privacylDEA Authentication System
Release 3.6.1

Cornelius Kolbel

Jul 19, 2021

CONTENTS

1 Table of Contents 3
2 Indices and tables 419
Python Module Index 421
HTTP Routing Table 423

Index 427

privacylDEA Authentication System, Release 3.6.1

privacyIDEA is a modular authentication system. Using privacyIDEA you can enhance your existing applications
like local login, VPN, remote access, SSH connections, access to web sites or web portals with a second factor
during authentication. Thus boosting the security of your existing applications. Originally it was used for OTP
authentication devices. But other “devices” like challenge response and SSH keys are also available. It runs on Linux
and is completely Open Source, licensed under the AGPLv3.

privacyIDEA can read users from many different sources like flat files, different LDAP services, SQL databases and
SCIM services. (see Realms)

Authentication devices to provide two factor authentication can be assigned to those users, either by administrators
or by the users themselves. Policies define what a user is allowed to do in the web UI and what an administrator is
allowed to do in the management interface.

The system is written in python, uses flask as web framework and an SQL database as datastore. Thus it can be
enrolled quite easily providing a lean installation. (see Installation)

CONTENTS 1

privacylDEA Authentication System, Release 3.6.1

2 CONTENTS

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Overview

privacylIDEA is a system that is used to manage devices for two factor authentication. Using privacyIDEA you can
enhance your existing applications like local login, VPN, remote access, SSH connections, access to web sites or web
portals with a second factor during authentication. Thus boosting the security of your existing applications.

In the beginning there were OTP tokens, but other means to authenticate like SSH keys are added. Other concepts like
handling of machines or enrolling certificates are coming up, you may monitor this development on Github.

privacyIDEA is a web application written in Python based on the flask micro framework. You can use any webserver
with a wsgi interface to run privacyIDEA. E.g. this can be Apache, Nginx or even werkzeug.

A device or item used to authenticate is still called a “token”. All token information is stored in an SQL database,
while you may choose, which database you want to use. privacy]DEA uses SQLAlchemy to map the database to
internal objects. Thus you may choose to run privacyIDEA with SQLite, MySQL, PostgreSQL, Oracle, DB2 or other
database.

The code is divided into three layers, the API, the library and the database layer. Read about it at Code Documentation.
privacylIDEA provides a clean REST API.

Administrators can use a Web Ul or a command line client to manage authentication devices. Users can log in to the
Web UI to manage their own tokens.

Authentication is performed via the API or certain plugins for FreeRADIUS, simpleSAMLphp, Wordpress, Contao,
Dokuwiki. .. to either provide default protocols like RADIUS or SAML or to integrate into applications directly.

Due to this flexibility there are also many different ways to install and setup privacyIDEA. We will take a look at
common ways to setup privacyIDEA in the section /nstallation but there are still many others.

1.2 Installation

The ways described here to install privacyIDEA are
* the installation via the Python Package Index, which can be used on any Linux distribution and
e ready made Ubuntu Packages for Ubuntu 16.04 LTS and 18.04 LTS.

If you want to upgrade please read Upgrading.

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://www.sqlalchemy.org/

privacylDEA Authentication System, Release 3.6.1

1.2.1 Python Package Index
You can install privacyidea usually on any Linux distribution in a python virtual environment. This way you keep all
privacyIDEA code in one defined subdirectory.

privacyIDEA currently runs with Python 2.7 and 3.5, 3.6, 3.7 and 3.8. Other versions either do not work or are not
tested.

You first need to install a package for creating a python virtual environment.

Now you can setup the virtual environment for privacyIDEA like this:

virtualenv /opt/privacyidea

cd /opt/privacyidea
source bin/activate

Note: Some distributions still ship Python 2.7 as the system python. If you want to use Python 3 you can create the
virtual environment like this: virtualenv -p /usr/bin/python3 /opt/privacyidea

Now you are within the python virtual environment and you can run:

pip install privacyidea

in order to install the latest privacyIDEA version from PyPI.

Deterministic Installation

The privacyIDEA package contains dependencies with a minimal required version. However, newest versions of
dependencies are not always tested and might cause problems. If you want to achieve a deterministic installation, you
can now install the pinned and tested versions of the dependencies:

pip install -r lib/privacyidea/requirements.txt

It would even be safer to install the pinned dependencies before installing privacyIDEA. So if you e.g. know that you
are going to install version 3.6 you can run:

pip install -r https://raw.githubusercontent.com/privacyidea/privacyidea/v3.6/
—requirements.txt
pip install privacyidea==3.6

Configuration

Database

privacyIDEA makes use of SQLAIchemy to be able to talk to different SQL-based databases. Our best experience is
with MySQL but SQLAlchemy supports many different databases'.

The database server should be installed on the host or be otherwise reachable.

In order for privacyIDEA to use the database, a database user with the appropriate privileges is needed. The following
SQL commands will create the database as well as a user in MySQL:

! https://docs.sqlalchemy.org/en/13/dialects/index.html

4 Chapter 1. Table of Contents

https://virtualenv.pypa.io/en/stable/
https://pypi.org/project/privacyIDEA
https://www.sqlalchemy.org
https://www.mysql.com/
https://docs.sqlalchemy.org/en/13/dialects/index.html

privacylDEA Authentication System, Release 3.6.1

CREATE DATABASE pi;
CREATE USER "pi"@"localhost" IDENTIFIED BY "<dbsecret>";
GRANT ALL PRIVILEGES ON pi.x TO "pi"@"localhost";

You must then add the database name, user and password to your pi.cfg. See The Config File for more information on
the configuration.

Setting up privacylDEA

Additionally to the database connection a new PI_PEPPER and SECRET_KEY must be generated in order to secure
the installation:

PEPPER="S (tr —-dc A-Za-z0-9_ </dev/urandom | head -c24)"

echo "PI_PEPPER = 'SPEPPER'" >> /path/to/pi.cfg
SECRET="S$ (tr —-dc A-Za-z0-9_ </dev/urandom | head -c24)"
echo "SECRET_KEY = 'SSECRET'" >> /path/to/pi.cfg

An encryption key for encrypting the secrets in the database and a key for signing the Audit log is also needed (the
following commands should be executed inside the virtual environment):

pi-manage create_enckey # encryption key for the database
pi-manage create_audit_keys # key for verification of audit log entries

To create the database tables execute:

’pifmanage createdb

Stamping the database to the current database schema version is important for the update process later:

’pifmanage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations/

After creating a local administrative user with:

’pifmanage admin add <login>

the development server can be started with:

’pifmanage runserver

Warning: The development server should not be used for a productive environment.

Webserver

To serve authentication requests and provide the management Ul a WSGI capable webserver like Apache?2 or nginx is
needed.

Setup and configuration of a webserver can be a complex procedure depending on several parameter (host OS, SSL,
internal network structure, ...). Some example configuration can be found in the NetKnights GitHub repositories’.
More on the WSGI setup for privacyIDEA can be found in The WSGI Script.

2 https://github.com/NetKnights-GmbH/ubuntu/tree/master/deploy

1.2. Installation 5

https://wsgi.readthedocs.io/en/latest/index.html
https://httpd.apache.org/
https://nginx.org/en
https://github.com/NetKnights-GmbH/ubuntu/tree/master/deploy

privacylDEA Authentication System, Release 3.6.1

1.2.2 Ubuntu Packages

There are ready made packages for Ubuntu.

Packages of older releases of privacyIDEA up to version 2.23 are available for Ubuntu 14.04 LTS and Ubuntu 16.04
LTS from a public ppa repository'. Using these is deprecated.

For recent releases of privacyIDEA starting from version 3.0 a repository is available which provides packages for
Ubuntu 16.04 LTS, 18.04 LTS and 20.04LTS”.

Note: The packages privacyidea—apache?2 and privacyidea—-nginx assume that you want to run a pri-
vacyIDEA system. These packages deactivate all other (default) websites. Instead, you may install the package
privacyidea-mysql to install the privacyIDEA application and setup the database without any webserver con-
figuration. After this, you can integrate privacyIDEA with your existing webserver configuration.

Read about the upgrading process in Upgrading a packaged installation.

Installing privacylDEA 3.0 or higher

Before installing privacyIDEA 3.0 or upgrading to 3.0 you need to add the repository.

Add repository

The packages are digitally signed. First you need to download the signing key:

’ wget https://lancelot.netknights.it/NetKnights-Release.asc

On Ubuntu 16.04 check the fingerprint of the key:

’gpg —-with-fingerprint NetKnights-Release.asc

On 18.04 and 20.04 you need to run:

’gpg ——import --import-options show-only —--with-fingerprint NetKnights-Release.asc

The fingerprint of the key is:

pub 4096R/AE250082 2017-05-16 NetKnights GmbH <release@netknights.it>
Key fingerprint = 0940 4ABB EDB3 586D EDE4 AD22 00F7 0D62 AE25 0082

Now add the signing key to your system:

’aptfkey add NetKnights—-Release.asc

Now you need to add the repository for your release (either xenial/16.04LTS, bionic/18.04LTS, focal/20.04LTS)

You can do this by running the command:

’ add-apt-repository http://lancelot.netknights.it/community/xenial/stable

or:

! https://launchpad.net/~privacyidea
2 Starting with privacyIDEA 2.15 Ubuntu 16.04 packages are provided. Starting with privacyIDEA 3.0 Ubuntu 16.04 and 18.04 packages are
provided, Ubuntu 14.04 packages are dropped. Starting with privacyIDEA 3.5 Ubuntu 20.04 packages are available.

6 Chapter 1. Table of Contents

https://launchpad.net/~privacyidea

privacylDEA Authentication System, Release 3.6.1

’addfaptfrepository http://lancelot.netknights.it/community/bionic/stable

or:

’addfaptfrepository http://lancelot.netknights.it/community/focal/stable

As an alternative you can add the repo in a dedicated file. Create a new file /etc/apt/sources.list.d/
privacyidea-community.list with the following contents:

’deb http://lancelot.netknights.it/community/xenial/stable xenial main

or:

’deb http://lancelot.netknights.it/community/bionic/stable bionic main

or:

’deb http://lancelot.netknights.it/community/focal/stable focal main

Note: While the link http://lancelot.netknights.it/community/ and its subdirectories are browsable, it is only available
via http! Most browsers will automatically redirect you to https, which will result in a 404 error, since the link
http**s**://lancelot.netknights.it/community/ does not exist. So if you want to browse the repository, take care to do
this via http. This is OK. The apt program fetches all packages via http. If you still fail to fetch packages, you might
most probably need to check your firewall and proxy settings.

Installation of privacylDEA 3.x

After having added the repositories, run:

apt update
apt install privacyidea-apache2

If you do not like the Apache2 webserver you could alternatively use the meta package privacyidea-nginx.

Now you may proceed to First Steps.

FreeRADIUS

privacyIDEA has a perl module to “translate” RADIUS requests to the API of the privacyIDEA server. This module
plugs into FreeRADIUS. The FreeRADIUS does not have to run on the same machine as privacyIDEA. To install this
module run:

apt—-get install privacyidea-radius

For further details see rlm_perl.

1.2. Installation 7

http://lancelot.netknights.it/community/

privacylDEA Authentication System, Release 3.6.1

1.2.3 CentOS Installation
Step-by-Step installation on CentOS

In this chapter we describe a way to install privacyIDEA on CentOS 7 based on the installation via Python Package
Index. 1t follows the approach used in the enterprise packages (See RPM Repository).

Setting up the required services

In this guide we use Python 2.7 even though its end-of-life draws closer. CentOS 7 will support Python 2 until the end
of its support frame. Basically the steps for using privacyIDEA with Python 3 are the same but several other packages
need to be installed'.

First the necessary packages need to be installed:

$ yum install mariadb-server httpd mod_wsgi mod_ssl python-virtualenv policycoreutils-
—python

Now enable and configure the services:

$ systemctl enable --now httpd
$ systemctl enable --now mariadb
$ mysqgl_secure_installation

Setup the database for the privacyIDEA server:

$ echo 'create database pi;' | mysgl -u root -p
$ echo 'create user "pi"@"localhost" identified by "<dbsecret>";' | mysgl -u root -p
$ echo 'grant all privileges on pi.» to "pi"@"localhost";' | mysgl -u root -p

If this should be a pinned installation (i.e. with all the package pinned to the versions with which we are develop-
ing/testing), some more packages need to be installed for building these packages:

$ yum install gcc postgresgl-devel

Create the necessary directories:

$ mkdir /etc/privacyidea
$ mkdir /opt/privacyidea
$ mkdir /var/log/privacyidea

Add a dedicated user for the privacyIDEA server and change some ownerships:

$ useradd -r -M -d /opt/privacyidea privacyidea
$ chown privacyidea:privacyidea /opt/privacyidea /etc/privacyidea /var/log/privacyidea

! https://stackoverflow.com/questions/42004986/how-to-install-mod- wgsi- for-apache-2-4-with-python3-5-on-centos-7

8 Chapter 1. Table of Contents

https://stackoverflow.com/questions/42004986/how-to-install-mod-wgsi-for-apache-2-4-with-python3-5-on-centos-7

privacylDEA Authentication System, Release 3.6.1

Install the privacylDEA server

Now switch to that user and install the virtual environment for the privacyIDEA server:

’$ su - privacyidea

Create the virtual environment:

’$ virtualenv /opt/privacyidea

activate it:

’$. /opt/privacyidea/bin/activate

and install/update some prerequisites:

’(privacyidea)s pip install -U pip setuptools

If this should be a pinned installation (that is the environment we use to build and test), we need to install some pinned
dependencies first. They should match the version of the targeted privacyIDEA. You can get the latest version tag from
the GitHub release page or the PyPI package history (e.g. “3.3.17):

(privacyidea)$ export PI_VERSION=3.3.1
(privacyidea)$ pip install -r https://raw.githubusercontent.com/privacyidea/
—privacyidea/v${PI_VERSION}/requirements.txt

Then just install the targeted privacyIDEA version with:

(privacyidea)$ pip install privacyidea==${PI_VERSION}

Setting up privacylDEA

In order to setup privacyIDEA a configuration file must be added in /etc/privacyidea/pi.cfg. It should look
something like this:

import logging

The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super']

Your database

SQLALCHEMY_DATABASE_URI = 'mysql+pymysqgl://pi:<dbsecret>@localhost/pi’
This is used to encrypt the auth_token

#SECRET_KEY = 'tOp s3cr3t'’

This 1is used to encrypt the admin passwords

#PI_PEPPER = "Never know..."

This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'

This is used to sign the audit log

PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_AUDIT_SQL_TRUNCATE = True

The Class for managing the SQL connection pool

PI_ENGINE_REGISTRY_CLASS = "shared"
PI_AUDIT_POOL_SIZE = 20
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'

PI_LOGLEVEL = logging.INFO

1.2. Installation 9

https://github.com/privacyidea/privacyidea/releases
https://pypi.org/project/privacyIDEA/#history

privacylDEA Authentication System, Release 3.6.1

Make sure the configuration file is not world readable:

(privacyidea)$ chmod 640 /etc/privacyidea/pi.cfg

More information on the configuration parameters can be found in 7he Config File.

In order to secure the installation a new PI_PEPPER and SECRET_KEY must be generated:

(privacyidea)$ PEPPER="$(tr —-dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "PI_PEPPER = 'SPEPPER'" >> /etc/privacyidea/pi.cfg
(privacyidea)$ SECRET="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "SECRET_KEY = 'SSECRET'" >> /etc/privacyidea/pi.cfg

From now on the pi-manage-tool can be used to configure and manage the privacyIDEA server:

(privacyidea)$ pi-manage create_enckey # encryption key for the database
(privacyidea)$ pi-manage create_audit_keys # key for verification of audit log,,
—entries

(privacyidea)$ pi-manage createdb # create the database structure

(privacyidea)$ pi-manage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations/
— # stamp the db

An administrative account is needed to configure and maintain privacylDEA:

(privacyidea)$ pi-manage admin add <admin-user>

Setting up the Apache webserver

Now We need to set up apache to forward requests to privacyIDEA, so the next steps are executed as the root-user
again.

First the SELinux settings must be adjusted in order to allow the httpd-process to access the database and write to
the privacyIDEA logfile:

$ semanage fcontext —-a -t httpd_sys_rw_content_t "/var/log/privacyidea (/.x*)?2?"
$ restorecon -R /var/log/privacyidea

and:

’$ setsebool -P httpd_can_network_connect_db 1

If the user store is an LDAP-resolver, the ht t pd-process also needs to access the ldap ports:

’$ setsebool -P httpd_can_connect_ldap 1

If something does not seem right, check for “denied” entries in /var/log/audit/audit.log

Some LDAP-resolver could be listening on a different port. In this case SELinux has to be configured accordingly.
Please check the SELinux audit.log to see if SELinux might block any connection.

For testing purposes we use a self-signed certificate which should already have been created. In production environ-
ments this should be replaced by a certificate from a trusted authority.

To correctly load the apache config file for privacyIDEA we need to disable some configuration first:

10 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

cd /etc/httpd/conf.d

mv ssl.conf ssl.conf.inactive

mv welcome.conf welcome.conf.inactive

curl -o privacyidea.conf https://raw.githubusercontent.com/NetKnights-GmbH/centos7/
—master/SOURCES/privacyidea.conf.disabled

v »r A

In order to avoid recreation of the configuration files during update You can create empty dummy files for ss1.conf
and welcome.conf.

And we need a corresponding wsgi-script file in /etc/privacyidea/:

$ cd /etc/privacyidea
$ curl -O https://raw.githubusercontent.com/NetKnights-GmbH/centos7/master/SOURCES/
—privacyideaapp.wsgi

If firewalld is running ($ firewall-cmd --state) You need to open the https port to allow connections:

$ firewall-cmd --permanent —--add-service=https
$ firewall-cmd —--reload

After a restart of the apache webserver ($ systemctl restart httpd) everything should be up and running.
You can log in with Your admin user at https://<privacyidea server> and start enrolling tokens.

RPM Repository

For customers with a valid service level agreement” with NetKnights there is an RPM repository, that can be used to
easily install and update privacyIDEA on CentOS 7 / RHEL 7. For more information see’.

1.2.4 Upgrading

In any case before upgrading a major version read the document READ_BEFORE_UPDATE which is continuously
updated in the Github repository. Note, that when you are upgrading over several major versions, read all the comments
for all versions.

If you installed privacyIDEA via DEB or RPM repository you can use the normal system ways of apt-get, aptitude
and yum to upgrade privacyIDEA to the current version.

If you want to upgrade an old Ubuntu installation from privacyIDEA 2.23 to privacyIDEA 3.0, please read the Note
on legacy upgrades.

Different upgrade processes

Depending on the way privacyIDEA was installed, there are different recommended update procedures. The following
section describes the process for pip installations. Instructions for packaged versions on RHEL and Ubuntu are found
in Upgrading a packaged installation.

2 https://netknights.it/en/leistungen/service-level-agreements/
3 https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

1.2. Installation 11

https://github.com/privacyidea/privacyidea/blob/master/READ_BEFORE_UPDATE.md
https://netknights.it/en/leistungen/service-level-agreements/
https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

privacylDEA Authentication System, Release 3.6.1

Upgrading a pip installation

If you install privacyIDEA into a python virtualenv like /opt/privacyidea, you can follow this basic upgrade process.

First you might want to backup your program directory:

tar -zcf privacyidea-old.tgz /opt/privacyidea

and your database:

source /opt/privacyidea/bin/activate
pi-manage backup create

Running upgrade

Starting with version 2.17 the script privacyidea-pip-update performs the update of the python virtualenv
and the DB schema.

Just enter your python virtualenv (you already did so, when running the backup) and run the command:
privacyidea-pip-update

The following parameters are allowed:

—-f or ——force skips the safety question, if you really want to update.

—-s or ——skipstamp skips the version stamping during schema update.

—-n or ——noshema completely skips the schema update and only updates the code.

Manual upgrade

Now you can upgrade the installation:

source /opt/privacyidea/bin/activate
pip install --upgrade privacyidea

Usually you will need to upgrade/migrate the database:

privacyidea-schema-upgrade /opt/privacyidea/lib/privacyidea/migrations

Now you need to restart your webserver for the new code to take effect.

Upgrading a packaged installation

In general, the upgrade of a packaged version of privacyIDEA should be done using the default tools (e.g. apt and
yum). In any case, read the READ_BEFORE_UPDATE file. It is also a good idea to backup your system before
upgrading.

12 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/blob/master/READ_BEFORE_UPDATE.md

privacylDEA Authentication System, Release 3.6.1

Ubuntu upgrade

If you use the Ubuntu packages in a default setup, the upgrade can should be done using:

apt update
apt dist-upgrade

Note: In case you upgrade from the old privacyIDEA 2.23.x to the version 3.x you have to change from your ppa
sources to the new repositories. If you are upgrading your Ubuntu release, e.g. from 14.04 to 16.04 the principal steps
are

* Bring your Ubuntu 14.04 system up-to-date

* Run the release upgrade (do-release-upgrade)

* Eventually remove old repositories and add recent repositories as described in Add repository.
* Reinstall/Upgrade privacyIDEA 3.x

privacyIDEA 2.x installed the python packages to the system directly. The packages in the repository instead come
with a virtual python environment. This may cause lots of obsolete packages after upgrading which may be removed
with:

apt autoremove

CentOS upgrade

For a Red Hat Enterprise Linux (RHEL) installation run:

yum update

to upgrade.

