens of a single user. This can be checked with is_token_active.

Enabling an already active token will return 0.

Parameters

• serial (basestring) – The serial number of the token

• enable (bool) – False is the token should be disabled

• user (User object) – all tokens of the user will be enabled or disabled

Returns Number of tokens that were enabled/disabled

Return type

privacyidea.lib.token.fn_clob_to_varchar_default(element, compiler, **kw)

334 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.token.fn_clob_to_varchar_oracle(element, compiler, **kw)

privacyidea.lib.token.gen_serial(tokentype=None, prefix=None)
generate a serial for a given tokentype

Parameters

• tokentype (str) – the token type prefix is done by a lookup on the tokens

• prefix (str) – A prefix to the serial number

Returns serial number

Return type str

privacyidea.lib.token.get_dynamic_policy_definitions(scope=None)
This returns the dynamic policy definitions that come with the new loaded token classes.

Parameters scope – an optional scope parameter. Only return the policies of this scope.

Returns The policy definition for the token or only for the scope.

privacyidea.lib.token.get_multi_otp(serial, count=0, epoch_start=0, epoch_end=0, cur-
Time=None, timestamp=None)

This function returns a list of OTP values for the given Token. Please note, that the tokentype needs to support
this function.

Parameters

• serial (basestring) – the serial number of the token

• count – number of the next otp values (to be used with event or time based tokens)

• epoch_start – unix time start date (used with time based tokens)

• epoch_end – unix time end date (used with time based tokens)

• curTime (datetime) – Simulate the servertime

• timestamp (int) – Simulate the servertime (unix time in seconds)

Returns dictionary of otp values

Return type dictionary

privacyidea.lib.token.get_num_tokens_in_realm(realm, active=True)
This returns the number of tokens in one realm.

Parameters

• realm (basestring) – The name of the realm

• active (bool) – If only active tokens should be taken into account

Returns The number of tokens in the realm

Return type int

privacyidea.lib.token.get_one_token(*args, **kwargs)
Fetch exactly one token according to the given filter arguments, which are passed to get_tokens. Raise
ResourceNotFoundError if no token was found. Raise ParameterError if more than one token was
found.

privacyidea.lib.token.get_otp(serial, current_time=None)
This function returns the current OTP value for a given Token. The tokentype needs to support this function. if
the token does not support getting the OTP value, a -2 is returned. If the token could not be found, ResourceNot-
FoundError is raised.

1.15. Code Documentation 335

privacyIDEA Authentication System, Release 3.6.2

Parameters

• serial – serial number of the token

• current_time (datetime) – a fake servertime for testing of TOTP token

Returns tuple with (result, pin, otpval, passw)

Return type tuple

privacyidea.lib.token.get_realms_of_token(serial, only_first_realm=False)
This function returns a list of the realms of a token

Parameters

• serial (basestring) – the exact serial number of the token

• only_first_realm (bool) – Wheather we should only return the first realm

Returns list of the realm names

Return type list

privacyidea.lib.token.get_serial_by_otp(token_list, otp='', window=10)
Returns the serial for a given OTP value The tokenobject_list would be created by get_tokens()

Parameters

• token_list (list of token objects) – the list of token objects to be investigated

• otp – the otp value, that needs to be found

• window (int) – the window of search

Returns the serial for a given OTP value and the user

Return type basestring

privacyidea.lib.token.get_token_by_otp(token_list, otp='', window=10)
search the token in the token_list, that creates the given OTP value. The tokenobject_list would be created by
get_tokens()

Parameters

• token_list (list of token objects) – the list of token objects to be investigated

• otp (basestring) – the otp value, that needs to be found

• window (int) – the window of search

Returns The token, that creates this OTP value

Return type Tokenobject

privacyidea.lib.token.get_token_owner(serial)
returns the user object, to which the token is assigned. the token is identified and retrieved by it’s serial number

If the token has no owner, None is returned

Wildcards in the serial number are ignored. This raises ResourceNotFoundError if the token could not be
found.

Parameters serial (basestring) – serial number of the token

Returns The owner of the token

Return type User object or None

336 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.token.get_token_type(serial)
Returns the tokentype of a given serial number. If the token does not exist or can not be deterimined, an empty
string is returned.

Parameters serial (string) – the serial number of the to be searched token

Returns tokentype

Return type string

privacyidea.lib.token.get_tokenclass_info(tokentype, section=None)
return the config definition of a dynamic token

Parameters

• tokentype (basestring) – the tokentype of the token like “totp” or “hotp”

• section (basestring) – subsection of the token definition - optional

Returns dict - if nothing found an empty dict

Return type dict

privacyidea.lib.token.get_tokens(tokentype=None, realm=None, assigned=None, user=None,
serial=None, serial_wildcard=None, active=None, re-
solver=None, rollout_state=None, count=False, re-
voked=None, locked=None, tokeninfo=None, max-
fail=None)

(was getTokensOfType) This function returns a list of token objects of a * given type, * of a realm * or tokens
with assignment or not * for a certain serial number or * for a User

E.g. thus you can get all assigned tokens of type totp.

Parameters

• tokentype (basestring) – The type of the token. If None, all tokens are returned.

• realm (basestring) – get tokens of a realm. If None, all tokens are returned.

• assigned (bool) – Get either assigned (True) or unassigned (False) tokens. If None get
all tokens.

• user (User Object) – Filter for the Owner of the token

• serial (basestring) – The exact serial number of a token

• serial_wildcard (basestring) – A wildcard to match token serials

• active (bool) – Whether only active (True) or inactive (False) tokens should be returned

• resolver (basestring) – filter for the given resolver name

• rollout_state – returns a list of the tokens in the certain rollout state. Some tokens are
not enrolled in a single step but in multiple steps. These tokens are then identified by the
DB-column rollout_state.

• count (bool) – If set to True, only the number of the result and not the list is returned.

• revoked (bool) – Only search for revoked tokens or only for not revoked tokens

• locked (bool) – Only search for locked tokens or only for not locked tokens

• tokeninfo (dict) – Return tokens with the given tokeninfo. The tokeninfo is a key/value
dictionary

• maxfail – If only tokens should be returned, which failcounter reached maxfail

Returns A list of tokenclasses (lib.tokenclass).

1.15. Code Documentation 337

privacyIDEA Authentication System, Release 3.6.2

Return type list

privacyidea.lib.token.get_tokens_from_serial_or_user(serial, user, **kwargs)
Fetch tokens, either by (exact) serial, or all tokens of a single user. In case a serial number is given, check that
exactly one token is returned and raise a ResourceNotFoundError if that is not the case. In case a user is given,
the result can also be empty.

Parameters

• serial – exact serial number or None

• user – a user object or None

• kwargs – additional argumens to get_tokens

Returns a (possibly empty) list of tokens

Return type list

privacyidea.lib.token.get_tokens_in_resolver(resolver)
Return a list of the token ojects, that contain this very resolver

Parameters resolver (basestring) – The resolver, the tokens should be in

Returns list of tokens with this resolver

Return type list of token objects

privacyidea.lib.token.get_tokens_paginate(tokentype=None, realm=None, assigned=None,
user=None, serial=None, active=None,
resolver=None, rollout_state=None,
sortby=<sqlalchemy.orm.attributes.InstrumentedAttribute
object>, sortdir='asc', psize=15, page=1,
description=None, userid=None, al-
lowed_realms=None, tokeninfo=None)

This function is used to retrieve a token list, that can be displayed in the Web UI. It supports pagination. Each
retrieved page will also contain a “next” and a “prev”, indicating the next or previous page. If either does not
exist, it is None.

Parameters

• tokentype –

• realm –

• assigned (bool) – Returns assigned (True) or not assigned (False) tokens

• user (User object) – The user, whose token should be displayed

• serial – a pattern for matching the serial

• active – Returns active (True) or inactive (False) tokens

• resolver (basestring) – A resolver name, which may contain “*” for filtering.

• userid (basestring) – A userid, which may contain “*” for filtering.

• rollout_state –

• sortby (A Token column or a string.) – Sort by a certain Token DB field. The
default is Token.serial. If a string like “serial” is provided, we try to convert it to the DB
column.

• sortdir (basestring) – Can be “asc” (default) or “desc”

• psize (int) – The size of the page

338 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• page (int) – The number of the page to view. Starts with 1 ;-)

• allowed_realms (list) – A list of realms, that the admin is allowed to see

• tokeninfo – Return tokens with the given tokeninfo. The tokeninfo is a key/value dictio-
nary

Returns dict with tokens, prev, next and count

Return type dict

privacyidea.lib.token.get_tokens_paginated_generator(tokentype=None, realm=None,
assigned=None, user=None,
serial_wildcard=None, ac-
tive=None, resolver=None,
rollout_state=None, re-
voked=None, locked=None, to-
keninfo=None, maxfail=None,
psize=1000)

Fetch chunks of psize tokens that match the filter criteria from the database and generate lists of token objects.
See get_tokens for information on the arguments.

Note that individual lists may contain less than psize elements if a token entry has an invalid type.

Parameters psize – Maximum size of chunks that are fetched from the database

Returns This is a generator that generates non-empty lists of token objects.

privacyidea.lib.token.import_token(serial, token_dict, tokenrealms=None)
This function is used during the import of a PSKC file.

Parameters

• serial (str) – The serial number of the token

• token_dict (dict) – A dictionary describing the token like

{
"type": ...,
"description": ...,
"otpkey": ...,
"counter: ...,
"timeShift": ...

}

• tokenrealms (list) – List of realms to set as realms of the token

Returns the token object

privacyidea.lib.token.init_token(param, user=None, tokenrealms=None, tokenkind=None)
create a new token or update an existing token

Parameters

• param (dict) – initialization parameters like

{
"serial": ..., (optional)
"type":, (optional, default=hotp)
"otpkey": ...

}

• user (User Object) – the token owner

1.15. Code Documentation 339

privacyIDEA Authentication System, Release 3.6.2

• tokenrealms (list) – the realms, to which the token should belong

• tokenkind – The kind of the token, can be “software”, “hardware” or “virtual”

Returns token object or None

Return type TokenClass

privacyidea.lib.token.is_token_active(serial)
Return True if the token is active, otherwise false Raise ResourceError if the token could not be found.

Parameters serial (basestring) – The serial number of the token

Returns True or False

Return type bool

privacyidea.lib.token.is_token_owner(serial, user)
Check if the given user is the owner of the token with the given serial number

Parameters

• serial (str) – The serial number of the token

• user (User object) – The user that needs to be checked

Returns Return True or False

Return type bool

privacyidea.lib.token.lost_token(serial, new_serial=None, password=None, validity=10, con-
tents='8', pw_len=16, options=None)

This is the workflow to handle a lost token. The token <serial> is lost and will be disabled. A new token of type
password token will be created and assigned to the user. The PIN of the lost token will be copied to the new
token. The new token will have a certain validity period.

Parameters

• serial – Token serial number

• new_serial – new serial number

• password – new password

• validity (int) – Number of days, the new token should be valid

• contents (str) – The contents of the generated password. Can be a string like "Ccn".

– ”C”: upper case characters

– ”c”: lower case characters

– ”n”: digits

– ”s”: special characters

– ”8”: base58

• pw_len (int) – The length of the generated password

• options (dict) – optional values for the decorator passed from the upper API level

Returns result dictionary

Return type dict

privacyidea.lib.token.remove_token(serial=None, user=None)
remove the token that matches the serial number or all tokens of the given user and also remove the realm
associations and all its challenges

340 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters

• user (User object) – The user, who’s tokens should be deleted.

• serial (basestring) – The serial number of the token to delete (exact)

Returns The number of deleted token

Return type int

privacyidea.lib.token.reset_token(serial, user=None)
Reset the failcounter of a single token, or of all tokens of one user.

Parameters

• serial – serial number (exact)

• user –

Returns The number of tokens, that were resetted

Return type int

privacyidea.lib.token.resync_token(serial, otp1, otp2, options=None, user=None)
Resyncronize the token of the given serial number and user by searching the otp1 and otp2 in the future otp
values.

Parameters

• serial (str) – token serial number (exact)

• otp1 (str) – first OTP value

• otp2 (str) – second OTP value, directly after the first

• options (dict) – additional options like the servertime for TOTP token

Returns result of the resync

Return type bool

privacyidea.lib.token.revoke_token(serial, user=None)
Revoke a token, or all tokens of a single user.

Parameters

• serial (basestring) – The serial number of the token (exact)

• user (User object) – all tokens of the user will be enabled or disabled

Returns Number of tokens that were enabled/disabled

Return type int

privacyidea.lib.token.set_count_auth(serial, count, user=None, max=False, success=False)
The auth counters are stored in the token info database field. There are different counters, that can be set:

count_auth -> max=False, success=False
count_auth_max -> max=True, success=False
count_auth_success -> max=False, success=True
count_auth_success_max -> max=True, success=True

Parameters

• count (int) – The counter value

• user (User object) – The user owner of the tokens tokens to modify

1.15. Code Documentation 341

privacyIDEA Authentication System, Release 3.6.2

• serial (basestring) – The serial number of the one token to modify (exact)

• max (bool) – True, if either count_auth_max or count_auth_success_max are to be modi-
fied

• success (bool) – True, if either count_auth_success or
count_auth_success_max are to be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_count_window(serial, countwindow=10, user=None)
The count window is used during authentication to find the matching OTP value. This sets the count window
per token.

Parameters

• serial (basestring) – The serial number of the token (exact)

• countwindow (int) – the size of the window

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_defaults(serial)
Set the default values for the token with the given serial number (exact)

Parameters serial (basestring) – token serial

Returns None

privacyidea.lib.token.set_description(serial, description, user=None)
Set the description of a token

Parameters

• serial (basestring) – The serial number of the token (exact)

• description (str) – The description for the token

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_failcounter(serial, counter, user=None)
Set the fail counter of a token.

Parameters

• serial – The serial number of the token (exact)

• counter – THe counter to which the fail counter should be set

• user – An optional user

Returns Number of tokens, where the fail counter was set.

privacyidea.lib.token.set_hashlib(serial, hashlib='sha1', user=None)
Set the hashlib in the tokeninfo. Can be something like sha1, sha256. . .

Parameters

342 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• serial (basestring) – The serial number of the token (exact)

• hashlib (basestring) – The hashlib of the token

• user (User object) – The User, for who’s token the hashlib should be set

Returns the number of token infos set

Return type int

privacyidea.lib.token.set_max_failcount(serial, maxfail, user=None)
Set the maximum fail counts of tokens. This is the maximum number a failed authentication is allowed.

Parameters

• serial (basestring) – The serial number of the token (exact)

• maxfail (int) – The maximum allowed failed authentications

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_otplen(serial, otplen=6, user=None)
Set the otp length of the token defined by serial or for all tokens of the user. The OTP length is usually 6 or 8.

Parameters

• serial (basestring) – The serial number of the token (exact)

• otplen (int) – The length of the OTP value

• user (User object) – The owner of the tokens

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_pin(serial, pin, user=None, encrypt_pin=False)
Set the token PIN of the token. This is the static part that can be used to authenticate.

Parameters

• pin (str) – The pin of the token

• user (User object) – If the user is specified, the pins for all tokens of this user will be
set

• serial – If the serial is specified, the PIN for this very token will be set. (exact)

Returns The number of PINs set (usually 1)

Return type int

privacyidea.lib.token.set_pin_so(serial, so_pin, user=None)
Set the SO PIN of a smartcard. The SO Pin can be used to reset the PIN of a smartcard. The SO PIN is stored
in the database, so that it could be used for automatic processes for User PIN resetting.

Parameters

• serial (basestring) – The serial number of the token (exact)

• so_pin (basestring) – The Security Officer PIN

Returns The number of SO PINs set. (usually 1)

Return type int

1.15. Code Documentation 343

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.token.set_pin_user(serial, user_pin, user=None)
This sets the user pin of a token. This just stores the information of the user pin for (e.g. an eTokenNG,
Smartcard) in the database

Parameters

• serial (basestring) – The serial number of the token (exact)

• user_pin (str) – The user PIN

Returns The number of PINs set (usually 1)

Return type int

privacyidea.lib.token.set_realms(serial, realms=None, add=False)
Set all realms of a token. This sets the realms new. I.e. it does not add realms. So realms that are not contained
in the list will not be assigned to the token anymore.

If the token could not be found, a ResourceNotFoundError is raised.

Thus, setting realms=[] clears all realms assignments.

Parameters

• serial (basestring) – the serial number of the token (exact)

• realms (list) – A list of realm names

• add (bool) – if the realms should be added and not replaced

privacyidea.lib.token.set_sync_window(serial, syncwindow=1000, user=None)
The sync window is the window that is used during resync of a token. Such many OTP values are calculated
ahead, to find the matching otp value and counter.

Parameters

• serial (basestring) – The serial number of the token (exact)

• syncwindow (int) – The size of the sync window

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_validity_period_end(serial, user, end)
Set the validity period for the given token.

Parameters

• serial – serial number (exact)

• user –

• end (basestring) – Timestamp in the format DD/MM/YY HH:MM

privacyidea.lib.token.set_validity_period_start(serial, user, start)
Set the validity period for the given token.

Parameters

• serial – serial number (exact)

• user –

• start (basestring) – Timestamp in the format DD/MM/YY HH:MM

344 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.token.token_exist(serial)
returns true if the token with the exact given serial number exists

Parameters serial – the serial number of the token

privacyidea.lib.token.unassign_token(serial, user=None)
unassign the user from the token, or all tokens of a user

Parameters

• serial – The serial number of the token to unassign (exact). Can be None

• user – A user whose tokens should be unassigned

Returns number of unassigned tokens

privacyidea.lib.token.weigh_token_type(token_obj)
This method returns a weight of a token type, which is used to sort the tokentype list. Other weighing functions
can be implemented.

The Push token weighs the most, so that it will be sorted to the end.

Parameters token_obj – token object

Returns weight of the tokentype

Return type int

Application Class

privacyidea.lib.applications.MachineApplicationBase
alias of privacyidea.lib.applications.base.MachineApplication

Policy Module

Base function to handle the policy entries in the database. This module only depends on the db/models.py

The functions of this module are tested in tests/test_lib_policy.py

A policy has the attributes

• name

• scope

• action

• realm

• resolver

• user

• client

• active

name is the unique identifier of a policy. scope is the area, where this policy is meant for. This can be values like
admin, selfservice, authentication. . . scope takes only one value.

active is bool and indicates, whether a policy is active or not.

action, realm, resolver, user and client can take a comma separated list of values.

1.15. Code Documentation 345

privacyIDEA Authentication System, Release 3.6.2

realm and resolver

If these are empty ‘*’, this policy matches each requested realm.

user

If the user is empty or ‘*’, this policy matches each user. You can exclude users from matching this policy, by
prepending a ‘-‘ or a ‘!’. *, -admin will match for all users except the admin.

You can also use regular expressions to match the user like customer_.* to match any user, starting with customer_.

Note: Regular expression will only work for exact machtes. user1234 will not match user1 but only user1. . .

client

The client is identified by its IP address. A policy can contain a list of IP addresses or subnets. You can exclude clients
from subnets by prepending the client with a ‘-‘ or a ‘!’. 172.16.0.0/24, -172.16.0.17 will match each
client in the subnet except the 172.16.0.17.

time

You can specify a time in which the policy should be active. Time formats are:

<dow>-<dow>:<hh>:<mm>-<hh>:<mm>, ...
<dow>:<hh>:<mm>-<hh>:<mm>
<dow>:<hh>-<hh>

and any combination of it. dow being day of week Mon, Tue, Wed, Thu, Fri, Sat, Sun.

class privacyidea.lib.policy.ACTION
This is the list of usual actions.

ADDRESOLVERINRESPONSE = 'add_resolver_in_response'

ADDUSER = 'adduser'

ADDUSERINRESPONSE = 'add_user_in_response'

ADMIN_DASHBOARD = 'admin_dashboard'

APIKEY = 'api_key_required'

APPIMAGEURL = 'appimageurl'

APPLICATION_TOKENTYPE = 'application_tokentype'

ASSIGN = 'assign'

AUDIT = 'auditlog'

AUDIT_AGE = 'auditlog_age'

AUDIT_DOWNLOAD = 'auditlog_download'

AUTHITEMS = 'fetch_authentication_items'

AUTHMAXFAIL = 'auth_max_fail'

346 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

AUTHMAXSUCCESS = 'auth_max_success'

AUTHORIZED = 'authorized'

AUTH_CACHE = 'auth_cache'

AUTOASSIGN = 'autoassignment'

CACONNECTORDELETE = 'caconnectordelete'

CACONNECTORREAD = 'caconnectorread'

CACONNECTORWRITE = 'caconnectorwrite'

CHALLENGERESPONSE = 'challenge_response'

CHALLENGETEXT = 'challenge_text'

CHALLENGETEXT_FOOTER = 'challenge_text_footer'

CHALLENGETEXT_HEADER = 'challenge_text_header'

CHANGE_PIN_EVERY = 'change_pin_every'

CHANGE_PIN_FIRST_USE = 'change_pin_on_first_use'

CHANGE_PIN_VIA_VALIDATE = 'change_pin_via_validate'

CLIENTTYPE = 'clienttype'

CONFIGDOCUMENTATION = 'system_documentation'

COPYTOKENPIN = 'copytokenpin'

COPYTOKENUSER = 'copytokenuser'

CUSTOM_BASELINE = 'custom_baseline'

CUSTOM_MENU = 'custom_menu'

DEFAULT_TOKENTYPE = 'default_tokentype'

DELETE = 'delete'

DELETEUSER = 'deleteuser'

DELETE_USER_ATTRIBUTES = 'delete_custom_user_attributes'

DIALOG_NO_TOKEN = 'dialog_no_token'

DISABLE = 'disable'

EMAILCONFIG = 'smtpconfig'

ENABLE = 'enable'

ENCRYPTPIN = 'encrypt_pin'

ENROLLPIN = 'enrollpin'

EVENTHANDLINGREAD = 'eventhandling_read'

EVENTHANDLINGWRITE = 'eventhandling_write'

FORCE_APP_PIN = 'force_app_pin'

GDPR_LINK = 'privacy_statement_link'

GETCHALLENGES = 'getchallenges'

GETRANDOM = 'getrandom'

1.15. Code Documentation 347

privacyIDEA Authentication System, Release 3.6.2

GETSERIAL = 'getserial'

HIDE_AUDIT_COLUMNS = 'hide_audit_columns'

HIDE_BUTTONS = 'hide_buttons'

HIDE_WELCOME = 'hide_welcome_info'

IMPORT = 'importtokens'

LASTAUTH = 'last_auth'

LOGINMODE = 'login_mode'

LOGIN_TEXT = 'login_text'

LOGOUTTIME = 'logout_time'

LOSTTOKEN = 'losttoken'

LOSTTOKENPWCONTENTS = 'losttoken_PW_contents'

LOSTTOKENPWLEN = 'losttoken_PW_length'

LOSTTOKENVALID = 'losttoken_valid'

MACHINELIST = 'machinelist'

MACHINERESOLVERDELETE = 'mresolverdelete'

MACHINERESOLVERREAD = 'mresolverread'

MACHINERESOLVERWRITE = 'mresolverwrite'

MACHINETOKENS = 'manage_machine_tokens'

MANAGESUBSCRIPTION = 'managesubscription'

MANGLE = 'mangle'

MAXACTIVETOKENUSER = 'max_active_token_per_user'

MAXTOKENREALM = 'max_token_per_realm'

MAXTOKENUSER = 'max_token_per_user'

NODETAILFAIL = 'no_detail_on_fail'

NODETAILSUCCESS = 'no_detail_on_success'

OTPPIN = 'otppin'

OTPPINCONTENTS = 'otp_pin_contents'

OTPPINMAXLEN = 'otp_pin_maxlength'

OTPPINMINLEN = 'otp_pin_minlength'

OTPPINRANDOM = 'otp_pin_random'

OTPPINSETRANDOM = 'otp_pin_set_random'

PASSNOTOKEN = 'passOnNoToken'

PASSNOUSER = 'passOnNoUser'

PASSTHRU = 'passthru'

PASSTHRU_ASSIGN = 'passthru_assign'

PASSWORDRESET = 'password_reset'

348 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

PERIODICTASKREAD = 'periodictask_read'

PERIODICTASKWRITE = 'periodictask_write'

PINHANDLING = 'pinhandling'

POLICYDELETE = 'policydelete'

POLICYREAD = 'policyread'

POLICYTEMPLATEURL = 'policy_template_url'

POLICYWRITE = 'policywrite'

PRIVACYIDEASERVERREAD = 'privacyideaserver_read'

PRIVACYIDEASERVERWRITE = 'privacyideaserver_write'

RADIUSSERVERREAD = 'radiusserver_read'

RADIUSSERVERWRITE = 'radiusserver_write'

REALM = 'realm'

REALMDROPDOWN = 'realm_dropdown'

REGISTERBODY = 'registration_body'

REGISTRATIONCODE_CONTENTS = 'registration.contents'

REGISTRATIONCODE_LENGTH = 'registration.length'

REMOTE_USER = 'remote_user'

REQUIREDEMAIL = 'requiredemail'

RESET = 'reset'

RESETALLTOKENS = 'reset_all_user_tokens'

RESOLVER = 'resolver'

RESOLVERDELETE = 'resolverdelete'

RESOLVERREAD = 'resolverread'

RESOLVERWRITE = 'resolverwrite'

RESYNC = 'resync'

REVOKE = 'revoke'

SEARCH_ON_ENTER = 'search_on_enter'

SERIAL = 'serial'

SET = 'set'

SETDESCRIPTION = 'setdescription'

SETHSM = 'set_hsm_password'

SETPIN = 'setpin'

SETRANDOMPIN = 'setrandompin'

SETREALM = 'setrealm'

SETTOKENINFO = 'settokeninfo'

SET_USER_ATTRIBUTES = 'set_custom_user_attributes'

1.15. Code Documentation 349

privacyIDEA Authentication System, Release 3.6.2

SHOW_ANDROID_AUTHENTICATOR = 'show_android_privacyidea_authenticator'

SHOW_CUSTOM_AUTHENTICATOR = 'show_custom_authenticator'

SHOW_IOS_AUTHENTICATOR = 'show_ios_privacyidea_authenticator'

SHOW_NODE = 'show_node'

SHOW_SEED = 'show_seed'

SMSGATEWAYREAD = 'smsgateway_read'

SMSGATEWAYWRITE = 'smsgateway_write'

SMTPSERVERREAD = 'smtpserver_read'

SMTPSERVERWRITE = 'smtpserver_write'

STATISTICSDELETE = 'statistics_delete'

STATISTICSREAD = 'statistics_read'

SYSTEMDELETE = 'configdelete'

SYSTEMREAD = 'configread'

SYSTEMWRITE = 'configwrite'

TIMEOUT_ACTION = 'timeout_action'

TOKENINFO = 'tokeninfo'

TOKENISSUER = 'tokenissuer'

TOKENLABEL = 'tokenlabel'

TOKENLIST = 'tokenlist'

TOKENPAGESIZE = 'token_page_size'

TOKENREALMS = 'tokenrealms'

TOKENROLLOVER = 'token_rollover'

TOKENTYPE = 'tokentype'

TOKENWIZARD = 'tokenwizard'

TOKENWIZARD2ND = 'tokenwizard_2nd_token'

TRIGGERCHALLENGE = 'triggerchallenge'

UNASSIGN = 'unassign'

UPDATEUSER = 'updateuser'

USERDETAILS = 'user_details'

USERLIST = 'userlist'

USERPAGESIZE = 'user_page_size'

class privacyidea.lib.policy.ACTIONVALUE
This is a list of usual action values for e.g. policy action-values like otppin.

DISABLE = 'disable'

NONE = 'none'

TOKENPIN = 'tokenpin'

350 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

USERSTORE = 'userstore'

class privacyidea.lib.policy.AUTHORIZED

ALLOW = 'grant_access'

DENY = 'deny_access'

class privacyidea.lib.policy.AUTOASSIGNVALUE
This is the possible values for autoassign

NONE = 'any_pin'

USERSTORE = 'userstore'

class privacyidea.lib.policy.CONDITION_CHECK
The available check methods for extended conditions

CHECK_AND_RAISE_EXCEPTION_ON_MISSING = None

DO_NOT_CHECK_AT_ALL = 1

ONLY_CHECK_USERINFO = ['userinfo']

class privacyidea.lib.policy.CONDITION_SECTION
This is a list of available sections for conditions of policies

HTTP_REQUEST_HEADER = 'HTTP Request header'

TOKEN = 'token'

TOKENINFO = 'tokeninfo'

USERINFO = 'userinfo'

class privacyidea.lib.policy.GROUP
These are the allowed policy action groups. The policies will be grouped in the UI.