1.2.5 The Config File

privacyIDEA reads its configuration from different locations:
1. default configuration from the module privacyidea/config.py
2. then from the config file /etc/privacyidea/pi.cfqg if it exists and then
3. from the file specified in the environment variable PRIVACYIDEA_CONFIGFILE.
export PRIVACYIDEA_CONFIGFILE=/your/config/file

The configuration is overwritten and extended in each step. L.e. values define in privacyidea/config.py that
are not redefined in one of the other config files, stay the same.

You can create a new config file (either /etc/privacyidea/pi.cfqg) or any other file at any location and set the
environment variable. The file should contain the following contents:

The realm, where users are allowed to login as administrators

SUPERUSER_REALM = ['super', 'administrators']
Your database
SQLALCHEMY_DATABASE_URI = 'sqglite:////etc/privacyidea/data.sglite'

(continues on next page)

1.2. Installation 13

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

This is used to encrypt the auth_token

SECRET_KEY = 'tOp s3cr3t'

This is used to encrypt the admin passwords

PI_PEPPER = "Never know..."

This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'

This is used to sign the audit log

PI_AUDIT_KEY_PRIVATE = '/home/cornelius/src/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/home/cornelius/src/privacyidea/public.pem'
PI_AUDIT_MODULE = <python audit module>

PI_AUDIT _SQI_URI = <special audit log DB uri>

PI LOGFILE = "....'

PI_LOGLEVEL = 20

PI_INIT CHECK_HOOK = 'your.module.function'

PI _CSS = '/location/of/theme.css'

PI_UI_DEACTIVATED = True

HoH R W W R

Note: The config file is parsed as python code, so you can use variables to set the path and you need to take care for
indentations.

SQLALCHEMY_DATABASE_URI defines the location of your database. You may want to use the MySQL database
or Maria DB. There are two possible drivers, to connect to this database. Please read MySQL database connect string.

The SUPERUSER_REALM is a list of realms, in which the users get the role of an administrator.

PI_INIT_CHECK_HOOK is a function in an external module, that will be called as decorator to token/init and
token/assign. This function takes the request and action (either “init” or “assign”) as arguments and can
modify the request or raise an exception to avoid the request being handled.

If you set PI_DB_SAFE_STORE to True the database layer will in the cases of tokenowner, tokeinfo and
tokenrealm read the id of the newly created database object in an additional SELECT statement and not return it
directly. This is slower but more robust and can be necessary in large redundant setups.

Note: In certain cases (e.g. with Galera Cluster) it can happen that the database node has no information about the
object id directly during the write-process. The database might respond with an error like “object has been deleted or
its row is otherwise not present”. In this case setting PI_DB_SAFE_STORE to True might help.

Logging
There are three config entries, that can be used to define the logging. These are PI_LOGLEVEL, PI_LOGFILE,
PI_LOGCONFIG. These are described in Debugging and Logging.

You can use PI_CSS to define the location of another cascading style sheet to customize the look and feel. Read more
at Themes.

Note: If you ever need passwords being logged in the log file, you may set PI_LOGLEVEL = 9, which is a lower
log level than 10ogging.DEBUG. Use this setting with caution and always delete the logfiles!

privacyIDEA digitally signs the responses. You can disable this using the parameter PI_NO_RESPONSE_SIGN. Set
this to True to suppress the response signature.

14 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

You can set PI_UI_DEACTIVATED = True to deactivate the privacyIDEA UL This can be interesting if you are
only using the command line client or your own UI and you do not want to present the UI to the user or the outside
world.

Note: The API calls are all still accessible, i.e. privacyIDEA is technically fully functional.

The parameter PI_TRANSLATION_WARNING can be used to provide a prefix, that is set in front of every string in
the UI, that is not translated to the language your browser is using.

Engine Registry Class

The PI_ENGINE_REGISTRY_CLASS option controls the pooling of database connections opened by SQL resolvers
and the SQL audit module. If it is set to "null", SQL connections are not pooled at all and new connections are
opened for every request. If it is set to "shared", connections are pooled on a per-process basis, i.e. every wsgi
process manages one connection pool for each SQL resolver and the SQL audit module. Every request then checks
out connections from this shared pool, which reduces the overall number of open SQL connections. If the option is
left unspecified, its value defaults to "null".

Audit parameters

PI_AUDIT_MODULE lets you specify an alternative auditing module. The default which is shipped with privacyIDEA
isprivacyidea.lib.auditmodules.sqglaudit. There is no need to change this, unless you know exactly
what you are doing.

You can change the servername of the privacyIDEA node, which will be logged to the audit log using the variable
PI_AUDIT_SERVERNAME.

You can run the database for the audit module on another database or even server. For this you can specify the database
URI via PI_AUDIT_SQL_URI.

PI_AUDIT_SQL_TRUNCATE = True lets you truncate audit entries to the length of the database fields.

In certain cases when you experiencing problems you may use the parameters PI_AUDIT_ POOL_SIZE and
PI_AUDIT_POOL_RECYCLE. However, they are only effective if you also set PI_ENGINE_REGISTRY_CLASS
to "shared".

If you by any reason want to avoid signing audit entries you can set PI_AUDIT_NO_SIGN = True. If
PI_AUDIT_NO_SIGN is set to True audit entries will not be signed and also the signature of audit entries will
not be verified. Audit entries will appears with signature fail.

Monitoring parameters
PI_MONITORING_MODULE lets you specify an alternative statistics monitoring module. The monitoring module
takes care of writing values with timestamps to a store. This is used e.g. by the EventCounter and SimpleStats.

The first available monitoring module is privacyidea.lib.monitoringmodules.sglstats. It accepts the
following additional parameters:

PI_MONITORING_SQL_URI can hold an alternative SQL connect string. If not specified the normal
SQLALCHEMY_DATABASE_URTI is used.

PI_MONITORING_POOL_SIZE (default 20) and PI_MONITORING_POOL_RECYCLE (default 600) let you con-
figure pooling. It uses the settings from the above mentioned PI_ENGINE_REGISTRY_CLASS.

1.2. Installation 15

privacylDEA Authentication System, Release 3.6.1

Note: A SQL database is probably not the best database to store time series. Other monitoring modules will follow.

privacylDEA Nodes

privacyIDEA can run in a redundant setup. For statistics and monitoring purposes you can give these different nodes,
dedicated names.

PI_NODE is a string with the name of this very node. PI_NODES is a list of all available nodes in the cluster.

If PI_NODE is not set, then PI_AUDIT SERVERNAME is used as node name. If this is also not set, the node name
is returned as “localnode”.

Trusted JWTs

Other applications can use the API without the need to call the /auth endpoint. This can be achieved by trusting
private RSA keys to sign JWTs. You can define a list of corresponding public keys that are trusted for certain users
and roles using the parameter PI_TRUSTED_JWT:

PI_TRUSTED_JWT = [{"public_key": "————— BEGIN PUBLIC KEY-———— \
—>nMIIBIjANBgkghkiGO9wOBAQEF...",

"algorithm": "RS256",

"role": "user",

"realm": "realml",

"username": "userA",

"resolver": "resolverX"}]

This entry means, that the private key, that corresponds to the given public key can sign a JWT, that can impersonate
as the userA in resolver resolverX in realmA.

Note: The username can be a regular expression like “.*”. This way you could allow a private signing key to
impersonate every user in a realm. (Starting with version 3.3)

A JWT can be created like this:

auth_token = jwt.encode (payload={"role": "user",
"username": "userA",
"realm": "realml",
"resolver": "resolverX"},
key=private_key,
algorithm="RS256")

Note: The user and the realm do not necessarily need to exist in any resolver! But there probably must be certain
policies defined for this user. If you are using an administrative user, the realm for this administrative must be defined
in pi.cfgin the list SUPERUSER_REALM.

16 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

3rd party token types

You can add 3rd party token types to privacyIDEA. Read more about this at New token classes.

To make the new token type available in privacyIDEA, you need to specify a list of your 3rd party token class modules
in pi.cfqg using the parameter PI_TOKEN_MODULES:

PI_TOKEN_MODULES = [“myproject.cooltoken”, “myproject.lametoken”]

Custom Web Ul

The Web Ul is a single page application, that is initiated from the file static/templates/index.html. This
file pulls all CSS, the javascript framework and all the javascript business logic.

You can configure privacyIDEA to use your own WebUI, which is completely different and stored at another location.
You can do this using the following config values:

PI_INDEX HTML = “myindex.html” PI_STATIC_FOLDER = “mystatic” P TEMPLATE_FOLDER =
“mystatic/templates”

In this example the file mystatic/templates/myindex.html would be loaded as the initial single page ap-
plication.

1.2.6 Debugging and Logging

You can set PI_LOGLEVEL to a value 10 (Debug), 20 (Info), 30 (Warning), 40 (Error) or 50 (Critical). If you
experience problems, set PI_LOGLEVEL = 10 restart the web service and resume the operation. The log file
privacyidea.log should contain some clues.

You can define the location of the logfile using the key PI_LOGF ILE. Usually it is set to:

PI_LOGFILE = "/var/log/privacyidea/privacyidea.log"

Advanced Logging

You can also define a more detailed logging by specifying a log configuration file. By default the file is /etc/
privacyidea/logging.cfgq.

You can change the location of the logging configuration file in The Config File like this:

PI_LOGCONFIG = "/path/to/logging.yml"

Since Version 3.3 the logging configuration can be written in YAML'. Such a YAML based configuration could look
like this:

version: 1

formatters:
detail:
class: privacyidea.lib.log.SecureFormatter
format: '[%(asctime)s] [%(process)d] [%(thread)d] [%(levelname)s] [% (name)s:

—% (lineno)d] % (message)s'

handlers:

(continues on next page)

Uhttps://yaml.org/

1.2. Installation 17

https://yaml.org/

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

mail:
class: logging.handlers.SMTPHandler
mailhost: mail.example.com
fromaddr: privacyidealexample.com
toaddrs:
- adminl@example.com
— admin2@example.com
subject: PI Error
formatter: detail
level: ERROR
file:
Rollover the logfile at midnight
class: logging.handlers.RotatingFileHandler
backupCount: 5
maxBytes: 1000000
formatter: detail
level: INFO
filename: /var/log/privacyidea/privacyidea.log
loggers:
The logger name is the qualname
privacyidea:
handlers:
- file
- mail
level: INFO
root:
level: WARNING

Different handlers can be used to send log messages to log-aggregators like splunk? or logstash’.

The old python logging config file format is also still supported:

[formatters]
keys=detail

[handlers]
keys=file,mail

[formatter_detail]

class=privacyidea.lib.log.SecureFormatter

format=[% (asctime)s] [% (process)d] [% (thread)d] [% (levelname) s] [% (name) s:% (lineno)d]
% (message) s

[handler _mail]

class=logging.handlers.SMTPHandler

level=ERROR

formatter=detail

args=('mail.example.com', 'privacyidea@example.com', ['adminl@example.com',\
'admin2@example.com'], 'PI Error')

[handler_file]

Rollover the logfile at midnight
class=logging.handlers.RotatingFileHandler
backupCount=14

(continues on next page)

2 https://www.splunk.com/
3 https://www.elastic.co/logstash

18 Chapter 1. Table of Contents

https://docs.python.org/3/library/logging.config.html#logging-config-fileformat
https://www.splunk.com/
https://www.elastic.co/logstash

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

maxBytes=10000000

formatter=detail

level=DEBUG
args=('/var/log/privacyidea/privacyidea.log',)

[loggers]
keys=root,privacyidea

[logger_privacyidea]
handlers=file,mail
qualname=privacyidea
level=DEBUG

[logger_root]
level=ERROR
handlers=file

Note: These examples define a mail handler, that will send emails to certain email addresses, if an ERROR occurs.
All other DEBUG messages will be logged to a file.

Note: The filename extension is irrelevant in this case

1.2.7 The WSGI Script

Apache2 and Nginx are using a WSGI script to start the application.

This script is usually located at /etc/privacyidea/privacyideaapp.py or /etc/privacyidea/
privacyideaapp.wsgi and has the following contents:

import sys

sys.stdout = sys.stderr

from privacyidea.app import create_app

Now we can select the config file:

application = create_app (config_name="production",
config_file="/etc/privacyidea/pi.cfg")

In the create_app-call you can also select another config file.

Note: This way you can run several instances of privacyIDEA in one Apache?2 server by defining several WSGIScrip-
tAlias definitions pointing to different wsgi-scripts, that again reference different config files with different database
definitions.

1.2. Installation 19

privacylDEA Authentication System, Release 3.6.1

Running Apache instances

To run further Apache instances add additional lines in your Apache config:

WSGIScriptAlias /instancel /etc/privacyideal/privacyideaapp.wsgi
WSGIScriptAlias /instance2 /etc/privacyidea2/privacyideaapp.wsgi
WSGIScriptAlias /instance3 /etc/privacyidea3/privacyideaapp.wsgi
WSGIScriptAlias /instanced4 /etc/privacyidead/privacyideaapp.wsgi

It is a good idea to create a subdirectory in /efc for each instance. Each wsgi script needs to point to the corresponding
config file pi.cfg.

Each config file can define its own
* database
* encryption key
* signing key

To create the new database you need the command pi-manage. The command pi-manage reads the configuration from
letc/privacyidea/pi.cfg.

If you want to use another instance with another config file, you need to set an environment variable and create the
database like this:

PRIVACYIDEA_CONFIGFILE=/etc/privacyideal3/pi.cfg pi-manage createdb

This way you can use pi-manage for each instance.

1.2.8 The pi-manage Script

pi-manage is the script that is used during the installation process to setup the database and do many other tasks.

Note: The interesting thing about pi-manage is, that it does not need the server to run as it acts directly on the
database. Therefor you need read access to /etc/privacyidea/pi.cfg and the encryption key.

If you want to use a config file other than /etc/privacyidea/pi.cfg, you can set an environment variable:

’ PRIVACYIDEA_CONFIGFILE=/home/user/pi.cfg pi-manage

pi-manage always takes a command and sometimes a sub command:

’pi—manage <command> [<subcommand>] [<parameters>]

For a complete list of commands and sub commands use the -/ parameter.

You can do the following tasks.

20 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Encryption Key

You can create an encryption key and encrypt the encryption key.

Create encryption key:

pi-manage create_enckey [-—enckey_b64=BASE64_ENCODED_ENCKEY]

Note: The filename of the encryption key is read from the configuration. The key will not be created, if it already
exists. Optionally, enckey can be passed via —enckey_b64 argument, but it is not recommended. —enckey_b64 must be
a string with 96 bytes, encoded in base 64 in order to avoid ambiguous chars.

The encryption key is a plain file on your hard drive. You need to take care, to set the correct access rights.

You can also encrypt the encryption key with a passphrase. To do this do:

pi-manage encrypt_enckey /etc/privacyidea/enckey

and pipe the encrypted enckey to a new file.

Read more about the database encryption and the enckey in Security Modules.

Backup and Restore

You can create a backup which will be save to ~var/lib/privacyidea/backup/.

The backup will contain the database dump and the complete directory /etc/privacyidea. You may choose if you want
to add the encryption key to the backup or not.

Warning: If the backup includes the database dump and the encryption key all seeds of the OTP tokens can be
read from the backup.

As the backup contains the etc directory and the database you only need this tar archive backup to perform a complete
restore.

Rotate Audit Log

Audit logs are written to the database. You can use pi-manage to perform a log rotation.
pi-manage rotate_audit

You can specify a highwatermark and a lowwatermark, age or a config file. Read more about it at Cleaning up entries.

1.2. Installation 21

privacylDEA Authentication System, Release 3.6.1

API Keys

You can use pi-manage to create API keys. API keys can be used to
1. secure the access to the /validate/check APl or
2. to access administrative tasks via the REST APL
You can create API keys for /validate/check using the command
pi-manage api createtoken -r validate

If you want to secure the access to /validate/check you also need to define a policy in scope authorizaion.
See api_key_required.

If you wan to use the API key to automate administrative REST API calls, you can use the command:
pi-manage api createtoken -r admin

This command also generates an admin account name. But it does not create this admin account. You need to do so
using pi—manage admin. You can now use this API key to enroll tokens as administrator.

Note: These API keys are not persistent. They are not stored in the privacyIDEA server. The API key is connected to
the username, that is also generated. This means you have to create an administrative account with this very username
to use this API key for this admin user. You also should set policies for this admin user, so that this API key has only
restricted rights!

Note: The API key is valid for 365 days.

Policies

You can use pi-manage policy to enable, disable, create and delete policies. Using the sub commands
p_export and p_import you can also export a backup of your policies and import this policy set later.

This could also be used to transfer the policies from one privacyIDEA instance to another.

1.2.9 Security Modules

Note: For a normal installation this section can be safely ignored.

privacyIDEA provides a security module that takes care of
* encrypting the token seeds,
* encrypting passwords from the configuration like the LDAP password,
* creating random numbers,

¢ and hashing values.

Note: The Security Module concept can also be used to add a Hardware Security Module to perform the above
mentioned tasks.

22 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Default Security Module
The default security module is implemented with the operating systems capabilities. The encryption key is located
in a file enckey specified via PI_ENCFILE in the configuration file (7he Config File).

This enckey contains three 32byte keys and is thus 96 bytes. This file has to be protected. So the access rights to this
file are set accordingly.

In addition you can encrypt this encryption key with an additional password. In this case, you need to enter the
password each time the privacyIDEA server is restarted and the password for decrypting the enckey is kept in memory.

The pi-manage Script contains the instruction how to encrypt the enckey

After starting the server, you can check, if the encryption key is accessible. To do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule

The output will contain "is_ready": True to signal that the encryption key is operational.

If it is not yet operational, you need to pass the password to the privacyIDEA server to decrypt the encryption key. To
do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule \
—-module=default

Note: If the security module is not operational yet, you might get an error message “HSM not ready.”.

PKCS11 Security Module
The PKCS11 Security Module can be used to encrypt data with an hardware security module, that is connected via the
PKCS11 interface. To encrypt and decrypt data you can use an RSA key pair that is stored on the HSM.
To activate this module add the following to the configuration file (The Config File)
PI_HSM_MODULE = “privacyidea.lib.security.pkcs11.PKCS11SecurityModule”
Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

PI_HSM_MODULE_KEY_ID is the key id (integer) on the HSM.

AES HSM Security Module
The AES Hardware Security Module can be used to encrypt data with an hardware security module (HSM) connected
via the PKCS11 interface. This module allows to use AES keys stored in the HSM to encrypt and decrypt data.
This module uses three keys, similarly to the content of PI_ENCFILE, identified as token, config and value.
To activate this module add the following to the configuration file (7he Config File)

PI_HSM_MODULE = “privacyidea.lib.security.aeshsm. AESHardwareSecurityModule”
Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

1.2. Installation 23

privacylDEA Authentication System, Release 3.6.1

PI_HSM_MODULE_SLOT is the slot on the HSM where the keys are located (default: 1).
PI_HSM_MODULE_PASSWORD is the password to access the slot.

PI_HSM MODULE_MAX_ RETRIES is the number privacyIDEA tries to perform a cryptographic operation like de-
crypt, encrypt or random if the first attempt with the HSM fails. The default value is 5.

Note: Some PKCS11 libraries for network attached HSMs also implement a retry. You should take this into account,
since retries would multiply and it could take a while till a request would finally fail.

PI_HSM_MODULE_KEY_LABEL is the label prefix for the keys on the HSM (default: privacyidea). In order to
locate the keys, the module will search for key with a label equal to the concatenation of this prefix, _ and the key
identifier (respectively token, config and value).

PI_HSM MODULE_KEY_LABEL_TOKEN is the label for token key (defaults to value based on
PI_HSM_MODULE_KEY_ LABEL Setting).

PI_HSM_MODULE_KEY_LABEL_CONFIG is the label for config key (defaults to value based on
PI_HSM _MODULE_KEY_LABEL setting).

PI_HSM _MODULE_KEY_LABEL_VALUE is the label for wvalue key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

After installation you might want to take a look at First Steps.

1.3 First Steps

You installed privacyIDEA successfully according to /nstallation.

These first steps will guide you through the tasks of logging in to the management web UlI, attaching your first users
and enrolling the first token.

1.3.1 Add an administrator

PrivacyIDEA does not come with a pre-defined administrator user. If you just installed privacyIDEA, you need to
create a new one by running:

pi-manage admin add admin -e admin@localhost

To configure privacyIDEA, continue with Login to the Web UI.

Note: Administrator accounts are used for various purposes in privacyIDEA. Once you need another administrator
user, you should consider adding an admin policy to set up the permissions correctly. This is described in Admin
policies.

You may also read So what’s the thing with all the admins?.

24 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.3.2 Login to the Web Ul

privacyIDEA has only one login form that is used by administrators and normal users to login. Administrators will
be able to configure the system and to manage all tokens, while normal users will only be able to manage their own
tokens.

You should enter your username with the right realm. You need to append the realm to the username like
usernamelrealm.

Login for administrators

Administrators can authenticate at this login form to access the management UL

Administrators are stored in the database table Admin and can be managed with the tool:

pi-manage admin ...

The administrator just logs in with his username.

Note: You can configure privacyIDEA to authenticate administrators against privacyIDEA itself, so that administra-
tors need to login with a second factor. See So what’s the thing with all the admins? how to do this.