CONDITIONS = 'conditions'

ENROLLMENT = 'enrollment'

GENERAL = 'general'

MACHINE = 'machine'

MODIFYING_RESPONSE = 'modifying response'

PIN = 'pin'

SETTING_ACTIONS = 'setting actions'

SYSTEM = 'system'

TOKEN = 'token'

TOOLS = 'tools'

USER = 'user'

class privacyidea.lib.policy.LOGINMODE
This is the list of possible values for the login mode.

DISABLE = 'disable'

PRIVACYIDEA = 'privacyIDEA'

USERSTORE = 'userstore'

1.15. Code Documentation 351

privacyIDEA Authentication System, Release 3.6.2

class privacyidea.lib.policy.MAIN_MENU
These are the allowed top level menu items. These are used to toggle the visibility of the menu items depending
on the rights of the user

AUDIT = 'audit'

COMPONENTS = 'components'

CONFIG = 'config'

MACHINES = 'machines'

TOKENS = 'tokens'

USERS = 'users'

class privacyidea.lib.policy.Match(g, **kwargs)
This class provides a high-level API for policy matching.

It should not be instantiated directly. Instead, code should use one of the provided classmethods to construct a
Match object. See the respective classmethods for details.

A Match object encapsulates a policy matching operation, i.e. a call to privacyidea.lib.policy.
PolicyClass.match_policies(). In order to retrieve the matching policies, one should use one of
policies(), action_values() and any(). By default, these functions write the matched policies to
the audit log. This behavior can be explicitly disabled.

Every classmethod expects a so-called “context object” as its first argument. The context object implements the
following attributes:

• audit_object: an Audit object which is used to write the used policies to the audit log. In case
False is passed for write_to_audit_log, the audit object may be None.

• policy_object: a PolicyClass object that is used to retrieve the matching policies.

• client_ip: the IP of the current client, as a string

• logged_in_user: a dictionary with keys “username”, “realm”, “role” that describes the currently
logged-in (managing) user

In our case, this context object is usually the flask.g object.

classmethod action_only(g, scope, action)
Match active policies solely based on a scope and an action, which may also be None. The client IP is
matched implicitly.

Parameters

• g – context object

• scope – the policy scope. SCOPE.ADMIN cannot be passed, admin must be used
instead.

• action – the policy action, or None

Return type Match

action_values(unique, allow_white_space_in_action=False, write_to_audit_log=True)
Return a dictionary of action values extracted from the matching policies.

The dictionary maps each action value to a list of policies which define this action value.

Parameters

• unique – If True, return only the prioritized action value. See privacyidea.lib.
policy.PolicyClass.get_action_values() for details.

352 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• allow_white_space_in_action – If True, allow whitespace in action values.
See privacyidea.lib.policy.PolicyClass.get_action_values() for
details.

• write_to_audit_log – If True, augment the audit log with the names of all policies
whose action values are returned

Return type dict

classmethod admin(g, action, user_obj=None)
Match admin policies with an action and, optionally, a realm. Assumes that the currently logged-in user
is an admin, and throws an error otherwise. Policies will be matched against the admin’s username and
adminrealm, and optionally also the provided user_obj on which the admin is acting The client IP is
matched implicitly.

Parameters

• g – context object

• action – the policy action

• user_obj (User or None) – the user against which policies should be matched. Can
be None.

Return type Match

classmethod admin_or_user(g, action, user_obj)
Depending on the role of the currently logged-in user, match either scope=ADMIN or scope=USER poli-
cies. If the currently logged-in user is an admin, match policies against the username, adminrealm and
the given user_obj on which the admin is acting. If the currently logged-in user is a user, match policies
against the username and the given realm. The client IP is matched implicitly.

Parameters

• g – context object

• action – the policy action

• user_obj – the user_obj on which the administrator is acting

Return type Match

allowed(write_to_audit_log=True)
Determine if the matched action is allowed in the scope admin or user.

This is the case

• either if there are no active policies defined in the matched scope

• or the action is explicitly allowed by a policy in the matched scope

Example usage:

is_allowed = Match.user(g, scope=SCOPE.USER, action=ACTION.ENROLLPIN,
→˓user=user_object).allowed()
is_allowed is now true
either if there is no active policy defined with scope=SCOPE.USER at all
or if there is a policy matching the given scope, action, user and client
→˓IP.

Parameters write_to_audit_log – If True, write the list of matching policies to the audit
log

Returns True or False

1.15. Code Documentation 353

privacyIDEA Authentication System, Release 3.6.2

any(write_to_audit_log=True)
Return True if at least one policy matches.

Parameters write_to_audit_log – If True, write the list of matching policies to the audit
log

Returns True or False

classmethod generic(g, scope=None, realm=None, resolver=None, user=None,
user_object=None, client=None, action=None, adminrealm=None,
adminuser=None, time=None, active=True, sort_by_priority=True,
serial=None, extended_condition_check=None)

Low-level legacy policy matching interface: Search for active policies and return them sorted by priority.
All parameters that should be used for matching have to be passed explicitly. The client IP has to be passed
explicitly. See privacyidea.lib.policy.PolicyClass.match_policies() for details.

Return type Match

policies(write_to_audit_log=True)
Return a list of policies. The list is sorted by priority, which means that prioritized policies appear first.

Parameters write_to_audit_log – If True, write the list of matching policies to the audit
log

Returns a list of policy dictionaries

Return type list

classmethod realm(g, scope, action, realm)
Match active policies with a scope, an action and a user realm. The client IP is matched implicitly.

Parameters

• g – context object

• scope – the policy scope. SCOPE.ADMIN cannot be passed, admin must be used
instead.

• action – the policy action

• realm – the realm to match

Return type Match

classmethod token(g, scope, action, token_obj)
Match active policies with a scope, an action and a token object. The client IP is matched implicitly. From
the token object we try to determine the user as the owner. If the token has no owner, we try to determine
the tokenrealm. We fallback to realm=None

Parameters

• g – context object

• scope – the policy scope. SCOPE.ADMIN cannot be passed, admin must be used
instead.

• action – the policy action

• token_obj – The token where the user object or the realm should match.

Return type Match

classmethod user(g, scope, action, user_object)
Match active policies with a scope, an action and a user object (which may be None). The client IP is
matched implicitly.

354 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters

• g – context object

• scope – the policy scope. SCOPE.ADMIN cannot be passed, admin must be used
instead.

• action – the policy action

• user_object (User or None) – the user object to match. Might also be None,
which means that the policy attributes user, realm and resolver are ignored.

Return type Match

exception privacyidea.lib.policy.MatchingError(description='server error!', id=903)

class privacyidea.lib.policy.PolicyClass
A policy object can be used to query the current set of policies. The policy object itself does not store any
policies. Instead, every query uses get_config_object to retrieve the request-local config object which
contains the current set of policies.

Hence, reloading the request-local config object also reloads the set of policies.

static check_for_conflicts(policies, action)
Given a (not necessarily sorted) list of policy dictionaries and an action name, check that there are no
action value conflicts.

This raises a PolicyError if there are multiple policies with the highest priority which define different
values for action.

Otherwise, the function just returns nothing.

Parameters

• policies – list of dictionaries

• action – string

static extract_action_values(policies, action, unique=False, al-
low_white_space_in_action=False)

Given an action, extract all values the given policies specify for that action.

Parameters

• policies (list) – a list of policy dictionaries

• action (action) – a policy action

• unique (bool) – if True, only consider the policy with the highest priority and check
for policy conflicts (in this case, raise a PolicyError).

• allow_white_space_in_action – Some policies like emailtext would allow enter-
ing text with whitespaces. These whitespaces must not be used to separate action values!

Returns a dictionary mapping action values to lists of matching policies.

filter_policies_by_conditions(policies, user_object=None, request_headers=None, se-
rial=None, extended_condition_check=None)

Given a list of policy dictionaries and a current user object (if any), return a list of all policies whose
conditions match the given user object. Raises a PolicyError if a condition references an unknown sec-
tion. :param policies: a list of policy dictionaries :param user_object: a User object, or None if there is
no current user :param request_headers: The HTTP headers :type request_headers: Request object :param
extended_condition_check: A list of sections to check or None. :return: generates a list of policy dictio-
naries

1.15. Code Documentation 355

privacyIDEA Authentication System, Release 3.6.2

get_action_values(action, scope='authorization', realm=None, resolver=None, user=None,
client=None, unique=False, allow_white_space_in_action=False, admin-
realm=None, adminuser=None, user_object=None, audit_data=None)

Get the defined action values for a certain actions.

Calling the function with parameters like:

scope: authorization
action: tokentype

would return a dictionary of {tokentype: policyname}.

A call with the parameters:

scope: authorization
action: serial

would return a dictionary of {serial: policyname}

All parameters not described below are covered in the documentation of match_policies.

Parameters

• unique – if set, the function will only consider the policy with the highest priority and
check for policy conflicts.

• allow_white_space_in_action (bool) – Some policies like emailtext would al-
low entering text with whitespaces. These whitespaces must not be used to separate action
values!

• audit_data – This is a dictionary, that can take audit_data in the g object. If set, this
dictionary will be filled with the list of triggered policynames in the key “policies”. This
can be useful for policies like ACTION.OTPPIN - where it is clear, that the found policy
will be used. It could make less sense with an action like ACTION.LASTAUTH - where
the value of the action needs to be evaluated in a more special case.

Return type dict

list_policies(name=None, scope=None, realm=None, active=None, resolver=None, user=None,
client=None, action=None, pinode=None, adminrealm=None, adminuser=None,
sort_by_priority=True)

Return the policies, filtered by the given values.

The following rule holds for all filter arguments:

If None is passed as a value, policies are not filtered according to the argument at all. As an example, if
realm=None is passed, policies are matched regardless of their realm attribute. If any value is passed
(even the empty string), policies are filtered according to the given value. As an example, if realm='' is
passed, only policies that have a matching (or empty) realm attribute are returned.

The only exception is the client parameter, which does not accept the empty string, and throws a
ParameterError if the empty string is passed.

Parameters

• name – The name of the policy

• scope – The scope of the policy

• realm – The realm in the policy

• active – One of None, True, False: All policies, only active or only inactive policies

• resolver – Only policies with this resolver

356 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• pinode – Only policies with this privacyIDEA node

• user (basestring) – Only policies with this user

• client –

• action – Only policies, that contain this very action.

• adminrealm – This is the realm of the admin. This is only evaluated in the scope admin.

• adminuser – This is the username of the admin. This in only evaluated in the scope
admin.

• sort_by_priority (bool) – If true, sort the resulting list by priority, ascending by
their policy numbers.

Returns list of policies

Return type list of dicts

match_policies(name=None, scope=None, realm=None, active=None, resolver=None,
user=None, user_object=None, pinode=None, client=None, ac-
tion=None, adminrealm=None, adminuser=None, time=None,
sort_by_priority=True, audit_data=None, request_headers=None, serial=None,
extended_condition_check=None)

Return all policies matching the given context. Optionally, write the matching policies to the audit log.

In order to retrieve policies matching the current user, callers can either pass a user(name), resolver and
realm, or pass a user object from which login name, resolver and realm will be read. In case of conflicting
parameters, a ParameterError will be raised.

This function takes all parameters taken by list_policies, plus some additional parameters.

Parameters

• name – see list_policies

• scope – see list_policies

• realm – see list_policies

• active – see list_policies

• resolver – see list_policies

• user – see list_policies

• client – see list_policies

• action – see list_policies

• adminrealm – see list_policies

• adminuser – see list_policies

• pinode – see list_policies

• sort_by_priority –

• user_object (User or None) – the currently active user, or None

• time (datetime or None) – return only policies that are valid at the specified time.
Defaults to the current time.

• audit_data (dict or None) – A dictionary with audit data collected during a re-
quest. This method will add found policies to the dictionary.

• request_headers – A dict with HTTP headers

1.15. Code Documentation 357

privacyIDEA Authentication System, Release 3.6.2

Returns a list of policy dictionaries

property policies
Shorthand to retrieve the set of policies of the request-local config object

ui_get_enroll_tokentypes(client, logged_in_user)
Return a dictionary of the allowed tokentypes for the logged in user. This used for the token enrollment
UI.

It looks like this:

{“hotp”: “HOTP: event based One Time Passwords”, “totp”: “TOTP: time based One Time
Passwords”, “spass”: “SPass: Simple Pass token. Static passwords”, “motp”: “mOTP: clas-
sical mobile One Time Passwords”, “sshkey”: “SSH Public Key: The public SSH key”,
“yubikey”: “Yubikey AES mode: One Time Passwords with Yubikey”, “remote”: “Remote
Token: Forward authentication request to another server”, “yubico”: “Yubikey Cloud mode:
Forward authentication request to YubiCloud”, “radius”: “RADIUS: Forward authentication
request to a RADIUS server”, “email”: “EMail: Send a One Time Passwort to the users
email address”, “sms”: “SMS: Send a One Time Password to the users mobile phone”, “cer-
tificate”: “Certificate: Enroll an x509 Certificate Token.”}

Parameters

• client (basestring) – Client IP address

• logged_in_user (dict) – The Dict of the logged in user

Returns list of token types, the user may enroll

ui_get_main_menus(logged_in_user, client=None)
Get the list of allowed main menus derived from the policies for the given user - admin or normal user. It
fetches all policies for this user and compiles a list of allowed menus to display or hide in the UI.

Parameters

• logged_in_user – The logged in user, a dictionary with keys “username”, “realm”
and “role”.

• client – The IP address of the client

Returns A list of MENUs to be displayed

ui_get_rights(scope, realm, username, client=None)
Get the rights derived from the policies for the given realm and user. Works for admins and normal users.
It fetches all policies for this user and compiles a maximum list of allowed rights, that can be used to hide
certain UI elements.

Parameters

• scope – Can be SCOPE.ADMIN or SCOPE.USER

• realm – Is either user users realm or the adminrealm

• username – The loginname of the user

• client – The HTTP client IP

Returns A list of actions

class privacyidea.lib.policy.REMOTE_USER
The list of possible values for the remote_user policy.

ACTIVE = 'allowed'

358 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

DISABLE = 'disable'

FORCE = 'force'

class privacyidea.lib.policy.SCOPE
This is the list of the allowed scopes that can be used in policy definitions.

ADMIN = 'admin'

AUDIT = 'audit'

AUTH = 'authentication'

AUTHZ = 'authorization'

ENROLL = 'enrollment'

REGISTER = 'register'

USER = 'user'

WEBUI = 'webui'

class privacyidea.lib.policy.TIMEOUT_ACTION
This is a list of actions values for idle users

LOCKSCREEN = 'lockscreen'

LOGOUT = 'logout'

class privacyidea.lib.policy.TYPE

BOOL = 'bool'

INT = 'int'

STRING = 'str'

privacyidea.lib.policy.check_pin(g, pin, tokentype, user_obj)
get the policies for minimum length, maximum length and PIN contents first try to get a token specific policy -
otherwise fall back to default policy.

Raises an exception, if the PIN does not comply to the policies.

Parameters

• g –

• pin –

• tokentype –

• user_obj –

privacyidea.lib.policy.delete_all_policies()

privacyidea.lib.policy.delete_policy(name)
Function to delete one named policy. Raise ResourceNotFoundError if there is no such policy.

Parameters name – the name of the policy to be deleted

Returns the ID of the deleted policy

Return type int

privacyidea.lib.policy.enable_policy(name, enable=True)
Enable or disable the policy with the given name :param name: :return: ID of the policy

1.15. Code Documentation 359

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.policy.export_policies(policies)
This function takes a policy list and creates an export file from it

Parameters policies (list of policy dictionaries) – a policy definition

Returns the contents of the file

Return type string

privacyidea.lib.policy.get_action_values_from_options(scope, action, options)
This function is used in the library level to fetch policy action values from a given option dictionary.

The matched policies are not written to the audit log.

Returns A scalar, string or None

privacyidea.lib.policy.get_allowed_custom_attributes(g, user_obj)
Return the list off allowed custom user attributes that can be set and deleted. Returns a dictionary with the two
keys “delete” and “set.

Parameters

• g –

• user_obj – The User object to check the allowed attributes for

Returns dict

privacyidea.lib.policy.get_policy_condition_comparators()

Returns a dictionary mapping comparators to dictionaries with the following keys: *
"description", a human-readable description of the comparator

privacyidea.lib.policy.get_policy_condition_sections()

Returns a dictionary mapping condition sections to dictionaries with the following keys: *
"description", a human-readable description of the section

privacyidea.lib.policy.get_static_policy_definitions(scope=None)
These are the static hard coded policy definitions. They can be enhanced by token based policy definitions, that
can be found in lib.token.get_dynamic_policy_definitions.

Parameters scope (basestring) – Optional the scope of the policies

Returns allowed scopes with allowed actions, the type of action and a description.

Return type dict

privacyidea.lib.policy.import_policies(file_contents)
This function imports policies from a file.

The file has a config_object format, i.e. the text file has a header:

[<policy_name>]
key = value

and key value pairs.

Parameters file_contents (basestring) – The contents of the file

Returns number of imported policies

Return type int

360 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.policy.set_policy(name=None, scope=None, action=None, realm=None, re-
solver=None, user=None, time=None, client=None, ac-
tive=True, adminrealm=None, adminuser=None, prior-
ity=None, check_all_resolvers=False, conditions=None,
pinode=None)

Function to set a policy.

If the policy with this name already exists, it updates the policy. It expects a dict of with the following keys:

Parameters

• name – The name of the policy

• scope – The scope of the policy. Something like “admin” or “authentication”

• action – A scope specific action or a comma separated list of actions

• realm – A realm, for which this policy is valid

• resolver – A resolver, for which this policy is valid

• user – A username or a list of usernames

• time – N/A if type()

• client – A client IP with optionally a subnet like 172.16.0.0/16

• active (bool) – If the policy is active or not

• adminrealm (str) – The name of the realm of administrators

• adminuser (str) – A comma separated list of administrators

• priority (int) – the priority of the policy (smaller values having higher priority)

• check_all_resolvers (bool) – If all the resolvers of a user should be checked with
this policy

• conditions – A list of 5-tuples (section, key, comparator, value, active) of policy condi-
tions

• pinode – A privacyIDEA node or a list of privacyIDEA nodes.

Returns The database ID od the the policy

Return type int

Job Queue

The following queue classes are known to privacyIDEA

Huey Queue Class

class privacyidea.lib.queues.huey_queue.HueyQueue(options)

enqueue(name, args, kwargs)
Schedule an invocation of a job on the external job queue.

Parameters

• name – Unique job name

• args – Tuple of positional arguments

1.15. Code Documentation 361

privacyIDEA Authentication System, Release 3.6.2

• kwargs – Dictionary of keyword arguments

Returns None

property huey

property jobs

register_job(name, func)
Add a job to the internal registry.

Parameters

• name – Unique job name

• func – Function that should be executed by an external job queue

privacyidea.lib.queue.JOB_COLLECTOR = <privacyidea.lib.queue.JobCollector object>
A singleton is fine here, because it is only used at import time and once when a new app is created. Afterwards,
the object is unused.

class privacyidea.lib.queue.JobCollector
For most third-party job queue modules, the jobs are discovered by tracking all functions decorated with a @job
decorator. However, in order to invoke the decorator, one usually needs to provide the queue configuration (e.g.
the redis server) already. In privacyIDEA, we cannot do that, because the app config is not known yet – it will be
known when create_app is called! Thus, we cannot directly use the @job decorator, but need a job collector
that collects jobs in privacyIDEA code and registers them with the job queue module when create_app has
been called.

property jobs

register_app(app)
Create an instance of a BaseQueue subclass according to the app config’s PI_JOB_QUEUE_CLASS
option and store it in the job_queue config. Register all collected jobs with this application. This
instance is shared between threads! This function should only be called once per process.

Parameters app – privacyIDEA app

register_job(name, func, args, kwargs)
Register a job with the collector.

Parameters

• name – unique name of the job

• func – function of the job

• args – arguments passed to the job queue’s register_job method

• kwargs – keyword arguments passed to the job queue’s register_job method

privacyidea.lib.queue.get_job_queue()
Get the job queue registered with the current app. If no job queue is configured, raise a ServerError.

privacyidea.lib.queue.has_job_queue()
Return a boolean describing whether the current app has an app queue configured.

privacyidea.lib.queue.job(name, *args, **kwargs)
Decorator to mark a job to be collected by the job collector. All arguments are passed to register_job.

privacyidea.lib.queue.register_app(app)
Register the app app with the global job collector, if a PI_JOB_QUEUE_CLASS is non-empty. Do nothing
otherwise.

362 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.queue.wrap_job(name, result)
Wrap a job and return a function that can be used like the original function. The returned function will always
return result. This assumes that a queue is configured! Otherwise, calling the resulting function will fail with
a ServerError.

Returns a function

Base class

class privacyidea.lib.queues.base.BaseQueue(options)
A queue object represents an external job queue and is configured with a dictionary of options. It allows to
register jobs, which are Python functions that may be executed outside of the request lifecycle. Every job is
identified by a unique job name. It then allows to delegate (or “enqueue”) an invocation of a job (which is
identified by its job name) to the external job queue. Currently, the queue only supports fire-and-forget jobs, i.e.
jobs without any return value.

enqueue(name, args, kwargs)
Schedule an invocation of a job on the external job queue.

Parameters

• name – Unique job name

• args – Tuple of positional arguments

• kwargs – Dictionary of keyword arguments

Returns None

register_job(name, func)
Add a job to the internal registry.

Parameters

• name – Unique job name

• func – Function that should be executed by an external job queue

API Policies

Pre Policies

These are the policy decorators as PRE conditions for the API calls. I.e. these conditions are executed before the
wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also components from
flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.prepolicy.allowed_audit_realm(request=None, action=None)
This decorator function takes the request and adds additional parameters to the request according to the policy
for the SCOPE.ADMIN or ACTION.AUDIT :param request: :param action: :return: True

privacyidea.api.lib.prepolicy.api_key_required(request=None, action=None)
This is a decorator for check_user_pass and check_serial_pass. It checks, if a policy scope=auth, ac-
tion=apikeyrequired is set. If so, the validate request will only performed, if a JWT token is passed with
role=validate.

1.15. Code Documentation 363

privacyIDEA Authentication System, Release 3.6.2

privacyidea.api.lib.prepolicy.auditlog_age(request=None, action=None)
This pre condition checks for the policy auditlog_age and set the “timelimit” parameter of the audit search API.

Check ACTION.AUDIT_AGE

The decorator can wrap GET /audit/

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.check_admin_tokenlist(request=None, action=None)
Depending on the policy scope=admin, action=tokenlist, the allowed_realms parameter is set to define, the token
of which realms and administrator is allowed to see.

Sets the allowed_realms None: means the admin has no restrictions []: the admin can not see any realms
[“realm1”, “realm2”. . .]: the admin can see these realms

Parameters request –

Returns

privacyidea.api.lib.prepolicy.check_anonymous_user(request=None, action=None)
This decorator function takes the request and verifies the given action for the SCOPE USER without an authen-
ticated user but the user from the parameters.

This is used with password_reset

Parameters

• request –

• action –

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_application_tokentype(request=None, ac-
tion=None)

This pre policy checks if the request is allowed to specify the tokentype. If the policy is not set, a possibly set
parameter “type” is removed from the request.

Check ACTION.APPLICATION_TOKENTYPE

This decorator should wrap /validate/check, /validate/samlcheck and /validate/triggerchallenge.

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.check_base_action(request=None, action=None, anony-
mous=False)

This decorator function takes the request and verifies the given action for the SCOPE ADMIN or USER.

Parameters

• request –

• action –

364 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• anonymous – If set to True, the user data is taken from the request parameters.

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_custom_user_attributes(request=None, ac-
tion=None)

This pre condition checks for the policies delete_custom_user_attributes and set_custom_user_attributes, if the
user or admin is allowed to set or deleted the requested attribute.

It decorates POST /user/attribute and DELETE /user/attribute/. . .

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action – An optional action, (would be set/delete)

Returns Raises a PolicyError, if the wrong attribute is given.

privacyidea.api.lib.prepolicy.check_external(request=None, action='init')
This decorator is a hook to an external check function, that is called before the token/init or token/assign API.

Parameters

• request (flask Request object) – The REST request

• action (basestring) – This is either “init” or “assign”

Returns either True or an Exception is raised

privacyidea.api.lib.prepolicy.check_max_token_realm(request=None, action=None)
Pre Policy This checks the maximum token per realm. Check ACTION.MAXTOKENREALM

This decorator can wrap: /token/init (with a realm and user) /token/assign /token/tokenrealms

Parameters

• req (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_max_token_user(request=None, action=None)
Pre Policy This checks the maximum token per user policy. Check ACTION.MAXTOKENUSER Check AC-
TION.MAXACTIVETOKENUSER

This decorator can wrap: /token/init (with a realm and user) /token/assign

Parameters

• req –

• action –

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_otp_pin(request=None, action=None)
This policy function checks if the OTP PIN that is about to be set follows the OTP PIN policies AC-
TION.OTPPINMAXLEN, ACTION.OTPPINMINLEN and ACTION.OTPPINCONTENTS and token-type-
specific PIN policy actions in the SCOPE.USER or SCOPE.ADMIN. It is used to decorate the API functions.

The pin is investigated in the params as “otppin” or “pin”

In case the given OTP PIN does not match the requirements an exception is raised.

1.15. Code Documentation 365

privacyIDEA Authentication System, Release 3.6.2

privacyidea.api.lib.prepolicy.check_token_init(request=None, action=None)
This decorator function takes the request and verifies if the requested tokentype is allowed to be enrolled in the
SCOPE ADMIN or the SCOPE USER. :param request: :param action: :return: True or an Exception is raised

privacyidea.api.lib.prepolicy.check_token_upload(request=None, action=None)
This decorator function takes the request and verifies the given action for scope ADMIN :param req: :param
filename: :return:

privacyidea.api.lib.prepolicy.encrypt_pin(request=None, action=None)
This policy function is to be used as a decorator for several API functions. E.g. token/assign, token/setpin, to-
ken/init If the policy is set to define the PIN to be encrypted, the request.all_data is modified like this: encryptpin
= True

It uses the policy SCOPE.ENROLL, ACTION.ENCRYPTPIN

privacyidea.api.lib.prepolicy.enroll_pin(request=None, action=None)
This policy function is used as decorator for init token. It checks, if the user or the admin is allowed to set a
token PIN during enrollment. If not, it deleted the PIN from the request.

privacyidea.api.lib.prepolicy.hide_audit_columns(request=None, action=None)
This pre condition checks for the policy hide_audit_columns and sets the “hidden_columns” parameter for the
audit search. The given columns will be removed from the returned audit dict.

Check ACTION.HIDE_AUDIT_COLUMNS

The decorator should wrap GET /audit/

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.indexedsecret_force_attribute(request, action)
This is a token specific wrapper for indexedsecret token for the endpoint /token/init The otpkey is overwrit-
ten with the value from the user attribute specified in policy scope=SCOPE.USER and SCOPE.ADMIN, ac-
tion=PIIXACTION.FORCE_ATTRIBUTE. :param request: :param action: :return:

privacyidea.api.lib.prepolicy.init_random_pin(request=None, action=None)
This policy function is to be used as a decorator in the API init function If the policy is set accordingly it adds a
random PIN to the request.all_data like.

It uses the policy SCOPE.ENROLL, ACTION.OTPPINRANDOM and ACTION.OTPPINCONTENTS to set a
random OTP PIN during Token enrollment

privacyidea.api.lib.prepolicy.init_registrationcode_length_contents(request=None,
ac-
tion=None)

This policy function is to be used as a decorator in the API token init function.

If there is a valid policy set the action values of REGISTRATIONCODE_LENGTH and REGISTRA-
TIONCODE_CONTENTS are added to request.all_data as

{ ‘registration.length’: ‘10’, ‘registration.contents’: ‘cn’ }

privacyidea.api.lib.prepolicy.init_token_defaults(request=None, action=None)
This policy function is used as a decorator for the API init function. Depending on policy settings it can add
token specific default values like totp_hashlib, hotp_hashlib, totp_otplen. . .

privacyidea.api.lib.prepolicy.init_tokenlabel(request=None, action=None)
This policy function is to be used as a decorator in the API init function. It adds the tokenlabel definition to the
params like this: params : { “tokenlabel”: “<u>@<r>” }

366 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

In addition it adds the tokenissuer to the params like this: params : { “tokenissuer”: “privacyIDEA instance” }

It also checks if the force_app_pin policy is set and adds the corresponding value to params.