Login for normal users
Normal users authenticate at the login form to be able to manage their own tokens. By default users need to authenticate
with the password from their user source.

E.g. if the users are located in an LDAP or Active Directory the user needs to authenticate with his LDAP/AD
password.

But before a user can login, the administrator needs to configure realms, which is described in the next step Creating
your first realm.

Note: The user my either login with his password from the userstore or with any of his tokens.

Note: The administrator may change this behaviour by creating an according policy, which then requires the user
to authenticate against privacyIDEA itself. L.e. this way the user needs to authenticate with a second factor/token to
access the self service portal. (see the policy section login_mode)

1.3.3 Creating your first realm

Note: When the administrator logs in and no useridresolver and no realm is defined, a popup appears, which asks
you to create a default realm. During these first steps you may say “No”, to get a better understanding.

Users in privacyIDEA are read from existing sources. See Realms for more information.

In these first steps we will simply read the users from your /etc/passwd file.

1.3. First Steps 25

privacylDEA Authentication System, Release 3.6.1

Create a UserldResolver

The UserldResolver is the connector to the user source. For more information see UserldResolvers.

* Go to Config -> Users to create a UserldResolver.

privacylDEA [Tokens L Users =Machines = #Config Q Audit

== System © Policies 0 Tokens = Machines 2 Users @Realms A CAs

All Resolvers

New Resolvers

New passwdresolver
New Idapresolver
New sqlresolver

New scimresolver

Fig. 1: Create the first UserldResolver

e Choose New passwdresolver and
* Enter the name “myusers”.

e Save it.

privacylDEA [Tokens L Users = Machines | #Config = Q Audit

%8 System O Policies [Tokens = Machines = L Users @Reams M CAs

All Resolvers

New Resolvers

New passwdresolver

New Idapresclver
New sqlresolver

New scimresolver

Edit Passwd Resolver myusers

Resolver name

| myusers|

File name letc/passwd

Save resolver

Fig. 2: Create the first UserldResolver

You just created your first connection to a user source.

26 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Create a Realm

User sources are grouped togeather to a so called “realm”. For more information see Realms.
* Go to Config -> Realms
 Enter “realm1” as the new realm name and select the priority 1.
* Check the resolver “myusers” to be included into this realm.

e Save it.

privacyIDEA [Tokens R Users = Machines = #Config =~ Q Audit

8 System £ Policies 0 Tokens = Machines L Users = @ Realms A CAs

All Realms

Clear default realm

Default Realm name resolvers

realm1 « myusers |1 < | (passwdresolver)

Fig. 3: Create the first Realm

* Go to Users and you will see the users from the /etc/passwd.
Congratulation! You created your first realm.

You are now ready to enroll a token to a user. Read Enrolling your first token.

1.3.4 Enrolling your first token
You may now enroll a new token. In this example we are using the Google Authenticator App, that you need to install
on your smartphone.

* Go to Tokens -> Enroll Token

 Select the username root. When you start typing “r”, “o”... the system will find the user root automatically.

* Enter a PIN. I entered “test” ...

e ... and click “Enroll Token”.

» After enrolling the token you will see a QR code, that you need to scan with the Google Authenticator App.

* Click on the serial number link at the top of the dialog.

* Now you see the token details.

e Left to the button “Test Token” you can enter the PIN and the OTP value generated by the Google Authenticator.

¢ Click the button “Test Token”. You should see a green “matching 1 tokens”.

Congratulations! You just enrolled your first token to a user.

1.3. First Steps 27

privacylDEA Authentication System, Release 3.6.1

privacylDEA ([Tokens = R Users = Machines & Config Q Audit

Logout admin @
(Role: admin)

All users

Select Realm
realm’ v
Quick links
Edit realms.
total users: 52
First | Previous 2 3 4 Next Last
username T surname Y givenname Y email Y phone mobile description id
pulse daemon PulseAudio 115
hplip system user HPLIP 114
debian-spamd 17
gdm Display Manager Gnome 116
avahi mDNS daemon Avahi M
speech-dispatcher Dispatcher Speech 110
colord colour management daemon colord 113
lightdm Display Manager Light 112
nobody nobody 65534
b 4an
Fig. 4: The users from /etc/passwd
. [Tokens = & Users = Machines & Config Q Audit B Components < Refresh [EECHIMECHEGIT
- Enroll a new token
@ Enroll n

@ Import Tokens

C List Challenges

© Get serial

HOTP: Event based One Time Passwords. j

The HOTP token is an event based token. You can paste a secret key or have the server generate the secret and scan the QR
code with a smartphone app like the Google Authenticator turning your smartphone into an authentication device.

Token data
Generate OTP Key on the Server

The server will create the OTP key and a QR Code will be displayed to you to be scanned.
Description

HOTP test token

Assign token to user

Realm

realml j

Username

[0] root (root)

PIN

Extended Attributes

validity Start Validity End

The start time and the end time of the validity period should be entered in the format YYY¥-MM-DDThh:mm+ooo0.

Enroll Token

Fig. 5: The Token Enrollment Dialog

28

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

° 0 Tokens L Users = Machines & Config QAudit & Components > Refresh

Enroll a new token

The token was successfully enrolled with serial number OATH0002C25C for user root in realm realml.

& Enroll T

® Import Tokens Click here or scan the QR Code, if you want to add the
Token to your Google Authenticator.

C List Challenges The QR Cede contains the secret key of your token. You
need to protect it. If you are in doubt, that someone
else saw it, please regenerate the QR Code, when
noone else is watching.

@ Get serial

Enroll a n

Fig. 6: Enrollment Success

privacylDEA | 0O Tokens & Users = Machines % Config Q Audit

All tokens

en OATHOO004EE4

Token details for OATHOO004EE4 view token in Audit log

& Enroll Token
Active [active |
@ Import Tokens W
Maxfail 10
@ Lost Token Fail counter [0]
© Get Serial OTP Length [
total tokens: 45
Count 2
Count Window 10
Sync Window 1000
Description
Info « count_auth: 1
« count_auth_success: 1
« hashlib: shat
Realms « realmi
Enter PIN for token Enter PIN again # set PIN
test056428 © Test token [matchingtokens |
Assgined User
Usemame root

Fig. 7: Test the Token

1.3. First Steps 29

privacylDEA Authentication System, Release 3.6.1

Now you are ready to attach applications to privacyIDEA in order to add two factor authentication to those applications.
To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

After these first steps you will be able to start attaching applications to privacyIDEA in order to add two factor
authentication to those applications. You can

* use a PAM module to authenticate with OTP at SSH or local login
* or the RADIUS plugin to configure your firewall or VPN to use OTP,
e or use an Apache?2 plugin to do Basic Authentication with OTP.
* You can also setup different web applications to use OTP.
To attach applications read the chapter Application Plugins.

You may also go on reading the next chapter which gives an overview on the webui or you directly skip to Configura-
tion to get a deeper insight in the configuration possibilities.

1.4 WebUI

privacyIDEA comes with a web-based user interface which is used to manage and configure the privacyIDEA server.
It is also used a self-service portal for the average user, who manages his own tokens. This section gives an overview
on the interface and links the respective sections in the documentation.

1.4.1 Dashboard

Starting with version 3.4, privacyIDEA includes a basic dashboard, which can be enabled by the WebUI policy ad-
min_dashboard. The dashboard will be displayed as a starting page for administrators and contains information about
token numbers, authentication requests, recent administrative changes, policies, event handlers and subscriptions. It
uses the usual endpoints to fetch the information, so only information to which an administrator has read access is
displayed in the dashboard.

e ©Dashboard | O Tokens R Users EMachines £ Confg QAud

m
)

Tokens. Authentications Administration

Date Administrator Action Detail

POST /policy/<name> change_pin_via_validate

2020.08.27
12:30

20200827
5 1228

45 2020.08-27
1228

2020.08.27
1227

20200827
1227

8 Active Events 2 2 Wed.31 Mar 2021
500 00:00:00 GMT

ode | TAN_list_length | wizard | | valdate._request_counter | autoenroll_firs toker
ness SLA) Wed, 31 Mar 2021

2
500 00:00:00 GMT

30 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.4.2 Tokens

The administrator can see all the tokens of all realms he is allowed to manage in the tokenview. Each token can be
located in several realms and be assigned to one user. The administrator can see all the details of the token.

privacyIDEA | [TokenView & UserView iEConfig Q Audit

] All tokens seriale | Y type » v active » description « v failcounter « user realm
@ Enroll Token OATHOODOFBIE hotp [actve | o] comelius asdf
® Import Tokens OATH00019835 hotp [aciive | o] root asdf

PIMO0D00S71B motp [actie | o]
total tokens: 1 SSHKOOOOFASF sshkey [active | a
TOTPOD0067EY totp =a (o] root asdf

Fig. 8: Tokens overview

The administrator can click on one token, to show more details of this token and to perform actions on this token.
Read on in token_details.

1.4.3 Users

The administrator can see all users fetched by UserldResolvers located in Realms he is allowed to manage.

Note: Users are only visible, if the useridresolver is located within a realm. If you only define a useridresolver but no
realm, you will not be able to see the users!

You can select one of the realms in the left drop down box. The administrator will only see the realms in the drop
down box, that he is allowed to manage.

6 0 Tokens | R Users = Machines #FConfig QAudit & Components ‘C Refresh { admin @ (admin
First Previous - 2 3 Next = Last
Select Realm
joined realm M - - - -
username Y surname Y givenname Y email ¥ phone mobile description id
Add user
manager Manager Domain domain.manager@netknights. it 0 uid=manager
Quick links
netknight NetKnight the the.netknight@netknights. it +49 ['+49 uid=netknight
Editrealms 342 175
total users: 34 25345 1663]
root root root [
daemon daemon daemon 1
bin bin bin 2

Fig. 9: The Users view list all users in a realm.
The list shows the users from the select realm. The username, surname, given name, email and phone are filled
according to the definition of the useridresolver.
Even if a realm contains several useridresolvers all users from all resolvers within this realm are displayed.

Read about the functionality of the users view in the following sections.

1.4. WebUI 31

privacylDEA Authentication System, Release 3.6.1

User Details

When clicking on a username, you can see the users details and perform several actions on the user.

e [Tokens | L Users = Machines % Config QAudit & Components < Refresh

All users

Details for user netknight in realm Idap_realm

View user in Audit log
Add user

phone ‘surname
Quick links
+48 342 25345 NetKnight
Edit realms
mebile givenname
total users: 2
['+49 175 1663'"] the

email
the.netknight@netknights.it

@ Edit user T Delete user

Tokens for user netknight

serial type Active window description failcounter maxfail otplen
OATHO00078B5 hotp =3 10 a 10 6
PIPU0000BDFA push 10 n 10 6

Enroll New Token

Assign a new token

Serial

PIN

Assign Token

Fig. 10: User Details.
You see a list of the users tokens and change to the token_details.
Enroll tokens

In the users details view you can enroll additional tokens to the user. In the enrollment dialog the user will be selected
and you only need to choose what tokentype you wish to enroll for this user.

Assign tokens

You can assign a new, already existing token to the user. Just start typing the token serial number. The system will
search for tokens, that are not assigned yet and present you a list to choose from.

32 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

View Audit Log

You can also click View user in Audit log which will take you to the Audit log with a filter on this very user, so that
you will only see audit entries regarding this user.

Edit user

If the user is located in a resolver, that is marked as editable, the administrator will also see a button “Edit User”. To
read more about this, see Manage Users.

Manage Users

Since version 2.4 privacyIDEA allows you to edit users in the configured resolvers. At the moment this is possible for
SQL resolvers.

In the resolver definition you need to check the new checkbox Edit user store.

User pi

Edit user store =

The user data in this database can be modified from within privacylDEA.

Fig. 11: Users in SQL can be edited, when checking the checkbox.

In the Users Detail view, the administrator then can click the button “Edit” and modify the user data and also set a new
password.

Details for user cornelius in realm realm3 view userin Auditiog

Username Email
comnelius cornelius.koelbel@netknights. it
Given name
Phone
Comelius
+495613166797
Surname
Mobile
Koelbel
+495613166797
Description
Password
Benutzer

X save user | Cancel

Fig. 12: Edit the attributes of an existing user.

1.4. WebUI 33

privacylDEA Authentication System, Release 3.6.1

Note: The data of the user will be modified in the user store (database). Thus the users data, which will be returned
by a resolver, is changed. If the resolver is contained in several realms these changes will reflect in all realms.

If you want to add a user, you can click on Add User in the User View.

All users

Add a new user

Quick links Resolver
Edit realms localusers M
total users: 1 These are the resolvers marked as editable. You can add a user to the resolver. The user will appear in the realms, that
contain this resolver
Username Email
Given name Phone
Surname Mobile
Description Password

@ save user

Fig. 13: Add a new user.

Users are contained in resolvers and added to resolvers. So you need to choose an existing resolver and not a realm.
The user will be visible in all realms, the resolver is contained in.

Note: Of course you can set policies to allow or deny the administrator these rights.

Simple local users setup

You can setup a local users definition quite easily. Run:

pi-manage resolver create_internal test

This will create a database table “users_test” in your token database. And it will create a resolver “test” that refers to
this database table.

Then you can add this resolver to realm:

pi-manage realm create internal_realm test

Which will create a realm “internal_realm” containing the resolver “test”. Now you can start adding users to this
resolver as described above.

Note: This is an example of how to get started with users quite quickly. Of course you do not need to save the users
table in the same database as the tokens. But in scenarios, where you do not have existing user stores or the user stores
are managed by another department or are not accessible easily this may be sensible way.

34 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Additional user attributes

Since version 3.6 privacyIDEA allows to manage additional internal attributes for users read from resolvers. These
additional attributes are stored and managed within privacyIDEA. Administrators can manage attributes of users (see
policies admin_set_user_attributes and admin_delete_user_attributes) and users can manage their attributes them-
selves (see policies user_set_user_attributes and user_delete_user_attributes).

The additional attributes are added to the user object, whenever a user is used. The attributes are also added in the
response of an authentication request. Thus these attributes could be used to pass additional attributes via the RADIUS
protocol.

The user attributes can also be used as additional conditions in policies (see Policy conditions) in the userinfo section.
This way the additional attributes can be used to group users togeather within privacyIDEA and assign distinct policies
to these groups, without the need to rely on information from the user store.

The policy condition uses attributes (userinfo) from the user store and additional user attributes managed in priva-
cyIDEA at the same time.

Note: If the user already has a certain key in the userinfo that is fetched from the resolver, the additional user
attributes can also be used to overwrite the value from the user store!

1.4.4 Machines

In this view Machines are listed which are fetched by the configured machine resolvers. Machines are only necessary
if you plan special use cases like managing SSH keys or doing offline OTP. In most cases there is no need to manage
machines and this view is empty.

6 [Tokens L Users | = Machines ¥ Config Q Audi i Components < Refresh
hostname ¥ IP Address ¥ Y Machine Resolver ¥
Quick links ['localhost’] 127.0.0.1 127.0.0.1 myhosts

Edit Machine Resolvers ['pr] 197.041 197.041 myhosts
hlumber of machinc: ["ip6-localhost”,"ipé-loopback”] 1 1 myhosts
["p6-localnet’] feoo: feoo:o myhosts

["Ip6-mcastprefix”] ffoo:: f00::0 myhosts

["ip6-allnodes"] ffo2:1 fio2:1 myhosts

["ip6-allirouters”| ff02:2 fi02:2 myhosts

Fig. 14: The Machines view.

1.4.5 Config

The configuration tab is the heart of the privacyIDEA server. It contains the general System Config, allows configuring
Policies which are important to configure behavior of the system, manages the Event Handler and lets the user set up
Periodic Tasks.

1.4. WebUI 35

privacylDEA Authentication System, Release 3.6.1

e O Tokens & Users = Machines =~ ¥ Config = QAudit & Components

= System & Policies ™ Events

/ Sysiem Config

® Get System Documentation
X SMTP servers

O RADIUS servers

M privacylDEA servers

0 SMS Gateways

B Periodic Tasks [Tokens S Machines L Users @ Realms

Use @ sign to split the username and the realm.
Increase the failcounter if the wrong PIN was entered.
Clear failcounter after minutes

Do not use an authentication counter per token.

Prepend the PIN in front of the OTP value . Otherwise it will be post pended.

Include SAML attri in the

Include SAML attributes even if the user failed to authenticate.

ic resyne during
Auto resync timeout

User Cache expiration in seconds

Override Authorization Clients 127

.0.1,10.0.0.8

R cAs

These client IP addresses or subnets are allowed to masquerade as another client

SMTP server for password recovery

]

Select a predefined SMTP server configuration.

OTP length of newly enrolled tokens
Count Window of newly enrolled tokens
Max Failcount of newly enrolled tokens
Sync Window of newly enrolled tokens

The challenge validity time

Fig. 15: The Config section is the heart of the privacyIDEA server.

36

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.4.6 Audit

In this tab, the Audit log is displayed which lists all events the server registers.

6 () Tokens R Users = Machines %#Config = QAudit & Components

Q Log

@ Download

number date ¥

2033

2032

2031

2030

2029

2028

2020-03-05
14:43:03

2020-03-05
14:43:03

2020-03-05
14:43:03

2020-03-05
14:43:03

2020-03-05
14:43:02

2020-03-05
14:42:59

1.4.7 Components

action ¥

GET
Isubscriptions/

GET
/subscriptions/
GET /client/
GET /client/

POST Jauth

POST /auth

success Y

(@]
D
?

2033 entries found.

serial ¥ tokentype Y administrator Y user ¥ realm Y resolver ¥

admin

admin

admin

admin

admin Idap_realm

admin Idap_realm

Fig. 16: Events can be displayed in the Audit log.

policic

superu

superu

superu

superu

hide_w

Starting with privacyIDEA 2.15 you can see privacyIDEA components in the Web UL. privacyIDEA collects authen-
ticating clients with their User Agent. Usually this is a type like PAM, FreeRADIUS, Wordpress, OwnCloud, ... For
more information, you may read on Application Plugins. This overview helps you to understand your network and

keep track which clients are connected to your network.

6 [Tokens R Users = Machines f¥Config Q Audi

Client Application Type

Application Type

Java/11.0.6

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:72.0) Gecko/20100101 Firefox/72.0

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:73.0) Gecko/20100101 Firefox/73.0

PAM/2.15.0

Subscriptions

& Components

(@]
D
?

Client

192.168.56.203 [|
Last seen: Mon, 24 Feb 2020 13:43:22 GMT

1234

Last seen: Thu, 06 Feb 2020 13:57:19 GMT
192.168.56.1 []

Last seen: Thu, 06 Feb 2020 13:55:26 GMT

192.168.56.1 |
Last seen: Thu, 20 Feb 2020 10:30:22 GMT

127.0.0.1(]
Last seen: Wed, 19 Feb 2020 09:42:12 GMT

Fig. 17: The Components display client applications and subscriptions

Subscriptions, e.g. with NetKnights, the company behind privacyIDEA, can also be viewed and managed in this tab.

1.4. WebUI

37

https://netknights.it/en/

privacylDEA Authentication System, Release 3.6.1

1.5 Configuration

The configuration menu can be used to define useridresolvers and realms, set the system config and the token config.

It also contains a shortcut to the Policies, Event Handler and Periodic Tasks.

1.5.1 UserldResolvers
Each organisation or company usually has its users managed at a central location. This is why privacyIDEA does not
provide its own user management but rather connects to existing user stores.

UserldResolvers are connectors to those user stores, the locations, where the users are managed. Nowadays this can
be LDAP directories or especially Active Directory, some times FreeIPA or the Redhat 389 service. But classically
users are also located in files like /etc/passwd on standalone unix systems. Web services often use SQL databases as
user store.

Today with many more online cloud services SCIM is also an uprising protocol to access userstores.
privacyIDEA already comes with UserldResolvers to talk to all these user stores:

¢ Flatfile resolver,

* LDAP resolver,

¢ SQL resolver,

¢ SCIM resolver.

e HTTP resolver.

Note: New resolver types (python modules) can be added easily. See the module section for this (UserldResolvers).

You can create as many UserldResolvers as you wish and edit existing resolvers. When you have added all config-
uration data, most Uls of the UserIldResolvers have a button “Test resolver”, so that you can test your configuration
before saving it.

Starting with privacyIDEA 2.4 resolvers can be editable, i.e. you can edit the users in the user store. Read more about
this at Manage Users.

Note: Using the policy authentication:otppin=userstore users can authenticate with the password from
their user store, being the LDAP password, SQL password or password from flat file.

Flatfile resolver

Flatfile resolvers read files like /etc/passwd.

Note: The file /etc/passwd does not contain the unix password. Thus, if you create a flatfile resolver from this
file the functionality with otppin=userstore is not available. You can create a flatfile with passwords using the
tool privacyidea—-create-pwidresolver—user which is usually found in /opt /privacyidea/bin/.

Create a flat file like this:

38 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

privacyidea-create-pwidresolver-user —u user2 -i 1002 >> /your/flat/file

LDAP resolver

The LDAP resolver can be used to access any kind of LDAP service like OpenLDAP, Active Directory, FreelPA,
Penrose, Novell eDirectory.

In case of Active Directory connections you might need to check the box No anonymous referral chasing.
The underlying LDAP library is only able to do anonymous referral chasing. Active Directory will produce an error

in this case'.