It uses the policy SCOPE.ENROLL, ACTION.TOKENLABEL and ACTION.TOKENISSUER to set the token-
label and tokenissuer of Smartphone tokens during enrollment and this fill the details of the response.

privacyidea.api.lib.prepolicy.is_remote_user_allowed(req, write_to_audit_log=True)
Checks if the REMOTE_USER server variable is allowed to be used.

Note: This is not used as a decorator!

Parameters

• req – The flask request, containing the remote user and the client IP

• write_to_audit_log (bool) – whether the policy name should be added to the audit
log entry

Returns Return a value or REMOTE_USER, can be “disable”, “active” or “force”.

Return type str

privacyidea.api.lib.prepolicy.mangle(request=None, action=None)
This pre condition checks if either of the parameters pass, user or realm in a validate/check request should be
rewritten based on an authentication policy with action “mangle”. See mangle for an example.

Check ACTION.MANGLE

This decorator should wrap /validate/check

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.mock_fail(req, action)
This is a mock function as an example for check_external. This function creates a problem situation and the
token/init or token/assign will show this exception accordingly.

privacyidea.api.lib.prepolicy.mock_success(req, action)
This is a mock function as an example for check_external. This function returns success and the API call will
go on unmodified.

privacyidea.api.lib.prepolicy.papertoken_count(request=None, action=None)
This is a token specific wrapper for paper token for the endpoint /token/init. According to the policy
scope=SCOPE.ENROLL, action=PAPERACTION.PAPER_COUNT it sets the parameter papertoken_count to
enroll a paper token with such many OTP values.

Parameters

• request –

• action –

Returns

1.15. Code Documentation 367

privacyIDEA Authentication System, Release 3.6.2

class privacyidea.api.lib.prepolicy.prepolicy(function, request, action=None)
This is the decorator wrapper to call a specific function before an API call. The prepolicy decorator is to be used
in the API calls. A prepolicy decorator then will modify the request data or raise an exception

privacyidea.api.lib.prepolicy.pushtoken_add_config(request, action)
This is a token specific wrapper for push token for the endpoint /token/init According to the policy
scope=SCOPE.ENROLL, action=SSL_VERIFY or action=FIREBASE_CONFIG the parameters are added to
the enrollment step. :param request: :param action: :return:

privacyidea.api.lib.prepolicy.pushtoken_disable_wait(request, action)
This is used for the /auth endpoint and sets the PUSH_ACTION.WAIT parameter to False.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.pushtoken_wait(request, action)
This is a auth specific wrapper to decorate /validate/check According to the policy scope=SCOPE.AUTH, ac-
tion=push_wait

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.realmadmin(request=None, action=None)
This decorator adds the first REALM to the parameters if the administrator, calling this API is a realm admin.
This way, if the admin calls e.g. GET /user without realm parameter, he will not see all users, but only users in
one of his realms.

TODO: If a realm admin is allowed to see more than one realm, this is not handled at the moment. We need
to change the underlying library functions!

Parameters

• request – The HTTP reqeust

• action – The action like ACTION.USERLIST

privacyidea.api.lib.prepolicy.required_email(request=None, action=None)
This precondition checks if the “email” parameter matches the regular expression in the policy scope=register,
action=requiredemail. See requiredemail.

Check ACTION.REQUIREDEMAIL

This decorator should wrap POST /register

Parameters

• request – The Request Object

• action – An optional Action

Returns Modifies the request parameters or raises an Exception

privacyidea.api.lib.prepolicy.required_piv_attestation(request, action=None)
This is a token specific decorator for certificate tokens for the endpoint /token/init According to the policy

368 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

scope=SCOPE.ENROLL, action=REQUIRE_ATTESTATION an exception is raised, if no attestation parameter
is given.

It also checks the policy if the attestation should be verified and sets the parameter verify_attestation accordingly.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.save_client_application_type(request, action)
This decorator is used to write the client IP and the HTTP user agent (clienttype) to the database.

In fact this is not a policy decorator, as it checks no policy. In fact, we could however one day define this as a
policy, too. :param req: :return:

privacyidea.api.lib.prepolicy.set_random_pin(request=None, action=None)
This policy function is to be used as a decorator in the API setrandompin function If the policy is set accordingly
it adds a random PIN to the request.all_data like.

It uses the policy ACTION.OTPPINSETRANDOM in SCOPE.ADMIN or SCOPE.USER to set a random OTP
PIN

privacyidea.api.lib.prepolicy.set_realm(request=None, action=None)
Pre Policy This pre condition gets the current realm and verifies if the realm should be rewritten due to the
policy definition. I takes the realm from the request and - if a policy matches - replaces this realm with the realm
defined in the policy

Check ACTION.SETREALM

This decorator should wrap /validate/check

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.sms_identifiers(request=None, action=None)
This is a token specific wrapper for sms tokens to be used with the endpoint /token/init. According to the policy
scope=SCOPE.ADMIN or scope=SCOPE.USER action=SMSACTION.GATEWAYS the sms.identifier is only
allowed to be set to the listed gateways.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.tantoken_count(request=None, action=None)
This is a token specific wrapper for tan token for the endpoint /token/init. According to the policy
scope=SCOPE.ENROLL, action=TANACTION.TANTOKEN_COUNT it sets the parameter tantoken_count to
enroll a tan token with such many OTP values.

Parameters

• request –

1.15. Code Documentation 369

privacyIDEA Authentication System, Release 3.6.2

• action –

Returns

privacyidea.api.lib.prepolicy.twostep_enrollment_activation(request=None,
action=None)

This policy function enables the two-step enrollment process according to the configured policies. It is used to
decorate the /token/init endpoint.

If a <type>_2step policy matches, the 2stepinit parameter is handled according to the policy. If no
policy matches, the 2stepinit parameter is removed from the request data.

privacyidea.api.lib.prepolicy.twostep_enrollment_parameters(request=None,
action=None)

If the 2stepinit parameter is set to true, this policy function reads additional configuration from policies and
adds it to request.all_data, that is:

• {type}_2step_serversize is written to 2step_serversize

• {type}_2step_clientsize is written to 2step_clientsize

• {type}_2step_difficulty is written to 2step_difficulty

If no policy matches, the value passed by the user is kept.

This policy function is used to decorate the /token/init endpoint.

privacyidea.api.lib.prepolicy.u2ftoken_allowed(request, action)

This is a token specific wrapper for u2f token for the endpoint /token/init. According to the policy
scope=SCOPE.ENROLL, action=U2FACTION.REQ it checks, if the assertion certificate is an allowed
U2F token type.

If the token, which is enrolled contains a non allowed attestation certificate, we bail out.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.u2ftoken_verify_cert(request, action)
This is a token specific wrapper for u2f token for the endpoint /token/init According to the policy
scope=SCOPE.ENROLL, action=U2FACTION.NO_VERIFY_CERT it can add a parameter to the enrollment
parameters to not verify the attestation certificate. The default is to verify the cert. :param request: :param
action: :return:

privacyidea.api.lib.prepolicy.webauthntoken_allowed(request, action)
This is a token specific wrapper for WebAuthn token for the endpoint /token/init.

According to the policy scope=SCOPE.ENROLL, action=WEBAUTHNACTION.REQ it checks, if the asser-
tion certificate is for an allowed WebAuthn token type. According to the policy scope=SCOPE.ENROLL,
action=WEBAUTHNACTION.AUTHENTICATOR_SELECTION_LIST it checks, whether the AAGUID is
whitelisted. Note: If self-attestation is allowed, it is – of course – possible to bypass the check for WEBAUTH-
NACTION.REQ

If the token, which is being enrolled does not contain an allowed attestation certificate, or does not have an
allowed AAGUID, we bail out.

A very similar check (same policy actions, different policy scope) is performed during authorization, however
due to architectural limitations, this lives within the token implementation itself.

370 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters

• request –

• action –

Returns

Return type

privacyidea.api.lib.prepolicy.webauthntoken_auth(request, action)
This is a WebAuthn token specific wrapper for the endpoints /validate/triggerchallenge, /validate/check, and
/auth.

This will enrich the challenge creation request for WebAuthn tokens with the necessary configuration informa-
tion from policy actions with scope=SCOPE.AUTH. The request will be augmented with the allowed transports
and the text to display to the user when asking to confirm the challenge on the token, as specified by the actions
WEBAUTHNACTION.ALLOWED_TRANSPORTS, and ACTION.CHALLENGETEXT, respectively.

Both of these policies are optional, and have sensible defaults.

Parameters

• request –

• action –

Returns

Return type

privacyidea.api.lib.prepolicy.webauthntoken_authz(request, action)
This is a WebAuthn token specific wrapper for the /auth, and /validate/check endpoints.

This will enrich the authorization request for WebAuthn tokens with the necessary configuration information
from policy actions with scope=SCOPE.AUTHZ. This is currently the authorization pendant to webauthnto-
ken_allowed(), but maybe expanded to cover other authorization policies in the future, should any be added.
The request will as of now simply be augmented with the policies the attestation certificate is to be matched
against.

Parameters

• request –

• action –

Returns

Return type

privacyidea.api.lib.prepolicy.webauthntoken_enroll(request, action)
This is a token specific wrapper for the WebAuthn token for the endpoint /token/init.

This will enrich the initialization request for WebAuthn tokens with the necessary configuration information
from policy actions with scope=SCOPE.ENROLL. The request will be augmented with a name and id for
the relying party, as specified by the with actions WEBAUTHNACTION.RELYING_PARTY_NAME and
WEBAUTHNACTION.RELYING_PARTY_ID, respectively, authenticator attachment preference, public
key credential algorithm preferences, authenticator attestation requirement level, authenticator attestation
requirement form, allowed AAGUIDs, and the text to display to the user when asking to confirm the challenge
on the token, as specified by the actions WEBAUTHNACTION.AUTHENTICATOR_ATTACHMENT,
WEBAUTHNACTION.PUBLIC_KEY_CREDENTIAL_ALGORITHM_PREFERENCE,
WEBAUTHNACTION.AUTHENTICATOR_ATTESTATION_LEVEL, WEBAU-
THNACTION.AUTHENTICATOR_ATTESTATION_FORM, WEBAUTHNAC-
TION.AUTHENTICATOR_SELECTION_LIST, and ACTION.CHALLENGETEXT, respectively.

1.15. Code Documentation 371

privacyIDEA Authentication System, Release 3.6.2

Setting WEBAUTHNACTION.RELYING_PARTY_NAME and WEBAUTHNAC-
TION.RELYING_PARTY_ID is mandatory, and if either of these is not set, we bail out.

Parameters

• request –

• action –

Returns

Return type

privacyidea.api.lib.prepolicy.webauthntoken_request(request, action)
This is a WebAuthn token specific wrapper for all endpoints using WebAuthn tokens.

This wraps the endpoints /token/init, /validate/triggerchallenge, /auth, and /validate/check. It will add WebAuthn
configuration information to the requests, wherever a piece of information is needed for several different requests
and thus cannot be provided by one of the more specific wrappers without adding unnecessary redundancy.

Depending on the type of request, the request will be augmented with some (or all) of the au-
thenticator timeout, user verification requirement and list of allowed AAGUIDs for the current
scope, as specified by the policies with the determined scope and the actions WEBAUTHNAC-
TION.TIMEOUT, WEBAUTHNACTION.USER_VERIFICATION_REQUIREMENT, and WEBAUTHNAC-
TION.AUTHENTICATOR_SELECTION_LIST, respectively.

The value of the ORIGIN http header will also be added to the request for the ENROLL and AUTHZ scopes.
This is to make the unit tests not require mocking.

Parameters

• request –

• action –

Returns

Return type

Post Policies

These are the policy decorators as POST conditions for the API calls. I.e. these conditions are executed after the
wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also components from
flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.postpolicy.add_user_detail_to_response(request, response)
This policy decorated is used in the AUTHZ scope. If the boolean value add_user_in_response is set, the details
will contain a dictionary “user” with all user details.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.autoassign(request, response)
This decorator decorates the function /validate/check. Depending on ACTION.AUTOASSIGN it checks if the

372 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

user has no token and if the given OTP-value matches a token in the users realm, that is not yet assigned to any
user.

If a token can be found, it assigns the token to the user also taking into account ACTION.MAXTOKENUSER
and ACTION.MAXTOKENREALM. :return:

privacyidea.api.lib.postpolicy.check_serial(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call has a serial number that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

privacyidea.api.lib.postpolicy.check_tokeninfo(request, response)
This policy function is used as a decorator for the validate API. It checks after a successful authentication if the
token has a matching tokeninfo field. If it does not match, authorization is denied. Then a PolicyException is
raised.

Parameters response (Response object) – The response of the decorated function

Returns A new modified response

privacyidea.api.lib.postpolicy.check_tokentype(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call is of a type that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

privacyidea.api.lib.postpolicy.construct_radius_response(request, response)
This decorator implements the /validate/radiuscheck endpoint. In case this URL was requested, a successful
authentication results in an empty response with a HTTP 204 status code. An unsuccessful authentication
results in an empty response with a HTTP 400 status code. :return:

privacyidea.api.lib.postpolicy.get_webui_settings(request, response)
This decorator is used in the /auth API to add configuration information like the logout_time or the pol-
icy_template_url to the response. :param request: flask request object :param response: flask response object
:return: the response

privacyidea.api.lib.postpolicy.is_authorized(request, response)
This policy decorator is used in the AUTHZ scope to decorate the /validate/check and /validate/triggerchallenge
endpoint. I will cause authentication to fail, if the policy authorized=deny_access is set.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.mangle_challenge_response(request, response)
This policy decorator is used in the AUTH scope to decorate the /validate/check endpoint. It can modify the
contents of the response “detail”->”message” to allow a better readability for a challenge response text.

Parameters

• request –

1.15. Code Documentation 373

privacyIDEA Authentication System, Release 3.6.2

• response –

Returns

privacyidea.api.lib.postpolicy.no_detail_on_fail(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_fail is set, the details
will be stripped if the authentication request failed.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.no_detail_on_success(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_success is set, the details
will be stripped if the authentication request was successful.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.offline_info(request, response)
This decorator is used with the function /validate/check. It is not triggered by an ordinary policy but by a
MachineToken definition. If for the given Client and Token an offline application is defined, the response is
enhanced with the offline information - the hashes of the OTP.

class privacyidea.api.lib.postpolicy.postpolicy(function, request=None)
Decorator that allows one to call a specific function after the decorated function. The postpolicy decorator is to
be used in the API calls.

class privacyidea.api.lib.postpolicy.postrequest(function, request=None)
Decorator that is supposed to be used with after_request.

privacyidea.api.lib.postpolicy.save_pin_change(request, response, serial=None)
This policy function checks if the next_pin_change date should be stored in the tokeninfo table.

1. Check scope:enrollment and ACTION.CHANGE_PIN_FIRST_USE. This action is used, when the admin-
istrator enrolls a token or sets a PIN

2. Check scope:enrollment and ACTION.CHANGE_PIN_EVERY is used, if the user changes the PIN.

This function decorates /token/init and /token/setpin. The parameter “pin” and “otppin” is investigated.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.postpolicy.sign_response(request, response)
This decorator is used to sign the response. It adds the nonce from the request, if it exist and adds the nonce and
the signature to the response.

Note: This only works for JSON responses. So if we fail to decode the JSON, we just pass on.

374 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

The usual way to use it is, to wrap the after_request, so that we can also sign errors.

@postrequest(sign_response, request=request) def after_request(response):

Parameters

• request – The Request object

• response – The Response object

Policy Decorators

These are the policy decorator functions for internal (lib) policy decorators. policy decorators for the API (pre/post)
are defined in api/lib/policy

The functions of this module are tested in tests/test_lib_policy_decorator.py

privacyidea.lib.policydecorators.auth_cache(wrapped_function, user_object, passw, op-
tions=None)

Decorate lib.token:check_user_pass. Verify, if the authentication can be found in the auth_cache.

Parameters

• wrapped_function – usually “check_user_pass”

• user_object – User who tries to authenticate

• passw – The PIN and OTP

• options – Dict containing values for “g” and “clientip”.

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_lastauth(wrapped_function, user_or_serial,
passw, options=None)

This decorator checks the policy settings of ACTION.LASTAUTH If the last authentication stored in tokeninfo
last_auth_success of a token is exceeded, the authentication is denied.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})
OR token.check_serial_pass with the arguments (user, passw, options={})

Parameters

• wrapped_function – either check_user_pass or check_serial_pass

• user_or_serial – either the User user_or_serial or a serial

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_otppin(wrapped_function, *args, **kwds)
Decorator to decorate the tokenclass.check_pin function.

Depending on the ACTION.OTPPIN it

• either simply accepts an empty pin

• checks the pin against the userstore

• or passes the request to the wrapped_function

Parameters

1.15. Code Documentation 375

privacyIDEA Authentication System, Release 3.6.2

• wrapped_function – In this case the wrapped function should be privacyidea.
lib.tokenclass.TokenClass.check_pin()

• *args – args[1] is the pin

• **kwds – kwds[“options”] contains the flask g

Returns True or False

privacyidea.lib.policydecorators.auth_user_does_not_exist(wrapped_function,
user_object, passw,
options=None)

This decorator checks, if the user does exist at all. If the user does exist, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_has_no_token(wrapped_function,
user_object, passw,
options=None)

This decorator checks if the user has a token at all. If the user has a token, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_passthru(wrapped_function, user_object,
passw, options=None)

This decorator checks the policy settings of ACTION.PASSTHRU. If the authentication against the userstore is
not successful, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

376 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

privacyidea.lib.policydecorators.auth_user_timelimit(wrapped_function, user_object,
passw, options=None)

This decorator checks the policy settings of ACTION.AUTHMAXSUCCESS, ACTION.AUTHMAXFAIL If
the authentication was successful, it checks, if the number of allowed successful authentications is exceeded
(AUTHMAXSUCCESS).

If the AUTHMAXFAIL is exceed it denies even a successful authentication.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.challenge_response_allowed(func)
This decorator is used to wrap tokenclass.is_challenge_request. It checks, if a challenge response authentication
is allowed for this token type. To allow this, the policy

scope:authentication, action:challenge_response must be set.

If the tokentype is not allowed for challenge_response, this decorator returns false.

See challenge_response.

Parameters func – wrapped function

privacyidea.lib.policydecorators.config_lost_token(wrapped_function, *args,
**kwds)

Decorator to decorate the lib.token.lost_token function. Depending on ACTION.LOSTTOKENVALID, AC-
TION.LOSTTOKENPWCONTENTS, ACTION.LOSTTOKENPWLEN it sets the check_otp parameter, to sig-
nal how the lostToken should be generated.

Parameters

• wrapped_function – Usually the function lost_token()

• *args – argument “serial” as the old serial number

• **kwds – keyword arguments like “validity”, “contents”, “pw_len” kwds[“options”] con-
tains the flask g

Returns calls the original function with the modified “validity”, “contents” and “pw_len” argument

class privacyidea.lib.policydecorators.libpolicy(decorator_function)
This is the decorator wrapper to call a specific function before a library call in contrast to prepolicy and postpol-
icy, which are to be called in API Calls.

The decorator expects a named parameter “options”. In this options dict it will look for the flask global “g”.

privacyidea.lib.policydecorators.login_mode(wrapped_function, *args, **kwds)
Decorator to decorate the lib.auth.check_webui_user function. Depending on ACTION.LOGINMODE it sets
the check_otp parameter, to signal that the authentication should be performed against privacyIDEA.

Parameters

• wrapped_function – Usually the function check_webui_user

• *args – arguments user_obj and password

1.15. Code Documentation 377

privacyIDEA Authentication System, Release 3.6.2

• **kwds – keyword arguments like options and !check_otp! kwds[“options”] contains the
flask g

Returns calls the original function with the modified “check_otp” argument

privacyidea.lib.policydecorators.reset_all_user_tokens(wrapped_function, *args,
**kwds)

Resets all tokens if the corresponding policy is set.

Parameters

• token – The successful token, the tokenowner is used to find policies.

• tokenobject_list – The list of all the tokens of the user

• options – options dictionary containing g.

Returns None

Event Handler

The following event handlers are known to privacyIDEA

Event Handler Base Class

class privacyidea.lib.eventhandler.base.BaseEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a list of available actions, that are provided by this event handler. :return: dictionary
of actions.

property allowed_positions
This returns the allowed positions of the event handler definition. This can be “post” or “pre” or both.
:return: list of allowed positions

check_condition(options)
Check if all conditions are met and if the action should be executed. The the conditions are met, we return
“True” :return: True

property conditions
The UserNotification can filter for conditions like * type of logged in user and * successful or failed
value.success

allowed types are str, multi, text, regexp

Returns dict

description = 'This is the base class of an EventHandler with no functionality'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

378 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• options (dict) – Contains the flask parameters g and request and the handler_def
configuration

Returns

property events
This method returns a list allowed events, that this event handler can be bound to and which it can handle
with the corresponding actions.

An eventhandler may return an asterisk [“*”] indicating, that it can be used in all events. :return: list of
events

identifier = 'BaseEventHandler'

User Notification Event Handler

class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandling definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This eventhandler notifies the user about actions on his tokens'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'UserNotification'

class privacyidea.lib.event.EventConfiguration
This class is supposed to contain the event handling configuration during the Request. The currently defined
events are fetched from the request-local config object.

property events
Shortcut for retrieving the currently defined event handlers from the request-local config object.

get_event(eventid)
Return the reduced list with the given eventid. This list should only have one element.

Parameters eventid (int or None) – id of the event

Returns list with one element

get_handled_events(eventname, position='post')
Return a list of the event handling definitions for the given eventname and the given position.

1.15. Code Documentation 379

privacyIDEA Authentication System, Release 3.6.2

Parameters

• eventname – The name of the event

• position – the position of the event definition

Returns

privacyidea.lib.event.delete_event(event_id)
Delete the event configuration with this given ID. :param event_id: The database ID of the event. :type event_id:
int :return:

privacyidea.lib.event.enable_event(event_id, enable=True)
Enable or disable the and event :param event_id: ID of the event :return:

class privacyidea.lib.event.event(eventname, request, g)
This is the event decorator that calls the event handler in the handler module. This event decorator can be used
at any API call

privacyidea.lib.event.get_handler_object(handlername)
Return an event handler object based on the Name of the event handler class

Parameters handlername – The identifier of the Handler Class

Returns

privacyidea.lib.event.set_event(name, event, handlermodule, action, conditions=None, order-
ing=0, options=None, id=None, active=True, position='post')

Set an event handling configuration. This writes an entry to the database eventhandler.

Parameters

• name – The name of the event definition

• event (basestring) – The name of the event to react on. Can be a single event or a
comma separated list.

• handlermodule (basestring) – The identifier of the event handler module. This is
an identifier string like “UserNotification”

• action (basestring) – The action to perform. This is an action defined by the handler
module

• conditions (dict) – A condition. Only if this condition is met, the action is performed.

• ordering (integer) – An optional ordering of the event definitions.

• options (dict) – Additional options, that are needed as parameters for the action

• id (int) – The DB id of the event. If the id is given, the event is updated. Otherwise a new
entry is generated.

• position (basestring) – The position of the event handler being “post” or “pre”

Returns The id of the event.

380 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

SMS Provider

The following SMS providers are know to privacyIDEA

HTTP SMS Provider

class privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider(db_smsprovider_object=None,
smsgate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

submit_message(phone, message)
send a message to a phone via an http sms gateway

Parameters

• phone – the phone number

• message – the message to submit to the phone

Returns

Sipgate SMS Provider

class privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider(db_smsprovider_object=None,
sms-
gate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

submit_message(phone, message)
Sends the SMS. It should return a bool indicating if the SMS was sent successfully.

In case of SMS send fail, an Exception should be raised. :return: Success :rtype: bool

SMTP SMS Provider

class privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider(db_smsprovider_object=None,
smsgate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

1.15. Code Documentation 381

privacyIDEA Authentication System, Release 3.6.2

submit_message(phone, message)
Submits the message for phone to the email gateway.

Returns true in case of success

In case of a failure an exception is raised

SMSProvider is the base class for submitting SMS. It provides 3 different imlementations:

• HTTP: submitting SMS via an HTTP gateway of an SMS provider

• SMTP: submitting SMS via an SMTP gateway of an SMS provider

• Sipgate: submitting SMS via Sipgate service

Base Class

class privacyidea.lib.smsprovider.SMSProvider.ISMSProvider(db_smsprovider_object=None,
smsgateway=None)

the SMS Provider Interface - BaseClass

check_configuration()
This method checks the sanity of the configuration of this provider. If there is a configuration error, than
an exception is raised. :return:

load_config(config_dict)
Load the configuration dictionary

Parameters config_dict (dict) – The conifugration of the SMS provider

Returns None

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values with defined keys, while options can be any combination.

Each option is the key to another dict, that describes this option, if it is required, a description and which
values it can take. The values are optional.

Additional options can not be named in advance. E.g. some provider specific HTTP parameters of HTTP
gateways are options. The HTTP parameter for the SMS text could be “text” at one provider and “sms” at
another one.

The options can be fixed values or also take the tags {otp}, {user}, {phone}.

Returns dict

submit_message(phone, message)
Sends the SMS. It should return a bool indicating if the SMS was sent successfully.

In case of SMS send fail, an Exception should be raised. :return: Success :rtype: bool

382 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

UserIdResolvers

The useridresolver is responsible for getting userids for loginnames and vice versa.

This base module contains the base class UserIdResolver.UserIdResolver and also the community class PasswdIdRe-
solver.IdResolver, that is inherited from the base class.

Base class

class privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

add_user(attributes=None)
Add a new user in the useridresolver. This is only possible, if the UserIdResolver supports this and if we
have write access to the user store.

Parameters

• username (basestring) – The login name of the user

• attributes – Attributes according to the attribute mapping

Returns The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

Parameters

• uid (string or int) – The uid in the resolver

• password (string) – the password to check. Usually in cleartext

Returns True or False

Return type bool

close()
Hook to close down the resolver after one request

delete_user(uid)
Delete a user from the useridresolver. The user is referenced by the user id. :param uid: The uid of the
user object, that should be deleted. :type uid: basestring :return: Returns True in case of success :rtype:
bool

property editable
Return true, if the Instance! of this resolver is configured editable. :return:

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

static getResolverClassType()
provide the resolver type for registration

static getResolverDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

1.15. Code Documentation 383

privacyIDEA Authentication System, Release 3.6.2

Returns resolver description dict

Return type dict

getResolverId()
get resolver specific information :return: the resolver identifier string - empty string if not exist

static getResolverType()
getResolverType - return the type of the resolver

Returns returns the string ‘ldapresolver’

Return type string

getUserId(loginName)
The loginname is resolved to a user_id. Depending on the resolver type the user_id can be an ID (like in
/etc/passwd) or a string (like the DN in LDAP)

It needs to return an emptry string, if the user does not exist.

Parameters loginName (sting) – The login name of the user

Returns The ID of the user

Return type str

getUserInfo(userid)
This function returns all user information for a given user object identified by UserID. :param userid: ID
of the user in the resolver :type userid: int or string :return: dictionary, if no object is found, the dictionary
is empty :rtype: dict

getUserList(searchDict=None)
This function finds the user objects, that have the term ‘value’ in the user object field ‘key’

Parameters searchDict (dict) – dict with key values of user attributes - the key may be
something like ‘loginname’ or ‘email’ the value is a regular expression.

Returns list of dictionaries (each dictionary contains a user object) or an empty string if no
object is found.

Return type list of dicts

getUsername(userid)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: string

property has_multiple_loginnames
Return if this resolver has multiple loginname attributes :return: bool

loadConfig(config)
Load the configuration from the dict into the Resolver object. If attributes are missing, need to set default
values. If required attributes are missing, this should raise an Exception.

Parameters config (dict) – The configuration values of the resolver

classmethod testconnection(param)
This function lets you test if the parameters can be used to create a working resolver. The implementation
should try to connect to the user store and verify if users can be retrieved. In case of success it should
return a text like “Resolver config seems OK. 123 Users found.”

Parameters param (dict) – The parameters that should be saved as the resolver

Returns returns True in case of success and a descriptive text

Return type tuple

384 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

update_user(uid, attributes=None)
Update an existing user. This function is also used to update the password. Since the attribute mapping
know, which field contains the password, this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not modified.

Parameters

• uid (basestring) – The uid of the user object in the resolver.

• attributes (dict) – Attributes to be updated.

Returns True in case of success

PasswdResolver

class privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

We do not support shadow passwords. so the seconds column of the passwd file needs to contain the
crypted password

If the password is a unicode object, it is encoded according to ENCODING first.

Parameters

• uid (int) – The uid of the user

• password (sting) – The password in cleartext

Returns True or False

Return type bool

checkUserId(line, pattern)
Check if a userid matches a pattern. A pattern can be “=1000”, “>=1000”, “<2000” or “between
1000,2000”.

Parameters

• line (dict) – the dictionary of a user

• pattern (string) – match pattern with <, <=. . .

Returns True or False

Return type bool

checkUserName(line, pattern)
check for user name

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

static getResolverClassType()
provide the resolver type for registration

1.15. Code Documentation 385

privacyIDEA Authentication System, Release 3.6.2

static getResolverDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
return the resolver identifier string, which in fact is filename, where it points to.

static getResolverType()
getResolverType - return the type of the resolver

Returns returns the string ‘ldapresolver’

Return type string

getSearchFields(searchDict=None)
show, which search fields this userIdResolver supports

TODO: implementation is not completed

Parameters searchDict (dict) – fields, which can be queried

Returns dict of all searchFields

Return type dict

getUserId(LoginName)
search the user id from the login name

Parameters LoginName – the login of the user (as unicode)

Returns the userId

Return type str

getUserInfo(userId, no_passwd=False)
get some info about the user as we only have the loginId, we have to traverse the dict for the value

Parameters

• userId – the to be searched user

• no_passwd – retrun no password

Returns dict of user info

getUserList(searchDict=None)
get a list of all users matching the search criteria of the searchdict

Parameters searchDict – dict of search expressions

getUsername(userId)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: str

loadConfig(configDict)
The UserIdResolver could be configured from the pylons app config - here this could be the passwd file ,
whether it is /etc/passwd or /etc/shadow

loadFile()
Loads the data of the file initially. if the self.fileName is empty, it loads /etc/passwd. Empty lines are
ignored.

static setup(config=None, cache_dir=None)
this setup hook is triggered, when the server starts to serve the first request

386 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Parameters config (the privacyidea config dict) – the privacyidea config

LDAPResolver

class privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

add_user(attributes=None)
Add a new user to the LDAP directory. The user can only be created in the LDAP using a DN. So we have
to construct the DN out of the given attributes.

attributes are these “username”, “surname”, “givenname”, “email”, “mobile”, “phone”, “password”

Parameters attributes (dict) – Attributes according to the attribute mapping

Returns The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

checkPass(uid, password)
This function checks the password for a given uid. - returns true in case of success - false if password does
not match

static create_connection(authtype=None, server=None, user=None, password=None,
auto_bind=False, client_strategy='SYNC', check_names=True,
auto_referrals=False, receive_timeout=5, start_tls=False)

Create a connection to the LDAP server.

Parameters

• authtype –

• server –

• user –

• password –

• auto_bind –

• client_strategy –

• check_names –

• auto_referrals –

• receive_timeout – At the moment we do not use this, since receive_timeout is not
supported by ldap3 < 2.

Returns

classmethod create_serverpool(urilist, timeout, get_info=None, tls_context=None,
rounds=2, exhaust=30, pool_cls=<class
'ldap3.core.pooling.ServerPool'>)

This create the serverpool for the ldap3 connection. The URI from the LDAP resolver can contain a comma
separated list of LDAP servers. These are split and then added to the pool.

See https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

Parameters

• urilist (basestring) – The list of LDAP URIs, comma separated

• timeout (float) – The connection timeout

1.15. Code Documentation 387

https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

privacyIDEA Authentication System, Release 3.6.2

• get_info – The get_info type passed to the ldap3.Sever constructor. default:
ldap3.SCHEMA, should be ldap3.NONE in case of a bind.

• tls_context – A ldap3.tls object, which defines if certificate verification should be
performed

• rounds – The number of rounds we should cycle through the server pool before giving
up

• exhaust – The seconds, for how long a non-reachable server should be removed from
the serverpool

• pool_cls – ldap3.ServerPool subclass that should be instantiated

Returns Server Pool

Return type serverpool_cls

delete_user(uid)
Delete a user from the LDAP Directory.

The user is referenced by the user id. :param uid: The uid of the user object, that should be deleted. :type
uid: basestring :return: Returns True in case of success :rtype: bool

property editable
Return true, if the instance of the resolver is configured editable :return:

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

static getResolverClassType()
provide the resolver type for registration

static getResolverDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
Returns the resolver Id This should be an Identifier of the resolver, preferable the type and the name of the
resolver.

Returns the id of the resolver

Return type str

static getResolverType()
getResolverType - return the type of the resolver

Returns returns the string ‘ldapresolver’

Return type string

getUserId(LoginName)
resolve the loginname to the userid.

Parameters LoginName (str) – The login name from the credentials

Returns UserId as found for the LoginName

Return type str

388 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

getUserInfo(userId)
This function returns all user info for a given userid/object.

Parameters userId (string) – The userid of the object

Returns A dictionary with the keys defined in self.userinfo

Return type dict

getUserList(searchDict=None)

Parameters searchDict (dict) – A dictionary with search parameters

Returns list of users, where each user is a dictionary

getUsername(user_id)
Returns the username/loginname for a given user_id :param user_id: The user_id in this resolver :type
user_id: string :return: username :rtype: string

get_persistent_serverpool(get_info=None)
Return a process-level instance of LockingServerPool for the current LDAP resolver configuration.
Retrieve it from the app-local store. If such an instance does not exist yet, create one. :param get_info:
one of ldap3.SCHEMA, ldap3.NONE, ldap3.ALL :return: a LockingServerPool instance

get_serverpool_instance(get_info=None)
Return a ServerPool instance that should be used. If SERVERPOOL_PERSISTENT is enabled, invoke
get_persistent_serverpool to retrieve a per-process server pool instance. If it is not enabled,
invoke create_serverpool to retrieve a per-request server pool instance. :param get_info: one of
ldap3.SCHEMA, ldap3.NONE, ldap3.ALL :return: a ServerPool/LockingServerPool instance

property has_multiple_loginnames
Return if this resolver has multiple loginname attributes :return: bool

loadConfig(config)
Load the config from conf.

Parameters config (dict) – The configuration from the Config Table

‘#ldap_uri’: ‘LDAPURI’, ‘#ldap_basedn’: ‘LDAPBASE’, ‘#ldap_binddn’: ‘BINDDN’,
‘#ldap_password’: ‘BINDPW’, ‘#ldap_timeout’: ‘TIMEOUT’, ‘#ldap_sizelimit’: ‘SIZELIMIT’,
‘#ldap_loginattr’: ‘LOGINNAMEATTRIBUTE’, ‘#ldap_searchfilter’: ‘LDAPSEARCHFILTER’,
‘#ldap_mapping’: ‘USERINFO’, ‘#ldap_uidtype’: ‘UIDTYPE’, ‘#ldap_noreferrals’ : ‘NOREFER-
RALS’, ‘#ldap_editable’ : ‘EDITABLE’, ‘#ldap_certificate’: ‘CACERTIFICATE’,

static split_uri(uri)
Splits LDAP URIs like: * ldap://server * ldaps://server * ldap[s]://server:1234 * server :param uri: The
LDAP URI :return: Returns a tuple of Servername, Port and SSL(bool)

classmethod testconnection(param)
This function lets you test the to be saved LDAP connection.

Parameters param (dict) – A dictionary with all necessary parameter to test the connection.

Returns Tuple of success and a description

Return type (bool, string)

Parameters are: BINDDN, BINDPW, LDAPURI, TIMEOUT, LDAPBASE, LOGINNAMEAT-
TRIBUTE, LDAPSEARCHFILTER, USERINFO, SIZELIMIT, NOREFERRALS, CACERTIFI-
CATE, AUTHTYPE, TLS_VERIFY, TLS_VERSION, TLS_CA_FILE, SERVERPOOL_ROUNDS,
SERVERPOOL_SKIP

1.15. Code Documentation 389

ldap://server

privacyIDEA Authentication System, Release 3.6.2

update_user(uid, attributes=None)
Update an existing user. This function is also used to update the password. Since the attribute mapping
know, which field contains the password, this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not modified.

Parameters

• uid (basestring) – The uid of the user object in the resolver.

• attributes (dict) – Attributes to be updated.

Returns True in case of success

Audit log

Base class

class privacyidea.lib.auditmodules.base.Audit(config=None, startdate=None)

add_policy(policyname)
This method adds a triggered policyname to the list of triggered policies. :param policyname: A string or
a list of strings as policynames :return:

add_to_log(param, add_with_comma=False)
Add to existing log entry :param param: :param add_with_comma: If set to true, new values will be
appended comma separated :return:

audit_entry_to_dict(audit_entry)
If the search_query returns an iterator with elements that are not a dictionary, the audit module needs to
provide this function, to convert the audit entry to a dictionary.

property available_audit_columns

csv_generator(param=None, user=None, timelimit=None)
A generator that can be used to stream the audit log

Parameters param –

Returns

finalize_log()
This method is called to finalize the audit_data. I.e. sign the data and write it to the database. It should
hash the data and do a hash chain and sign the data

get_audit_id()

get_count(search_dict, timedelta=None, success=None)
Returns the number of found log entries. E.g. used for checking the timelimit.

Parameters param – List of filter parameters

Returns number of found entries

get_total(param, AND=True, display_error=True, timelimit=None)
This method returns the total number of audit entries in the audit store

property has_data

initialize_log(param)
This method initialized the log state. The fact, that the log state was initialized, also needs to be logged.
Therefor the same params are passed as i the log method.

390 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

is_readable = False

log(param)
This method is used to log the data. During a request this method can be called several times to fill the
internal audit_data dictionary.

Add new log details in param to the internal log data self.audit_data.

Parameters param (dict) – Log data that is to be added

Returns None

log_token_num(get_tokens(count=True))

Parameters count (int) – Number of tokens

Returns

read_keys(pub, priv)
Set the private and public key for the audit class. This is achieved by passing the entries.

#priv = config.get(“privacyideaAudit.key.private”) #pub = config.get(“privacyideaAudit.key.public”)

Parameters

• pub (string with filename) – Public key, used for verifying the signature

• priv (string with filename) – Private key, used to sign the audit entry

Returns None

search(search_dict, page_size=15, page=1, sortorder='asc', timelimit=None)
This function is used to search audit events.

param: Search parameters can be passed.

return: A pagination object

This function is deprecated.

search_query(search_dict, page_size=15, page=1, sortorder='asc', sortname='number', time-
limit=None)

This function returns the audit log as an iterator on the result

SQL Audit module

class privacyidea.lib.auditmodules.sqlaudit.Audit(config=None, startdate=None)
This is the SQLAudit module, which writes the audit entries to an SQL database table. It requires the configu-
ration parameters in pi.cfg: * PI_AUDIT_KEY_PUBLIC * PI_AUDIT_KEY_PRIVATE

If you want to host the SQL Audit database in another DB than the token DB, you can use: *
PI_AUDIT_SQL_URI

It also takes the optional parameters: * PI_AUDIT_POOL_SIZE * PI_AUDIT_POOL_RECYCLE *
PI_AUDIT_SQL_TRUNCATE * PI_AUDIT_NO_SIGN

You can use PI_AUDIT_NO_SIGN = True to avoid signing of the audit log.

If PI_CHECK_OLD_SIGNATURES = True old style signatures (text-book RSA) will be checked as well, oth-
erwise they will be marked as ‘FAIL’.

audit_entry_to_dict(audit_entry)
If the search_query returns an iterator with elements that are not a dictionary, the audit module needs to
provide this function, to convert the audit entry to a dictionary.

1.15. Code Documentation 391

privacyIDEA Authentication System, Release 3.6.2

clear()
Deletes all entries in the database table. This is only used for test cases! :return:

csv_generator(param=None, user=None, timelimit=None)
Returns the audit log as csv file. :param timelimit: Limit the number of dumped entries by time :type
timelimit: datetime.timedelta :param param: The request parameters :type param: dict :param user: The
user, who issued the request :return: None. It yields results as a generator

finalize_log()
This method is used to log the data. It should hash the data and do a hash chain and sign the data

get_count(search_dict, timedelta=None, success=None)
Returns the number of found log entries. E.g. used for checking the timelimit.

Parameters param – List of filter parameters

Returns number of found entries

get_total(param, AND=True, display_error=True, timelimit=None)
This method returns the total number of audit entries in the audit store

search(search_dict, page_size=15, page=1, sortorder='asc', timelimit=None)
This function returns the audit log as a Pagination object.

Parameters timelimit (timedelta) – Only audit entries newer than this timedelta will be
searched

search_query(search_dict, page_size=15, page=1, sortorder='asc', sortname='number', time-
limit=None)

This function returns the audit log as an iterator on the result

Parameters timelimit (timedelta) – Only audit entries newer than this timedelta will be
searched

Monitoring

Base class

class privacyidea.lib.monitoringmodules.base.Monitoring(config=None)

add_value(stats_key, stats_value, timestamp, reset_values=False)
This method adds a measurement point to the statistics key “stats_key”. If reset_values is set to True, all
old values of this stats_key are deleted.

Parameters

• stats_key – Identifier of the stats

• stats_value – measured value

• timestamp (timezone aware datetime) – the timestamp of the measurement

• reset_values – boolean to indicate the reset

Returns None

delete(stats_key, start_timestamp, end_timestamp)
Delete all entries of the stats_key for the given time frame. The start_timestamp and end_timestamp are
also deleted.

Parameters

392 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – beginning of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns number of deleted entries

get_keys()
Return a list of the available statistic keys.

Returns list of identifiers

get_last_value(stats_key)
returns the last value of the given stats_key in time. :param stats_key: The identifier of the stats :return: a
string value.

get_values(stats_key, start_timestamp=None, end_timestamp=None)
Return a list of tuples of (timestamp, value) for the requested stats_key.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – start of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns

SQL Statistics module

class privacyidea.lib.monitoringmodules.sqlstats.Monitoring(config=None)

add_value(stats_key, stats_value, timestamp, reset_values=False)
This method adds a measurement point to the statistics key “stats_key”. If reset_values is set to True, all
old values of this stats_key are deleted.

Parameters

• stats_key – Identifier of the stats

• stats_value – measured value

• timestamp (timezone aware datetime) – the timestamp of the measurement

• reset_values – boolean to indicate the reset

Returns None

delete(stats_key, start_timestamp, end_timestamp)
Delete all entries of the stats_key for the given time frame. The start_timestamp and end_timestamp are
also deleted.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – beginning of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns number of deleted entries

1.15. Code Documentation 393

privacyIDEA Authentication System, Release 3.6.2

get_keys()
Return a list of all stored keys. :return:

get_last_value(stats_key)
returns the last value of the given stats_key in time. :param stats_key: The identifier of the stats :return: a
string value.

get_values(stats_key, start_timestamp=None, end_timestamp=None, date_strings=False)
Return a list of tuples of (timestamp, value) for the requested stats_key.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – start of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns

Machine Resolvers

Machine Resolvers are used to find machines in directories like LDAP, Active Directory, puppet, salt, or the /etc/hosts
file.

Machines can then be used to assign applications and tokens to those machines.

Base class

class privacyidea.lib.machines.base.BaseMachineResolver(name, config=None)

static get_config_description()
Returns a description what config values are expected and allowed.

Returns dict

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return a list of all machine objects in this resolver

Parameters substring – If set to true, it will also match search_hostnames,

that only are a subnet of the machines hostname. :type substring: bool :param any: a substring that matches
EITHER hostname, machineid or ip :type any: basestring :return: list of machine objects

394 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

Returns None

static testconnection(params)
This method can test if the passed parameters would create a working machine resolver.

Parameters params –

Returns tupple of success and description

Return type (bool, string)

Hosts Machine Resolver

class privacyidea.lib.machines.hosts.HostsMachineResolver(name, config=None)

classmethod get_config_description()
Returns a description what config values are expected and allowed.

Returns dict

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return matching machines.

Parameters

• machine_id – can be matched as substring

• hostname – can be matched as substring

• ip – can not be matched as substring

• substring (bool) – Whether the filtering should be a substring matching

• any (basestring) – a substring that matches EITHER hostname, machineid or ip

Returns list of Machine Objects

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

1.15. Code Documentation 395

privacyIDEA Authentication System, Release 3.6.2

Returns None

static testconnection(params)
Test if the given filename exists.

Parameters params –

Returns

PinHandler

This module provides the PIN Handling base class. In case of enrolling a token, a PIN Handling class can be used to
send the PIN via Email, call an external program or print a letter.

This module is not tested explicitly. It is tested in conjunction with the policy decorator init_random_pin in
tests/test_api_lib_policy.py

Base class

class privacyidea.lib.pinhandling.base.PinHandler(options=None)
A PinHandler Class is responsible for handling the OTP PIN during enrollment.

It receives the necessary data like

• the PIN

• the serial number of the token

• the username

• all other user data:

– given name, surname

– email address

– telephone

– mobile (if the module would deliver via SMS)

• the administrator name (who enrolled the token)

send(pin, serial, user, tokentype=None, logged_in_user=None, userdata=None, options=None)

Parameters

• pin – The PIN in cleartext

• user (user object) – the owner of the token

• tokentype (basestring) – the type of the token

• logged_in_user (dict) – The logged in user, who enrolled the token

• userdata (dict) – Handler-specific user data like email, mobile. . .

• options (dict) – Handler-specific additional options

Returns True in case of success

Return type bool

396 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.15.3 DB level

On the DB level you can simply modify all objects.

The database model

class privacyidea.models.Admin(**kwargs)
The administrators for managing the system. To manage the administrators use the command pi-manage.

In addition certain realms can be defined to be administrative realms.

Parameters

• username (basestring) – The username of the admin

• password (basestring) – The password of the admin (stored using PBKDF2, salt and
pepper)

• email (basestring) – The email address of the admin (not used at the moment)

class privacyidea.models.Audit(action='', success=0, serial='', token_type='', user='',
realm='', resolver='', administrator='', action_detail='',
info='', privacyidea_server='', client='', loglevel='default',
clearance_level='default', policies='', startdate=None, dura-
tion=None)

This class stores the Audit entries

class privacyidea.models.AuthCache(username, realm, resolver, authentication,
first_auth=None, last_auth=None)

class privacyidea.models.CAConnector(name, catype)
The table “caconnector” contains the names and types of the defined CA connectors. Each connector has a
different configuration, that is stored in the table “caconnectorconfig”.

class privacyidea.models.CAConnectorConfig(caconnector_id=None, Key=None,
Value=None, caconnector=None, Type='',
Description='')

Each CAConnector can have multiple configuration entries. Each CA Connector type can have different required
config values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set
to “password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.Challenge(serial, transaction_id=None, challenge='', data='', ses-
sion='', validitytime=120)

Table for handling of the generic challenges.

get(timestamp=False)
return a dictionary of all vars in the challenge class

Parameters timestamp (bool) – if true, the timestamp will given in a readable format 2014-
11-29 21:56:43.057293

Returns dict of vars

get_otp_status()
This returns how many OTPs were already received for this challenge. and if a valid OTP was received.

Returns tuple of count and True/False

Return type tuple

1.15. Code Documentation 397

privacyIDEA Authentication System, Release 3.6.2

is_valid()
Returns true, if the expiration time has not passed, yet. :return: True if valid :rtype: bool

set_data(data)
set the internal data of the challenge :param data: unicode data :type data: string, length 512

class privacyidea.models.ClientApplication(**kwargs)
This table stores the clients, which sent an authentication request to privacyIDEA. This table is filled automati-
cally by authentication requests.

class privacyidea.models.Config(Key, Value, Type='', Description='')
The config table holds all the system configuration in key value pairs.

Additional configuration for realms, resolvers and machine resolvers is stored in specific tables.

class privacyidea.models.CustomUserAttribute(user_id, resolver, realm_id, Key, Value,
Type=None)

The table “customuserattribute” is used to store additional, custom attributes for users.

A user is identified by the user_id, the resolver_id and the realm_id.

The additional attributes are stored in Key and Value. The Type can hold extra information like e.g. an encrypted
value / password.

Note: Since the users are external, i.e. no objects in this database, there is not logic reference on a database
level. Since users could be deleted from user stores without privacyIDEA realizing that, this table could
pile up with remnants of attributes.

class privacyidea.models.EventCounter(name, value=0, node='')
This table stores counters of the event handler “Counter”.

Note that an event counter name does not correspond to just one, but rather several table rows, because we store
event counters for each privacyIDEA node separately. This is intended to improve the performance of replicated
setups, because each privacyIDEA node then only writes to its own “private” table row. This way, we avoid
locking issues that would occur if all nodes write to the same table row.

decrease()
Decrease the value of a counter. :return:

increase()
Increase the value of a counter :return:

class privacyidea.models.EventHandler(name, event, handlermodule, action, condition='', or-
dering=0, options=None, id=None, conditions=None,
active=True, position='post')

This model holds the list of defined events and actions to this events. A handler module can be bound to an
event with the corresponding condition and action.

get()
Return the serialized eventhandler object including the options

Returns complete dict

Rytpe dict

class privacyidea.models.EventHandlerCondition(eventhandler_id, Key, Value, compara-
tor='equal')

Each EventHandler entry can have additional conditions according to the handler module

class privacyidea.models.EventHandlerOption(eventhandler_id, Key, Value, Type='', De-
scription='')

Each EventHandler entry can have additional options according to the handler module.

398 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

class privacyidea.models.MachineResolver(name, rtype)
This model holds the definition to the machinestore. Machines could be located in flat files, LDAP directory or
in puppet services or other. . .

The usual MachineResolver just holds a name and a type and a reference to its config

class privacyidea.models.MachineResolverConfig(resolver_id=None, Key=None,
Value=None, resolver=None, Type='',
Description='')

Each Machine Resolver can have multiple configuration entries. The config entries are referenced by the id of
the machine resolver

class privacyidea.models.MachineToken(machineresolver_id=None, machineresolver=None,
machine_id=None, token_id=None, serial=None,
application=None)

The MachineToken assigns a Token and an application type to a machine. The Machine is represented as the
tuple of machineresolver.id and the machine_id. The machine_id is defined by the machineresolver.

This can be an n:m mapping.

class privacyidea.models.MachineTokenOptions(machinetoken_id, key, value)
This class holds an Option for the token assigned to a certain client machine. Each Token-Clientmachine-
Combination can have several options.

class privacyidea.models.MethodsMixin
This class mixes in some common Class table functions like delete and save

class privacyidea.models.MonitoringStats(timestamp, key, value)
This is the table that stores measured, arbitrary statistic points in time.

This could be used to store time series but also to store current values, by simply fetching the last value from
the database.

class privacyidea.models.PasswordReset(recoverycode, username, realm, resolver='',
email=None, timestamp=None, expiration=None,
expiration_seconds=3600)

Table for handling password resets. This table stores the recoverycodes sent to a given user

The application should save the HASH of the recovery code. Just like the password for the Admins the appli-
action shall salt and pepper the hash of the recoverycode. A database admin will not be able to inject a rogue
recovery code.

A user can get several recoverycodes. A recovery code has a validity period

Optional: The email to which the recoverycode was sent, can be stored.

class privacyidea.models.PeriodicTask(name, active, interval, node_list, taskmodule, order-
ing, options=None, id=None, retry_if_failed=True)

This class stores tasks that should be run periodically.

property aware_last_update
Return self.last_update with attached UTC tzinfo

get()
Return the serialized periodic task object including the options and last runs. The last runs are returned as
timezone-aware UTC datetimes.

Returns complete dict

save()
If the entry has an ID set, update the entry. If not, create one. Set last_update to the current time.
:return: the entry ID

1.15. Code Documentation 399

privacyIDEA Authentication System, Release 3.6.2

set_last_run(node, timestamp)
Store the information that the last run of the periodic job occurred on node at timestamp. :param node:
Node name as a string :param timestamp: Timestamp as UTC datetime (without timezone information)
:return:

class privacyidea.models.PeriodicTaskLastRun(periodictask_id, node, timestamp)
Each PeriodicTask entry stores, for each node, the timestamp of the last successful run.

property aware_timestamp
Return self.timestamp with attached UTC tzinfo

save()
Create or update a PeriodicTaskLastRun entry, depending on the value of self.id. :return: the entry id

class privacyidea.models.PeriodicTaskOption(periodictask_id, key, value)
Each PeriodicTask entry can have additional options according to the task module.

save()
Create or update a PeriodicTaskOption entry, depending on the value of self.id :return: the entry ID

class privacyidea.models.Policy(name, active=True, scope='', action='', realm='', admin-
realm='', adminuser='', resolver='', user='', client='', time='',
pinode='', priority=1, check_all_resolvers=False, condi-
tions=None)

The policy table contains the policy definitions.

The Policies control the behaviour in the scopes

• enrollment

• authentication

• authorization

• administration

• user actions

• webui

get(key=None)
Either returns the complete policy entry or a single value :param key: return the value for this key :type
key: string :return: complete dict or single value :rytpe: dict or value

get_conditions_tuples()

Returns a list of 5-tuples (section, key, comparator, value, active).

set_conditions(conditions)
Replace the list of conditions of this policy with a new list of conditions, i.e. a list of 5-tuples (section,
key, comparator, value, active).

class privacyidea.models.PolicyCondition(**kwargs)

as_tuple()

Returns the condition as a tuple (section, key, comparator, value, active)

class privacyidea.models.PrivacyIDEAServer(**kwargs)
This table can store remote privacyIDEA server definitions

class privacyidea.models.RADIUSServer(**kwargs)
This table can store configurations of RADIUS servers. https://github.com/privacyidea/privacyidea/issues/321

400 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/issues/321

privacyIDEA Authentication System, Release 3.6.2

It saves * a unique name * a description * an IP address a * a Port * a secret * timeout in seconds (default 5) *
retries (default 3)

These RADIUS server definition can be used in RADIUS tokens or in a radius passthru policy.

save()
If a RADIUS server with a given name is save, then the existing RADIUS server is updated.

class privacyidea.models.Realm(realm)
The realm table contains the defined realms. User Resolvers can be grouped to realms. This very table contains
just contains the names of the realms. The linking to resolvers is stored in the table “resolverrealm”.

class privacyidea.models.Resolver(name, rtype)
The table “resolver” contains the names and types of the defined User Resolvers. As each Resolver can have
different required config values the configuration of the resolvers is stored in the table “resolverconfig”.

class privacyidea.models.ResolverConfig(resolver_id=None, Key=None, Value=None, re-
solver=None, Type='', Description='')

Each Resolver can have multiple configuration entries. Each Resolver type can have different required config
values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set to
“password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.ResolverRealm(resolver_id=None, realm_id=None, re-
solver_name=None, realm_name=None, prior-
ity=None)

This table stores which Resolver is located in which realm This is a N:M relation

class privacyidea.models.SMSGateway(identifier, providermodule, description=None, op-
tions=None, headers=None)

This table stores the SMS Gateway definitions. See https://github.com/privacyidea/privacyidea/wiki/concept:
-Delivery-Gateway

It saves the * unique name * a description * the SMS provider module

All options and parameters are saved in other tables.

as_dict()
Return the object as a dictionary

Returns complete dict

Rytpe dict

delete()
When deleting an SMS Gateway we also delete all the options. :return:

property header_dict
Return all connected headers as a dictionary

Returns dict

property option_dict
Return all connected options as a dictionary

Returns dict

class privacyidea.models.SMSGatewayOption(gateway_id, Key, Value, Type=None)
This table stores the options, parameters and headers for an SMS Gateway definition.

class privacyidea.models.SMTPServer(**kwargs)
This table can store configurations for SMTP servers. Each entry represents an SMTP server. EMail Token, SMS
SMTP Gateways or Notifications like PIN handlers are supposed to use a reference to to a server definition. Each

1.15. Code Documentation 401

https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway
https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway

privacyIDEA Authentication System, Release 3.6.2

Machine Resolver can have multiple configuration entries. The config entries are referenced by the id of the
machine resolver

get()

Returns the configuration as a dictionary

class privacyidea.models.Subscription(**kwargs)
This table stores the imported subscription files.

get()
Return the database object as dict :return:

class privacyidea.models.TimestampMethodsMixin
This class mixes in the table functions including update of the timestamp

class privacyidea.models.Token(serial, tokentype='', isactive=True, otplen=6, otpkey='',
userid=None, resolver=None, realm=None, **kwargs)

The “Token” table contains the basic token data.