The Server URI can contain a comma separated list of servers. The servers are used to create a server pool and are
used with a round robin strategy.

Example:

ldap://serverl, ldaps://server2:1636, server3, ldaps://serveri

This will create LDAP requests to
* serverl on port 389
e server2 on port 1636 using SSL
e server3 on port 389
* server4 on port 636 using SSL.

The Bind Type with Active Directory can either be chosen as “Simple” or as “NTLM”.

Note: When wusing bind type “Simple” you need to specify the Bind DN like
cn=administrator,cn=users,dc=domain,dc=name. ~When using bind type “NTLM” you need to specify Bind
DN like DOMAINNAME\username.

The LoginName attribute is the attribute that holds the loginname. It can be changed to your needs.

Starting with version 2.20 you can provide a list of attributes in LoginName Attribute like:

sAMAccountName, userPrincipalName

This way a user can login with either his sSAMAccountName or his principalName.

The searchfilter is used to list all possible users, that can be used in this resolver. The searchfilter is used for
forward and backward search the object in LDAP.

The attribute mapping maps LDAP object attributes to user attributes in privacyIDEA. privacyIDEA knows
the following attributes:

* phone,

¢ mobile,
e email,

e surname,

* givenname,

! https://techcommunity.microsoft.com/t5/azure-active-directory-identity/referral-chasing/ba-p/243177
3 https://github.com/cannatag/Idap3/blob/master/docs/manual/source/server.rst#server-pool

1.5. Configuration 39

https://techcommunity.microsoft.com/t5/azure-active-directory-identity/referral-chasing/ba-p/243177
https://github.com/cannatag/ldap3/blob/master/docs/manual/source/server.rst#server-pool

privacylDEA Authentication System, Release 3.6.1

G @ Dashboard () Tokens R Users #Config QAudit & Components localnode < Refresh

= System OPolicies ™Events & Periodic Tasks O Tokens ~ = Machines | LUsers @ Realms A CAs

All Resolvers

Edit LDAP Resolver MyLDAPResolver

New passwdresolver Resolver name MyLDAPResolver

w Idapresolver Server URI Idap:/ldap1.com, Idap:/fidap2.com

New sqlresolver

New Resolvers

STARTTLS

New scimresolver Use STARTTLS on a plain LDAP connection usually on port 389
New httpresolver TLS Version Server Default :I

Verify TLS

Verify the TLS cerificate of the server.

The file containing the CA certificate which signed the LDAP TLS certificate.

Base DN

Scope SUBTREE :I

Bind DN cn=admin, ain,de

@

Leave the Bind DN empty if you want to do anonymous binding

Bind Password Bind Type Simple :I
Timeout (seconds) 5 Cache Timeout (seconds) 120
Size Limit 500
Server pool retry rounds 2 Server pool skip timeout 30
(seconds)

Per-process server pool

This setting activates a LDAP server pool that is persisted between requests.

Edit user store

The user data In this database can be modified from within privacylDEA.

Preset OpenLDAP Preset Active Directory

Loginname Attribute [SAN

Name

Search Filter [(sAMAccountName=")(obj

eneNum

Attribute mapping [phone" r', "mobile" : "mobile”, "email” : "mall", "surname" : "sn", "giv]

Muhivalue Attributes ["mobile"]

UID Type [DN]

No anonymous referral chasing

No retrieval of schema information

s o

Support

Fig. 18: LDAP resolver configuration

40 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

* password
* accountExpires.

The above attributes are used for privacyIDEA’s normal functionality and are listed in the userview. However, with
a SAML authentication request user attributes can be returned. (see Include SAML attributes in the authentication
response.). To return arbitrary attributes from the LDAP you can add additional keys to the attribute mapping with a
key, you make up and the LDAP attribute like:

"homedir": "homeDirectory",
"studentID": "objectGUID"

“homeDirectory” and “objectGUID” being the attributes in the LDAP directory and “homedir” and “studentID” the
keys returned in a SAML authentication request.

The MULTIVALUEATTRIBUTES config value can be used to specify a list of user attributes, that should return
a list of values. Imagine you have a user mapping like { "phone" : "telephoneNumber", "email"

"mail", "surname" : "sn", "group": "memberOf"}. Then you could specify ["email",
"group"] as the multi value attribute and the user object would return the emails and the group memberships of the
user from the LDAP server as a list.

Note: If the MULTIVALUEATTRIBUTES is left blank the default setting is “mobile”. I.e. the mobile number will
be returned as a list.

The MULTIVALUEATTRIBUTES can be well used with the samlcheck endpoint (see Validate endpoints) or with
the policy add_user_in_response.

The UID Type is the unique identifier for the LDAP object. If it is left blank, the distinguished name will be used.
In case of OpenLDAP this can be entryUUID and in case of Active Directory objectGUID. For FreelPA you can use
ipaUniquelD.

Note: The attributes entryUUID, objectGUID, and ipaUniquelD are case sensitive!

The option No retrieval of schema information can be used to disable the retrieval of schema informa-
tion* in order to improve performance. This checkbox is deactivated by default and should only be activated after
having ensured that schema information are unnecessary.

The CACHE_TIMEOUT configures a short living per process cache for LDAP users. The cache is not shared between
different Python processes, if you are running more processes in Apache or Nginx. You can set this to 0 to deactivate
this cache.

The Server pool retry rounds and Server pool skip timeout settings configure the behavior of the LDAP server pool.
When establishing a LDAP connection, the resolver uses a round-robin strategy to select a LDAP server from the pool.
If the current server is not reachable, it is removed from the pool and will be re-inserted after the number of seconds
specified in the skip timeout. If the pool is empty after a round, a timeout is added before the next round is started.
The 1dap3 module defaults system wide to 10 seconds before starting the next round. This timeout can be changed by
setting PTI_LDAP_POOLING_LOOP_TIMEOUT to an integer in seconds in pi . cfg. If no reachable server could be
found after the number of rounds specified in the retry rounds, the request fails.

By default, knowledge about unavailable pool servers is not persisted between requests. Consequently, a new request
may retry to reach unavailable servers, even though the skip timeout has not passed yet. If the Per-process server
pool is enabled, knowledge about unavailable servers is persisted within each process. This setting may improve
performance in situations in which a LDAP server from the pool is down for extended periods of time.

4 https://ldap3.readthedocs.io/en/latest/schema.html

1.5. Configuration 41

https://ldap3.readthedocs.io/en/latest/schema.html

privacylDEA Authentication System, Release 3.6.1

TLS Version

When using TLS, you may specify the TLS version to use. Starting from version 3.6, privacyIDEA offers TLS v1.3
by default.

TLS certificates

When using TLS with LDAP, you can tell privacyIDEA to verify the certificate. The according checkbox is visible in
the WebUI if the target URL starts with /daps or when using STARTTLS.

You can specify a file with the trusted CA certificate, that signed the TLS certificate. The default CA filename is
/etc/privacyidea/ldap-ca.crt and can contain a list of base64 encoded CA certificates. PrivacyIDEA will use the CA
file if specifed. If you leave the field empty it will also try the system certificate store (/etc/ssl/certs/ca-certificates.crt
or /etc/ssl/certs/ca-bundle.crt).

Modifying users

Starting with privacyIDEA 2.12, you can define the LDAP resolver as editable. I.e. you can create and modify users
from within privacyIDEA.

There are two additional configuration parameters for this case.

DN Template defines how the DN of the new LDAP object should be created. You can use username, surname,
givenname and basedn to create the distiguished name.

Examples:
CN=<givenname> <surname>,<basedn>
CN=<username>,0OU=external users,<basedn>
uid=<username>,ou=users,o=example,c=com

Object Classes defines which object classes the user should be assigned to. This is a comma separated list. The
usual object classes for Active Directory are

top, person, organizationalPerson, user, inetOrgPerson

Expired Users

You may set
99,

“accountExpires”: “accountExpires”

in the attribute mapping for Microsoft Active Directories. You can then call the user listing API with the parameter
accountExpires=1 and you will only see expired accounts.

This functionality is used with the script privacyidea-expired-users.

42 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

SQL resolver

The SQL resolver can be used to retrieve users from any kind of SQL database like MySQL, PostgreSQL, Oracle,
DB2 or sqlite.

6 O Tokens & Users = Machines = £ Config QAudit & Components

Smgystem D Policles ™ Events & Periodic Tasks [Tokens = Machines | LUsers @ Realms R CAs

All Resolvers

Create a new SQL Resolver

New passwdresolver Resolver name []

New Resolvers

New Idapresolver Driver [gl+ y]

New sqlresolver
Server Port

New scimresolver

Database
User
Password

Edit user store

The user data In this database can be modified from within privacylDEA

Lo Lo [meo [oo [o | o]

Mapping [—— . 3 l

Where statement

Database Encoding

Connection Parameters

Pool size

Pool timeout

Pool recycle timeout

Fig. 19: SQL resolver configuration

In the upper frame you need to configure the SQL connection. The SQL resolver uses SQLAIchemy internally. In the
field Driver you need to set a driver name as defined by the SQLAIchemy dialects like “mysql” or “postgres”.

In the SQL attributes frame you can specify how the users are identified.

The Database table contains the users.

Note: Atthe moment, only one table is supported, i.e. if some of the user data like email address or telephone number
is located in a second table, those data can not be retrieved.

The Limit is the SQL limit for a userlist request. This can be important if you have several thousand user entries in
the table.

The Attribute mapping defines which table column should be mapped to which privayIDEA attribute. The
known attributes are:

1.5. Configuration 43

http://sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_9/dialects/

privacylDEA Authentication System, Release 3.6.1

e userid (mandatory),

* username (mandatory),
* phone,

¢ mobile,

e email,

* givenname,

e surname,

* password.

The password attribute is the database column that contains the user password. This is used, if you are doing user
authentication against the SQL database.

Note: There is no standard way to store passwords in an SQL database. privacyIDEA supports the most common
ways like Wordpress hashes starting with $P or $S. Secure hashes starting with {SHA} or salted secure hashes starting
with {SSHA), {SSHA256)} or {SSHAS512)}. Password hashes of length 64 are interpreted as OTRS sha256 hashes.

You can mark the users as Editable. The Password_Hash_Type can be used to determine which hash algorithm
should be used, if a password of an editable user is written to the database.

You can add an additional Where statement if you do not want to use all users from the table.

The poolSize and poolTimeout determine the pooling behaviour. The poolSize (default 5) determine how
many connections are kept open in the pool. The poolTimeout (default 10) specifies how long the application waits
to get a connection from the pool.

Note: The pooling parameters only have an effect if the PI_ENGINE_REGISTRY_CLASS config option is set
to "shared" (see Engine Registry Class). If you then have several SQL resolvers with the same connection and
pooling settings, they will use the same shared connection pool. If you change the connection settings of an existing
connection, the connection pool for the old connection settings will persist until the respective connections are closed
by the SQL server or the web server is restarted.

Note: The Additional connection parameters refer to the SQLAlchemy connection but are not used at
the moment.

SCIM resolver

SCIM is a “System for Cross-domain Identity Management”. SCIM is a REST-based protocol that can be used to ease
identity management in the cloud.

The SCIM resolver is tested in basic functions with OSIAM?, the “Open Source Idenity & Access Management”.

To connect to a SCIM service you need to provide a URL to an authentication server and a URL to the resource server.
The authentication server is used to authenticate the privacyIDEA server. The authentication is based on a Client
name and the Secret for this client.

User information is then retrieved from the resource server.

The available attributes for the Attribute mapping are:

2 http://osiam.github.io

44 Chapter 1. Table of Contents

http://osiam.github.io

privacylDEA Authentication System, Release 3.6.1

6 QO Tokens L Users = Machines | %#Config = QAudit & Components

== System © Policies ™ Events 8 Periodic Tasks [Tokens = Machines | LUsers @ Realms M CAs

B

All Resolvers

Create a new SCIM Resolver

New Resolvers

New passwdresalver Resolver name [€
New Idapresolver Authentication Server URI
New salresolver

Resource Server URI

Client [t

Secret

Test SCIM Resolver | Save resolver

* username (mandatory),

* givenname,
¢ surname,

* phone,

¢ mobile,

e email.

HTTP resolver

Starting with version 3.4 the HTTP resolver is available to retrieve user information from any kind of web service APL
privacyIDEA issues a request to the target service and expects a JSON object in return. The configuration of the HTTP
resolver sets the details of the request in the Request Mapping as well as the mapping of the obtained information
as a Response Mapping.

Edit HTTP Resolver http_resolver
Resolver Name hitp._resolver

Endpoint (URL) http://myservice.com/users/

Method GET j

Request Mapping (JSON format) {"customerid™: "{userid}", "accessKey™ "secr3t!"}

Headers (JSON format) {"Content-Type": "application/json; charset=UTF-8"}

Response Mapping (JSON format) {"username™: "{Username}", "email": "{Email}"}

Special Error Handling

Response contains (JSON format): ["success" false)

testuser@realm Test HTTP Resolver

The Request Mapping is used to build the request issued to the remote API from privacyIDEA’s user information.
For example an endpoint definition:

1.5. Configuration 45

privacylDEA Authentication System, Release 3.6.1

POST /get-user
customerId=<user_id>&accessKey="secr3t!"

will require a request mapping

{ "customerId": "{userid}", "accessKey": "secr3t!" }

The Response Mapping follows the same rules as the attribute mapping of the SQL resolver. The known attributes
are

¢ username (mandatory),
* givenname,

e surname,

* phone,

¢ mobile,

¢ email.

Nested attributes are also supported using pydash deep path for parsing, e.g.

{ "username": "{Username}", "email": "{Email}", "phone": "{Phone_Numbers.Phone} }

For APIs which return 200 OK also for a negative response, Special error handling can be activated to treat
the request as unsuccessful if the response contains certain content.

The above configuration image will throw an error for a response

{ "success": false, "message": "There was an error!" }

because privacyIDEA will match { "success": false }.

Note: If the HTTP response status is >= 400, the resolver will throw an exception.

User Cache

privacyIDEA does not implement local user management by design and relies on UserldResolvers to connect to exter-
nal user stores instead. Consequently, privacyIDEA queries user stores quite frequently, e.g. to resolve a login name
to a user ID while processing an authentication request, which may introduce a significant slowdown. In order to
optimize the response time of authentication requests, privacyIDEA 2.19 introduces the user cache which is located
in the local database. It can be enabled in the system configuration (see User Cache expiration in seconds).

A user cache entry stores the association of a login name in a specific UserldResolver with a specific user ID for a
predefined time called the expiration timeout, e.g. for one week. The processing of further authentication requests by
the same user during this timespan does not require any queries to the user store, but only to the user cache.

The user cache should only be enabled if the association of users and user ID is not expected to change often: In case
a user is deleted from the user store, but can still be found in the user cache and still has assigned tokens, the user will
still be able to authenticate during the expiration timeout! Likewise, any changes to the user ID will not be noticed by
privacyIDEA until the corresponding cache entry expires.

Expired cache entries are not deleted from the user cache table automatically. Instead, the tool
privacyidea—-usercache-cleanup should be used to delete expired cache entries from the database, e.g.
in a cronjob.

46 Chapter 1. Table of Contents

https://pydash.readthedocs.io/en/latest/deeppath.html

privacylDEA Authentication System, Release 3.6.1

However, cache entries are removed at some defined events:
* If a UserldResolver is modified or deleted, all cache entries belonging to this resolver are deleted.

« If a user is modified or deleted in an editable UserIdResolver, all cache entries belonging to this user are deleted.

Note: Realms with multiple UserldResolvers are a special case: If a user userX tries to authenticate in a realm
with two UserldResolvers resolverA (with highest priority) and resolverB, the user cache is queried to find the
user ID of userX in the UserldResolver resolverA. If the cache contains no matching entry, resolverA itself is
queried for a matching user ID! Only if resolverA does not find a corresponding user, the user cache is queried to
determine the user ID of userX in resolverB. If no matching entry can be found, resolverB is queried.

1.5.2 Realms

Users need to be in realms to have tokens assigned. A user, who is not member of a realm can not have a token
assigned and can not authenticate.

You can combine several different UserldResolvers (see UserldResolvers) into a realm. The system knows one default
realm. Users within this default realm can authenticate with their username.

Users in realms, that are not the default realm, need to be additionally identified. Therefor the users need to authenticate
with their username and the realm like this:

user@realm

Relate User to a Realm

There are several options to relate a user to a specific realm during authentication. Usually, if only a login name is
given, the user will be searched in the default realm, indicated with de frealm in the mapping table below.

If a realm parameter is given in a /auth or /validate/check request, it supersedes a possible split realm.

The following table shows different combinations of user(name)-parameter and realm-parameter. Depending on the
Use @ sign to split the username and the realm.-setting, the following table shows in which realm the user will be
searched.

Input parameter Use @ sign to split the username and the realm.-setting

user(name) realm true false

user - user defrealm user defrealm

user realml user realml user realml

user unknown | — -

user@realm1 - user realml user@realml1 defrealm
user@realm1 realm1 user realml user@realml realml
user@realm1 realm?2 user realm?2 user@realml realm2
user @realm?2 realm1 user realml user@realm?2 realml
user@realm1 unknown | — -

user@unknown | — user @unknown defrealm user@unknown defrealm
user@unknown | realml user@unknown realml user@unknown realml
user@unknown | unknown | — -

Note: Be aware that if the Use @ sign fo split the username and the realm.-setting is true, a realm parameter is given
and a user name with an @-sign is given where the part after the @ denotes a valid realm, the realm parameter will

1.5. Configuration 47

privacylDEA Authentication System, Release 3.6.1

take precedence.

List of Realms

The realms dialog gives you a list of the already defined realms.

It shows the name of the realms, whether it is the default realm and the names of the resolvers, that are combined to
this realm.

You can delete or edit an existing realm or create a new realm.

Edit Realm
Each realm has to have a unique name. The name of the realm is case insensitive. If you create a new realm with the
same name like an existing realm, the existing realm gets overwritten.

If you click Edit Realm you can select which userresolver should be contained in this realm. A realm can contain
several resolvers.

privacylDEA 0 TokenView & UserView = EConfig Q Audi _ , £

= System & Policies (Tokens ~ = Machine Resolvers & User Resolvers = @ User Realms

All Realms Default Realm name resolvers
Clear default realm v asdf & asdf (passwdresolver)

"I flatusers (passwdresolver)

~| themis (Idapresolver)

Fig. 20: Edit a realm

Resolver Priority

Within a realm you can give each resolver a priority. The priority is used to find a user that is located in several
resolvers. If a user is located in more than one resolver, the user will be taken from the resolver with the lowest
number in the priority.

Priorities are numbers between 1 and 999. The lower the number the higher the priority.
Example:

A user “administrator” is located in a resolver “users” which contains all Active Directory users. And the “adminis-
trator” is located in a resolver “admins”, which contains all users in the Security Group “Domain Admins” from the
very same domain. Both resolvers are in the realm “AD”, “admins” with priority 1 and “users” with priority 2.

Thus the user “administrator@AD” will always resolve to the user located in resolver “admins”.

This is useful to create policies for the security group “Domain Admins”.

Note: A resolver has a priority per realm. L.e. a resolver can have a different priority in each realm.

48 Chapter 1. Table of Contents

mailto:administrator@AD

privacylDEA Authentication System, Release 3.6.1

Autocreate Realm

Create default realm

Obviously you have no realms defined. Do you want me to create a default realm for you

from the machines /etc/passwd?
No Create realm

If you have a fresh installation, no resolver and no realm is defined. To get you up and running faster, the system will
ask you, if it should create the first realm for you.

If you answer “yes”, it will create a resolver named “deflocal” that contains all users from /etc/passwd and a realm
named “defrealm” with this very resolver.

Thus you can immediately start assigning and enrolling tokens.

If you check “Do not ask again” this will be stored in a cookie in your browser.

Note: The realm “defrealm” will be the default realm. So if you create a new realm manually and want this new
realm to be the default realm, you need to set this new realm to be default manually.

1.5.3 System Config

The system configuration has three logical topics: Settings, token default settings and GUI settings.

Settings

Use @ sign to split the username and the realm.

splitAtSign defines if the username like user@company given during authentication should be split into the
loginname user and the realm name company. In most cases this is the wanted behaviour so this is enabled by default.

But given your users log in with email addresses like user@ gmail.com and otheruser @ outlook.com you probably do
not want to split.

How a user is related to a realm is described here: Relate User to a Realm

This option also affects the login via the Authentication endpoints

1.5. Configuration 49

privacylDEA Authentication System, Release 3.6.1

e O Tokens & Users = Machines =~ ¥ Config = QAudit & Components

= System & Policies ™ Events

/ System Config

® Get System Documentation
X SMTP servers

O RADIUS servers

M privacylDEA servers

0 SMS Gateways

B Periodic Tasks [Tokens S Machines L Users @ Realms

Use @ sign to split the username and the realm.
Increase the failcounter if the wrong PIN was entered.
Clear failcounter after minutes

Do not use an authentication counter per token.

Prepend the PIN in front of the OTP value . Otherwise it will be post pended.

Include SAML attri in the

Include SAML attributes even if the user failed to authenticate.

ic resyne during

Auto resync timeout
User Cache expiration in seconds

Override Authorization Clients -

127.0.0.1,10.0.0.8

R cAs

These client IP addresses or subnets are allowed to masquerade as another client

SMTP server for password recovery

]

Select a predefined SMTP server configuration.