It contains data like

• serial number

• secret key

• PINs

• . . .

The table privacyidea.models.TokenOwner contains the owner information of the specified token.
The table privacyidea.models.TokenInfo contains additional information that is specific to the to-
kentype.

del_info(key=None)
Deletes tokeninfo for a given token. If the key is omitted, all Tokeninfo is deleted.

Parameters key – searches for the given key to delete the entry

Returns

get(key=None, fallback=None, save=False)
simulate the dict behaviour to make challenge processing easier, as this will have to deal as well with ‘dict
only challenges’

Parameters

• key – the attribute name - in case of key is not provided, a dict of all class attributes are
returned

• fallback – if the attribute is not found, the fallback is returned

• save – in case of all attributes and save==True, the timestamp is converted to a string
representation

get_hashed_pin(pin)
calculate a hash from a pin Fix for working with MS SQL servers MS SQL servers sometimes return a
‘<space>’ when the column is empty: ‘’

Parameters pin (str) – the pin to hash

Returns hashed pin with current pin_seed

Return type str

get_info()

402 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

Returns The token info as dictionary

get_realms()
return a list of the assigned realms :return: realms :rtype: list

get_user_pin()
return the userPin :rtype : the PIN as a secretObject

set_hashed_pin(pin)
Set the pin of the token in hashed format

Parameters pin (str) – the pin to hash

Returns the hashed pin

Return type str

set_info(info)
Set the additional token info for this token

Entries that end with “.type” are used as type for the keys. I.e. two entries sshkey=”XYZ” and
sshkey.type=”password” will store the key sshkey as type “password”.

Parameters info (dict) – The key-values to set for this token

set_pin(pin, hashed=True)
set the OTP pin in a hashed way

set_realms(realms, add=False)
Set the list of the realms.

This is done by filling the privacyidea.models.TokenRealm table.

Parameters

• realms (list[str]) – realms

• add (bool) – If set, the realms are added. I.e. old realms are not deleted

set_so_pin(soPin)
For smartcards this sets the security officer pin of the token

:rtype : None

update_otpkey(otpkey)
in case of a new hOtpKey we have to do some more things

update_type(typ)
in case the previous has been different type we must reset the counters But be aware, ray, this could also
be upper and lower case mixing. . .

class privacyidea.models.TokenInfo(token_id, Key, Value, Type=None, Description=None)
The table “tokeninfo” is used to store additional, long information that is specific to the tokentype. E.g. the
tokentype “TOTP” has additional entries in the tokeninfo table for “timeStep” and “timeWindow”, which are
stored in the column “Key” and “Value”.

The tokeninfo is reference by the foreign key to the “token” table.

class privacyidea.models.TokenOwner(token_id=None, serial=None, user_id=None, re-
solver=None, realm_id=None, realmname=None)

This tables stores the owner of a token. A token can be assigned to several users.

class privacyidea.models.TokenRealm(realm_id=0, token_id=0, realmname=None)
This table stores to which realms a token is assigned. A token is in the realm of the user it is assigned to. But a
token can also be put into many additional realms.

1.15. Code Documentation 403

privacyIDEA Authentication System, Release 3.6.2

save()
We only save this, if it does not exist, yet.

class privacyidea.models.UserCache(username, used_login, resolver, user_id, timestamp)

privacyidea.models.cleanup_challenges()
Delete all challenges, that have expired.

Returns None

privacyidea.models.get_machineresolver_id(resolvername)
Return the database ID of the machine resolver :param resolvername: :return:

privacyidea.models.get_machinetoken_id(machine_id, resolver_name, serial, application)
Returns the ID in the machinetoken table

Parameters

• machine_id (basestring) – The resolverdependent machine_id

• resolver_name (basestring) – The name of the resolver

• serial (basestring) – the serial number of the token

• application (basestring) – The application type

Returns The ID of the machinetoken entry

Return type int

privacyidea.models.get_token_id(serial)
Return the database token ID for a given serial number :param serial: :return: token ID :rtpye: int

privacyidea.models.save_config_timestamp(invalidate_config=True)
Save the current timestamp to the database, and optionally invalidate the current request-local config object.
:param invalidate_config: defaults to True

1.16 Frequently Asked Questions

1.16.1 Customization

There are several different ways to customize the UI of privacyIDEA.

Templates

You can change the HTML templates of the web UI as follows. You can create a copy of the orignial templates, modify
them and use rewrite rules of your webserver to call your new, modified templates.

This way updates will not affect your modifications.

All HTML views are contained in:

static/components/<component>/views/<view>.html

You can find them on GitHub <https://github.com/privacyidea/privacyidea/tree/master/privacyidea/static> or at the
according location in your installation.

Follow these basic steps:

1. Create a new location, where you will keep your modifications safe from updates. You should create a directory
like /etc/privacyidea/customization/ and put your modified views in there.

404 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

2. Activate the rewrite rules in your web server. E.g. in the Apache configuration you can add entries like:

RewriteEngine On
RewriteRule "/static/components/login/views/login.html" \

"/etc/privacyidea/customization/mylogin.html"

and apply all required changes to the file mylogin.html.

Note: In this case you need to create a RewriteRule for each file, you want to modify.

3. Now activate mod_rewrite and reload apache2.

Warning: Of course - if there are functional enhancements or bug fixes in the original templates - your template
will also not be affected by these.

Translating templates

The translation in privacyIDEA is very flexible (see Setup translation). But if you change the templates the normal
translation with PO files can get a bit tricky.

Starting with privacyIDEA 3.0.1 you can use the scope variable browserLanguage in your custom templates.

You can print the browser language like this {{ browserLanguage }}.

And you can display text in different languages in divs like this:

<div ng-show="browserLanguage === 'de'">
Das ist ein deutscher Text.

</div>
<div ng-show="browserLanguage === 'en'">

This is an English text.
</div>

Themes

You can adapt the style and colors by changing CSS. There are at least two ways to do this.

Providing your own stylesheet in the config file

You can create your own CSS file to adapt the look and feel of the Web UI. The default CSS is the bootstrap CSS
theme. Using PI_CSS in pi.cfg you can specify the URL of your own CSS file. The default CSS file url is
/static/contrib/css/bootstrap-theme.css. The file in the file system is located at privacyidea/static/contrib/css. You
might add a directory privacyidea/static/custom/css/ and add your CSS file there.

The CSS you specify here adds to the already existing styles. Thus a convenient way for using this setting is to help
you distinguish different privacyIDEA instances like “testing”, “acceptances” and “production” or different nodes in
a redundant setup.

You can create a simple CSS file [..]/privacyidea/static/custom/css/testing.css like:

1.16. Frequently Asked Questions 405

privacyIDEA Authentication System, Release 3.6.2

body {
background-color: green;

}

and then set in the pi.cfg:

PI_CSS = /static/custom/css/testing.css

This way your testing instance will be immediately distinguishable due to the green background.

Use web server rewrite modules

Again you can also use the Apache rewrite module to replace the original css file:

RewriteEngine On
RewriteRule "/static/contrib/css/bootstrap-theme.css" \

"/etc/privacyidea/customization/my.css"

A good stating point might be the themes at http://bootswatch.com.

Note: If you add your own CSS file, the file bootstrap-theme.css will not be loaded anymore. So you might start with
a copy of the original file.

Use web server substitute module

You can also use the substitute module of the Apache webserver. It is not clear how much performance impact you
get, since this module can scan and replace any text that is delivered by the web server.

If you for example want to replace the title of the webpages, you could do it like this:

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
Substitute "s/>privacyidea Authentication System</>My own 2FA system</ni"

</Location>

Logo

The default logo is located at privacyidea/static/css/privacyIDEA1.png. If you want to use your own
logo, you can put youf file “mylogo.png” just in the same folder and set

PI_LOGO = “mylogo.png”

in the pi.cfg config file.

406 Chapter 1. Table of Contents

http://bootswatch.com

privacyIDEA Authentication System, Release 3.6.2

Page title

You can configure the page title by setting PI_PAGE_TITLE in the pi.cfg file.

Menu

The administrator can adapt the menu of the web UI using policies or of course web server rewrite rules. The original
menu is located in static/templates/menu.html.

Note that policies are also dependent on the client IP, this way different clients could see different menus.

Read more about it at the web UI policies at the custom_menu.

Headers and Footers

The administrator can change the header and footer of each page. We call this the baseline of the web UI. The original
baseline is contained in static/templates/baseline.html. You can use a web UI policy to change this
baseline or - of course - could use the web server rewrite module.

Read more about changing it via the web UI policies at custom_baseline.

Tokenwizard

You can add additional HTML elements above and underneath the enrollment wizard pages. Read the Token Enroll-
ment Wizard and tokenwizard to learn more about those code snippets.

Token customization

Some tokens allow a special customization.

The paper token allows you to add CSS for styling the printed output and add additional headers and footers. Read
more about it at the paper token Customization.

New token classes

You can add new token types to privacyIDEA by writing your own Python token class. A token class in privacyIDEA
is inherited from privacyidea.lib.tokenclass.TokenClass. You can either inherit from this base class
directly or from another token class. E.g. the TOTP token class is inherited from HOTP. Take a look in the directory
privacyidea/lib/tokens/ to get an idea of token classes.

A token class can have many different methods which you can find in the base class TokenClass. Depending
on the token type you are going to implement, you will need to implement several of these. Probably the most
important methods are check_otp, which validates the 2nd factor and the method update, which is called during
the initialization process of the token and gathers and writes all token specific attributes.

You should only add one token class per Python module.

You can install your new Python module, wherever you want to like myproject.cooltoken.

If these tokens need additional enrollment data in the UI, you can specify two templates, that are dis-
played during enrollment and after the token is enrolled. These HTML templates need to be lo-
cated at privacyidea/static/components/token/views/token.enroll.<tokentype>.html
and privacyidea/static/components/token/views/token.enrolled.<tokentype>.html.

1.16. Frequently Asked Questions 407

privacyIDEA Authentication System, Release 3.6.2

Note: In this example the python module myproject.cooltoken should contain a class CoolTokenClass.
The tokentype of this token, should be named “cool”. And thus the HTML templates included by privacyIDEA are
token.enroll.cool.html and token.enrolled.cool.html.

The list of the token modules you want to add, must be specified in pi.cfg. See 3rd party token types.

Custom Web UI

You can also write your complete new WebUI. To do so you need to specify files and folders in pi.cfg. Read more
about this at Custom Web UI.

1.16.2 How can I create users in the privacyIDEA Web UI?

So you installed privacyIDEA and want to enroll tokens to the users and are wondering how to create users.

privacyIDEA can read users from different existing sources like LDAP, SQL, flat files and SCIM.

You very much likely already have an application (like your VPN or a Web Application. . .) for which you want to
increase the logon security. Then this application already knows users. Either in an LDAP or in an SQL database.
Most web applications keep their users in a (My)SQL database. And you also need to create users in this very user
database for the user to be able to use this application.

Please read the sections UserIdResolvers and Users for more details.

But you also can define and editable SQL resolver. I.e. you can edit and create new users in an SQL user store.

If you do not have an existing SQL database with users, you can simple create a new database with one table for the
users and according rows.

1.16.3 So what’s the thing with all the admins?

privacyIDEA comes with its own admins, who are stored in a database table Admin in its own database (The database
model). You can use the tool pi-manage to manage those admins from the command line as the system’s root user.
(see Installation)

These admin users can logon to the WebUI using the admin’s user name and the specified password. These admins
are used to get a simple quick start.

Then you can define realms (see Realms), that should be administrative realms. I.e. each user in this realm will have
administrative rights in the WebUI.

Note: You need to configure these realms within privacyIDEA. Only after these realms exist, you can raise their
rights to an administrative role.

Note: Use this carefully. Imagine you defined a resolver to a specific group in your Active Directory to be the prica-
cyIDEA admins. Then the Active Directory domain admins can simply add users to be administrator in privacyIDEA.

You define the administrative realms in the config file pi.cfg, which is usually located at /etc/privacyidea/
pi.cfg:

408 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

SUPERUSER_REALM = ["adminrealm1", "super", "boss"]

In this case all the users in the realms “adminrealm1”, “super” and “boss” will have administrative rights in the WebUI,
when they login with this realm.

As for all other users, you can use the login_mode to define, if these administrators should login to the WebUI with
their userstore password or with an OTP token.

1.16.4 What are possible rollout strategies?

There are different ways to enroll tokens to a big number of users. Here are some selected high level ideas, you can
do with privacyIDEA.

Autoenrollment

Using the autoassignment policy you can distribute physical tokens to the users. The users just start using the tokens.

Registration Code

If your users are physically not available and spread around the world, you can send a Registration code to the users
by postal mail. The registration code is a special token type which can be used by the user to authenticate with 2FA.
If used once, the registration token gets deleted and can not be used anymore. While logged in, the user can enroll a
token on his own.

Automatic initial synchronization

Hardware TOTP tokens may get out of sync due to clock shift. HOTP tokens may get out of sync due to unused key
presses. To cope with this you can activate Automatic resync during authentication.

But if you are importing hardware tokens, the clock in the TOTP token may already be out of sync and you do not
want the user to authenticate twice, where the first authentication fails.

In this case you can use the following workflow.

In the TOTP token settings you can set the timeWindow to a very high value. Note that this timeWindow are the
seconds that privacyIDEA will search for the valid OTP value before and after the current time. E.g. you can set this
to 86400. This way you allow the clock in the TOTP token to have drifted for a maximum of one day.

As you do not want such a big window for all authentications, you can automatically reset the timeWindow. You
can achieve this by creating an event definition:

• event: validate_check

• handler: token

• condition: * tokentype=TOTP * count_auth_success=1

• action=set tokeninfo * key=*timeWindow* * value=*180*

This way with the first successful authentication of a TOTP token the timeWindow of the TOTP token is set to 180
seconds.

1.16. Frequently Asked Questions 409

privacyIDEA Authentication System, Release 3.6.2

1.16.5 How can I translate to my language?

The web UI can be translated into different languages. The system determines the preferred language of you browser
and displays the web UI accordingly.

At the moment “en” and “de” are available.

1.16.6 What are possible migration strategies?

You are already running an OTP system like RSA SecurID, SafeNet or Vasco (alphabetical order) but you would like
to migrate to privacyIDEA.

There are different migration strategies using the RADIUS token or the RADIUS passthru policy.

RADIUS token migration strategy

Configure your application like your VPN to authenticate against the privacyIDEA RADIUS server and not against
the old deprecated RADIUS server.

Now, you can enroll a RADIUS token for each user, who is supposed to login to this application. Configure the
RADIUS token for each user so that the RADIUS request is forwarded to the old RADIUS server.

Now you can start to enroll tokens for the users within privacyIDEA. After enrolling a new token in privacyIDEA you
can delete the RADIUS token for this user.

When all RADIUS tokens are deleted, you can switch off the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

RADIUS PASSTHRU policy migration strategy

Configure your application like your VPN to authenticate against the privacyIDEA RADIUS server and not against
the old deprecated RADIUS server.

Starting with privacyIDEA 2.11 the passthru policy was enhanced. You can define a system wide RADIUS server.
Then you can create a authentication policy with the passthru action pointing to this RADIUS server. This means that
- as long as a user trying to authenticate - has not token assigned, all authentication request with this very username
and the password are forwarded to this RADIUS server.

As soon as you enroll a new token for this user in privacyIDEA the user will authenticate with this very token within
privacyIDEA an his authentication request will not be forwarded anymore.

As soon as all users have a new token within privacyIDEA, you can switch of the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

1.16.7 Setup translation

We are using weblate to allow the community to participate in translation.

You can go to https://hosted.weblate.org/engage/privacyidea/ and check, which languages need support. This is the
most important part you can do: Added words and sentences in the right language!

Note, that new languages need to be added to the directive “translate” in the top level Makefile. Also new languages
can be added in the “best match” in app.py and login.py.

410 Chapter 1. Table of Contents

https://hosted.weblate.org/engage/privacyidea/

privacyIDEA Authentication System, Release 3.6.2

1.16.8 How can I setup HA (High Availability) with privacyIDEA?

privacyIDEA does not track any state internally. All information is kept in the database. Thus you can configure
several privacyIDEA instances against one DBMS1 and have the DBMS do the high availability.

Note: The passwords and OTP key material in the database is encrypted using the encKey. Thus it is possible to put
the database onto a DBMS that is controlled by another database administrator in another department.

HA setups

When running HA you need to assure to configure the pi.cfg file on all privacyIDEA instances accordingly. You might
need to adapt the SQLALCHEMY_DATABASE_URI accordingly.

Be sure to set the same SECRET_KEY and PI_PEPPER on all instances.

Then you need to provide the same encryption key (file encKey) and the same audit signing keys on all instances.

Using one central DBMS

If you already have a high available, redundant DBMS - like MariaDB Galera Cluster - which might even be ad-
dressable via one cluster IP address the configuration is fairly simple. In such a case you can configure the same
SQLALCHEMY_DATABASE_URI on all instances.

1 Database management system

1.16. Frequently Asked Questions 411

privacyIDEA Authentication System, Release 3.6.2

Using MySQL master-master-replication

If you have no DBMS or might want to use a dedicated database server for privacyIDEA, you can setup one MySQL
server per privacyIDEA instance and configure the MySQL servers to run in a master-master-replication.

Note: The master-master-replication only works with two MySQL servers.

There are some good howtos out there like2.

1.16.9 MySQL database connect string

You can use the python package MySQL-python or PyMySQL.

PyMySQL is a pure python implementation. MySQL-python is a wrapper for a C implementation. I.e. when in-
stalling MySQL-python your python virtualenv, you also need to install packages like python-dev and libmysqlclient-
dev.

Depending on whether you are using MySQL-python or PyMySQL you need to specify different connect strings in
SQLALCHEMY_DATABASE_URI.

2 https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication.

412 Chapter 1. Table of Contents

https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication

privacyIDEA Authentication System, Release 3.6.2

MySQL-python

connect string: mysql://u:p@host/db

Installation

Install a package libmysqlclient-dev from your distribution. The name may vary depending on which distritubtion you
are running:

pip install MySQL-python

PyMySQL

connect string: pymysql://u:p@host/db

Installation

Install in your virtualenv:

pip install pymysql-sa
pip install PyMySQL

1.16.10 Are there shortcuts to use the Web UI?

I do not like using the mouse. Are there hotkeys or shortcuts to use the Web UI?

With version 2.6 we started to add hotkeys to certain functions. You can use ? to get a list of the available hotkeys in
the current window.

E.g. you can use alt-e to go to the Enroll Token Dialog and alt-r to actually enroll the token.

For any further ideas about shortcuts/hotkeys please drop us a note at GitHub.

1.16.11 How to copy a resolver definition?

Creating a user resolver can be a time consuming task. Especially an LDAP resolver needs many parameters to be
entered. Sometimes you need to create a second resolver, that looks rather the same like the first resolver. So copying
or duplicating this resolver would be great.

You can create a similar second resolver by editing the exiting resolver and entering a new resolver name. This will
save this modified resolver definition under this new name. Thus you have a resolver with the old name and another
one with the new name.

1.16. Frequently Asked Questions 413

https://github.com/privacyidea/privacyidea

privacyIDEA Authentication System, Release 3.6.2

1.16.12 Cryptographic considerations of privacyIDEA

Encryption keys

The encryption key is a set of 3 256bit AES keys. Usually this key is located in a 96 byte long file “enckey” specified
by PI_ENCFILE in The Config File. The encryption key can be encrypted with a password.

The three encryption keys are used to encrypt

• data like the OTP seeds and secret keys stored in the Token table,

• password of resolvers to connect to LDAP/AD or SQL (stored in the ResolverConfig table)

• and optional additional values.

OTP seeds and passwords are needed in clear text to calculate OTP values or to connect to user stores. So these values
need to be stored in a decryptable way.

Token Hash Algorithms

OTP values according to HOTP and TOTP can be calculated using SHA1, SHA2-256 and SHA2-512.

PIN Hashing

Token PINs are managed by privacyIDEA as the first of the two factors. Each token has its own token PIN. The token
PIN is hashed with Argon2 (9 rounds) and stored in the Token database table.

This PIN hashing is performed in lib.crypto:hash.

Administrator Passwords

privacyIDEA can manage internal administrators using The pi-manage Script. Internal administrators are stored in the
database table Admin.

The password is stored using Argon2 (9 rounds) with an additional pepper. While Argon2 uses a salt which is stored
in the Admin table created randomly for each admin password the pepper is unique for one privacyIDEA installation
and stored in the pi.cfg file.

This way a database administrator is not able to inject rogue password hashes.

The admin password hashing is performed in lib.crypto:hash_with_pepper.

Audit Signing

The audit log is digitally signed. (see Audit and The Config File).

The audit log can be handled by different modules. privacyIDEA comes with an SQL Audit Module.

For signing the audit log the SQL Audit Module uses the RSA keys specified with the values
PI_AUDIT_KEY_PUBLIC and PI_AUDIT_KEY_PRIVATE in The Config File.

By default the installer generates 2048bit RSA keys.

The audit signing is performed in lib.crypto:Sign.sign using SHA2-256 as hash function.

414 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.6.2

1.16.13 Policies

How to disable policies?

I create an evil admin policy and locked myself out. How can I disable a policy?

You can use the pi-manage command line tool to list, enable and disable policies. See

pi-manage policy -h

How do policies work anyway?

Policies are just a set of definitions. These definitions are ment to modify the way privacyIDEA reacts on requests.
Different policies have different scopes where they act.

admin policies define, what an administrator is allowed to do. These policies influence endpoints like /token,
/realm and all other endpoints, which are used to configure the system. (see Admin policies)

user policies define, how the system reacts if a user is managing his own tokens. (see User Policies)

authentication and authorization policies influence the /validate/ endpoint (Validate endpoints).

The Authentication policies define if an authentication request would be successful at all. So it defines how to really
check the authentication request. E.g. this is done by defining if the user has to add a specific OTP PIN or his LDAP
password (see otppin).

The Authorization policies decide, if a user, who would authentication successfully is allowed to issue this request.
I.e. a user may present the right credentials, but he is not allowed to login from a specific IP address or with a not
secure token type (see tokentype).

How is this technically achieved?

At the beginning of a request the complete policy set is read from the database into a policy object, which is a singleton
of PolicyClass (see Policy Module).

The logical part is performed by policy decorators. The decorators modify the behaviour of the above mentioned
endpoints.

Each policy has its own decorator. The decorator can be used on different functions, methods, endpoints. The decora-
tors are implemented in api/lib/prepolicy.py and api/lib/postpolicy.py.

PrePolicy decorators are executed at the beginning of a request, PostPolicy decoratros at the end of the request.

A policy decorator uses one of the methods get_action_value or get_policies.

get_policies is used to determine boolean actions like passOnNoToken.

get_action_value is used to get the defined value of non-boolean policies like otppin.

All policies can depend on IP address, user and time. So these values are taken into account by the decorator when
determining the defined policy.

Note: Each decorator represents one policy and defines its own logic i.e. checking filtering for IP address and fetching
the necessary policy sets from the policy object.

1.16. Frequently Asked Questions 415

privacyIDEA Authentication System, Release 3.6.2

1.16.14 Performance considerations

You can test performace using the apache bench from the apache utils. Creating a simple pass token for a user, eases
the performance testing.

Then you can run

ab -l -n 200 -c 8 -s 30 ‘https://localhost/validate/check?user=yourUser&pass=yourPassword’

The performance depends on several aspects like the connection speed to your database and the connection speed to
your user stores.

Processes

You should run several processes and threads. You might start with the number of processes equal to the number of
your CPU cores. But you should evaluate, which is the best number of processes to get the highest performance.

Config caching

Starting with privacyIDEA 2.15 privacyIDEA uses a Cache per instance and process to cache system configuration,
resolver, realm and policies.

As the configuration might have been changed in the database by another process or another instance, privacyIDEA
compares a cache timestamp with the timestamp in the database. Thus at the beginning of the request privacyIDEA
reads the timestamp from the database.

You can configure how often the timestamp should be read using the pi.cfg variable PI_CHECK_RELOAD_CONFIG.
You can set this to seconds. If you use this config value to set values higher than 0, you will improve your perfor-
mance. But: other processes or instances will learn later about configuration changes which might lead to unexpected
behaviour.

Logging

Choose a logging level like WARNING or ERROR. Setting the logging level to INFO or DEBUG will produce much
log output and lead to a decrease in performance.

Response

You can strip the authentication response, to get a slight increase in performace, using the policy
no_details_on_success.

Clean configuration

Remove unused resolvers and policies. Have a realm with several resolvers is a bit slower than one realm with one
resolver. Finding the user in the first resolver is faster than in the last resolver. Although e.g. the LDAP resolver
utilizes caching.

Also see What happens in the tokenview?.

416 Chapter 1. Table of Contents

https://localhost/validate/check?user=yourUser&pass=yourPassword

privacyIDEA Authentication System, Release 3.6.2

1.16.15 What happens in the tokenview?

A question which comes up often is why you can not view hundrets of tokens in the tokenview. Well - you are doing -
you are just paging through the list ;-)

Ok, here it what happens in the tokenview.

The tokenview fetches a slice of the tokens from the token database. So, if you configure the tokenview to display 15
tokens, only 15 tokens will be fetched using the LIMIT and OFFSET mechanisms of SQL.

But what really influences the performance is the user resolver part. privacyIDEA does not store username, givenname
or surname of the token owner. The token table only contains a “pointer” to the user object in the userstore. This
pointer consists of the userresolver ID and the user ID in this resolver. This is useful, since the username or the
surname of the user may change. At least in Germany the givenname only changes in very rare cases.

This means that privacyIDEA needs to contact the userstore, to resolve the user ID to a username and a surname,
givenname. Now you know that you will create 100 LDAP requests, if you choose to display 100 tokens on one page.

Although we are doing some LDAP caching, this will not help with new pages.

We very much recommend using the search capabilities of the tokenview.

1.16.16 How to mitigate brute force and lock tokens

For each failed authentication attempt privacyIDEA will increase a fail counter of a token. If the maximum allowed
fail counter is reached, authentication with this token is not possible anymore. The token gets a timestamp mark, when
the maximum fail counter was reached. Starting with version 2.20 the administrator can define a timeout in minutes.
If the last failed authentication is more than these specified minutes ago, a successful authentication will reset the fail
counter and access will be granted. See Clear failcounter after x minutes.

The failcounter avoids brute force attacks which guess passwords or OTP values. Choose a failcounter clearing time-
out, which is not too long. Otherwise brute force would also lock the token of the user forever.

Another possibility to mitigate brute force is to define an authorization policy with the action
auth_max_fail. This will check, if there are too many failed authentication requests during the specified time
period. If there are, even a successful authentication will fail. This technique uses the audit log, to search for failed
authentication requests. See auth_max_fail.

If you are missing any information or descriptions file an issue at github (which would be the preferred way), drop a
note to info(@)privacyidea.org or go to the Community Forum.

This will help us a lot to improve documentation to your needs.

Thanks a lot!

1.16. Frequently Asked Questions 417

https://github.com/privacyidea/privacyidea/issues
https://community.privacyidea.org

privacyIDEA Authentication System, Release 3.6.2

418 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

419

privacyIDEA Authentication System, Release 3.6.2

420 Chapter 2. Indices and tables

PYTHON MODULE INDEX

p
privacyidea.api, 221
privacyidea.api.application, 266
privacyidea.api.auth, 223
privacyidea.api.caconnector, 263
privacyidea.api.event, 257
privacyidea.api.lib.postpolicy, 372
privacyidea.api.lib.prepolicy, 363
privacyidea.api.machine, 259
privacyidea.api.machineresolver, 258
privacyidea.api.monitoring, 264
privacyidea.api.periodictask, 265
privacyidea.api.policy, 251
privacyidea.api.privacyideaserver, 262
privacyidea.api.radiusserver, 268
privacyidea.api.realm, 236
privacyidea.api.recover, 263
privacyidea.api.register, 263
privacyidea.api.resolver, 235
privacyidea.api.smsgateway, 267
privacyidea.api.smtpserver, 267
privacyidea.api.subscriptions, 269
privacyidea.api.system, 232
privacyidea.api.token, 240
privacyidea.api.ttype, 266
privacyidea.api.user, 248
privacyidea.api.validate, 225
privacyidea.lib, 269
privacyidea.lib.auditmodules, 390
privacyidea.lib.event, 379
privacyidea.lib.eventhandler.federationhandler,

187
privacyidea.lib.eventhandler.requestmangler,

189
privacyidea.lib.eventhandler.responsemangler,

191
privacyidea.lib.eventhandler.tokenhandler,

183
privacyidea.lib.eventhandler.usernotification,

179
privacyidea.lib.machines, 394
privacyidea.lib.monitoringmodules, 392

privacyidea.lib.pinhandling.base, 396
privacyidea.lib.policy, 345
privacyidea.lib.policydecorators, 375
privacyidea.lib.queue, 362
privacyidea.lib.resolvers, 383
privacyidea.lib.smsprovider, 382
privacyidea.lib.token, 331
privacyidea.lib.tokens.ocratoken, 284
privacyidea.lib.tokens.tiqrtoken, 301
privacyidea.lib.tokens.u2ftoken, 305
privacyidea.lib.tokens.webauthntoken,

309
privacyidea.lib.user, 269
privacyidea.models, 397

421

privacyIDEA Authentication System, Release 3.6.2

422 Python Module Index

HTTP ROUTING TABLE

/application
GET /application/, 266

/audit
GET /audit/, 222
GET /audit/(csvfile), 222

/auth
GET /auth/rights, 223
POST /auth, 223

/caconnector
GET /caconnector/, 263
GET /caconnector/(name), 263
POST /caconnector/(name), 263
DELETE /caconnector/(name), 263

/defaultrealm
GET /defaultrealm, 239
POST /defaultrealm/(realm), 240
DELETE /defaultrealm, 239

/event
GET /event/, 257
GET /event/(eventid), 257
GET /event/actions/(handlermodule), 258
GET /event/conditions/(handlermodule),

257
GET /event/positions/(handlermodule),

257
POST /event, 257
POST /event/disable/(eventid), 258
POST /event/enable/(eventid), 258
DELETE /event/(eid), 258

/machine
GET /machine/, 261
GET /machine/authitem, 259
GET /machine/authitem/(application), 259
GET /machine/token, 260
POST /machine/token, 260

POST /machine/tokenoption, 259
DELETE /machine/token/(serial)/(machineid)/(resolver)/(application),

262

/machineresolver
GET /machineresolver/, 258
GET /machineresolver/(resolver), 259
POST /machineresolver/(resolver), 258
POST /machineresolver/test, 258
DELETE /machineresolver/(resolver), 259

/monitoring
GET /monitoring/, 264
GET /monitoring/(stats_key), 264
GET /monitoring/(stats_key)/last, 264
DELETE /monitoring/(stats_key), 264

/periodictask
GET /periodictask/, 265
GET /periodictask/(ptaskid), 265
GET /periodictask/nodes/, 265
GET /periodictask/options/(taskmodule),

265
GET /periodictask/taskmodules/, 265
POST /periodictask/, 265
POST /periodictask/disable/(ptaskid),

265
POST /periodictask/enable/(ptaskid), 265
DELETE /periodictask/(ptaskid), 266

/policy
GET /policy/, 253
GET /policy/(name), 253
GET /policy/check, 251
GET /policy/defs, 252
GET /policy/defs/(scope), 252
GET /policy/export/(export), 253
POST /policy/(name), 255
POST /policy/disable/(name), 254
POST /policy/enable/(name), 254
POST /policy/import/(filename), 254
DELETE /policy/(name), 256

423

privacyIDEA Authentication System, Release 3.6.2

/privacyideaserver
GET /privacyideaserver/, 262
POST /privacyideaserver/(identifier),

262
POST /privacyideaserver/test_request,

262
DELETE /privacyideaserver/(identifier),

262

/radiusserver
GET /radiusserver/, 268
POST /radiusserver/(identifier), 268
POST /radiusserver/test_request, 268
DELETE /radiusserver/(identifier), 268

/realm
GET /realm/, 237
GET /realm/superuser, 236
POST /realm/(realm), 238
DELETE /realm/(realm), 238

/recover
POST /recover, 263
POST /recover/reset, 263

/register
GET /register, 263
POST /register, 263

/resolver
GET /resolver/, 235
GET /resolver/(resolver), 235
POST /resolver/(resolver), 235
POST /resolver/test, 235
DELETE /resolver/(resolver), 236

/smsgateway
GET /smsgateway/, 267
GET /smsgateway/(gwid), 267
POST /smsgateway, 267
DELETE /smsgateway/(identifier), 268
DELETE /smsgateway/option/(gwid)/(key),

268

/smtpserver
GET /smtpserver/, 267
POST /smtpserver/(identifier), 267
POST /smtpserver/send_test_email, 267
DELETE /smtpserver/(identifier), 267

/subscriptions
GET /subscriptions/, 269
GET /subscriptions/(application), 269

POST /subscriptions/, 269
DELETE /subscriptions/(application), 269

/system
GET /system/, 234
GET /system/(key), 234
GET /system/documentation, 232
GET /system/gpgkeys, 234
GET /system/hsm, 234
GET /system/names/caconnector, 232
GET /system/names/radius, 232
GET /system/random, 234
POST /system/hsm, 234
POST /system/setConfig, 233
POST /system/setDefault, 233
POST /system/test/(tokentype), 234
DELETE /system/(key), 234

/token
GET /token/, 246

/token/(serial)
DELETE /token/(serial), 248

/token/assign
POST /token/assign, 242

/token/challenges
GET /token/challenges/, 241
GET /token/challenges/(serial), 241

/token/copypin
POST /token/copypin, 241

/token/copyuser
POST /token/copyuser, 241

/token/description
POST /token/description, 240
POST /token/description/(serial), 240

/token/disable
POST /token/disable, 241
POST /token/disable/(serial), 241

/token/enable
POST /token/enable, 242
POST /token/enable/(serial), 242

/token/getserial
GET /token/getserial/(otp), 247

424 HTTP Routing Table

privacyIDEA Authentication System, Release 3.6.2

/token/info
POST /token/info/(serial)/(key), 247
DELETE /token/info/(serial)/(key), 247

/token/init
POST /token/init, 243

/token/load
POST /token/load/(filename), 248

/token/lost
POST /token/lost/(serial), 248

/token/realm
POST /token/realm/(serial), 247

/token/reset
POST /token/reset, 243
POST /token/reset/(serial), 243

/token/resync
POST /token/resync, 242
POST /token/resync/(serial), 242

/token/revoke
POST /token/revoke, 242
POST /token/revoke/(serial), 242

/token/set
POST /token/set, 245
POST /token/set/(serial), 245

/token/setpin
POST /token/setpin, 243
POST /token/setpin/(serial), 243

/token/setrandompin
POST /token/setrandompin, 240
POST /token/setrandompin/(serial), 240

/token/unassign
POST /token/unassign, 241

/ttype
GET /ttype/(ttype), 266
POST /ttype/(ttype), 266

/user
GET /user/, 249
GET /user/attribute, 249
GET /user/editable_attributes/, 249
POST /user, 250

POST /user/, 250
POST /user/attribute, 249
PUT /user, 250
PUT /user/, 250
DELETE /user/(resolvername)/(username),

251
DELETE /user/attribute/(attrkey)/(username)/(realm),

251

/validate
GET /validate/check, 230
GET /validate/polltransaction, 227
GET /validate/polltransaction/(transaction_id),

227
GET /validate/radiuscheck, 230
GET /validate/samlcheck, 230
GET /validate/triggerchallenge, 226
POST /validate/check, 228
POST /validate/offlinerefill, 227
POST /validate/radiuscheck, 228
POST /validate/samlcheck, 228
POST /validate/triggerchallenge, 225

HTTP Routing Table 425

privacyIDEA Authentication System, Release 3.6.2

426 HTTP Routing Table

INDEX

Symbols
2step, 210
4 Eyes, 86

A
ACTION (class in privacyidea.lib.policy), 346
action_only() (privacyidea.lib.policy.Match class

method), 352
ACTION_TYPE (class in priva-

cyidea.lib.eventhandler.federationhandler),
187

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.requestmangler),
189

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.responsemangler),
191

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.tokenhandler), 183

action_values() (privacyidea.lib.policy.Match
method), 352

Actions, 171
actions() (privacyidea.lib.eventhandler.base.BaseEventHandler

property), 378
actions() (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

property), 188
actions() (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

property), 190
actions() (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

property), 191
actions() (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

property), 184
actions() (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

property), 179, 379
ACTIONVALUE (class in privacyidea.lib.policy), 350
ACTIVE (privacyidea.lib.policy.REMOTE_USER at-

tribute), 358
Active Directory, 38, 39
Add User, 33, 117
add_init_details() (priva-

cyidea.lib.tokenclass.TokenClass method),
319

add_policy() (priva-
cyidea.lib.auditmodules.base.Audit method),
390

add_to_log() (priva-
cyidea.lib.auditmodules.base.Audit method),
390

add_tokeninfo() (in module privacyidea.lib.token),
331

add_tokeninfo() (priva-
cyidea.lib.tokenclass.TokenClass method),
319

add_user() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 387

add_user() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 383

add_user() (privacyidea.lib.tokenclass.TokenClass
method), 319

add_user_detail_to_response() (in module
privacyidea.api.lib.postpolicy), 372

add_value() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 392

add_value() (priva-
cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 393

Additional User Attributes, 35
ADDRESOLVERINRESPONSE (priva-

cyidea.lib.policy.ACTION attribute), 346
ADDUSER (privacyidea.lib.policy.ACTION attribute),

346
ADDUSERINRESPONSE (priva-

cyidea.lib.policy.ACTION attribute), 346
Admin (class in privacyidea.models), 397
ADMIN (privacyidea.lib.policy.SCOPE attribute), 359
admin accounts, 408
admin dashboard, 159
admin policies, 111
admin realm, 111
admin tool, 206
admin() (privacyidea.lib.policy.Match class method),

353
ADMIN_DASHBOARD (privacyidea.lib.policy.ACTION

427

privacyIDEA Authentication System, Release 3.6.2

attribute), 346
admin_or_user() (privacyidea.lib.policy.Match

class method), 353
ADMIN_REALM (priva-

cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
attribute), 179

ALLOW (privacyidea.lib.policy.AUTHORIZED attribute),
351

allowed() (privacyidea.lib.policy.Match method), 353
allowed_audit_realm() (in module priva-

cyidea.api.lib.prepolicy), 363
allowed_positions() (priva-

cyidea.lib.eventhandler.base.BaseEventHandler
property), 378

allowed_positions() (priva-
cyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
property), 190

allowed_positions() (priva-
cyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
property), 191

allowed_positions() (priva-
cyidea.lib.eventhandler.tokenhandler.TokenEventHandler
property), 184

allowed_positions() (priva-
cyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
property), 179, 379

any() (privacyidea.lib.policy.Match method), 353
API, 221
api, 45
api_endpoint() (priva-

cyidea.lib.tokenclass.TokenClass class
method), 319

api_endpoint() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
class method), 287

api_endpoint() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
class method), 302

api_endpoint() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
class method), 307

api_endpoint() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
class method), 317

api_key_required() (in module priva-
cyidea.api.lib.prepolicy), 363

APIKEY (privacyidea.lib.policy.ACTION attribute), 346
APPIMAGEURL (privacyidea.lib.policy.ACTION at-

tribute), 346
appliance, 74
Application Plugins, 213
APPLICATION_TOKENTYPE (priva-

cyidea.lib.policy.ACTION attribute), 346
as_dict() (privacyidea.models.SMSGateway

method), 401
as_tuple() (privacyidea.models.PolicyCondition

method), 400
ASSIGN (privacyidea.lib.policy.ACTION attribute), 346
assign_token() (in module privacyidea.lib.token),

331
attestation, 88
attributes() (privacyidea.lib.user.User property),

269
Audit, 196
Audit (class in privacyidea.lib.auditmodules.base), 390
Audit (class in privacyidea.lib.auditmodules.sqlaudit),

391
Audit (class in privacyidea.models), 397
AUDIT (privacyidea.lib.policy.ACTION attribute), 346
AUDIT (privacyidea.lib.policy.MAIN_MENU attribute),

352
AUDIT (privacyidea.lib.policy.SCOPE attribute), 359
Audit Log Rotate, 196
audit modules, 390
AUDIT_AGE (privacyidea.lib.policy.ACTION attribute),

346
AUDIT_DOWNLOAD (privacyidea.lib.policy.ACTION at-

tribute), 346
audit_entry_to_dict() (priva-

cyidea.lib.auditmodules.base.Audit method),
390

audit_entry_to_dict() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 391

auditlog_age() (in module priva-
cyidea.api.lib.prepolicy), 363

AUTH (privacyidea.lib.policy.SCOPE attribute), 359
AUTH_CACHE (privacyidea.lib.policy.ACTION at-

tribute), 347
auth_cache() (in module priva-

cyidea.lib.policydecorators), 375
auth_lastauth() (in module priva-

cyidea.lib.policydecorators), 375
auth_otppin() (in module priva-

cyidea.lib.policydecorators), 375
auth_user_does_not_exist() (in module priva-

cyidea.lib.policydecorators), 376
auth_user_has_no_token() (in module priva-

cyidea.lib.policydecorators), 376
auth_user_passthru() (in module priva-

cyidea.lib.policydecorators), 376
auth_user_timelimit() (in module priva-

cyidea.lib.policydecorators), 376
AuthCache, 135
AuthCache (class in privacyidea.models), 397
authenticate() (priva-

cyidea.lib.tokenclass.TokenClass method),
319

428 Index

privacyIDEA Authentication System, Release 3.6.2

authenticate() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 273

authenticate() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 288

authenticate() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 292

authenticate() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 296

authenticate() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 299

authenticating client, 52
Authentication Cache, 135
authentication policies, 129
AUTHITEMS (privacyidea.lib.policy.ACTION attribute),

346
AUTHMAXFAIL (privacyidea.lib.policy.ACTION at-

tribute), 346
AUTHMAXSUCCESS (privacyidea.lib.policy.ACTION at-

tribute), 346
authorization policies, 139
AUTHORIZED (class in privacyidea.lib.policy), 351
AUTHORIZED (privacyidea.lib.policy.ACTION at-

tribute), 347
AUTHZ (privacyidea.lib.policy.SCOPE attribute), 359
AUTOASSIGN (privacyidea.lib.policy.ACTION at-

tribute), 347
autoassign() (in module priva-

cyidea.api.lib.postpolicy), 372
autoassignment, 145
AUTOASSIGNVALUE (class in privacyidea.lib.policy),

351
autoresync, 51
autosync, 51
available_audit_columns() (priva-

cyidea.lib.auditmodules.base.Audit property),
390

aware_last_update() (priva-
cyidea.models.PeriodicTask property), 399

aware_timestamp() (priva-
cyidea.models.PeriodicTaskLastRun property),
400

B
Backup, 21, 77
BaseEventHandler (class in priva-

cyidea.lib.eventhandler.base), 378
BaseMachineResolver (class in priva-

cyidea.lib.machines.base), 394
BaseQueue (class in privacyidea.lib.queues.base), 363

BOOL (privacyidea.lib.policy.TYPE attribute), 359
brute force, 417

C
CA, 54, 88
caching, 46
CAConnector (class in privacyidea.models), 397
CAConnectorConfig (class in privacyidea.models),

397
CACONNECTORDELETE (priva-

cyidea.lib.policy.ACTION attribute), 347
CACONNECTORREAD (privacyidea.lib.policy.ACTION

attribute), 347
caconnectors, 54
CACONNECTORWRITE (privacyidea.lib.policy.ACTION

attribute), 347
CentOS, 8
Certificate Authority, 54
Certificate Templates, 58
certificate token, 54
certificates, 88
CertificateTokenClass (class in priva-

cyidea.lib.tokens.certificatetoken), 275
Challenge (class in privacyidea.models), 397
Challenge Text Policy, 137
challenge_janitor() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 320

challenge_response_allowed() (in module pri-
vacyidea.lib.policydecorators), 377

CHALLENGERESPONSE (priva-
cyidea.lib.policy.ACTION attribute), 347

CHALLENGETEXT (privacyidea.lib.policy.ACTION at-
tribute), 347

CHALLENGETEXT_FOOTER (priva-
cyidea.lib.policy.ACTION attribute), 347

CHALLENGETEXT_HEADER (priva-
cyidea.lib.policy.ACTION attribute), 347

Change PIN, 146, 147
Change User Password, 33
CHANGE_FAILCOUNTER (priva-

cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

CHANGE_PIN_EVERY (privacyidea.lib.policy.ACTION
attribute), 347

CHANGE_PIN_FIRST_USE (priva-
cyidea.lib.policy.ACTION attribute), 347

CHANGE_PIN_VIA_VALIDATE (priva-
cyidea.lib.policy.ACTION attribute), 347

check_admin_tokenlist() (in module priva-
cyidea.api.lib.prepolicy), 364

check_all() (privacyidea.lib.tokenclass.TokenClass
method), 320

Index 429

privacyIDEA Authentication System, Release 3.6.2

CHECK_AND_RAISE_EXCEPTION_ON_MISSING
(privacyidea.lib.policy.CONDITION_CHECK
attribute), 351

check_anonymous_user() (in module priva-
cyidea.api.lib.prepolicy), 364

check_answer() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 291

check_application_tokentype() (in module
privacyidea.api.lib.prepolicy), 364

check_auth_counter() (priva-
cyidea.lib.tokenclass.TokenClass method),
320

check_base_action() (in module priva-
cyidea.api.lib.prepolicy), 364

check_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
320

check_challenge_response() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 273

check_challenge_response() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 289

check_challenge_response() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 291

check_challenge_response() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 293

check_challenge_response() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 302

check_condition() (priva-
cyidea.lib.eventhandler.base.BaseEventHandler
method), 378

check_configuration() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
method), 382

check_custom_user_attributes() (in module
privacyidea.api.lib.prepolicy), 365

check_external() (in module priva-
cyidea.api.lib.prepolicy), 365

check_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
320

check_for_conflicts() (priva-
cyidea.lib.policy.PolicyClass static method),
355

check_if_disabled (priva-
cyidea.lib.tokenclass.TokenClass attribute),
320

check_if_disabled (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass

attribute), 289
check_last_auth_newer() (priva-

cyidea.lib.tokenclass.TokenClass method),
320

check_max_token_realm() (in module priva-
cyidea.api.lib.prepolicy), 365

check_max_token_user() (in module priva-
cyidea.api.lib.prepolicy), 365

check_otp() (in module privacyidea.lib.token), 331
check_otp() (privacyidea.lib.tokenclass.TokenClass

method), 321
check_otp() (priva-

cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 277

check_otp() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 279

check_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 281

check_otp() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
method), 283

check_otp() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 284

check_otp() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 286

check_otp() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 293

check_otp() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 296

check_otp() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 298

check_otp() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 299

check_otp() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 303

check_otp() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 307

check_otp() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 314

check_otp() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
method), 317

check_otp() (priva-

430 Index

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 317

check_otp_exist() (priva-
cyidea.lib.tokenclass.TokenClass method),
321

check_otp_exist() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 277

check_otp_exist() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 281

check_otp_exist() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 303

check_otp_exist() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 318

check_otp_pin() (in module priva-
cyidea.api.lib.prepolicy), 365

check_password() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword
method), 286

check_password() (privacyidea.lib.user.User
method), 269

check_pin() (in module privacyidea.lib.policy), 359
check_pin() (privacyidea.lib.tokenclass.TokenClass

method), 321
check_pin_local() (priva-

cyidea.lib.tokens.radiustoken.RadiusTokenClass
property), 293

check_pin_local() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
property), 296

check_realm_pass() (in module priva-
cyidea.lib.token), 332

check_reset_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
321

check_serial() (in module priva-
cyidea.api.lib.postpolicy), 373

check_serial() (in module privacyidea.lib.token),
332

check_serial_pass() (in module priva-
cyidea.lib.token), 332

check_token_init() (in module priva-
cyidea.api.lib.prepolicy), 365

check_token_list() (in module priva-
cyidea.lib.token), 332

check_token_upload() (in module priva-
cyidea.api.lib.prepolicy), 366

check_tokeninfo() (in module priva-
cyidea.api.lib.postpolicy), 373

check_tokentype() (in module priva-
cyidea.api.lib.postpolicy), 373

check_user_pass() (in module priva-
cyidea.lib.token), 333

check_validity_period() (priva-
cyidea.lib.tokenclass.TokenClass method),
321

check_yubikey_pass() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 318

checkPass() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 387

checkPass() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 385

checkPass() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 383

checkUserId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 385

checkUserName() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 385

cleanup_challenges() (in module priva-
cyidea.models), 404

clear() (privacyidea.lib.auditmodules.sqlaudit.Audit
method), 391

Clickatel, 69
client, 52
client certificates, 88
client machines, 200
client policies, 123
ClientApplication (class in privacyidea.models),

398
CLIENTTYPE (privacyidea.lib.policy.ACTION at-

tribute), 347
clob_to_varchar (class in privacyidea.lib.token),

333
close() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 383
Components, 37
COMPONENTS (privacyidea.lib.policy.MAIN_MENU at-

tribute), 352
CONDITION_CHECK (class in privacyidea.lib.policy),

351
CONDITION_SECTION (class in priva-

cyidea.lib.policy), 351
conditions, 171
CONDITIONS (privacyidea.lib.policy.GROUP attribute),

351
conditions() (priva-

cyidea.lib.eventhandler.base.BaseEventHandler
property), 378

Config (class in privacyidea.models), 398

Index 431

privacyIDEA Authentication System, Release 3.6.2

CONFIG (privacyidea.lib.policy.MAIN_MENU attribute),
352

config file, 13
config_lost_token() (in module priva-

cyidea.lib.policydecorators), 377
CONFIGDOCUMENTATION (priva-

cyidea.lib.policy.ACTION attribute), 347
configuration, 38
construct_radius_response() (in module pri-

vacyidea.api.lib.postpolicy), 373
Contao, 220
convert_realms() (priva-

cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 274

copy_token_pin() (in module priva-
cyidea.lib.token), 333

copy_token_realms() (in module priva-
cyidea.lib.token), 333

copy_token_user() (in module priva-
cyidea.lib.token), 333

COPYTOKENPIN (privacyidea.lib.policy.ACTION
attribute), 347

COPYTOKENUSER (privacyidea.lib.policy.ACTION at-
tribute), 347

Counter Handler, 186
create_challenge() (priva-

cyidea.lib.tokenclass.TokenClass method),
322

create_challenge() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 279

create_challenge() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 274

create_challenge() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 284

create_challenge() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 289

create_challenge() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 291

create_challenge() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 293

create_challenge() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 298

create_challenge() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 302

create_challenge() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass

method), 308
create_challenge() (priva-

cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 314

create_challenges_from_tokens() (in mod-
ule privacyidea.lib.token), 334

create_connection() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 387

create_serverpool() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 387

create_tokenclass_object() (in module priva-
cyidea.lib.token), 334

create_user() (in module privacyidea.lib.user), 271
Creating Users, 408
Crypto considerations, 414
CSR, 88
CSS, 405
csv_generator() (priva-

cyidea.lib.auditmodules.base.Audit method),
390

csv_generator() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 392

CUSTOM_BASELINE (privacyidea.lib.policy.ACTION
attribute), 347

CUSTOM_MENU (privacyidea.lib.policy.ACTION at-
tribute), 347

customize, 404, 405
Customize baseline, 157
customize footer, 157
Customize menu, 158
CustomUserAttribute (class in priva-

cyidea.models), 398

D
DaplugTokenClass (class in priva-

cyidea.lib.tokens.daplugtoken), 277
dashboard, 30, 159
database, 397
DB2, 43
debug, 13
Debugging, 17
decode_otpkey() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 322

decrease() (privacyidea.models.EventCounter
method), 398

decrypt_otpkey() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 315

default realm, 47
Default tokentype, 156

432 Index

privacyIDEA Authentication System, Release 3.6.2

DEFAULT_TOKENTYPE (priva-
cyidea.lib.policy.ACTION attribute), 347

del_info() (privacyidea.models.Token method), 402
del_tokeninfo() (priva-

cyidea.lib.tokenclass.TokenClass method),
322

DELETE (privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE
attribute), 189

DELETE (privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE
attribute), 191

DELETE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

DELETE (privacyidea.lib.policy.ACTION attribute), 347
Delete User, 118
delete() (privacyidea.lib.monitoringmodules.base.Monitoring

method), 392
delete() (privacyidea.lib.monitoringmodules.sqlstats.Monitoring

method), 393
delete() (privacyidea.lib.user.User method), 270
delete() (privacyidea.models.SMSGateway method),

401
delete_all_policies() (in module priva-

cyidea.lib.policy), 359
delete_attribute() (privacyidea.lib.user.User

method), 270
delete_event() (in module privacyidea.lib.event),

380
delete_policy() (in module privacyidea.lib.policy),

359
delete_token() (priva-

cyidea.lib.tokenclass.TokenClass method),
322

DELETE_TOKENINFO (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

delete_tokeninfo() (in module priva-
cyidea.lib.token), 334

delete_user() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 388

delete_user() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 383

DELETE_USER_ATTRIBUTES (priva-
cyidea.lib.policy.ACTION attribute), 347

DELETEUSER (privacyidea.lib.policy.ACTION at-
tribute), 347

DENY (privacyidea.lib.policy.AUTHORIZED attribute),
351

description (priva-
cyidea.lib.eventhandler.base.BaseEventHandler
attribute), 378

description (priva-
cyidea.lib.eventhandler.federationhandler.FederationEventHandler

attribute), 188
description (priva-

cyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
attribute), 190

description (priva-
cyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
attribute), 191

description (priva-
cyidea.lib.eventhandler.tokenhandler.TokenEventHandler
attribute), 184

description (priva-
cyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
attribute), 179, 379

DIALOG_NO_TOKEN (privacyidea.lib.policy.ACTION
attribute), 347

DISABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

DISABLE (privacyidea.lib.policy.ACTION attribute),
347

DISABLE (privacyidea.lib.policy.ACTIONVALUE
attribute), 350

DISABLE (privacyidea.lib.policy.LOGINMODE at-
tribute), 351

DISABLE (privacyidea.lib.policy.REMOTE_USER at-
tribute), 358

Django, 220
do() (privacyidea.lib.eventhandler.base.BaseEventHandler

method), 378
do() (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

method), 188
do() (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

method), 190
do() (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

method), 191
do() (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

method), 184
do() (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

method), 179, 379
DO_NOT_CHECK_AT_ALL (priva-

cyidea.lib.policy.CONDITION_CHECK at-
tribute), 351

Dokuwiki, 220

E
Edit User, 33, 117, 127
Edit Users, 33
Editable Resolver, 33
editable() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

property), 388
editable() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

property), 383
EMAIL (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE

attribute), 179
EMail policy, 132

Index 433

privacyIDEA Authentication System, Release 3.6.2

Email policy, 133
Email subject, 133
Email text, 132
Email Token, 67
Email token, 89
EMAIL_ADDRESS_KEY (priva-

cyidea.lib.tokens.emailtoken.EmailTokenClass
attribute), 279

EMAILCONFIG (privacyidea.lib.policy.ACTION at-
tribute), 347

EmailTokenClass (class in priva-
cyidea.lib.tokens.emailtoken), 279

ENABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

ENABLE (privacyidea.lib.policy.ACTION attribute), 347
enable() (privacyidea.lib.tokenclass.TokenClass

method), 322
enable_event() (in module privacyidea.lib.event),

380
enable_policy() (in module privacyidea.lib.policy),

359
enable_token() (in module privacyidea.lib.token),

334
encrypt_pin() (in module priva-

cyidea.api.lib.prepolicy), 366
Encrypted Seed File, 202
ENCRYPTPIN (privacyidea.lib.policy.ACTION at-

tribute), 347
END (privacyidea.lib.eventhandler.tokenhandler.VALIDITY

attribute), 184
enqueue() (privacyidea.lib.queues.base.BaseQueue

method), 363
enqueue() (privacyidea.lib.queues.huey_queue.HueyQueue

method), 361
ENROLL (privacyidea.lib.policy.SCOPE attribute), 359
enroll_pin() (in module priva-

cyidea.api.lib.prepolicy), 366
ENROLLMENT (privacyidea.lib.policy.GROUP attribute),

351
enrollment policies, 143
Enrollment Wizard, 205
ENROLLPIN (privacyidea.lib.policy.ACTION attribute),