OTP length of newly enrolled tokens
Count Window of newly enrolled tokens
Max Failcount of newly enrolled tokens
Sync Window of newly enrolled tokens

The challenge validity time

Fig. 21: The system config

50

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Increase the failcounter if the wrong PIN was entered.

If during authentication the given PIN matches a token but the OTP value is wrong the failcounter of the tokens for
which the PIN matches, is increased. If the given PIN does not match any token, by default no failcounter is increased.
The latter behaviour can be adapted by FailCounterIncOnFalsePin. f FailCounterIncOnFalsePin is
set and the given OTP PIN does not match any token, the failcounter of all tokens is increased.

Clear failcounter after x minutes

If the failcounter reaches the maximum the token gets a timestamp, when the max fail count was reached. After the
specified amount of minutes in failcounter_clear_timeout the following will clear the failcounter again:

¢ A successful authentication with correct PIN and correct OTP value
* A successfully triggered challenge (Usually this means a correct PIN)

* An authentication with a correct PIN, but a wrong OTP value (Only if Resetting Failcounter on correct PIN is
set).

A “0” means automatically clearing the fail counter is not used.

Note: After the maximum failcounter is reached, new requests will not update the mentioned timestamp.

Also see How to mitigate brute force and lock tokens.

Resetting Failcounter on correct PIN

After the above mentioned timeout the failcounter is reset by a successful authentication (correct PIN and OTP value)
or by the correct PIN of a challenge response token.

It can be also reset by the correct PIN of any token, when setting ResetFailcounterOnPIN to True. The default
behaviour is, that the correct PIN of a normal token will not reset the failcounter after the clearing timeout.

Prepend the PIN in front of the OTP value.

Defines if the OTP PIN should be given in front (“pin123456”) or in the back (“123456pin”) of the OTP value.

Include SAML attributes in the authentication response.

Return SAML attributes defines if during an SAML authentication request additional SAML attributes should
be returned. Usually an authentication response only returns true or false.

The SAML attributes are the known attributes that are defined in the attribute mapping e.g. of the LDAP resolver like
email, phone, givenname, surname or any other attributes you fetch from the LDAP directory. For more information
read LDAP resolver.

In addition you can set the parameter ReturnSamlAttributesOnFail. In this case the response contains the
SAML attributes of the user, even if the user failed to authenticate.

1.5. Configuration 51

privacylDEA Authentication System, Release 3.6.1

Automatic resync during authentication

Automatic resync defines if the system should try to resync a token if a user provides a wrong OTP value. AutoResync
works like this:

* If the counter of a wrong OTP value is within the resync window, the system remembers the counter of the OTP
value for this token in the token info field otplc.

* Now the user needs to authenticate a second time within auto resync timeout with the next successive
OTP value.

* The system checks if the counter of the second OTP value is the successive value to otplc.

* If it is, the token counter is set and the user is successfully authenticated.

Note: AutoResync works for all HOTP and TOTP based tokens including SMS and Email tokens.

User Cache expiration in seconds

The setting User Cache expiration in seconds is used to enable the user cache and configure its expi-
ration timeout. If its value is set to O (which is the default value), the user cache is disabled. Otherwise, the value
determines the time in seconds after which entries of the user cache expire. For more information read User Cache.

Note: If the user cache is already enabled and you increase the expiration timeout, expired entries that still exist in
the user cache could be considered active again!

Override Authorization Client

Override Authorization client is important with client specific policies (see Policies) and RADIUS
servers or other proxies. In case of RADIUS the authenticating client for the privacyIDEA system will always be
the RADIUS server, which issues the authentication request. But you can allow the RADIUS server IP to send another
client information (in this case the RADIUS client) so that the policy is evaluated for the RADIUS client. A RADIUS
server may add the API parameter client with a new IP address. A HTTP reverse proxy may append the respective
client IP to the Xx~-Forwarded-For HTTP header.

This field takes a comma separated list of sequences of IP Networks mapping to other IP networks.

Examples

’10.1.2.0/24 > 192.168.0.0/16

Proxies in the sub net 10.1.2.0/24 may mask as client IPs 192.168.0.0/16. In this case the policies for the corresponding
client in 192.168.x.x apply.

’172.16.0.1

The proxy 172.16.0.1 may mask as any arbitrary client IP.

’10.0.0.18 > 10.0.0.0/8

The proxy 10.0.0.18 may mask as any client in the subnet 10.x.x.x.

Note that the proxy definitions may be nested in order to support multiple proxy hops. As an example:

52 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

10.0.0.18 > 10.1.2.0/24 > 192.168.0.0/16

means that the proxy 10.0.0.18 may map to another proxy into the subnet 10.1.2.x, and a proxy in this subnet may
mask as any client in the subnet 192.168.x.x.

With the same configuration, a proxy 10.0.0.18 may map to an application plugin in the subnet 10.1.2.x, which may
in turn use a client parameter to mask as any client in the subnet 192.168.x.x.

Token default settings
Reset Fail Counter

DefaultResetFailCount will reset the failcounter of a token if this token was used for a successful authentica-
tion. If not checked, the failcounter will not be resetted and must be resetted manually.

Note: The following settings are token specific value which are set during enrollment. If you want to change this
value of a token later on, you need to change this at the tokeninfo dialog.

Maximum Fail Counter

DefaultMaxFailCount is the maximum failcounter a token may get. If the failcounter exceeds this number the
token can not be used unless the failcounter is resetted.

Note: In fact the failcounter will only increase till this maxfailcount. Even if more failed authentication request occur,
the failcounter will not increase anymore.

Sync Window

DefaultSyncWindow is the window how many OTP values will be calculated during resync of the token.

OTP Length

DefaultOtpLen is the length of the OTP value. If no OTP length is specified during enrollment, this value will be
used.

Count Window

DefaultCountWindow defines how many OTP values will be calculated during an authentication request.

1.5. Configuration 53

privacylDEA Authentication System, Release 3.6.1

Challenge Validity Time

DefaultChallengeValidityTime is the timeout for a challenge response authentication. If the response is set
after the ChallengeValidityTime, the response is not accepted anymore.

SerialLength

The default length of generated serial numbers is an 8 digit hex string. If you need another length, it can be configured
in the database table Config with the key word SerialLength.

No Authenitcation Counter

Usually privacyIDEA keeps track of how often a token is used for authentication and how often this authentication
was successful. This is a per token counter. This information is written to the token database as a parameter of each
token.

The setting “Do not use an authentication counter per token” (no_auth_counter) means that privacyIDEA does
not track this information at all.

1.5.4 CA Connectors

You can use privacyIDEA to enroll certificates and assign certificates to users.
You can define connections to Certifacte Authorities, that are used when enrolling certificates.

When you enroll a Token of type certificate the Certificate Signing Request gets signed by one of the CAs attached to
privacyIDEA by the CA connectors.

The first CA connector that ships with privacyIDEA is a connector to a local openSSL based Certificate Authority as
shown in figure A local CA definition.

When enrolling a certificate token you can choose, which CA should sign the certificate request.
Local CA Connector

The local CA connector calls a local openssl configuration.

Starting with privacyIDEA version 2.12 an example openssl.cnf is provided in /etc/privacyidea/CA/openssl.cnf.

Note: This configuration and also this description is ment to be as an example. When setting up a productive CA,
you should ask a PKI consultant for assistance.

54 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

== System © Policles |™ Events & Periodic Tasks [Tokens = Machines L Users @ Reams M CAs

All CA Connectors
New Connectors

New LOCAL CA Connec

Edit Local CA Connector myCA

Connector name myCA
Base Config
CA Certificate [etc/cacert.pem }
CA Key [etc/cakey.pem }
OpenSSL config file [etc/openssl.cnf }
Certificates Templates file etc/privacyidea
Working Directory opt/myCA
Certificate Signing Request opt/myCA/csrs
Directory
Certificate Directory opt/myCA/certs
This Is the directory were certificates get written to.
CRL Configuration
Certificate Revocation List opt/n
This is the CRL file, which is written when a certificate is revoked or the CRL Is created otherwise.
Validity Period 30 Overlap Period 10
Number of days the generated Number of days a new CRL
CRL should be valid. should be generated before the

current CRL expires.

Fig. 22: A local CA definition

1.5. Configuration 55

privacylDEA Authentication System, Release 3.6.1

privacylDEA = 0 Tokens L Users S Machines & Config Q Audit

All tokens

& Enroll Token

® Import Tokens

© Get Serial
total tokens: 38

Enroll a new token

Certificate: Enroll an x509 Certificate Token. v

The Certificate Token lets you enroll an x508 ceritificate by the given CA.
Token data

Generate Request Upload Request Upload Certificate

CA Connector
myCA v

Certificate Signing Request (PEM)

Paste the Certificate Signing Request

Assign token to user

Fig. 23: Enrolling a certificate token

56 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Manual Setup

1. Modify the parameters in the file /etc/privacyidea/CA/openssl.cnf according to your needs.

2. Create your CA certificate:

openssl req -days 1500 -new -x509 -keyout /etc/privacyidea/CA/ca.key \
-out /etc/privacyidea/CA/ca.crt \
-config /etc/privacyidea/CA/openssl.cnf

chmod 0600 /etc/privacyidea/CA/ca.key
touch /etc/privacyidea/CA/index.txt

echo 01 > /etc/privacyidea/CA/serial
chown -R privacyidea /etc/privacyidea/CA

3. Now set up a local CA connector within privacyIDEA with the directory /etc/privacyidea/CA and the files
accordingly.

Easy Setup

Starting with privacyIDEA version 2.18 it gets easier to setup local CAs.
You can use the The pi-manage Script tool to setup a new CA like this:
pi-manage ca create myCA
This will ask you for all necessary parameters for the CA and then automatically
1. Create the files for this new CA and

2. Create the CA connector in privacyIDEA.

Management

There are different ways to enroll a certificate token. See Certificate Token.

When an administrator revokes a certificate token, the certificate is revoked and a CRL is created.

Note: privacyIDEA does not create the CRL regularly. The CRL usually has a validity period of 30 days. Le. you
need to create the CRL on a regular basis. You can use openssl to do so or the pi-manage command.

Starting with version 2.18 the pi-manage command has an additional sub-command ca:
pi-manage ca list
lists all configured CA connectors. You can use the -v switch to get more information.
You can create a new CRL with the command:
pi-manage ca create_crl <CA name>

This command will check the overlap period and only create a new CRL if it is necessary. If you want to force the
creation of the CRL, you can use the switch -f.

For more information on pi-manage see The pi-manage Script.

1.5. Configuration 57

privacylDEA Authentication System, Release 3.6.1

Templates

The local CA supports a kind of certificate templates. These “templates” are predefined combinations of extensions
and validity days, as they are passed to openssl via the parameters ~extensions and —days.

This way the administrator can define certificate templates with certain X.509 extensions like keyUsage, extended-
KeyUsage, CDPs or AIAs and certificate validity periods.

The extensions are defined in YAML file and the location of this file is added to the CA connector definition.
The file can look like this, defining three templates “user”, “webserver” and “template3”:
user: days: 365 extensions: “user”

webserver: days: 750 extensions: “server”

template3: days: 10 extensions: “user”

1.5.5 SMTP server configuration

Starting with privacyIDEA 2.10 you can define SMTP server configurations. SMTP server endpoints.
An SMTP server configuration contains the

¢ server as FQDN or IP address,

* the port (defaults to 25),

* the sender email address,

¢ ausername and password in case of authentication

* an optional description

e aTLS flag.

Each SMTP server configuration is addressed via a unique identifier. You can then use such a configuration for Email
or SMS token, for PIN handling or in policies for User registration.

Under Config->Sytem->SMTP servers you can get a list of all configured SMTP servers, create new server definitions
and delete them.

== System © Policies ™ Events @ Perlodic Tasks [Tokens = Machines L Users @ Realms A CAs

List SMTP server definitions

New SMTP server

Identifier IP/FQDN Sender TLS Description
NetKnightsSMTP mail.netknights.de:25 privacyldea@netknights.de ' SMTP Test Server
themis themis.az local:25 privacyidea@cornelinux.de

Fig. 24: The list of SMTP servers.

In the edit dialog you can enter all necessary attributes to talk to the SMTP server. You can also send a test email, to
verify if your settings are correct.

58 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Edit SMTP server themis

Identifier themis

This is the unique identifying name of the SMTP server definition.

IP or FQDN themis.az.local
Port 25
Sender Email privacyidea@comelinux.de

This is the email address of the sender. Usually this should be an email address identifying your
system.

Usernane user@example.com

If the SMTP server requires authentication you need to specify the user

Password topsecret f
Description some wise words
) Use TLS
Recipient for testing

Send Test Email

Save SMTP server

Fig. 25: Edit an existing SMTP server definition.

1.5. Configuration 59

privacylDEA Authentication System, Release 3.6.1

In case a Job Queue is configured, the SMTP server dialog shows a checkbox that enables sending all emails for the
given SMTP server configuration via the job queue. Note that if the checkbox is checked, any test email will also be
sent via the queue. This also means that privacyIDEA will display a success notice when the job has been sent to the
queue successfully, which does not necessarily mean that the mail was actually sent. Thus, it is important to check
that the test email is actually received.

1.5.6 RADIUS server configuration

At config->system->RADIUS servers the administrator can configure a RADIUS servers to which privacyIDEA can
forward authentication requests.

e [Tokens L users S Machines = f¥cConfig QaAudit & Components < Refresh | admin @ {admin

o8 System D policies ™ Evemts B Periodic Tasks 0 Tokens ~ = Machines L Users @ Realms M cAs

List RADIUS server definitions

Create a new RADIUS server

Identifier [myRadiusServer]

New RADIUS server

This is the unigue identifying name of the RADIUS server definition.

IP or FQDN [123]

Port 1812

Timeout Retries

Secret testing123

Dictionary etc/privacyidea/dictionary
Description me wise wor

User Password Send test RADIUS request

Save RADIUS server

These RADIUS servers can be used with RADIUS tokens and in the Passthru Policy.

Note: This is meant for outgoing RADIUS requests, not for incoming RADIUS requests! To receive RADIUS
requests you need to install the privacyIDEA FreeRADIUS plugin.

60 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

_ FreeRADIUS Server) IDEAS
RADIUS Client With privacylDEA Plugin privacy erver External RADIUS Server

Incoming
RADIUS Request Request

Fig. 26: privacyIDEA can reveice incoming RADIUS requests and send outgoing RADIUS requests.

1.5.7 privacylDEA server configuration

At config->system->privacyIDEA servers the administrator can configure a remote privacyIDEA servers. These can
be used in the Remote or in the Federation Handler Module to forward the authentication request to.

1.5.8 SMS Gateway configuration

You can centrally define SMS gateways that can be used to send SMS with SMS Token or to use the SMS gateway for
sending notifications.

There are different providers (gateways) to deliver SMS.

#msystem ©Policies ™ Events & Periodic Tasks 0 Tokens = Machines L Users @ Realms A CAs

All SMS Gateways
Create a new SMS gateway
Create new SMS Gateway
Name SMISGateuay

Description

Parameters

Firebase Provider

The Firebase provider was added in privacyIDEA 3.0. It sends notifications via the Google Firebase service and this
is used for the Push Token. For an exemplary configuration, you may have a look on the articles on the privacyIDEA
community website tagged with push token.

JSON config file

This is the location of the configuration file of the Firebase service. It has to be located on the privacyIDEA
server.

apikey

The API key your Android app should use to connect to the Firebase service.

1.5. Configuration 61

https://www.privacyidea.org/tag/push-token/

privacylDEA Authentication System, Release 3.6.1

apiios

The API key your iOS app should use to connect to the Firebase service.
appid

The app ID your Android app should use to connect to the Firebase service.
appidios

The app ID your iOS app should use to connect to the Firebase service.
projectid

The project ID of the Firebase project, that is used to connect the app to.
projectnumber*

The project number of the Firebase project, that is used to connect the app to.

You can get all the necessary values JSON config file, project ID, project number, app ID and API key from your
Firebase console.

HTTP provider
The HTTP provider can be used for any SMS gateway that provides a simple HTTP POST or GET request. This is the
most commonly used provider. Each provider type defines its own set of parameters.
The following parameters can be used. These are parameters, that define the behaviour of the SMS Gateway definition.
CHECK_SSL

If the URL is secured via TLS (HTTPS), you can select, if the certificate should be verified or not.
PROXY, HTTP_PROXY and HTTP_PROXY

You can specify a proxy to connect to the HTTP gateway. Use the specific values to separate HTTP and
HTTPS.

REGEXP

Regular expression to modify the phone number to make it compatible with provider.
HTTP_METHOD

Can be GET or POST.
RETURN_FAIL

If the text of RETURN_FATIL is found in the HTTP response of the gateway privacyIDEA assumes that
the SMS could not be sent and an error occurred.

RETURN_SUCCESS

You can either use RETURN_SUCCESS or RETURN_FATIL. If the text of RETURN_SUCCESS is found
in the HTTP response of the gateway privacyIDEA assumes that the SMS was sent successfully.

TIMEOUT

The timeout for contacting the API and receiving a response.
URL

This is the URL for the gateway.
USERNAME and PASSWORD

These are the username and the password if the HTTP request requires basic authentication.

62 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

PARAMETER

This can contain a dictionary of arbitrary fixed additional parameters. Usually this would also contain an
ID or a password to identify you as a sender.

Options

You can define additional options. These are sent as parameters in the GET or POST request.

Note: The fixed parameters and the options can not have the same name! If you need an options, that has the same
name as a parameter, you must not fill in the corresponding parameter.

Note: You can use the tags {phone} to specify the phone number. The tag { otp} will be replaced simply with the
OTP value or with the contents created by the policy smstext.

Examples
Clickatell

In case of the Clickatell provider the configuration will look like this:
* URL: http://api.clickatell.com/http/sendmsg
« HTTP_METHOD: GET
« RETURN_SUCCESS: ID
Set the additional options to be passed as HTTP GET parameters:
e user: YOU
* password: your password
e api_id: you API ID
e text: “Your OTP value is {otp}”
* to: {phone}
This will consturct an HTTP GET request like this:

http://api.clickatell.com/http/sendmsg?user=Y0OU&password=YOU&\
api_id=YOUR API ID&text=....&to=....

where text and to will contain the OTP value and the mobile phone number. privacyIDEA will assume a successful
sent SMS if the response contains the text “ID”.

1.5. Configuration 63

http://api.clickatell.com/http/sendmsg

privacylDEA Authentication System, Release 3.6.1

GTX-Messaging

GTX-Messaging is an SMS Gateway located in Germany.
The configuration looks like this (see”):
* URL: https://http.gtx-messaging.net/smsc.php
e HTTP_METHOD: GET
* CHECK_SSL: yes
* RETURN_SUCCESS: 200 OK
You need to set the additional options:
* user: <your account>
* pass: <the account password>
* to: {phone}
* text: Your OTP value is {otp}.

Note: The user and pass are not the credentials you use to login. You can find the required credentials for sending
SMS in your GTX messaging account when viewing the details of your routing account.

Twilio

You can also use the Twilio service for sending SMS.'.

e URL: https://api.twilio.com/2010-04-01/Accounts/B. . . 8/Messages

« HTTP_METHOD: POST
For basic authentication you need:
* USERNAME: your accountSid
¢ PASSWORD: your password
Set the additional options as POST parameters:
* From: your Twilio phone number
* Body: {otp}
 To: {phone}

2 https://www.gtx-messaging.com/de/api-docs/http/
! https://www.twilio.com/docs/api/rest/sending-messages

64

Chapter 1. Table of Contents

https://http.gtx-messaging.net/smsc.php
https://api.twilio.com/2010-04-01/Accounts/B...8/Messages
https://www.gtx-messaging.com/de/api-docs/http/
https://www.twilio.com/docs/api/rest/sending-messages

privacylDEA Authentication System, Release 3.6.1

Sipgate provider
The sipgate provider connects to https://samurai.sipgate.net/RPC2 and takes only two arguments USERNAME and
PASSWORD.
Parameters:
USERNAME
The sipgate username.
PASSWORD
The sipgate password.
PROXY
You can specify a proxy to connect to the HTTP gateway.
It takes not options.

If you activate debug log level you will see the submitted SMS and the response content from the Sipgate gateway.

SMPP Provider

The SMPP provider was added in privacyIDEA 2.22. It uses an SMS Center via the SMPP protocol to deliver SMS to
the users.

You need to specify the SMSC_HOST and SMSC_PORT to talk to the SMS center. privacyIDEA need to authen-
ticate against the SMS center. For this you can add the parameters SYSTEM_ID and PASSWORD. The parameter
S_ADDR is the sender’s number, shown to the users receiving an SMS. For the other parameters contact your SMS
center operator.

SMTP provider

The SMTP provider sends an email to an email gateway. This is a specified, fixed mail address.

The mail should contain the phone number and the OTP value. The email gateway will send the OTP via SMS to the
given phone number.

BODY

This is the body of the email. You can use this to explain the user, what he should do with this email. You
can use the tags {phone} and {otp} to replace the phone number or the one time password.

MAILTO

This is the address where the email with the OTP value will be sent. Usually this is a fixed email address
provided by your SMTP Gateway provider. But you can also use the tags {phone} and {otp} toreplace
the phone number or the one time password.