347
event (class in privacyidea.lib.event), 380
Event Handler, 170, 171, 378, 379
EventConfiguration (class in priva-

cyidea.lib.event), 379
EventCounter (class in privacyidea.models), 398
EventHandler (class in privacyidea.models), 398
EventHandlerCondition (class in priva-

cyidea.models), 398
EventHandlerOption (class in privacyidea.models),

398
EVENTHANDLINGREAD (priva-

cyidea.lib.policy.ACTION attribute), 347
EVENTHANDLINGWRITE (priva-

cyidea.lib.policy.ACTION attribute), 347
events, 170
events() (privacyidea.lib.event.EventConfiguration

property), 379
events() (privacyidea.lib.eventhandler.base.BaseEventHandler

property), 379
exist() (privacyidea.lib.user.User method), 270
Expired Users, 42
export_policies() (in module priva-

cyidea.lib.policy), 359
external hook, 13
extract_action_values() (priva-

cyidea.lib.policy.PolicyClass static method),
355

F
fail counter, 417
FAQ, 404
Federation Handler, 187
FederationEventHandler (class in priva-

cyidea.lib.eventhandler.federationhandler),
187

FIDO, 108
FIDO2, 109
filter_policies_by_conditions() (priva-

cyidea.lib.policy.PolicyClass method), 355
finalize_log() (priva-

cyidea.lib.auditmodules.base.Audit method),
390

finalize_log() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 392

Firebase service, 97, 135, 136
flatfile resolver, 38
fn_clob_to_varchar_default() (in module pri-

vacyidea.lib.token), 334
fn_clob_to_varchar_oracle() (in module pri-

vacyidea.lib.token), 334
FORCE (privacyidea.lib.policy.REMOTE_USER at-

tribute), 359
FORCE_APP_PIN (privacyidea.lib.policy.ACTION at-

tribute), 347
FORWARD (privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE

attribute), 187
Four Eyes, 86
FourEyesTokenClass (class in priva-

cyidea.lib.tokens.foureyestoken), 273
FreeIPA, 39
FreeRADIUS, 213

G
GDPR_LINK (privacyidea.lib.policy.ACTION attribute),

434 Index

privacyIDEA Authentication System, Release 3.6.2

347
gen_serial() (in module privacyidea.lib.token), 335
GENERAL (privacyidea.lib.policy.GROUP attribute), 351
generate_symmetric_key() (priva-

cyidea.lib.tokenclass.TokenClass method),
322

generate_symmetric_key() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 281

generic() (privacyidea.lib.policy.Match class
method), 354

get() (privacyidea.models.Challenge method), 397
get() (privacyidea.models.EventHandler method), 398
get() (privacyidea.models.PeriodicTask method), 399
get() (privacyidea.models.Policy method), 400
get() (privacyidea.models.SMTPServer method), 402
get() (privacyidea.models.Subscription method), 402
get() (privacyidea.models.Token method), 402
get_action_values() (priva-

cyidea.lib.policy.PolicyClass method), 355
get_action_values_from_options() (in mod-

ule privacyidea.lib.policy), 360
get_allowed_custom_attributes() (in mod-

ule privacyidea.lib.policy), 360
get_as_dict() (priva-

cyidea.lib.tokenclass.TokenClass method),
323

get_as_dict() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 276

get_attributes() (in module privacyidea.lib.user),
271

get_audit_id() (priva-
cyidea.lib.auditmodules.base.Audit method),
390

get_class_info() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 323

get_class_info() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 276

get_class_info() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 278

get_class_info() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 280

get_class_info() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 274

get_class_info() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 281

get_class_info() (priva-

cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 283

get_class_info() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 285

get_class_info() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 286

get_class_info() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 287

get_class_info() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 289

get_class_info() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
class method), 291

get_class_info() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 293

get_class_info() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 295

get_class_info() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 296

get_class_info() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 298

get_class_info() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 299

get_class_info() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 300

get_class_info() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 302

get_class_info() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 303

get_class_info() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 308

get_class_info() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
static method), 315

get_class_info() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 317

get_class_info() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 318

get_class_prefix() (priva-

Index 435

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.tokenclass.TokenClass static
method), 323

get_class_prefix() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 276

get_class_prefix() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 278

get_class_prefix() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 280

get_class_prefix() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 274

get_class_prefix() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 281

get_class_prefix() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 284

get_class_prefix() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 285

get_class_prefix() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 286

get_class_prefix() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 287

get_class_prefix() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 290

get_class_prefix() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 292

get_class_prefix() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 294

get_class_prefix() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 295

get_class_prefix() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 296

get_class_prefix() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 299

get_class_prefix() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 299

get_class_prefix() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 300

get_class_prefix() (priva-

cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 303

get_class_prefix() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 304

get_class_prefix() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 308

get_class_prefix() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
static method), 315

get_class_prefix() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 317

get_class_prefix() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 318

get_class_type() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 323

get_class_type() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 277

get_class_type() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 278

get_class_type() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 280

get_class_type() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 274

get_class_type() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 282

get_class_type() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 284

get_class_type() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 285

get_class_type() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 286

get_class_type() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 287

get_class_type() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 290

get_class_type() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 292

get_class_type() (priva-

436 Index

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 294

get_class_type() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 295

get_class_type() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 297

get_class_type() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 299

get_class_type() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 299

get_class_type() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 300

get_class_type() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 303

get_class_type() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 304

get_class_type() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 308

get_class_type() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
static method), 315

get_class_type() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 317

get_class_type() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 318

get_conditions_tuples() (priva-
cyidea.models.Policy method), 400

get_config_description() (priva-
cyidea.lib.machines.base.BaseMachineResolver
static method), 394

get_config_description() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
class method), 395

get_count() (priva-
cyidea.lib.auditmodules.base.Audit method),
390

get_count() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 392

get_count_auth() (priva-
cyidea.lib.tokenclass.TokenClass method),
323

get_count_auth_max() (priva-
cyidea.lib.tokenclass.TokenClass method),

323
get_count_auth_success() (priva-

cyidea.lib.tokenclass.TokenClass method),
323

get_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
323

get_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
323

get_default_settings() (priva-
cyidea.lib.tokenclass.TokenClass class
method), 323

get_default_settings() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
class method), 277

get_default_settings() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
class method), 282

get_default_settings() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
class method), 304

get_dynamic_policy_definitions() (in mod-
ule privacyidea.lib.token), 335

get_event() (priva-
cyidea.lib.event.EventConfiguration method),
379

get_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
323

get_handled_events() (priva-
cyidea.lib.event.EventConfiguration method),
379

get_handler_object() (in module priva-
cyidea.lib.event), 380

get_hashed_pin() (privacyidea.models.Token
method), 402

get_hashlib() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 323

get_import_csv() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 323

get_import_csv() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 282

get_import_csv() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 285

get_import_csv() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 304

get_info() (privacyidea.models.Token method), 402
get_init_detail() (priva-

Index 437

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.tokenclass.TokenClass method),
323

get_init_detail() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 277

get_init_detail() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 282

get_init_detail() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
method), 284

get_init_detail() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 290

get_init_detail() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 295

get_init_detail() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 303

get_init_detail() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 308

get_init_detail() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 315

get_init_details() (priva-
cyidea.lib.tokenclass.TokenClass method),
324

get_job_queue() (in module privacyidea.lib.queue),
362

get_keys() (privacyidea.lib.monitoringmodules.base.Monitoring
method), 393

get_keys() (privacyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 393

get_last_value() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 393

get_last_value() (priva-
cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 394

get_machine_id() (priva-
cyidea.lib.machines.base.BaseMachineResolver
method), 394

get_machine_id() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 395

get_machineresolver_id() (in module priva-
cyidea.models), 404

get_machines() (priva-
cyidea.lib.machines.base.BaseMachineResolver
method), 394

get_machines() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver

method), 395
get_machinetoken_id() (in module priva-

cyidea.models), 404
get_max_failcount() (priva-

cyidea.lib.tokenclass.TokenClass method),
324

get_multi_otp() (in module privacyidea.lib.token),
335

get_multi_otp() (priva-
cyidea.lib.tokenclass.TokenClass method),
324

get_multi_otp() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 278

get_multi_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 282

get_multi_otp() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 304

get_num_tokens_in_realm() (in module priva-
cyidea.lib.token), 335

get_one_token() (in module privacyidea.lib.token),
335

get_ordererd_resolvers() (priva-
cyidea.lib.user.User method), 270

get_otp() (in module privacyidea.lib.token), 335
get_otp() (privacyidea.lib.tokenclass.TokenClass

method), 324
get_otp() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 278
get_otp() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 282
get_otp() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 304
get_otp_count() (priva-

cyidea.lib.tokenclass.TokenClass method),
324

get_otp_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
324

get_otp_status() (privacyidea.models.Challenge
method), 397

get_otplen() (privacyidea.lib.tokenclass.TokenClass
method), 324

get_password() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword
method), 286

get_persistent_serverpool() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 389

get_pin_hash_seed() (priva-
cyidea.lib.tokenclass.TokenClass method),
324

438 Index

privacyIDEA Authentication System, Release 3.6.2

get_policy_condition_comparators() (in
module privacyidea.lib.policy), 360

get_policy_condition_sections() (in mod-
ule privacyidea.lib.policy), 360

get_realms() (privacyidea.lib.tokenclass.TokenClass
method), 324

get_realms() (privacyidea.models.Token method),
403

get_realms_of_token() (in module priva-
cyidea.lib.token), 336

get_search_fields() (privacyidea.lib.user.User
method), 270

get_serial() (privacyidea.lib.tokenclass.TokenClass
method), 324

get_serial_by_otp() (in module priva-
cyidea.lib.token), 336

get_serverpool_instance() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 389

get_setting_type() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 324

get_setting_type() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 282

get_setting_type() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 292

get_setting_type() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 304

get_setting_type() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
static method), 316

get_sshkey() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
method), 300

get_static_policy_definitions() (in mod-
ule privacyidea.lib.policy), 360

get_sync_timeout() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 283

get_sync_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

get_token_by_otp() (in module priva-
cyidea.lib.token), 336

get_token_id() (in module privacyidea.models),
404

get_token_owner() (in module priva-
cyidea.lib.token), 336

get_token_type() (in module priva-
cyidea.lib.token), 336

get_tokenclass_info() (in module priva-

cyidea.lib.token), 337
get_tokeninfo() (priva-

cyidea.lib.tokenclass.TokenClass method),
325

get_tokens() (in module privacyidea.lib.token), 337
get_tokens_from_serial_or_user() (in mod-

ule privacyidea.lib.token), 338
get_tokens_in_resolver() (in module priva-

cyidea.lib.token), 338
get_tokens_paginate() (in module priva-

cyidea.lib.token), 338
get_tokens_paginated_generator() (in mod-

ule privacyidea.lib.token), 339
get_tokentype() (priva-

cyidea.lib.tokenclass.TokenClass method),
325

get_total() (priva-
cyidea.lib.auditmodules.base.Audit method),
390

get_total() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 392

get_type() (privacyidea.lib.tokenclass.TokenClass
method), 325

get_user_displayname() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

get_user_from_param() (in module priva-
cyidea.lib.user), 272

get_user_id() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

get_user_identifiers() (priva-
cyidea.lib.user.User method), 270

get_user_list() (in module privacyidea.lib.user),
272

get_user_phone() (privacyidea.lib.user.User
method), 270

get_user_pin() (privacyidea.models.Token
method), 403

get_user_realms() (privacyidea.lib.user.User
method), 270

get_username() (in module privacyidea.lib.user),
272

get_validity_period_end() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

get_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

get_values() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 393

get_values() (priva-

Index 439

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 394

get_webui_settings() (in module priva-
cyidea.api.lib.postpolicy), 373

getchallenges, 117
GETCHALLENGES (privacyidea.lib.policy.ACTION at-

tribute), 347
getrandom, 117
GETRANDOM (privacyidea.lib.policy.ACTION attribute),

347
getResolverClassDescriptor() (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 388

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
class method), 385

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 383

getResolverClassType() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 388

getResolverClassType() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
static method), 385

getResolverClassType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
static method), 383

getResolverDescriptor() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 388

getResolverDescriptor() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
static method), 385

getResolverDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
static method), 383

getResolverId() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 388

getResolverId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getResolverId() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

getResolverType() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 388

getResolverType() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
static method), 386

getResolverType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver

static method), 384
getSearchFields() (priva-

cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getserial, 117
GETSERIAL (privacyidea.lib.policy.ACTION attribute),

347
getUserId() (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 388

getUserId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getUserId() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

getUserInfo() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 388

getUserInfo() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getUserInfo() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

getUserList() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 389

getUserList() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getUserList() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

getUsername() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 389

getUsername() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

getUsername() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

GPG encryption, 202
GROUP (class in privacyidea.lib.policy), 351

H
HA, 411
Handler Modules, 171, 176, 180, 184, 186–188, 190,

192
Hardware Security Module, 22
Hardware Tokens, 84
has_data() (privacyidea.lib.auditmodules.base.Audit

property), 390

440 Index

privacyIDEA Authentication System, Release 3.6.2

has_db_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

has_further_challenge() (priva-
cyidea.lib.tokenclass.TokenClass method),
325

has_further_challenge() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 274

has_further_challenge() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 292

has_job_queue() (in module privacyidea.lib.queue),
362

has_multiple_loginnames() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
property), 389

has_multiple_loginnames() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
property), 384

hashlib() (privacyidea.lib.tokens.hotptoken.HotpTokenClass
property), 283

hashlib() (privacyidea.lib.tokens.totptoken.TotpTokenClass
property), 305

header_dict() (privacyidea.models.SMSGateway
property), 401

help desk, 111
HIDE_AUDIT_COLUMNS (priva-

cyidea.lib.policy.ACTION attribute), 348
hide_audit_columns() (in module priva-

cyidea.api.lib.prepolicy), 366
HIDE_BUTTONS (privacyidea.lib.policy.ACTION

attribute), 348
HIDE_WELCOME (privacyidea.lib.policy.ACTION

attribute), 348
hKeyRequired (privacyidea.lib.tokenclass.TokenClass

attribute), 325
hKeyRequired (priva-

cyidea.lib.tokens.certificatetoken.CertificateTokenClass
attribute), 277

hook, 13
HostsMachineResolver (class in priva-

cyidea.lib.machines.hosts), 395
hotkeys, 413
HOTP Token, 68
HOTP tokens, 91
HotpTokenClass (class in priva-

cyidea.lib.tokens.hotptoken), 281
HSM, 22
HTML views, 404
http, 45
HTTP Provider, 62
HTTP resolver, 45
HTTP_REQUEST_HEADER (priva-

cyidea.lib.policy.CONDITION_SECTION
attribute), 351

HttpSMSProvider (class in priva-
cyidea.lib.smsprovider.HttpSMSProvider),
381

huey() (privacyidea.lib.queues.huey_queue.HueyQueue
property), 362

HueyQueue (class in priva-
cyidea.lib.queues.huey_queue), 361

I
identifier (privacyidea.lib.eventhandler.base.BaseEventHandler

attribute), 379
identifier (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

attribute), 188
identifier (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

attribute), 190
identifier (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

attribute), 191
identifier (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

attribute), 184
identifier (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

attribute), 179, 379
IdResolver (class in priva-

cyidea.lib.resolvers.LDAPIdResolver), 387
IdResolver (class in priva-

cyidea.lib.resolvers.PasswdIdResolver), 385
import, 201
IMPORT (privacyidea.lib.policy.ACTION attribute), 348
import_policies() (in module priva-

cyidea.lib.policy), 360
import_token() (in module privacyidea.lib.token),

339
inc_count_auth() (priva-

cyidea.lib.tokenclass.TokenClass method),
326

inc_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
326

inc_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
326

inc_otp_counter() (priva-
cyidea.lib.tokenclass.TokenClass method),
326

increase() (privacyidea.models.EventCounter
method), 398

Indexed Secret Token, 92
indexedsecret_force_attribute() (in mod-

ule privacyidea.api.lib.prepolicy), 366
info() (privacyidea.lib.user.User property), 271
INIT (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE

attribute), 183

Index 441

privacyIDEA Authentication System, Release 3.6.2

init_random_pin() (in module priva-
cyidea.api.lib.prepolicy), 366

init_registrationcode_length_contents()
(in module privacyidea.api.lib.prepolicy), 366

init_token() (in module privacyidea.lib.token), 339
init_token_defaults() (in module priva-

cyidea.api.lib.prepolicy), 366
init_tokenlabel() (in module priva-

cyidea.api.lib.prepolicy), 366
initialize_log() (priva-

cyidea.lib.auditmodules.base.Audit method),
390

instances, 20
INT (privacyidea.lib.policy.TYPE attribute), 359
INTERNAL_ADMIN (priva-

cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
attribute), 179

is_active() (privacyidea.lib.tokenclass.TokenClass
method), 326

is_attribute_at_all() (in module priva-
cyidea.lib.user), 272

is_authorized() (in module priva-
cyidea.api.lib.postpolicy), 373

is_challenge_request() (priva-
cyidea.lib.tokenclass.TokenClass method),
326

is_challenge_request() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 280

is_challenge_request() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 274

is_challenge_request() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 285

is_challenge_request() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 290

is_challenge_request() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 292

is_challenge_request() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 294

is_challenge_request() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 297

is_challenge_request() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 299

is_challenge_request() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 300

is_challenge_request() (priva-

cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 308

is_challenge_request() (priva-
cyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 316

is_challenge_request() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 318

is_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
327

is_challenge_response() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 294

is_challenge_response() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 300

is_empty() (privacyidea.lib.user.User method), 271
is_fit_for_challenge() (priva-

cyidea.lib.tokenclass.TokenClass method),
327

is_locked() (privacyidea.lib.tokenclass.TokenClass
method), 327

is_orphaned() (priva-
cyidea.lib.tokenclass.TokenClass method),
327

is_outofband() (priva-
cyidea.lib.tokenclass.TokenClass class
method), 328

is_pin_change() (priva-
cyidea.lib.tokenclass.TokenClass method),
328

is_previous_otp() (priva-
cyidea.lib.tokenclass.TokenClass method),
328

is_previous_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 283

is_readable (priva-
cyidea.lib.auditmodules.base.Audit attribute),
390

is_remote_user_allowed() (in module priva-
cyidea.api.lib.prepolicy), 367

is_revoked() (privacyidea.lib.tokenclass.TokenClass
method), 328

is_token_active() (in module priva-
cyidea.lib.token), 340

is_token_owner() (in module priva-
cyidea.lib.token), 340

is_valid() (privacyidea.models.Challenge method),
397

ISMSProvider (class in priva-
cyidea.lib.smsprovider.SMSProvider), 382

442 Index

privacyIDEA Authentication System, Release 3.6.2

J
job queue, 212
job() (in module privacyidea.lib.queue), 362
JOB_COLLECTOR (in module privacyidea.lib.queue),

362
JobCollector (class in privacyidea.lib.queue), 362
jobs() (privacyidea.lib.queue.JobCollector property),

362
jobs() (privacyidea.lib.queues.huey_queue.HueyQueue

property), 362
JSON Web Token, 220
JWT, 220

L
LASTAUTH (privacyidea.lib.policy.ACTION attribute),

348
LDAP, 38
LDAP resolver, 39
libpolicy (class in privacyidea.lib.policydecorators),

377
library, 269
list_policies() (priva-

cyidea.lib.policy.PolicyClass method), 356
load_config() (priva-

cyidea.lib.machines.base.BaseMachineResolver
method), 394

load_config() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 395

load_config() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
method), 382

loadConfig() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 389

loadConfig() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

loadConfig() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

loadFile() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 386

LOCKSCREEN (privacyidea.lib.policy.TIMEOUT_ACTION
attribute), 359

log() (privacyidea.lib.auditmodules.base.Audit
method), 391

log_token_num() (priva-
cyidea.lib.auditmodules.base.Audit method),
391

log_used_user() (in module privacyidea.lib.user),
272

LOGGED_IN_USER (priva-
cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE

attribute), 179
Logging, 17
Logging Handler, 192
login (privacyidea.lib.user.User attribute), 271
login mode, 154
Login Policy, 154
login_mode() (in module priva-

cyidea.lib.policydecorators), 377
LOGIN_TEXT (privacyidea.lib.policy.ACTION at-

tribute), 348
LOGINMODE (class in privacyidea.lib.policy), 351
LOGINMODE (privacyidea.lib.policy.ACTION attribute),

348
loglevel, 13
LOGOUT (privacyidea.lib.policy.TIMEOUT_ACTION at-

tribute), 359
logout time, 155
LOGOUTTIME (privacyidea.lib.policy.ACTION at-

tribute), 348
lost token, 147
lost_token() (in module privacyidea.lib.token), 340
LOSTTOKEN (privacyidea.lib.policy.ACTION attribute),

348
LOSTTOKENPWCONTENTS (priva-

cyidea.lib.policy.ACTION attribute), 348
LOSTTOKENPWLEN (privacyidea.lib.policy.ACTION at-

tribute), 348
LOSTTOKENVALID (privacyidea.lib.policy.ACTION at-

tribute), 348

M
MACHINE (privacyidea.lib.policy.GROUP attribute), 351
Machine Resolvers, 394
MachineApplicationBase (in module priva-

cyidea.lib.applications), 345
MACHINELIST (privacyidea.lib.policy.ACTION at-

tribute), 348
MachineResolver (class in privacyidea.models), 398
MachineResolverConfig (class in priva-

cyidea.models), 399
MACHINERESOLVERDELETE (priva-

cyidea.lib.policy.ACTION attribute), 348
MACHINERESOLVERREAD (priva-

cyidea.lib.policy.ACTION attribute), 348
MACHINERESOLVERWRITE (priva-

cyidea.lib.policy.ACTION attribute), 348
machines, 200
MACHINES (privacyidea.lib.policy.MAIN_MENU at-

tribute), 352
MachineToken (class in privacyidea.models), 399
MachineTokenOptions (class in priva-

cyidea.models), 399
MACHINETOKENS (privacyidea.lib.policy.ACTION at-

tribute), 348

Index 443

privacyIDEA Authentication System, Release 3.6.2

MAIN_MENU (class in privacyidea.lib.policy), 351
MANAGESUBSCRIPTION (priva-

cyidea.lib.policy.ACTION attribute), 348
MANGLE (privacyidea.lib.policy.ACTION attribute), 348
Mangle authentication request, 133
Mangle policy, 133
mangle() (in module privacyidea.api.lib.prepolicy),

367
mangle_challenge_response() (in module pri-

vacyidea.api.lib.postpolicy), 373
map client, 52
Match (class in privacyidea.lib.policy), 352
match_policies() (priva-

cyidea.lib.policy.PolicyClass method), 357
MatchingError, 355
MAXACTIVETOKENUSER (priva-

cyidea.lib.policy.ACTION attribute), 348
MAXTOKENREALM (privacyidea.lib.policy.ACTION at-

tribute), 348
MAXTOKENUSER (privacyidea.lib.policy.ACTION

attribute), 348
MethodsMixin (class in privacyidea.models), 399
Migration, 101
migration, 130, 131, 410
migration strategy, 410
mock_fail() (in module priva-

cyidea.api.lib.prepolicy), 367
mock_success() (in module priva-

cyidea.api.lib.prepolicy), 367
mode (privacyidea.lib.tokenclass.TokenClass attribute),

328
mode (privacyidea.lib.tokens.pushtoken.PushTokenClass

attribute), 290
mode (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

attribute), 300
mode (privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass

attribute), 303
MODIFYING_RESPONSE (priva-

cyidea.lib.policy.GROUP attribute), 351
module

privacyidea.api, 221
privacyidea.api.application, 266
privacyidea.api.auth, 221, 223
privacyidea.api.caconnector, 263
privacyidea.api.event, 257
privacyidea.api.lib.postpolicy, 372
privacyidea.api.lib.prepolicy, 363
privacyidea.api.machine, 259
privacyidea.api.machineresolver, 258
privacyidea.api.monitoring, 264
privacyidea.api.periodictask, 265
privacyidea.api.policy, 251
privacyidea.api.privacyideaserver,

262

privacyidea.api.radiusserver, 268
privacyidea.api.realm, 236
privacyidea.api.recover, 263
privacyidea.api.register, 263
privacyidea.api.resolver, 235
privacyidea.api.smsgateway, 267
privacyidea.api.smtpserver, 267
privacyidea.api.subscriptions, 269
privacyidea.api.system, 232
privacyidea.api.token, 240
privacyidea.api.ttype, 266
privacyidea.api.user, 248
privacyidea.api.validate, 225
privacyidea.lib, 269
privacyidea.lib.auditmodules, 390
privacyidea.lib.event, 379
privacyidea.lib.eventhandler.federationhandler,

187
privacyidea.lib.eventhandler.requestmangler,

189
privacyidea.lib.eventhandler.responsemangler,

191
privacyidea.lib.eventhandler.tokenhandler,

183
privacyidea.lib.eventhandler.usernotification,

179
privacyidea.lib.machines, 394
privacyidea.lib.monitoringmodules,

392
privacyidea.lib.pinhandling.base,

396
privacyidea.lib.policy, 345
privacyidea.lib.policydecorators,

375
privacyidea.lib.queue, 362
privacyidea.lib.resolvers, 383
privacyidea.lib.smsprovider, 382
privacyidea.lib.token, 331
privacyidea.lib.tokens.ocratoken,

284
privacyidea.lib.tokens.tiqrtoken,

301
privacyidea.lib.tokens.u2ftoken, 305
privacyidea.lib.tokens.webauthntoken,

309
privacyidea.lib.user, 269
privacyidea.models, 397

Monitoring (class in priva-
cyidea.lib.monitoringmodules.base), 392

Monitoring (class in priva-
cyidea.lib.monitoringmodules.sqlstats), 393

monitoring modules, 392
MonitoringStats (class in privacyidea.models), 399

444 Index

privacyIDEA Authentication System, Release 3.6.2

MotpTokenClass (class in priva-
cyidea.lib.tokens.motptoken), 283

MySQL, 43

N
name (privacyidea.lib.token.clob_to_varchar attribute),

333
no_detail_on_fail() (in module priva-

cyidea.api.lib.postpolicy), 374
no_detail_on_success() (in module priva-

cyidea.api.lib.postpolicy), 374
NODETAILFAIL (privacyidea.lib.policy.ACTION

attribute), 348
NODETAILSUCCESS (privacyidea.lib.policy.ACTION

attribute), 348
NONE (privacyidea.lib.policy.ACTIONVALUE attribute),

350
NONE (privacyidea.lib.policy.AUTOASSIGNVALUE at-

tribute), 351
NOTIFY_TYPE (class in priva-

cyidea.lib.eventhandler.usernotification),
179

Novell eDirectory, 39

O
OATH CSV, 201
OCRA, 93, 106
OcraTokenClass (class in priva-

cyidea.lib.tokens.ocratoken), 284
offline, 213
offline_info() (in module priva-

cyidea.api.lib.postpolicy), 374
ONLY_CHECK_USERINFO (priva-

cyidea.lib.policy.CONDITION_CHECK at-
tribute), 351

OpenLDAP, 39
openssl, 54
OpenVPN, 220
option_dict() (privacyidea.models.SMSGateway

property), 401
Oracle, 43
orphaned tokens, 210
OTPPIN (privacyidea.lib.policy.ACTION attribute), 348
OTPPINCONTENTS (privacyidea.lib.policy.ACTION at-

tribute), 348
OTPPINMAXLEN (privacyidea.lib.policy.ACTION

attribute), 348
OTPPINMINLEN (privacyidea.lib.policy.ACTION

attribute), 348
OTPPINRANDOM (privacyidea.lib.policy.ACTION

attribute), 348
OTPPINSETRANDOM (privacyidea.lib.policy.ACTION

attribute), 348
OTRS, 213

Override client, 52
override client, 52
overview, 3
ownCloud, 213, 219

P
PAM, 213, 214
pam_yubico, 214
Paper Token, 95
papertoken_count() (in module priva-

cyidea.api.lib.prepolicy), 367
PaperTokenClass (class in priva-

cyidea.lib.tokens.papertoken), 286
parameters() (priva-

cyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider
class method), 381

parameters() (priva-
cyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider
class method), 381

parameters() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
class method), 382

parameters() (priva-
cyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider
class method), 381

PASSNOTOKEN (privacyidea.lib.policy.ACTION at-
tribute), 348

PASSNOUSER (privacyidea.lib.policy.ACTION at-
tribute), 348

passOnNoToken, 131
passOnNoUser, 131
passthru, 130, 131
PASSTHRU (privacyidea.lib.policy.ACTION attribute),

348
PASSTHRU_ASSIGN (privacyidea.lib.policy.ACTION

attribute), 348
password reset, 127
PasswordReset (class in privacyidea.models), 399
PASSWORDRESET (privacyidea.lib.policy.ACTION at-

tribute), 348
PasswordTokenClass (class in priva-

cyidea.lib.tokens.passwordtoken), 286
PasswordTokenClass.SecretPassword (class

in privacyidea.lib.tokens.passwordtoken), 286
Penrose, 39
periodic task, 193
PeriodicTask (class in privacyidea.models), 399
PeriodicTaskLastRun (class in priva-

cyidea.models), 400
PeriodicTaskOption (class in privacyidea.models),

400
PERIODICTASKREAD (privacyidea.lib.policy.ACTION

attribute), 348

Index 445

privacyIDEA Authentication System, Release 3.6.2

PERIODICTASKWRITE (priva-
cyidea.lib.policy.ACTION attribute), 349

pi-manage, 20, 408
PIN (privacyidea.lib.policy.GROUP attribute), 351
PIN policies, 146, 147
PIN policy, 114, 126
PinHandler, 146, 396
PinHandler (class in priva-

cyidea.lib.pinhandling.base), 396
PINHANDLING (privacyidea.lib.policy.ACTION at-

tribute), 349
pip install, 4
policies, 111, 160, 164
policies() (privacyidea.lib.policy.Match method),

354
policies() (privacyidea.lib.policy.PolicyClass prop-

erty), 358
Policy (class in privacyidea.models), 400
policy template URL, 156
policy templates, 164
PolicyClass (class in privacyidea.lib.policy), 355
PolicyCondition (class in privacyidea.models), 400
POLICYDELETE (privacyidea.lib.policy.ACTION

attribute), 349
POLICYREAD (privacyidea.lib.policy.ACTION at-

tribute), 349
POLICYTEMPLATEURL (priva-

cyidea.lib.policy.ACTION attribute), 349
POLICYWRITE (privacyidea.lib.policy.ACTION at-

tribute), 349
Post Handling, 171
post_success() (priva-

cyidea.lib.tokenclass.TokenClass method),
328

post_success() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 296

PostgreSQL, 43
postpolicy (class in privacyidea.api.lib.postpolicy),

374
postrequest (class in privacyidea.api.lib.postpolicy),

374
Pre Handling, 171
prepolicy (class in privacyidea.api.lib.prepolicy), 367
preseeded, 91
PRIVACYIDEA (privacyidea.lib.policy.LOGINMODE

attribute), 351
privacyIDEA Authenticator, 210
privacyIDEA server, 61
privacyidea.api

module, 221
privacyidea.api.application

module, 266
privacyidea.api.auth

module, 221, 223
privacyidea.api.caconnector

module, 263
privacyidea.api.event

module, 257
privacyidea.api.lib.postpolicy

module, 372
privacyidea.api.lib.prepolicy

module, 363
privacyidea.api.machine

module, 259
privacyidea.api.machineresolver

module, 258
privacyidea.api.monitoring

module, 264
privacyidea.api.periodictask

module, 265
privacyidea.api.policy

module, 251
privacyidea.api.privacyideaserver

module, 262
privacyidea.api.radiusserver

module, 268
privacyidea.api.realm

module, 236
privacyidea.api.recover

module, 263
privacyidea.api.register

module, 263
privacyidea.api.resolver

module, 235
privacyidea.api.smsgateway

module, 267
privacyidea.api.smtpserver

module, 267
privacyidea.api.subscriptions

module, 269
privacyidea.api.system

module, 232
privacyidea.api.token

module, 240
privacyidea.api.ttype

module, 266
privacyidea.api.user

module, 248
privacyidea.api.validate

module, 225
privacyidea.lib

module, 269
privacyidea.lib.auditmodules

module, 390
privacyidea.lib.event

module, 379
privacyidea.lib.eventhandler.federationhandler

446 Index

privacyIDEA Authentication System, Release 3.6.2

module, 187
privacyidea.lib.eventhandler.requestmangler

module, 189
privacyidea.lib.eventhandler.responsemangler

module, 191
privacyidea.lib.eventhandler.tokenhandler

module, 183
privacyidea.lib.eventhandler.usernotification

module, 179
privacyidea.lib.machines

module, 394
privacyidea.lib.monitoringmodules

module, 392
privacyidea.lib.pinhandling.base

module, 396
privacyidea.lib.policy

module, 345
privacyidea.lib.policydecorators

module, 375
privacyidea.lib.queue

module, 362
privacyidea.lib.resolvers

module, 383
privacyidea.lib.smsprovider

module, 382
privacyidea.lib.token

module, 331
privacyidea.lib.tokens.ocratoken

module, 284
privacyidea.lib.tokens.tiqrtoken

module, 301
privacyidea.lib.tokens.u2ftoken

module, 305
privacyidea.lib.tokens.webauthntoken

module, 309
privacyidea.lib.user

module, 269
privacyidea.models

module, 397
privacyideaadm, 206
PrivacyIDEAServer (class in privacyidea.models),

400
PRIVACYIDEASERVERREAD (priva-

cyidea.lib.policy.ACTION attribute), 349
PRIVACYIDEASERVERWRITE (priva-

cyidea.lib.policy.ACTION attribute), 349
proxies, 52
PSKC, 201
push direct authentication, 136
Push Token, 97
push token, 135, 136
pushtoken_add_config() (in module priva-

cyidea.api.lib.prepolicy), 368

pushtoken_disable_wait() (in module priva-
cyidea.api.lib.prepolicy), 368

pushtoken_wait() (in module priva-
cyidea.api.lib.prepolicy), 368

PushTokenClass (class in priva-
cyidea.lib.tokens.pushtoken), 287

Q
Question Token, 100
Questionnaire Token, 100
QuestionnaireTokenClass (class in priva-

cyidea.lib.tokens.questionnairetoken), 291
queue, 212

R
radius migration, 410
RADIUS server, 52, 60
radius server, 410
RADIUS token, 101
RADIUSServer (class in privacyidea.models), 400
RADIUSSERVERREAD (privacyidea.lib.policy.ACTION

attribute), 349
RADIUSSERVERWRITE (priva-

cyidea.lib.policy.ACTION attribute), 349
RadiusTokenClass (class in priva-

cyidea.lib.tokens.radiustoken), 292
read_keys() (priva-

cyidea.lib.auditmodules.base.Audit method),
391

Realm (class in privacyidea.models), 401
REALM (privacyidea.lib.policy.ACTION attribute), 349
realm (privacyidea.lib.user.User attribute), 271
realm administrator, 116
realm autocreation, 49
realm edit, 48
realm relation, 47
realm() (privacyidea.lib.policy.Match class method),

354
realmadmin() (in module priva-

cyidea.api.lib.prepolicy), 368
Realmbox, 157
REALMDROPDOWN (privacyidea.lib.policy.ACTION at-

tribute), 349
realms, 47
realms_dict_to_string() (priva-

cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 275

recurring task, 193
Red Hat, 8
REGISTER (privacyidea.lib.policy.SCOPE attribute),

359
register policy, 160
register_app() (in module privacyidea.lib.queue),

362

Index 447

privacyIDEA Authentication System, Release 3.6.2

register_app() (privacyidea.lib.queue.JobCollector
method), 362

register_job() (privacyidea.lib.queue.JobCollector
method), 362

register_job() (priva-
cyidea.lib.queues.base.BaseQueue method),
363

register_job() (priva-
cyidea.lib.queues.huey_queue.HueyQueue
method), 362

REGISTERBODY (privacyidea.lib.policy.ACTION
attribute), 349

registration, 85
registration token, 147
REGISTRATIONCODE_CONTENTS (priva-

cyidea.lib.policy.ACTION attribute), 349
REGISTRATIONCODE_LENGTH (priva-

cyidea.lib.policy.ACTION attribute), 349
RegistrationTokenClass (class in priva-

cyidea.lib.tokens.registrationtoken), 295
Remote token, 102
remote_user, 154
REMOTE_USER (class in privacyidea.lib.policy), 358
REMOTE_USER (privacyidea.lib.policy.ACTION at-

tribute), 349
RemoteTokenClass (class in priva-

cyidea.lib.tokens.remotetoken), 296
remove_token() (in module privacyidea.lib.token),

340
request, 88
RequestMangler, 188
RequestManglerEventHandler (class in priva-

cyidea.lib.eventhandler.requestmangler), 189
required_email() (in module priva-

cyidea.api.lib.prepolicy), 368
required_piv_attestation() (in module priva-

cyidea.api.lib.prepolicy), 368
REQUIREDEMAIL (privacyidea.lib.policy.ACTION at-

tribute), 349
RESET (privacyidea.lib.policy.ACTION attribute), 349
reset password, 127
reset() (privacyidea.lib.tokenclass.TokenClass

method), 328
reset_all_user_tokens() (in module priva-

cyidea.lib.policydecorators), 378
reset_token() (in module privacyidea.lib.token),

341
RESETALLTOKENS (privacyidea.lib.policy.ACTION at-

tribute), 349
resolver, 45
Resolver (class in privacyidea.models), 401
RESOLVER (privacyidea.lib.policy.ACTION attribute),

349
resolver (privacyidea.lib.user.User attribute), 271

resolver priority, 48
ResolverConfig (class in privacyidea.models), 401
RESOLVERDELETE (privacyidea.lib.policy.ACTION at-

tribute), 349
RESOLVERREAD (privacyidea.lib.policy.ACTION

attribute), 349
ResolverRealm (class in privacyidea.models), 401
RESOLVERWRITE (privacyidea.lib.policy.ACTION at-

tribute), 349
ResponseMangler, 190
ResponseManglerEventHandler (class in priva-

cyidea.lib.eventhandler.responsemangler), 191
REST, 221
Restore, 21, 77
RESYNC (privacyidea.lib.policy.ACTION attribute), 349
resync() (privacyidea.lib.tokenclass.TokenClass

method), 328
resync() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 278
resync() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 283
resync() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 305
resync_token() (in module privacyidea.lib.token),

341
resyncDiffLimit (priva-

cyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 305

retention time, 197
REVOKE (privacyidea.lib.policy.ACTION attribute), 349
revoke() (privacyidea.lib.tokenclass.TokenClass

method), 328
revoke() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 277
revoke_token() (in module privacyidea.lib.token),

341
RFC6030, 201
RHEL, 8
rollout strategy, 409
RPM, 11

S
SAML, 213
SAML attributes, 39, 51
save() (privacyidea.lib.tokenclass.TokenClass

method), 328
save() (privacyidea.models.PeriodicTask method), 399
save() (privacyidea.models.PeriodicTaskLastRun

method), 400
save() (privacyidea.models.PeriodicTaskOption

method), 400
save() (privacyidea.models.RADIUSServer method),

401
save() (privacyidea.models.TokenRealm method), 403

448 Index

privacyIDEA Authentication System, Release 3.6.2

save_client_application_type() (in module
privacyidea.api.lib.prepolicy), 369

save_config_timestamp() (in module priva-
cyidea.models), 404

save_pin_change() (in module priva-
cyidea.api.lib.postpolicy), 374

SCIM resolver, 44
scope, 111
SCOPE (class in privacyidea.lib.policy), 359
Script Handler, 184
Search on Enter, 157
search() (privacyidea.lib.auditmodules.base.Audit

method), 391
search() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 392
SEARCH_ON_ENTER (privacyidea.lib.policy.ACTION

attribute), 349
search_query() (priva-

cyidea.lib.auditmodules.base.Audit method),
391

search_query() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 392

Security Module, 22
seedable, 91
selfservice policies, 123
send() (privacyidea.lib.pinhandling.base.PinHandler

method), 396
SERIAL (privacyidea.lib.policy.ACTION attribute), 349
SET (privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE

attribute), 189
SET (privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE

attribute), 191
SET (privacyidea.lib.policy.ACTION attribute), 349
set_attribute() (privacyidea.lib.user.User

method), 271
set_conditions() (privacyidea.models.Policy

method), 400
set_count_auth() (in module priva-

cyidea.lib.token), 341
set_count_auth() (priva-

cyidea.lib.tokenclass.TokenClass method),
328

set_count_auth_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
328

set_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
328

set_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
328

set_count_window() (in module priva-
cyidea.lib.token), 342

set_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

SET_COUNTWINDOW (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_data() (privacyidea.models.Challenge method),
398

set_defaults() (in module privacyidea.lib.token),
342

set_defaults() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

SET_DESCRIPTION (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_description() (in module priva-
cyidea.lib.token), 342

set_description() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

set_event() (in module privacyidea.lib.event), 380
set_failcount() (priva-

cyidea.lib.tokenclass.TokenClass method),
329

SET_FAILCOUNTER (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_failcounter() (in module priva-
cyidea.lib.token), 342

set_hashed_pin() (privacyidea.models.Token
method), 403

set_hashlib() (in module privacyidea.lib.token),
342

set_hashlib() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

set_info() (privacyidea.models.Token method), 403
set_init_details() (priva-

cyidea.lib.tokenclass.TokenClass method),
329

set_last_run() (privacyidea.models.PeriodicTask
method), 399

set_max_failcount() (in module priva-
cyidea.lib.token), 343

SET_MAXFAIL (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_maxfail() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

set_next_pin_change() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

Index 449

privacyIDEA Authentication System, Release 3.6.2

set_otp_count() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

set_otpkey() (privacyidea.lib.tokenclass.TokenClass
method), 329

set_otplen() (in module privacyidea.lib.token), 343
set_otplen() (privacyidea.lib.tokenclass.TokenClass

method), 329
set_otplen() (priva-

cyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 287

set_pin() (in module privacyidea.lib.token), 343
set_pin() (privacyidea.lib.tokenclass.TokenClass

method), 329
set_pin() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 277
set_pin() (privacyidea.models.Token method), 403
set_pin_hash_seed() (priva-

cyidea.lib.tokenclass.TokenClass method),
329

set_pin_so() (in module privacyidea.lib.token), 343
set_pin_user() (in module privacyidea.lib.token),

343
set_policy() (in module privacyidea.lib.policy), 360
SET_RANDOM_PIN (priva-

cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_random_pin() (in module priva-
cyidea.api.lib.prepolicy), 369

set_realm() (in module priva-
cyidea.api.lib.prepolicy), 369

set_realms() (in module privacyidea.lib.token), 344
set_realms() (privacyidea.lib.tokenclass.TokenClass

method), 329
set_realms() (privacyidea.models.Token method),

403
set_so_pin() (privacyidea.lib.tokenclass.TokenClass

method), 329
set_so_pin() (privacyidea.models.Token method),

403
set_sync_window() (in module priva-

cyidea.lib.token), 344
set_sync_window() (priva-

cyidea.lib.tokenclass.TokenClass method),
329

SET_TOKENINFO (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_tokeninfo() (priva-
cyidea.lib.tokenclass.TokenClass method),
329

SET_TOKENREALM (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_type() (privacyidea.lib.tokenclass.TokenClass
method), 330

SET_USER_ATTRIBUTES (priva-
cyidea.lib.policy.ACTION attribute), 349

set_user_pin() (priva-
cyidea.lib.tokenclass.TokenClass method),
330

SET_VALIDITY (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 183

set_validity_period_end() (in module priva-
cyidea.lib.token), 344

set_validity_period_end() (priva-
cyidea.lib.tokenclass.TokenClass method),
330

set_validity_period_start() (in module pri-
vacyidea.lib.token), 344

set_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
330

SETDESCRIPTION (privacyidea.lib.policy.ACTION at-
tribute), 349

SETHSM (privacyidea.lib.policy.ACTION attribute), 349
SETPIN (privacyidea.lib.policy.ACTION attribute), 349
SETRANDOMPIN (privacyidea.lib.policy.ACTION

attribute), 349
SETREALM (privacyidea.lib.policy.ACTION attribute),

349
SETTING_ACTIONS (privacyidea.lib.policy.GROUP

attribute), 351
SETTOKENINFO (privacyidea.lib.policy.ACTION

attribute), 349
setup tool, 74
setup() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

static method), 386
shortcuts, 413
SHOW_ANDROID_AUTHENTICATOR (priva-

cyidea.lib.policy.ACTION attribute), 349
SHOW_CUSTOM_AUTHENTICATOR (priva-

cyidea.lib.policy.ACTION attribute), 350
SHOW_IOS_AUTHENTICATOR (priva-

cyidea.lib.policy.ACTION attribute), 350
SHOW_NODE (privacyidea.lib.policy.ACTION attribute),

350
SHOW_SEED (privacyidea.lib.policy.ACTION attribute),

350
sign_response() (in module priva-

cyidea.api.lib.postpolicy), 374
Sipgate, 69
SipgateSMSProvider (class in priva-

cyidea.lib.smsprovider.SipgateSMSProvider),
381

SMS, 85
SMS automatic resend, 132

450 Index

privacyIDEA Authentication System, Release 3.6.2

SMS Gateway, 61, 69
SMS policy, 131
SMS Provider, 61, 381
SMS text, 131
SMS Token, 68
SMS token, 103
sms_identifiers() (in module priva-

cyidea.api.lib.prepolicy), 369
SMSGateway (class in privacyidea.models), 401
SMSGatewayOption (class in privacyidea.models),

401
SMSGATEWAYREAD (privacyidea.lib.policy.ACTION at-

tribute), 350
SMSGATEWAYWRITE (privacyidea.lib.policy.ACTION

attribute), 350
SmsTokenClass (class in priva-

cyidea.lib.tokens.smstoken), 297
SMTP server, 58
SMTPServer (class in privacyidea.models), 401
SMTPSERVERREAD (privacyidea.lib.policy.ACTION at-

tribute), 350
SMTPSERVERWRITE (privacyidea.lib.policy.ACTION

attribute), 350
SmtpSMSProvider (class in priva-

cyidea.lib.smsprovider.SmtpSMSProvider),
381

Software Tokens, 85
SPass token, 104
SpassTokenClass (class in priva-

cyidea.lib.tokens.spasstoken), 299
split_pin_pass() (priva-

cyidea.lib.tokenclass.TokenClass method),
330

split_pin_pass() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 279

split_pin_pass() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 294

split_uri() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 389

split_user() (in module privacyidea.lib.user), 272
SQL resolver, 43
sqlite, 43
SSH Key, 85
SSH keys, 104
SSHkeyTokenClass (class in priva-

cyidea.lib.tokens.sshkeytoken), 300
START (privacyidea.lib.eventhandler.tokenhandler.VALIDITY

attribute), 184
STATISTICSDELETE (privacyidea.lib.policy.ACTION

attribute), 350
STATISTICSREAD (privacyidea.lib.policy.ACTION at-

tribute), 350
status_validation_fail() (priva-

cyidea.lib.tokenclass.TokenClass method),
330

status_validation_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
330

STRING (privacyidea.lib.policy.TYPE attribute), 359
submit_message() (priva-

cyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider
method), 381

submit_message() (priva-
cyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider
method), 381

submit_message() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
method), 382

submit_message() (priva-
cyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider
method), 381

Subscription (class in privacyidea.models), 402
superuser realm, 111
SYSTEM (privacyidea.lib.policy.GROUP attribute), 351
system config, 49
SYSTEMDELETE (privacyidea.lib.policy.ACTION

attribute), 350
SYSTEMREAD (privacyidea.lib.policy.ACTION at-

tribute), 350
SYSTEMWRITE (privacyidea.lib.policy.ACTION at-

tribute), 350

T
TAN Token, 105
tantoken_count() (in module priva-

cyidea.api.lib.prepolicy), 369
task queue, 212
templates, 404
test_config() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 330

test_config() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
class method), 280

testconnection() (priva-
cyidea.lib.machines.base.BaseMachineResolver
static method), 395

testconnection() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
static method), 396

testconnection() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 389

testconnection() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver

Index 451

privacyIDEA Authentication System, Release 3.6.2

class method), 384
themes, 405
TIMEOUT_ACTION (class in privacyidea.lib.policy),

359
TIMEOUT_ACTION (privacyidea.lib.policy.ACTION at-

tribute), 350
timeshift() (priva-

cyidea.lib.tokens.totptoken.TotpTokenClass
property), 305

TimestampMethodsMixin (class in priva-
cyidea.models), 402

timestep() (privacyidea.lib.tokens.totptoken.TotpTokenClass
property), 305

timewindow() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
property), 305

TiQR, 85, 106
TiQR Token, 69
TiqrTokenClass (class in priva-

cyidea.lib.tokens.tiqrtoken), 302
token, 3
Token (class in privacyidea.models), 402
TOKEN (privacyidea.lib.policy.CONDITION_SECTION

attribute), 351
TOKEN (privacyidea.lib.policy.GROUP attribute), 351
token configuration, 66
token default settings, 49
Token Enrollment Wizard, 205
Token Handler, 180
Token specific PIN policy, 114, 126
token types, 85
Token view page size, 156
Token wizard, 156
token() (privacyidea.lib.policy.Match class method),

354
token_exist() (in module privacyidea.lib.token),

344
TokenClass (class in privacyidea.lib.tokenclass), 319
TokenEventHandler (class in priva-

cyidea.lib.eventhandler.tokenhandler), 183
TokenInfo (class in privacyidea.models), 403
TOKENINFO (privacyidea.lib.policy.ACTION attribute),

350
TOKENINFO (privacyidea.lib.policy.CONDITION_SECTION

attribute), 351
TOKENISSUER (privacyidea.lib.policy.ACTION at-

tribute), 350
TOKENLABEL (privacyidea.lib.policy.ACTION at-

tribute), 350
TOKENLIST (privacyidea.lib.policy.ACTION attribute),

350
TokenOwner (class in privacyidea.models), 403
TOKENOWNER (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE

attribute), 179

TOKENPAGESIZE (privacyidea.lib.policy.ACTION at-
tribute), 350

TOKENPIN (privacyidea.lib.policy.ACTIONVALUE at-
tribute), 350

TokenRealm (class in privacyidea.models), 403
TOKENREALMS (privacyidea.lib.policy.ACTION at-

tribute), 350
TOKENROLLOVER (privacyidea.lib.policy.ACTION at-

tribute), 350
TOKENS (privacyidea.lib.policy.MAIN_MENU attribute),

352
tokensview, 31
TOKENTYPE (privacyidea.lib.policy.ACTION attribute),

350
TOKENWIZARD (privacyidea.lib.policy.ACTION at-

tribute), 350
TOKENWIZARD2ND (privacyidea.lib.policy.ACTION at-

tribute), 350
tools, 210
TOOLS (privacyidea.lib.policy.GROUP attribute), 351
TOTP Token, 71
TotpTokenClass (class in priva-

cyidea.lib.tokens.totptoken), 303
transaction_id, 69
TRIGGERCHALLENGE (privacyidea.lib.policy.ACTION

attribute), 350
Two Man, 86
twostep, 210
twostep_enrollment_activation() (in mod-

ule privacyidea.api.lib.prepolicy), 370
twostep_enrollment_parameters() (in mod-

ule privacyidea.api.lib.prepolicy), 370
TYPE (class in privacyidea.lib.policy), 359

U
U2F, 108
U2F Token, 71
u2ftoken_allowed() (in module priva-

cyidea.api.lib.prepolicy), 370
u2ftoken_verify_cert() (in module priva-

cyidea.api.lib.prepolicy), 370
U2fTokenClass (class in priva-

cyidea.lib.tokens.u2ftoken), 307
ubuntu, 6
ui_get_enroll_tokentypes() (priva-

cyidea.lib.policy.PolicyClass method), 358
ui_get_main_menus() (priva-

cyidea.lib.policy.PolicyClass method), 358
ui_get_rights() (priva-

cyidea.lib.policy.PolicyClass method), 358
UNASSIGN (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE

attribute), 183
UNASSIGN (privacyidea.lib.policy.ACTION attribute),

350

452 Index

privacyIDEA Authentication System, Release 3.6.2

unassign_token() (in module priva-
cyidea.lib.token), 345

update() (privacyidea.lib.tokenclass.TokenClass
method), 330

update() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 277

update() (privacyidea.lib.tokens.emailtoken.EmailTokenClass
method), 280

update() (privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 275

update() (privacyidea.lib.tokens.hotptoken.HotpTokenClass
method), 283

update() (privacyidea.lib.tokens.motptoken.MotpTokenClass
method), 284

update() (privacyidea.lib.tokens.ocratoken.OcraTokenClass
method), 285

update() (privacyidea.lib.tokens.papertoken.PaperTokenClass
method), 286

update() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 287

update() (privacyidea.lib.tokens.pushtoken.PushTokenClass
method), 290

update() (privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 292

update() (privacyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 294

update() (privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 296

update() (privacyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 297

update() (privacyidea.lib.tokens.smstoken.SmsTokenClass
method), 299

update() (privacyidea.lib.tokens.spasstoken.SpassTokenClass
method), 300

update() (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
method), 301

update() (privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 303

update() (privacyidea.lib.tokens.totptoken.TotpTokenClass
method), 305

update() (privacyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 309

update() (privacyidea.lib.tokens.webauthntoken.WebAuthnTokenClass
method), 316

update() (privacyidea.lib.tokens.yubicotoken.YubicoTokenClass
method), 317

update() (privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 318

update_otpkey() (privacyidea.models.Token
method), 403

update_type() (privacyidea.models.Token method),
403

update_user() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 389
update_user() (priva-

cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 384

update_user_info() (privacyidea.lib.user.User
method), 271

UPDATEUSER (privacyidea.lib.policy.ACTION at-
tribute), 350

User (class in privacyidea.lib.user), 269
USER (privacyidea.lib.policy.GROUP attribute), 351
USER (privacyidea.lib.policy.SCOPE attribute), 359
User Attributes, 35
user cache, 46
User Notification, 176, 379
user policies, 123
user registration, 160
User view page size, 156
user() (privacyidea.lib.policy.Match class method),

354
user() (privacyidea.lib.tokenclass.TokenClass prop-

erty), 331
UserCache (class in privacyidea.models), 404
USERDETAILS (privacyidea.lib.policy.ACTION at-

tribute), 350
UserIdResolver (class in priva-

cyidea.lib.resolvers.UserIdResolver), 383
useridresolvers, 38, 383
USERINFO (privacyidea.lib.policy.CONDITION_SECTION

attribute), 351
USERLIST (privacyidea.lib.policy.ACTION attribute),

350
UserNotificationEventHandler (class in priva-

cyidea.lib.eventhandler.usernotification), 179,
379

USERPAGESIZE (privacyidea.lib.policy.ACTION
attribute), 350

Users, 117
USERS (privacyidea.lib.policy.MAIN_MENU attribute),

352
USERSTORE (privacyidea.lib.policy.ACTIONVALUE at-

tribute), 350
USERSTORE (privacyidea.lib.policy.AUTOASSIGNVALUE

attribute), 351
USERSTORE (privacyidea.lib.policy.LOGINMODE at-

tribute), 351
using_pin (privacyidea.lib.tokenclass.TokenClass at-

tribute), 331
using_pin (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

attribute), 277
using_pin (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

attribute), 301

V
VALIDITY (class in priva-

Index 453

privacyIDEA Authentication System, Release 3.6.2

cyidea.lib.eventhandler.tokenhandler), 184
VASCO, 109
verify_response() (priva-

cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 285

virtual environment, 4

W
WebAuth, 109
WebAuthn Token, 72
webauthntoken_allowed() (in module priva-

cyidea.api.lib.prepolicy), 370
webauthntoken_auth() (in module priva-

cyidea.api.lib.prepolicy), 371
webauthntoken_authz() (in module priva-

cyidea.api.lib.prepolicy), 371
webauthntoken_enroll() (in module priva-

cyidea.api.lib.prepolicy), 371
webauthntoken_request() (in module priva-

cyidea.api.lib.prepolicy), 372
WebAuthnTokenClass (class in priva-

cyidea.lib.tokens.webauthntoken), 314
WebUI, 30
webui, 30
WEBUI (privacyidea.lib.policy.SCOPE attribute), 359
WebUI Login, 154
WebUI Policy, 154
weigh_token_type() (in module priva-

cyidea.lib.token), 345
Windows, 220
Wizard, 156
Wordpress, 220
wrap_job() (in module privacyidea.lib.queue), 362

Y
Yubico, 85
Yubico AES mode, 110, 206
Yubico Cloud mode, 73, 110
YubicoTokenClass (class in priva-

cyidea.lib.tokens.yubicotoken), 317
Yubikey, 85, 110, 206
Yubikey AES mode, 74
Yubikey CSV, 201
Yubikey OATH-HOTP mode, 206
Yubikey personalization GUI, 206
Yubikey personalization tool, 206
YubikeyTokenClass (class in priva-

cyidea.lib.tokens.yubikeytoken), 317
YUM, 11

454 Index

	Table of Contents
	Indices and tables
	Python Module Index
	HTTP Routing Table
	Index