SMTPIDENTIFIED
Here you can select on of your centrally defined SMTP servers.
SUBJECT

This is the subject of the email to be sent. You can use the tags {phone} and {otp} to replace the
phone number or the one time password.

The default SUBJECT is set to {phone} and the default BODY to {otp}. You may change the SUBJECT and the BODY
accordingly.

1.5. Configuration 65

https://samurai.sipgate.net/RPC2

privacylDEA Authentication System, Release 3.6.1

Script provider
The Script provider calls a script which can take care of sending the SMS. The script takes the phone number as the
only parameter. The message is expected at stdin.

Scripts are located in the directory /etc/privacyidea/scripts/. You can change this default location by
setting the value in PI_SCRIPT_SMSPROVIDER_DIRECTORY inpi.cfq.

In the configuration of the Script provider you can set two attributes.
SCRIPT

This is the file name of the script without the directory part.
BACKGROUND

Here you can choose, whether the sript should be started and run in the background or if the HTTP requests waits for
the script to finish.

1.5.9 Token configuration

Each of the Token types in privacyIDEA can provide its own configuration dialog.

In this configuration dialog you can define default values for these token types. Some token additionally require
Configuration such as the configuration of an SMTP server.

= System © Policies ™ Events @ Periodic Tasks O Tokens = Machines & Users @ Realms M CAs
HOTP .
SMS Token settings
TOTP
The SMS Token is an event based token. After the user has trie: with the OTP PIN, an SMS with an OTP value is
JoF sent to th mobile Then uth ue In a second step.
Here you can define how the SMS wi
RADIUS SMS Gateway configuration
Remote Select a predefined SMS Gateway configuration

_ e G

OTP validity time

TIQR
The time in seconds for which the sent OTP value is valid for authentication
EMail
Questionnaire
Obsolete settings
Yubico
SMS Provider
Yublkey

privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider

Provider Config

Save

Fig. 27: Examplary token configuration for an SMS Token

66 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Email Token Configuration

= System © Policies ™ Events & Periodic Tasks [Tokens = Machines L Users @ Realms M cAas

HOTP

TOTP

EMail Token settings
| token is alle

El nge response token that sends the OTP value to the given emall address, when the correct OTP PIN
U2F by
SMTP server configuration
RADIUS Select a predefined SMTP server configuration
Remote themis
SMsS OTP validity time
TioR The time in seconds for which the sent OTP value is valid for authentication

Questionnaire

Yubico

Yublkey

Fig. 28: Email Token configuration

For the email token to work, you have to first setup an SMTP server configuration and link it to the Email Token
configuration at Config -> Tokens -> Email. The Ul warns the user if one of these requirements is not fulfilled yet.

The Email OTP token creates a OTP value and sends this OTP value to the email address of the uses. The email can
be triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the email is triggered. The user is denied the access.

Seconds step

In the second step the user authenticates with the OTP PIN and the OTP value he received via email. The user is
granted access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

Configuration Parameters

Concurrent Challenges

The config entry email.concurrent_challenges setin The Config File will save the sent OTP value in the
challenge database. This way several challenges can be open at the same time. The user can answer the challenges in
an arbitrary order. Set this to a true value. Defaults to off.

1.5. Configuration 67

privacylDEA Authentication System, Release 3.6.1

Deprecated Configuration Parameters

There are few more config entries handled, which are deprecated in recent versions of privacyIDEA.
* email.mailserver - The name or IP address of the mail server that is used to send emails.
* email.port - The port of the mail server.

* email.username - If the mail server requires authentication you need to enter a username. If no username
is entered, no authentication is performed on the mail server.

* email.password - The password of the mail username to send emails.
* email .mailfrom - The mail address of the mail sender. This needs to correspond to the Mail User.

* email.validtime - This is the time in seconds, for how long the sent OTP value is valid. If a user tries to
authenticate with the sent OTP value after this time, authentication will fail.

e email.tls - Whether the mail server should use TLS.

HOTP Token Config

orivacylDEA O Tokens & Users = Machines = #Config Q Audit -
System $ Policies | [Tokens | = Machines AL Users @ Realms A CAs

HOTP .

HOTP Token settings
TOTP

The HOTP Token is a event based one time password token. It is described in RFC 4226
RADIUS Here you can define settings, that will be set as default values, when enrolling a HOTP token.

Default Hashlib
Remote

sha1 v

SMS

EMail

Yubico

Fig. 29: HOTP Token configuration

SMS Token Configuration

The SMS OTP token creates a OTP value and sends this OTP value to the mobile phone of the user. The SMS can be
triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the SMS is triggered. The user is denied the access.

68 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Second step

In the second step the user authenticates with the OTP PIN and the OTP value he received via SMS. The user is granted
access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

A python SMS provider module defines how the SMS is sent. This can be done using an HTTP SMS Gateway.
Most services like Clickatel or sendsms.de provide such a simple HTTP gateway. Another possibility is to send SMS
via sipgate, which provides an XMLRPC API. The third possibility is to send the SMS via an SMTP gateway. The
provider receives a specially designed email and sends the SMS accordingly. The last possibility to send SMS is to
use an attached GSM modem.

Starting with version 2.13 the SMS configuration has been redesigned. You can now centrally define SMS gate-
ways. These SMS gateways can be used for sending SMS OTP token but also for the event notifications. (See User
Notification Handler Module)

For configuring SMS Gateways read SMS Gateway configuration. 1 this token configuration you can select on defined
gateway to send SMS for authentication.

Configuration Parameters

Concurrent Challenges

If set to True in The Config File, the config entry sms . concurrent_challenges will save the sent OTP value in
the challenge database. This way several challenges can be open at the same time. The user can answer the challenges
in an arbitrary order. Defaults to off.

TiQR Token Configuration

TiQR Registration Server

You need at least enter the TiQR Registration Server. This is the URL of your privacyIDEA installation, that can be
reached from the smartphone during enrollment. So your smartphone needs to be on the same LAN (WLAN) like the
privacyIDEA server or the enrollment URL needs to be accessible from the internet.

You also need to specify the path, which is usually /ttype/tigr.

During enrollment the parameter action=metadata and action=enrollment is added.

Note: We do not recommend putting the registration URL on the internet.

1.5. Configuration 69

privacylDEA Authentication System, Release 3.6.1

TiQR Token settings

The TiQR Token is an OCRA based Smartphone Token, that can be used to authenticate by just scanning a QR code.
TiQR Registration Server

The Registration Server is this privacylDEA server. Note that the privacylDEA server needs fo be accessible from the users
smartphone.

http://172.16.200.106:5000/ttypetigr

TiQR Authentication Server

The Authentication Server is this privacylDEA server. Note that the privacylDEA server needs to be accessible from the users
smartphone.

TiQR Service Displayname

This is the display name of your service in the TiQR app.
local Pl System

TiQR Service Identifier

This is the service identifier that will be passed to the TiQR app. This should contain a reverse FQDN (defaults to
org.privacyidea).

OCRA Suite

This is the OCRA suite used by the TIQR App. The default OCRA suite is OCRA-1:HOTP-SHA1-6:QN10. For more details see the
RFC 6287.

OCRA-1:HOTP-SHA1-6:QN10

Save

Fig. 30: TiQR Token configuration

70

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

TiQR Authentication Server

This is the URL that is used during authentication. This can be another URL than the Registration Server. If it is left
blank, the URL of the Registration Server is used.

During authentication the parameter operation=Ilogin is added.

TOTP Token Config

privacylDEA Q Tokens L Users S Machines = #Config Q Audit

#System D Policies | [Tokens | = Machines L Users @Realms N CAs

HOTP

TOTP Token settings

TOTP
The TOTP Token is a time based one time password token. It is described in RFC 6238.

RADIUS Here you can define settings, that will be set as default values, when enrolling a TOTP token.

Default Time Step
Remote

30 A
SMS
Default Time Window
EMail

Yubico Default Time Shift

Default Hashlib
shal A

Save

Fig. 31: TOTP Token configuration

U2F Token Config

Appld

You need to configure the Appld of the privacyIDEA server. The Appld is define in the FIDO specification'.

The Appld is the URL of your privacyIDEA and used to find or create the right key pair on the U2F device. The Appld
must correspond the the URL that is used to call the privacyIDEA server.

Note: if you register a U2F device with an Appld https://privacyidea.example.com and try to authenticate at https:
//10.0.0.1, the U2F authentication will fail.

Note: The Appld must not contain any trailing slashes!

! https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment- 201505 14/fido-appid-and-facets.html

1.5. Configuration 71

https://privacyidea.example.com
https://10.0.0.1
https://10.0.0.1
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

privacylDEA Authentication System, Release 3.6.1

Facets

If specifying the Appld as the FQDN you will only be able to authenticate at the privacyIDEA server itself or at any
application in a sub directory on the privacyIDEA server. This is OK, if you are running a SAML IdP on the same
server.

But if you also want to use the U2F token with other applications, you need to specify the Appld like this:
https://privacyidea.example.com/pi-url/ttype/u2f
pi-url is the path, if you are running the privacyIDEA instance in a sub folder.

/ttype/ulf is the endpoint that returns a trusted facets list. Trusted facets are other hosts in the domain example.com.
You need to define a policy that contains a list of the other hosts (u2f facets).

For more information on Appld and trusted facets see'.

For further details and for information how to add U2F to your application you can see the code documentation at U2F
Token.

Workflow

You can use a U2F token on privacyIDEA and other hosts in the same Domain. To do so you need to do the following
steps:

1. Configure the Appld to reflect your privacyIDEA server:
https://pi.your-network.com/ttype/u2f
Add the path /ttype/u2f is crucial. Otherwise privacyIDEA will not return the trusted facets.
2. Define a policy with the list of trusted facets. (see u2f facets). Add the FQDNs of the hosts to the policy:

saml.your-network.com otherapp.your-network.com vpn.your-network.com

Note: The privacyIDEA plugin for simpleSAMLphp supports U2F with privacyIDEA starting with version
2.8.

3. Now register a U2F token on https://pi.your-network.com. Due to the trusted facets you will also be able to use
this U2F token on the other hosts.

4. Now got to https://saml.your-network.com and you will be able to authenticate with the very U2F token without
any further registering.

WebAuthn Token Config

Trust Anchor Directory

You may define a directory containing trust roots for attestation certificates.

This should be a path to a local directory on the server which privacyIDEA has read access to. Any certificate in this
directory will be trusted to correctly attest authenticators during enrollment.

This does not need to be set for WebAuthn to work, however without this, privacyIDEA can not check, whether an
attestation certificate is actually trusted (it will still be checked for validity). Therefore it is mandatory to set this, if
webauthn_authenticator_attestation_level is set to “trusted” through policy for any user.

72 Chapter 1. Table of Contents

https://privacyidea.example.com/pi-url/ttype/u2f
https://pi.your-network.com/ttype/u2f
https://pi.your-network.com
https://saml.your-network.com

privacylDEA Authentication System, Release 3.6.1

WebAuthn Required Policies

For WebAuthn to work, a name and ID for the relying party need to be set. The relying party in WebAuthn represents
the entity the user is registering with. In most cases this will be your company. In larger companies it is often helpful to
segment according to department by setting up multiple ID and name policies for WebAuthn which apply to different
users.

Relying Party ID

The ID of the relying party must be a fully-qualified domain name. Every web-service, where the WebAuthn token
should be used needs to be reachable under a domain name which is a superset (i.e. a subdomain) of this ID. This
means that a WebAuthn token enrolled with a relying party ID of example.com may be used to sign in to priva-
cyidea.example.com and owncloud.example.com. However, this token will not be able to sign in to a service under
example.de, or any other webservice that is not hosted on a subdomain of example.com.

See also: webauthn_relying_party_id.

Relying Party Name

This is a human-readable name to go along with the relying party ID. It will usually be either the name of your company
(if there is just one relying party for the entire company), or the name of the department or other organizational unit
the relying party represents.

See also: webauthn_relying_party_name.

Yubico Cloud mode

The Yubico Cloud mode sends the One Time Password emitted by the yubikey to the Yubico Cloud service or another
(possibly self hosted) validation server.

privacylDEA @ [Tokens & Users = Machines = #Config Q Audit

8 Sysiem D Policies 0 Tokens =~ =Machines L Users @ Realms A CAs

o Yubico Token settings

TOTP
The Yubico Token is a Yubikey that is registered with the YubiCloud service. The Yubikey emits a 44 character one time password. The

UsE first 12 characters are a unique ID which is used to bind the device to the user.

The authentication request is forwarded to the YubiCloud. For accessing the YubiCloud you need to enter an API Client ID and an API
RADIUS Key, which you can request here.
APl client ID
Remote
SMS
API Key
TiQR
Enal Yubico URL

Questionnaire

Yubikey

Fig. 32: Configure the Yubico Cloud mode

To contact the Yubico Cloud service you need to get an API key and a Client ID from Yubico and enter these here in
the config dialog. In that case you can leave the Yubico URL blank and privacyidea will use the Yubico servers.

1.5. Configuration 73

privacylDEA Authentication System, Release 3.6.1

You can use another validation host, e.g. a self hosted validation server. If you use privacyidea token type yu-
bikey, you can use the URL https://<privacyideaserver>/ttype/yubikey, other validation servers might use https:
/I<validationserver>/wsapi/2.0/verify. You’ll get the Client ID and API key from the configuration of your valida-
tion server.

You can get your own API key at'.

Yubikey AES mode

The Yubico AES mode uses the same kind of token as the Yubico Cloud service, but validates the OTP in your local
privacyidea server. So the secrets stay local to your system and are not stored in Yubico’s Cloud service.

privacyIDEA O Tokens L Users = Machines = £FConfig Q Audit
% System £ Policies 0 Tokens =~ =Machines L Users @ Realms M cAs

HOTP . .

Yubikey Token settings
TOTP

This is a Yubikey in the Yubico Mode authenticated against privacy|DEA. The Yubikey emits a 44 character on time password
Uzr The authentication request can be handled by the default privacy|DEA validate AP but can also be handled by the Yubico Validation

Protocol
RADIUS

Client ID API Key
Remote
S Create new API key

SMS
EMail

Questionnaire

Yubico

‘Yubikey

Fig. 33: Configure the Yubikey AES mode

You can have more than one Client with a Client ID connect to your server. The Client ID starts with yubikey.apiid.
and is followed by the API ID, which you’ll need to configure your clients. With create new API key you
generate a new API for that specific Client ID. The API key is used to sign the validation request sent to the server
and the server signs the answer too. That way tampering or MITM attacks might be detected. It is possible to validate
token without the API key, but then the request and answer can’t be verify against the key. It is useful to use HTTPS
for your validation requests, but this is another kind of protection.

OTP validation can either use the privacyidea API /validate/check or the Yubikey validation protocol /ttype/yubikey or
- if enabled in your webserver configuration - /wsapi/2.0/verify.

1.5.10 privacylDEA Appliance

privacyIDEA offers an appliance tool to manage your token administrators, RADIUS clients and also setup MySQL
master-master replication. It can be found in a Github repository'.

This tool is supposed to run on Ubuntu 16.04 LTS or 18.04 LTS. You can find a ready install ISO at another Github
reposity’.

! https://upgrade.yubico.com/getapikey/.
! https://github.com/NetKnights-GmbH/privacyidea-appliance
2 https://github.com/NetKnights-GmbH/privacyidea-appliance-iso

74 Chapter 1. Table of Contents

https:/
https:/
https:/
https://upgrade.yubico.com/getapikey/
https://github.com/NetKnights-GmbH/privacyidea-appliance
https://github.com/NetKnights-GmbH/privacyidea-appliance-iso

privacylDEA Authentication System, Release 3.6.1

Note: The ready made Ubuntu package for the appliance tool is only available with a Service Level Agreement from
the company NetKnights®.

To configure the system, login as the user root on your machine and run the command:

pi-appliance

This will bring you to this start screen.

Which subject do you want to configure?

rivacyIDEA

FreeRADIUS
Database

Webserver

Backup and Restore
Updates

Audit Rotation

< Bk >l

Configure privacyIDEA application stuff 11 dministrators.
Fig. 34: Start screen of the appliance setup tool.

You can configure privacyidea settings, the log level, administrators, encryption key and much more. You can configure
the webserver settings and RADIUS clients.

Configure privacyidea

loglevel Change log level.
admin realms Modify admin realms.
manage local admins Modify admins.

Danger zone! Enter at your own risk!

e < Back >

Fig. 35: Configure privacyidea

All changes done in this setup tool are directly read from and written to the corresponding configuration files. The
setup tool parses the original nginx and freeradius configuration files. So there is no additional place where this data
is kept.

3 https://netknights.it/en/produkte/privacyidea/

1.5. Configuration 75

https://netknights.it/en/produkte/privacyidea/

privacylDEA Authentication System, Release 3.6.1

You can select an existing administrator to either
delete it or change the password or create a new
admin

Add a new administrato

admin

< K > <Cancel>

Fig. 36: You can create new token administrators, delete them and change their passwords.

You can select an existing RADIUS client to either
delete it or change it or create a new client

dd new clientfAdd a new RADIUS client

localhost 127.0.0.1/None (None)
localhost_ipvé None/None (None)

< QK >l < Back >

Fig. 37: In the FreeRADIUS settings you can create and delete RADIUS clients.

76 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Note: You can also edit the clients.conf and other configuration files manually. The setup tool will also read those
manual changes!

Backup and Restore

Starting with version 1.5 the setup tool also supports backup and restore. Backups are written to the directory
Nvar/lib/privacyidea/backup.

The backup contains all privacyIDEA configuration, the contents of the directory /etc/privacyidea, the encryption key,
the configured administrators, the complete token database (MySQL) and Audit log. Furthermore if you are running
FreeRADIUS the backup also contains the /etc/freeradius/clients.conf file.

Backup and Restore

Backup now
View Backups
Set backup rotation

Schedulded backup

At the configuration point Configure Backup you can define times when a scheduled backup should be performed.
This information is written to the file /etc/crontab.

You can enter minutes, hours, day of month, month and day of week. If the entry should be valid for each e.g. month
or hour, you need to enter a ‘*’.

In this example the /0 17 * * * (minute=10, hour=17) means to perform a backup each day and each month at 17:10
(5:10pm).

The example 7 10 I * * (minute=1, hour=10, day of month=1) means to perform a backup on the first day of each
month at 10:01 am.

Thus you could also perform backups only once a week at the weekend.

1.5. Configuration 77

privacylDEA Authentication System, Release 3.6.1

Here you can define times, when to run a backup.

dd new backup date

10 17 * * * daily backup job.
110 1 * * monthly backup job.

< K > <Cancel>

Fig. 38: Scheduled backup

Immediate backup

If you want to run a backup right now you can choose the entry Backup now.

Restore

The entry View Backups will list all the backups available.

Choose a backup you wish to restore...

rivacyidea-backup-141014-225035.tgzJi8MB Tue Oct 14 22:50:38 2014

privacyidea-backup-141014-173319.tgz 8MB Tue Oct 14 17:33:22 2014
privacyidea-backup-141014-173157.tgz 5MB Tue Oct 14 17:32:02 2014
privacyidea-backup-141014-173137.tgz 2MB Tue Oct 14 17:31:45 2014
privacyidea-backup-141014-172806.tgz 8MB Tue Oct 14 17:28:23 2014
privacyidea-backup-141014-172745.tgz 8MB Tue Oct 14 17:27:50 2014
privacyidea-backup-141014-172713.tgz 8MB Tue Oct 14 17:27:25 2014
70%

< [K > <Cancel>

Fig. 39: All available backups

You can select a backup and you are asked if you want to restore the data.

78 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Warning: Existing data is overwritten and will be lost.

Database: Setup Redundancy

The appliance-tool is also capable of setting up a redundant setup between two privacyIDEA nodes in master-master
replicatoin. The administrator sets up redundancy on the first configured node. On the second node the same version
of privacyIDEA needs to be installed. No configuration needs to be done on the second node. The configuration and
the token database is completely copied from the first node to the second node. Possible existing configuration on the
second node will be overwritten during the setup. The appliance-tool can also set up an encrypted VPN that is used
for the replication of the database.

The current database configuration string is
mysql+pymysql://pi:RRqqxGnjMvQx@localhost/pizchars
et=utfs

init tables create missing tables

view redundancy
master master replication

stop redundancy revert to single database

Note: If you choose to use the tinc VPN connection between the nodes and an SSH root login, make sure the services
are installed.

Warning: Existing data on the second node is overwritten and will be lost.

Updates

In this menu, you can setup cronjobs for automatic updates which is seldom used in productive setups.

Audit Rotation

In the Audit Rotation menu, you can setup cronjobs for the audit rotation conditioned by age or the number of entries.
The syntax follows the crontab syntax as explained in Backup and Restore.

Note: Keep in mind that the audit log is synchronized between the nodes in a redundant setup. If you chose to rotate
both audit logs, make sure you do it at different times to avoid synchronisation issues.

1.5. Configuration 79

privacylDEA Authentication System, Release 3.6.1

Master-Master replication active: True
Server ID: 1
Bind Address: 0.0.0.0

Master

File: mysgl-bin.0eeee01
Position: 4952

Last SQL Error: (none)
Last I0 Error: (none)

1.6 Tokens

PrivacyIDEA is a token management system which supports a great variety of different token types. They each
have different requirements concerning configuration and how the authentication works. This chapter explains the
authentication modes, lists the supported hardware and software tokens and explains how the token types can be used
with privacyIDEA. Tools which facilitate and automate token enrollment are found in Enrollment Tools.

1.6.1 Authentication Modes

privacyIDEA supports a variety of tokens that implement different authentication flows. We call these flows authenti-
cation modes. Currently, tokens may implement three authentication modes, namely authenticate, challenge
and outofband.

Application plugins need to implement the three authentication modes separately, as the modes differ in their user
experience. For example:

* The HOTP token type implements the authent icate mode, which is a single-shot authentication flow. For

each authentication request, the user uses their token to generate a new HOTP value and enters it along with
their OTP PIN. The plugin sends both values to privacyIDEA, which decides whether the authentication is valid
or not.

The E-Mail and SMS token types implement the chal lenge mode. With such a token, the authentication flow
consists of two steps: In a first step, the plugin triggers a challenge. privacyIDEA sends the challenge response
— a fresh OTP value — to the user via E-Mail or SMS. In a second step, the user responds to the challenge
by entering the respective OTP value in the plugin’s login form. The plugin sends the challenge response to
privacyIDEA, which decides whether the authentication is valid or not.

The PUSH and TiQR token types implement the out ofband mode. With a PUSH token, the authentication
step also consists of two steps: In a first step, the user triggers a challenge. privacyIDEA pushes the challenge
to the user’s smartphone app. In a second step, the user approves the challenge on their phone, and the app
responds to the challenge by communicating with the privacyIDEA server on behalf of the user. The plugin
periodically queries privacyIDEA to check if the challenge has been answered correctly and the authentication
is valid.

80

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

The following describes the authentication flows of the three authentication modes in more detail.

authenticate mode

Service privacylDEA

 POST jvalidatefcheck o

Service privacylDEA

The Service is an application that is protected with a second factor by privacyIDEA.
* The user enters a OTP PIN along with an OTP value at the Service.

* The plugin sends a request to the /validate/check endpoint of privacyIDEA:

POST /validate/check

user=<user>&pass=<PIN+OTP>

and privacyIDEA returns whether the authentication request has succeeded or not.

1.6. Tokens 81

privacylDEA Authentication System, Release 3.6.1

challenge mode

Service privacylDEA SMS Gateway

alt / [with pin]

POST jvalidate/check

transaction_id

[without pin]
POST fvalidatestriggerchallenge >

transaction_id

oTP >
User enters OTP from ESMS |
| POST fvalidate/check »
e em e mmmne e mnnnnnannnen
Service privacylDEA SMS Gateway

» The plugin triggers a challenge, for example via the /validate/triggerchallenge endpoint:

POST /validate/triggerchallenge

user=<user>

Alternatively, a challenge can be triggered via the /validate/check endpoint with the PIN of a challenge-
response token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id and asks the user for
the challenge response.

» The user enters the challenge response, which we call OTP. The plugin forwards the response to privacyIDEA
along with the transaction ID:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=<OTP>

and privacyIDEA returns whether the authentication request succeeded or not.

82

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

outofband mode

Service privacylDEA Firebase Phone

alt J/J [with pinl

POST jvalidate/check

Y

transaction_id

[withgut pin]

POST fvalidatejtriggerchallenge

transaction_id

PUSH Motification

PUSH Motification

loop / [until confirmed]

GET jvalidate/polltransaction

Y

User confirms sign in on phone

__ POST jttype/push

GET fvalidate/polltransaction

et

POST jvalidate/check -

.(..
senvice privacylDEA Firebase Phone

* The plugin triggers a challenge, for example via the /validate/triggerchallenge endpoint:

POST /validate/triggerchallenge

user=<user>

or via the /validate/check endpoint with the PIN of a out-of-band token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id. The plugin may now
periodically query the status of the challenge by polling the /validate/polltransaction endpoint:

GET /validate/polltransaction

transaction_id=<transaction_id>

If this endpoint returns false, the challenge has not been answered yet.

1.6.

Tokens 83

privacylDEA Authentication System, Release 3.6.1

* The user approves the challenge on a separate device, e.g. their smartphone app. The app communicates with a
tokentype-specific endpoint of privacyIDEA, which marks the challenge as answered. The exact communication
depends on the token type.

* Once /validate/polltransaction returns true, the plugin must finalize the authentication via the
/validate/check endpoint:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=

For the pass parameter, the plugin sends an empty string.

This step is crucial because the /validate/check endpoint takes defined authentication and authorization
policies into account to decide whether the authentication was successful or not.

Note: The /validate/polltransaction endpoint does not require authentication and does not in-
crease the failcounters of tokens. Hence, attackers may try to brute-force transaction IDs of correctly answered
challenges. Due to the short expiration timeout and the length of the randomly-generated transaction IDs, it is
unlikely that attackers correctly guess a transaction ID in time. Nonetheless, plugins must not allow users to
inject transaction IDs, and plugins must not leak transaction IDs to users.

1.6.2 Hardware and Software Tokens

privacyIDEA supports a wide variety of tokens by different hardware vendors. It also supports token apps on the
smartphone which handle software tokens.

Tokens not listed, will be probably supported, too, since most tokens use standard algorithms.

If in doubt drop your question on the mailing list.

Hardware Tokens

The following hardware tokens are known to work well.

Yubikey. The Yubikey is supported in all modes: AES (Yubikey), HOTP Token and Yubico Cloud. You can initialize
the Yubikey yourself, so that the secret key is not known to the vendor. The process is described in Yubikey Enrollment
Tools.

eToken Pass. The eToken Pass is a push button token by SafeNet. It can be initialized with a special hardware device.
Or you get a seed file, that you need to import to privacyIDEA. The eToken Pass can run as HOTP Token or TOTP
token.

eToken NG OTP. The eToken NG OTP is a push button token by SafeNet. As it has a USB connector, you can
initialize the token via the USB connector. Thus the hardware vendor does not know the secret key.

DaPlug. The DaPlug token is similar to the Yubikey and can be initialized via the USB connector. The secret key is
not known to the hardware vendor.

Smartdisplayer OTP Card. This is a push button card. It features an elnk display, that can be read very good in all
light condition at all angles. The Smartdisplayer OTP card is initialized at the factory and you get a seed file, that you
need to import to privacyIDEA.

Feitian. The C100 and C200 tokens are classical, reasonably priced push button tokens. The C100 is an HOTP Token
token and the C200 a TOTP token. These tokens are initialized at the factory and you get a seed file, that you need to
import to privacyIDEA.

84 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

U2F. The Yubikey and the Daplug token are known U2F devices to work well with privacyIDEA. See U2F.

Smartphone Apps

privacyIDEA Authenticator. Our own privacyIDEA Authenticator is based on the concept of the Google Authenti-
cator and works with the usual QR Code key URI enrollment. But on top it also allows for a more secure enrollment
process (See Two Step Enrollment). It can be used for HOTP Token, TOTP and Push Token.

Google Authenticator. The Google Authenticator is working well in HOTP Token and TOTP mode. If you choose
“Generate OTP Key on the Server” during enrollment, you can scan a QR Code with the Google Authenticator. See
Enrolling your first token to learn how to do this.

FreeOTP. privacyIDEA is known to work well with the FreeOTP App. The FreeOTP App is a TOTP token. So if you
scan the QR Code of an HOTP token, the OTP will not validate.

mOTP. Several mOTP Apps like “Potato”, “Token2” or “DroidOTP” are supported.

1.6.3 Token types in privacylDEA

The following list is an overview of the supported token types. For more details, consult the respective description
listed in 7Tokens. Some token require prior configuration as described in Token type details.

» Four Eyes - Meta token that can be used to create a Two Man Rule.

Certificate Token - A token that represents a client certificate.

Email - A token that sends the OTP value to the EMail address of the user.
HOTP Token - event based One Time Password tokens based on RFC4226.

Indexed Secret Token - a challenge response token that asks the user for random positions from a secret string.

Daplug - A hardware OTP token similar to the Yubikey.

mOTP Token - time based One Time Password tokens for mobile phones based on an a public Algorithm.

OCRA - A basic OATH Challenge Response token.

Paper Token (PPR) - event based One Time Password tokens that get you list of one time passwords on a sheet
of paper.

Push Token - A challenge response token, that sends a challenge to the user’s smartphone and the user simply
accepts the request to login.

Password Token - A password token used for losttoken scenario.

Questionnaire Token - A token that contains a list of answered questions. During authentication a random
question is presented as challenge from the list of answered questions is presented. The user must give the right
answer.

Registration - A special token type used for enrollment scenarios (see Registration Code).

RADIUS - A virtual token that forwards the authentication request to a RADIUS server.

registration

Remote - A virtual token that forwards the authentication request to another privacyIDEA server.

SMS Token - A token that sends the OTP value to the mobile phone of the user.

Spass - Simple Pass Token - The simple pass token. A token that has no OTP component and just consists of the
OTP pin or (if otppin=userstore is set) of the userstore password.

1.6. Tokens 85

https://en.wikipedia.org/wiki/Two-man_rule
https://tools.ietf.org/html/rfc4226
http://motp.sourceforge.net

privacylDEA Authentication System, Release 3.6.1

* SSH Keys - An SSH public key that can be managed and used in conjunction with the Machines concept.
* TAN Token -

* TiQOR - A Smartphone token that can be used to login by only scanning a QR code.

e TOTP - time based One Time Password tokens based on RFC6238.

* U2F - A U2F device as specified by the FIDO Alliance. This is a USB device to be used for challenge response
authentication.

* VASCO - The proprietary VASCO token.

e WebAuthn - The WebAuthn or FIDO2 token which can use several different mechanisms like USB tokens or
TPMs to authenticate via public key cryptography.

* Yubikey - A Yubikey hardware initialized in the AES mode, that authenticates against privacyIDEA.

* Yubico - A Yubikey hardware that authenticates against the Yubico Cloud service.

Token type details
Detailed information on the different token types used in privacyIDEA can be found in the following sections.
Four Eyes

Starting with version 2.6 privacyIDEA supports 4 Eyes Token. This is a meta token, that can be used to define, that
two or more token must be used to authenticate. This way, you can set up a “two man rule”.

You can define, from which realm how many unique tokens need to be present, when authenticating:

Enroll a new token

4Eyes Token: Use tokens of two or more users to authenticate j
The 4 Eyes token will only authenticate if two or more users are present at once. You can define how many existing tokens of the
given realms need to be present to perform a successful authentication
Token data
Separator
The separator that is used to separate the passwords of the different tokens.

Required Realms

Here you can select how many tokens of which realm are required to perform a successful authentication.
Jr2

& realm2 |2 -

& sqlite |1 -

| superuser

| themis

Fig. 40: Enroll a 4 eyes token
In this example authentication will only be possbile if at least two tokens from realm2 and one token from realm sqglite
are present.

Authentication is done by concatenating the OTP PINs and the OTP values of all tokens. The concatenation is split by
the separator character.

86 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc6238

privacylDEA Authentication System, Release 3.6.1

It does not matter, in which order the tokens from the realms are entered.
Example

Authentication as:

username: "root@r2"
password: "pinl23456 secret789434 key098123"

The three blocks separated by the blank are checked, if they match tokens in the realms realm2 and sqlite.

The response looks like this in case of success:

{

"detail": {
"message": "matching 1 tokens",
"serial": "PI4E000219E1",
"type": "4deyes"
by
"id": 1,
"Jsonrpc": "2.0",
"result": {
"status": true,
"value": true
by
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"

In case of a failed authentication the response looks like this:

{

"detail": {
"foureyes": "Only found 0 tokens in realm themis",
"message": "wrong otp value",
"serial": "PI4EQ00219E1",
"type": "4deyes"
} ’
"id": 1,
"Jsonrpc": "2.0",
"result": {
"status": true,
"value": false
} r’
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"
}
1.6. Tokens 87

privacylDEA Authentication System, Release 3.6.1

Using Challenge Response mode

Starting with version 3.5 it is also possible to use the 4eyes token in multi challenge-response mode. This way in the
first authentication response the users will either enter the OTP PIN of the 4eyes token or (if the 4eyes token has no
PIN) enter the first token (OTP PIN + OTP value) of one of the users. After this a challenge is sent back, that further
tokens need to be entered. Every one of the required tokens is entered separately.

Note: The 4Eyes Token verifies that unique tokens from each realm are used. l.e. if you require 2 tokens from a
realm, you can not use the same token twice.

Warning: But it does not verify, if these two unique tokens belong to the same user. Thus you should create a
poliy, that in such a realm a user may only have on token.

Certificate Token

Starting with version 2.3 privacyIDEA supports certificates. A user can
* submit a certificate signing request (including an attestation certificate),
* upload a certificate or
* he can generate a certificate signing request in the browser.

privacyIDEA does not sign certificate signing requests itself but connects to existing certificate authorities. To do so,
you need to define CA Connectors.

Certificates are attached to the user just like normal tokens. One token of type certificate always contains only one
certificate.

If you have defined a CA connector you can upload a certificate signing request (CSR) via the Token Enroll Dialog in
the WebUL.

Enroll a new token

Certificate: Enroll an x509 Certificate Token v

The Certificate Token lets you enroll an x509 ceritificate by the given CA.

Token data
Generate Request Upload Reguest Upload Certificate
CA Connector
myCA v

Certificate Signing Request (PEM)

Fig. 41: Upload a certificate signing request

You need to choose the CA connector. The certificate will be signed by the CA accordingly. Just like all other tokens
the certificate token can be attached to a user.

88 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Generating Signing Requests

You can also generate the signing request directly in your browser.

Note: This uses the keygen HTML-tag that is not supported by the Internet Explorer!

Enroll a new token

Certificate: Enroll an x509 Certificate Token. v
The Certificate Token lets you enroll an x509 ceritificate by the given CA.

Token data

Generate Request Upload Request Upload Certificate

CA Connector

myCA v
Generate the Key Pair on the Server

The RSA keys will be generated in the browser. You will be taken to a new browser window, where you can create the Certificate
Request. The private key remains in your browser and you will be able to install the certificate to the browser

Microsoft Internet Explorer is not supported.

Open new tab to create certificate request

Fig. 42: Generate a certificate signing request

When generating the certificate signing request this way the RSA keypair is generated on the client side in the browser.
The certificate is signed by the CA connected by the chosen CA connector.

Afterwards the user can install the certificate into the browser.

Note: By requiring OTP authentication for the users to login to the WebUI (see login_mode) you can have two factor
authentication required for the user to be allowed to enroll a certificate.

Email

The token type email sends the OTP value in an email to the users. You can configure the email server in Email Token
Configuration.

When enrolling an email token, you only need to specify the email address of the user.

The email token is a challenge response token. I.e. when using the OTP PIN in the first authentication request, the
sending of the email will be triggered and in a second authentication request the OTP value from the email needs to be
presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation Email Token.

1.6. Tokens 89

privacylDEA Authentication System, Release 3.6.1

privacylDEA Certificate Request

CA Connector: myCA

Key strength | 2048 (High Grade) ¥ |

‘Eenden‘

Fig. 43: Download or install the client certificate

Enroll a new token

EMail: Send a One Time Passwort to the users email address v
The Email Token sends the OTP value to the users email address.
Token data
Email Address

user@example.com

Description

Some nice words...

Fig. 44: Enroll an email token

920 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

HOTP Token

The HOTP token is - together with the TOTP - the most common token. The HOTP Algorithm is defined in RFC4225.
The HOTP token is an event base token. The HOTP algorithm has some parameter, like if the generated OTP value
will be 6 digits or 8 digits or if the SHA1 oder the SHA256 hashing algorithm is used.

The HOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

Hardware tokens

There are many token vendors out there who are using the official algorithm to build and sell hardware tokens. You
can get HOTP based hardware tokens in different form factors, as a normal key fob for your key ring or as a display
card for your purse.

Preseeded or Seedable

Usually the hardware tokens like keyfobs or display cards contain a secret key that was generated and implanted at the
vendors factory. The vendor ships the tokens and a seed file.

Warning: In this case privacyIDEA can not guarantee that the secret seed of the token is unique and if you are
using a real strong factor.

privacyIDEA also supports the following seedable HOTP tokens:
 SafeNet eToken NG OTP
» SafeNet eToken Pass
* Yubikey in OATH mode (See Yubikey Enrollment Tools on how to enroll Yubikeys in HOTP mode.)
* Daplug

Those tokens can be initialized by privacyIDEA. Thus you can be sure, that only you are in possession of the secret
seed.

Experiences

The above mentioned hardware tokens are known to play well with privacyIDEA. In theory all OATH/HOTP tokens
should work well with privacyIDEA. However, there are good experiences with Smartdisplayer OTP cards' and Feitian
C200” tokens.

! https://netknights.it/en/produkte/smartdisplayer/
2 https://netknights.it/en/produkte/oath-hotptotp/

1.6. Tokens 91

https://tools.ietf.org/html/rfc4226
https://netknights.it/en/produkte/smartdisplayer/
https://netknights.it/en/produkte/oath-hotptotp/

privacylDEA Authentication System, Release 3.6.1

Software tokens

Besides the hardware tokens there are also software tokens, implemented as Apps for your smartphone. These software
tokens allow are seedable, so there is no vendor, knowing the secret seed of your OTP tokens.

But software tokens are software after all on device prone to security issues.

Experiences

The Google Authenticator can be enrolled easily in HOTP mode using the QR-Code enrollment Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

Enrollment

Default settings for HOTP tokens can be configured at HOTP Token Config.

Enroll a new token

HOTP: event based One Time Passwords v

The HOTP token is an event based token. You can paste a secret key or have the server generate the secret and scan the QR
code.

Token data
#| Generate OTP Key on the Server

The server will create the OTP value and a QR Code will be displayed to you to be scanned.
OTP length
6 v

Hash algorithm

shal v

Fig. 45: Enroll an HOTP token
During enrollment you can choose, if the server should generate the key or if you have a key, that you can enter into
the enrollment page.
As mentioned earlier, you can also choose the OTP length and the hash algoriothm.

After enrolling the token, the QR-Code, containing the secret seed, is displayed, so that you can scan this with your
smartphone and import it to your app.

Indexed Secret Token

The indexed secret token is a simple challenge response token.

A shared secret like “mySecret” is stored in the privacyIDEA server. When the token is used a challenge is sent to the
user like “Give me the 2nd and the 4th position of your secret”.

Then the user needs to respond with the concatenated characters from the given positions. In the example the response
would be “ye”.

92 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Enroll a new token

The token was successfully enrolled with serial number OATH0009C424 .

Click here or scan the QR Code, if you want to add the Token to your Google Authenticator.

Enroll a new token

Fig. 46: If the server generated the secret seed, you can scan the QR-Code

Certain policies can be used to either preset or force the value of the indexed secret during enrollment to the value of
a user attribute. The attribute specified in these policies is a privacyidea attribute from the attribute mapping of the
corresponding user resolver.

Starting with version 3.4 the Indexed Secret Token can work in multi challenge authentication. This way each
position is asked separately in consecutive challenges. To achieve this, the token needs the tokeninfo value
multichallenge=1.

mOTP Token

mOTP is a time based One Time Password token for mobile phones based on a public Algorithm.

OCRA

Starting with version 2.20 privacyIDEA supports common OCRA tokens. OCRA tokens can not be enrolled via the
UI but need to be imported via a seed file. The OATH CSV seed file would look like this:

<serial>, <seed>, ocra, <ocrasuite>

The OCRA token is a challenge/response token. So the first authentication request issues a challenge. This challenge
is the input for the response of the OCRA token.

For more information see OCRA Token.

1.6. Tokens 93

http://motp.sourceforge.net

privacylDEA Authentication System, Release 3.6.1

DisplayTAN token

privacyIDEA supports the DisplayTAN', which can be used for securing banking transactions. The OCRA Algorithm
is used to digitally sign transaction data. The transcation data can be verified by the user on an external banking card.
All cryptographical processes are running on the external card, so that an attacker can not interfere with the user’s
component.

The DisplayTAN cards would be imported into privacyIDEA using the token import.
A banking website will use the Validate endpoints APL

The first call will trigger the challenge response mechanism. The first call needs to contain the transaction data: the
recipient’s account number and amount of money to transfer:

<account>~<amount>~

Please note the tilde:

POST https://privacyidea.example.com/validate/check

pass=pin

serial=ocral234
challenge=1234567890~423, 40~
addrandomchallenge=20
hashchallenge=shal

This will result in a response like this:

{

"Jsonrpc": "2.0",
"signature": "128057011582042...408",
"detail": {

"multi_challenge": [

{

"attributes": {

"grcode": "data:image/png;base64, iVBORwOKG..RK5CYII=",

"original_challenge": "83507112 ~320,
00~cfbGSopfdDROOMjeul3IR",

"challenge": "£f8al818f35aelcc64fe8al91961ec829487dfa82"

}I

"serial": "ocral234",

"transaction_id": "05221757445370623976"

}
JI
"threadid": 139847557760768,
"attributes": {
"grcode": "data:image/png;base64, iVBO...CYII=",
"original_challenge": "83507112 ~320,00~cfbGSopfdDROOMjeul3IR",
"challenge": "£f8a1818f35ae0cc64fe8al91961ec829487dfa82"
}I
"message": "Please answer the challenge",
"serial": "ocral234",
"transaction_id": "05221757445370623976"
by
"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",

(continues on next page)

! http://www.display-tan.com/

94 Chapter 1. Table of Contents

http://www.display-tan.com/

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"result": {
"status": true,
"value": false
b
"time": 1504005837.417481,
"id": 1

Note: The response also contains the QR code. The banking website should show the QR code, so that the user can
scan it with the DisplayTAN App to transfer the data to the card.

The user can verify the data on the card and transaction data will be digitally signed on the card. The card will calculate
an OTP value for this very transaction.

The banking website can now send the OTP value to privacyIDEA to check, if the user authorized the correct transac-
tion data. The banking site will issue this request:

POST https://privacyidea.example.com/validate/check

serial=ocral234
transaction_id=05221757445370623976
pass=54006635

priveyIDEA will respond with a usual authentication response:

{

"Jsonrpc": "2.0",

"signature": "162....2454851",

"detail": {
"message": "Found matching challenge",
"serial": "ocral234",

"threadid": 139847549368064
by

"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",
"result": {

"status": true,

"value": true

by
"time": 1504005901.823667,

midn: 1

Paper Token (PPR)

The token type paper lets you print out a list of OTP values, which you can use to authenticate and cross of the list.

The paper token is based on the HOTP Token. L.e. you need to use one value after the other.

1.6. Tokens 95

privacylDEA Authentication System, Release 3.6.1

Customization

CSS

You can customize the look and feel of the printed paper token. You may change the style sheet papertoken.css
which is only loaded for printing.

Header and Footer

Then you may add a header in front and a footer behind the table containing the OTP values.
Create the files

* static/customize/views/includes/token.enrolled.paper.top.html

* static/customize/views/includes/token.enrolled.paper.bottom.html
to display the contents before (top) and behind (bottom) the table.

Within these html templates you may use angular replacements. To get the serial number of the token use:

{{ tokenEnrolled.serial }}

to get the name and realm of the user use:

{{ newUser.user }}
{{ newUser.realm }}

A good example for the token.enrolled.paper.top.html is:

<hl>{{ enrolledToken.serial }}</hl>

<p>
Please use the OTP values of your paper token in order one after the
other. You may scratch of or otherwise mark used values.

</p>

A good example for the token.enrolled.paper.bottom.html is:

<p>
The paper token is a weak second factor. Please assure, that no one gets
hold of this paper and can make a copy of it.

</p>

<p>
Store it at a safe location.

</p>

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

96 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

OTP Table

If you want to change the complete layout of the table you need to overwrite the file static/components/
token/views/token.enrolled.paper.html. The scope variable:

{{ enrolledToken.otps }}

contains an object with the complete OTP value list.

Push Token

The push token uses the privacyIDEA Authenticator app. You can get it from Google Play Store or Apple App Store.

The token type push sends a cryptographic challenge via the Google Firebase service to the smartphone of the user.
This push notification is displayed on the smartphone of the user with a text that tells the user that he or somebody
else requests to login to a service. The user can simply accept this request. The smartphone sends a cryptographically
signed response to the privacyIDEA server and the login request gets marked as confirmed in the privacyIDEA server.
The application checks for this mark and logs the user in automatically. For an example of how the components in a
typical deployment of push tokens interact reference the following diagram.

To allow privacyIDEA to send push notifications, a Firebase service needs to be configured. To do so see Firebase
Provider.

The PUSH token implements the outofband mode.

Configuration

The minimum necessary configuration is an enrollment policy push_firebase_configuration.

With the authentication policies push_text_on_mobile and push_title_on_mobile you can define the contents of
the push notification.

If you want to use push tokens with legacy applications that are not yet set up to be compatible with out-of-band
tokens, you can set the authentication policy push_wait. Please note, that setting this policy can interfere with
other tokentypes and will impact performance, as detailed in the documentation for push_wait.

Enrollment

The enrollment of the push token happens in two steps.
Step 1
The user scans a QR code. This QR code contains the basic information for the push token and a enrollment URL, to

which the smartphone should respond in the enrollment process.

The smartphone stores this data and creates a new key pair.

1.6. Tokens 97

https://play.google.com/store/apps/details?id=it.netknights.piauthenticator
https://apps.apple.com/us/app/privacyidea-authenticator/id1445401301

98

privacylDEA Authentication System, Release 3.6.1

On Prem

SAML

Service Provider

A

User
\Requird Auth
Al
N
Ay
*
Y 9 ¥
Client iPhone
1%

RequestjAuth

Identity Provider

1st Factor 2nd Facter

privacylDEA

User Resolver |

LIPush Token

Cloud

Confirm Token

Firebase

APN

e

A7 A - ¥} 1 1 ¥ ¥}
1g- 47 A typical pushrtokemrdeployment

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Step 2

The smartphone sends its Firebase ID, the public key of the keypair, the serial number and an enrollment credential
back to the enrollment URL of the privacyIDEA server.

The server responds with it’s public key for this token.

Authentication
Triggering the challenge

The authentication request is triggered by an application just the same like for any challenge response tokens either
with the PIN to the endpoint /validate/check or via the endpoint /validate/triggerchallenge.

privacyIDEA sends a cryptographic challenge with a signature to the Firebase service. The firebase service sends the
notification to the smartphone, which can verify the signature using the public key from enrollment step 2.

Accepting login

The user can now accept the login by tapping on the push notification. The smartphone sends the signed challenge
back to the authentication URL of the privacyIDEA server. The privacyIDEA server verifies the response and marks
this authentication request as successfully answered.

In some cases the push notification does not reach the smartphone. Since version 3.4 the smartphone can also poll for
active challenges.

Login to application

The application can check with the orignial transaction ID with the privacyIDEA server, if the challenge has been
successfully answered and automatically login the user.

More information

For a more detailed insight see the code documentation for the Push Token.
For an in depth view of the protocol see the github issue and the wiki page.
Information on the polling mechanism can be found in the corresponding wiki page.

For recent information and a setup guide, visit the community blog

Password Token

This token is not enrolled by the user. It is automatically created whenever an authorized user initiates a losttoken
scenario.

1.6. Tokens 99

https://github.com/privacyidea/privacyidea/issues/1342
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken).https://www.privacyidea.org/tag/push-token/
https://github.com/privacyidea/privacyidea/wiki/concept%3A-pushtoken-poll
https://www.privacyidea.org/tag/push-token/

privacylDEA Authentication System, Release 3.6.1

Questionnaire Token

The administrator can define a list of questions and also how many answers to the questions a user needs to define.

During enrollment of such a questionnaire type token, the user answers at least as many questions as specified by the
administrator with answers only he knows.

Enroll a new token

Questionnaire: Enroll Questions for the user.
W

The Questionnaire token will let you define ers to questions. When authenticating with this type of token, you will be asked a
random question and then need to provide the previously defined answer

Questionnaire
Please answer at least 1 of the following questions.
What is you favorite color?
red|
Assign token to user
Realm

realm1

Username

PIN

This token is a challenge response token. During authentication the user gives the token PIN before he is presented
with a random question to which he defined the answer during the token rollout.

Note: By default, no questions are defined, so the administrator has to setup those in “Config->Tokens-
>Questionnaire” before a questionnaire token can be rolled out successfully.

Note: If the administrator changes the questions after a token was enrolled, the enrolled token still works with the
old questions and answers. L.e. an enrolled token is not affected by changing the questions by the administrator.

Note: As for all token, it is not changed after the rollout (see above note), so a change of the answers of an existing
token is not possible.

100 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

RADIUS

The token type RADIUS forwards the authentication request to a RADIUS Server.

When forwarding the authentication request, you can change the username and mangle the password.

Enroll a new token

RADIUS: Forward authentication request to a RADIUS server.

The RADIUS token forwards the authentication request to another RADIUS server. You can choose if the PIN should be stripped
and checked locally.

Token data

To ease the enrolling of RADIUS tokens you can set default values in the RADIUS Token Config.
Check the PIN locally

RADIUS server configuration

Select a predefined RADIUS server configuration. The RADIUS request will be forwarded to this RADIUS server.

RADIUS User
This is the username that is sent to the RADIUS server. It can be different from the owner of this RADIUS token.
Fig. 48: Enroll a RADIUS token
Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the RADIUS server.

RADIUS Server configuration

The configuration of the RADIUS server to which the authentication request will be forwarded. The configuration can
be defined in radiusserver_config

RADIUS User

When forwarding the request to the RADIUS server, the authentication request will be issued for this user. If the user
is left empty, the RADIUS request will be sent with the same user currently trying to authenticate.

RADIUS Secret
The RADIUS secret for this RADIUS client.

Note: Using the RADIUS token you can design migration scenarios. When migrating from other (proprietary) OTP
solutions, you can enroll a RADIUS token for the users. The RADIUS token points to the RADIUS server of the
old solution. Thus the user can authenticate against privacyIDEA with the old, proprietary token, till he is enrolled a
new token in privacyIDEA. The interesting thing is, that you also get the authentication request with the proprietary
token in the audit log of privacyIDEA. This way you can have a scenario, where users are still using old tokens and
other users are already using new (privacyIDEA) tokens. You will see all authentication requests in the pricacyIDEA
system.

1.6. Tokens 101

privacylDEA Authentication System, Release 3.6.1

Registration

(See FAQ Registration Code)

The registration token can be used to create a registration code for a user. This registration code can be sent via postal
mail to the user, so that the user can use this registration code as a second factor to login to a portal.

After a one single use, the registration code is deleted and can not be used a second time.

The length and the contents of the registration code can be configured using the Enrollment policies registra-
tioncode_length and registrationcode_contents.

Note: The registration code can only be enrolled via the API to provide automated smooth workflow to your needs.

For a more detailed insight see the code documentation Registration Code Token.

Remote

The token type remote forwards the authentication request to another privacyIDEA Server.
When forwarding the authentication request, you can

* change the username

* change the resolver

e change the realm

* change the serial number
and mangle the password.

The serial number of the token, that was used on the other privacyIDEA server, is stored in the tokeninfo of the
remote token object in the key last_matching_remote_serial. This serial number can then be used in further
workflows and e.g. be processed in event handlers.

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the remote privacyIDEA server.

Remote Server ID

The other privacyIDEA server, to which the authentication request will be forwarded. You need to configure the
privacyIDEA Server at privacyIDEA server configuration.

Note: You can define a remote server to be localhost. Thus you can assign one token to several users.

Using the direct URL in the remote token is deprecated.
Remote Serial

If the Remote Serial is specified the given password will be checked against the serial number on the remote priva-
cyIDEA server. Usernames will be ignored.

Remote User
When forwarding the request to the remote server, the authentication request will be issued for this user.

Remote Realm

102 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Enroll a new token

Remote Token: Forward authentication request to another server v

The remote token forwards the authentication request to another privacylDEA server. You can choose if the PIN should be stripped and checked
locally

Token data
Check the PIN locally
Remote Server
Remote Serial
Remote User

Remote Realm

Remote Resolver

Fig. 49: Enroll a Remote token

When forwarding the request to the remote server, the authentication request will be issued for this realm.
Remote Resolver

When forwarding the request to the remote server, the authentication request will be issued for this resolver.

Note: You can use Remote Serial to forward the request to a central privacyIDEA server, that only knows tokens but
has no knowledge of users. Or you can use Remote Serial to forward the request to an existing to on localhost thus
adding a second user to the same token.

SMS Token

The token type sms sends the OTP value via an SMS service. You can configure the SMS service in SMS Token
Configuration.

Enroll a new token

SMS: Send a One Time Password to the users mobile phone v
The SMS Token sends an OTP value to the mobile phone of the user.
Token data

Phone number

Description

Fig. 50: Enroll an SMS token

When enrolling an SMS token, you only need to specify the mobile phone number.

1.6. Tokens 103

privacylDEA Authentication System, Release 3.6.1

SMS token is a challenge response token. I.e. when sending the OTP PIN in the first authentication request, the
sending of the SMS will be triggered and in a second authentication request the OTP value from the SMS needs to be
presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation SMS Token.

Spass - Simple Pass Token

The OTP component of the spass token is always true. Thus the user only needs to provide the OTP pin or the userstore
password - depending on the policy settings.

For a more detailed insight see the code documentation SPass Token.

SSH Keys

The token type sshkey is the public SSH key, that you can upload and assign to a user. The SSH key is only used for
the application type SSH in conjunction with the Machines concept.

A user or the administrator can upload the public SSH key and assign to a user.

All tokens

& Enroll Token

® Import Tokens

© Gel Serial

total tokens: 15

Enroll a new token

SSH Public Key: The public SSH key v
The SSH Key Token stores the public SSH Key in the server. This can be used to authenticate to a secure shell
Token data
SSH public Key

ssh-rsa

AAAAB3NzaC1yc2EAAAABPszIM/dwBH4AByKcSDv5+DavYsZjYMwdNj9ldxaidtY odohohgpvPGjamGsXKQlaDmeOREpH2Fc/0eZWG5vAzz
sw7/qCp2ydnZISLIJ6sdjDoNybHh4igBhZyGtAeHNTESc1MGkJ/eTkxD2v4IFPSMbGJOIbmy+JR56 TugKo/de9AnytvztqrM TD3+Y5ac4aZTkSs
ufbOvaV1FI12+ 1wvJ2D64xeJXESOnaGJzTFVIeqQ330jw== cormny@az.local

Description

corny@az.local

Assign token to user

Realm

privacyidea-demo.intranet v
Username

tart t] a username

Fig. 51: Enroll an SSH key token

Paste the SSH key into the text area. The comment in the SSH key will be used as token comment. You can assign the
SSH key to a user and then use the SSH key in Application Definitions SSH.

104 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Note: This way you can manage SSH keys centrally, as you do not need to distribute the SSH keys to all machines.
You rather store the SSH keys centrally in privacyIDEA and use privacyidea-authorizedkeys to fetch the keys in real
time during the login process.

TAN Token

(added in version 2.23)
The token type fan is related to the Paper Token (PPR).
In contrast to the paper token, a user can use the OTP values of a fan token in any arbitrary order.

A tan token can either be initialized with random OTP values. In this case the HOTP mechanism is used. Or it can be
initialized or imported with a dedicated list of TANS.

After enrollment, you are prompted to print the generated TAN list.

Enroll a new token

-

TAN: TANs printed on a sheet of paper.

The TAN foken will let you print a list of OTP values. These OTP values can be used to authenticate. The values can be used in an
arbitrary order.

Assign token to user

Realm

realm1

Username

[0] root (root)

PIN

Extended Attributes

Enroll Token

Enroll a new token

The token was successfully enrolled with serial number PITN00014295 for user root in realm realm?

The OTP values

= Print the OTP list

Enroll a new token

1.6. Tokens 105

privacylDEA Authentication System, Release 3.6.1

Import of TAN token

The import schema for TAN tokens via the OATH CSV file look like this:
<serial>, <seed>, tan, <white space separated list of tans>

The TANS are located in the 4th column. TANs are separated by blanks or whitespaces. The <seed> is not used with
a TAN token. You can leave this blank or set to any (not used) value.

TiQR

Starting with version 2.6 privacyIDEA supports the TiQR token. The TiQR token is a smartphone token, that can be
used to login by only scanning a QR code.

The TiQR token implements the outofband authentication mode. The configuration is described in 7iQR Token Con-
figuration.

The token is also enrolled by scanning a QR code.

Enroll a new token

TIQR: Enroll a TIQR token. j

The TiQR token is a Smartphone App token, which allows easy authentication by just scanning a QR Code during the
authentication process.

Assign token to user

Realm

themis j

Username

root

PIN

Enroll Token

Fig. 52: Choose a user for the TiQR token

You can only enroll a TiQR token, when a user is selected.

Note: You can not enroll a TiQR token without assign the token to a user.

For more technical information about the TiQR token please see 7iQR Token.

106 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Enroll a new token

The token was successfully enrolled with serial number TIQRO004C962 for user root in realm themis.

The Enrollment URL

Click here or scan the QR Code, if you want to add the Token
to your TiQR App.

Enroll a new token

TOTP

The TOTP token is - together with the HOTP Token - the most common token. The TOTP Algorithm is defined in
RFC6238. The TOTP token is a time based token. Roughly speaking the TOTP algorithm is the same algorithm like
the HOTP, where the event based counter is replaced by the unix timestamp.

The TOTP algorithm has some parameter, like if the generated OTP value will be 6 digits or 8 digits or if the SHA1
oder the SHA256 hashing algorithm is used and the timestep being 30 or 60 seconds.

The TOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

Hardware tokens

The information about preseeded token and seedable tokens is the same as described in the section about HOTP Token.

The only available seedable pushbutton TOTP token is the SafeNet eToken Pass. The Yubikey can be used as a TOTP
token, but only in conjunction with a smartphone app, since the yubikey has not its own clock.

Software tokens
Experiences

The Google Authenticator and the FreeOTP token can be enrolled easily in TOTP mode using the QR-Code enrollment
Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

1.6. Tokens 107

https://tools.ietf.org/html/rfc6238

privacylDEA Authentication System, Release 3.6.1

Enrollment

Default settings for TOTP tokens can be configured at TOTP Token Config.

The enrollment is the same as described in HOTP Token. However, when enrolling TOTP token, you can specify some
additional parameters.

Enroll a new token

TOTP: time based One Time Passwords v
The TOTP token is a time based token. You can paste a secret key or have the server generate the secret and scan the QR code.
Token data
¥ Generate OTP Key on the Server

The server will create the OTP value and a QR Code will be displayed to you to be scanned

OTP length

8 v
Timestep

30 v
seconds

Hash algorithm

shat v

Fig. 53: Enroll an TOTP token

U2F

Starting with version 2.7 privacyIDEA supports U2F tokens. The administrator or the user himself can register a U2F
device and use this U2F token to login to the privacyIDEA web Ul or to authenticate at applications.

When enrolling the token a key pair is generated and the public key is sent to privacyIDEA. During this process the
user needs to prove that he is present by either pressing the button (Yubikey) or by replugging the device (Plug-up
token).

The device is identified and assigned to the user.

Note: This is a normal token object which can also be reassigned to another user.

Note: As the key pair is only generated virtually, you can register one physical device for several users.

For configuring privacyIDEA for the use of U2F token, please see U2F.

For further details and for information how to add this to your application you can see the code documentation at U2F
Token.

108 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

VASCO

Starting with version 2.22 privacyIDEA supports VASCO tokens.

VASCO OTP tokens are a proprietary OTP token. You can import the VASCO blobs from a CSV file or you the
administrator can enroll a single VASCO token.

Enroll a new token

shines £+ Config Q, Audit & Components %> Refresh

Token data
VASCO Token blob

use VASCO Serial

The VASCO s
checkbox. O

s read from the VASCO blob. If you want to use this VASCO serial number within privacy|DEA, activate the
vacylDEA will create a new unigue serial number.

Note: privacyIDEA uses a proprietary VASCO library vacman to verify the OTP values. Please note that you need to
license this library from VASCO Data Security N.V. directly. The privacyIDEA project does not provide this library.

WebAuthn

Starting with version 3.4 privacyIDEA supports WebAuthn tokens. The administrator or the user himself can register
a WebAuthn device and use this WebAuthn token to login to the privacyIDEA WebUI or to authenticate against
applications.

When enrolling the token, a key pair is generated and the public key is sent to privacyIDEA. During this process, the
user needs to prove that he is present, which typically happens by tapping a button on the token. The user may also be
required by policy to provide some form of verification, which might be biometric or knowledge-based, depending on
the token.

The devices is identified and assigned to the user.

Note: This is a normal token object which can also be reassigned to another user.

Note: As the key pair is only generated virtually, you can register one physical device for several users.

For configuring privacyIDEA for the use of WebAuthn tokens, please see WebAuthn Token Config.

For further details and information how to add this to your application, see the code documentation at WebAuthn Token.

1.6. Tokens 109

privacylDEA Authentication System, Release 3.6.1

Yubico

The token type yubico authenticates against the Yubico Cloud mode. You need to configure this at Yubico Cloud mode.

Enroll a new token

Yubikey Cloud mode: Forward authentication request to YubiCloud v

The Yubico Cloud mode forwards the authentication request to the YubiCloud. The Yubikey needs to be registered with the
YubiCloud

Token data
Yubikey Identifier

Assign token to user

Fig. 54: Enroll a Yubico token

The token is enrolled by simply saving the Yubikey token ID in the token object. You can either enter the 12 digit ID
or you can simply press the Yubikey button in the input field, which will also assign the token.

Yubikey

As Yubikey token type, privacyIDEA refers to Yubico’s own AES mode. A Yubikey, configured in this mode outputs
a 44 character OTP value, consisting of a 12 character prefix and a 32 character OTP. But in contrast to the Yubico
Cloud mode, in this mode the secret key is contained within the token and your own privacyIDEA installation. If you
have the time and care about privacy, you should prefer the Yubikey AES mode over the Yubico Cloud mode.

There are several possible ways to enroll a Yubikey token in privacyIDEA. We describe the methods in Yubikey En-
rollment Tools.

Redirect API URLs to /ttype/yubikey

To have a service query not the Yubico Cloud URL, but the privacyIDEA endpoint /ttype/yubikey, you some-
times need to redirect the default API URL via the local webserver. Yubico servers use /wsapi/2.0/verify as
the path in the validation URL. Some tools (e.g. Kolab 2FA) let the user/admin change the API host, but not the
rest of the URL. To redirect the API URL to privacyIDEA’s endpoint /ttype/yubikey, you’'ll need to enable the
following two lines in /etc/apache2/site-enabled/privacyidea.conf:

RewriteEngine on
RewriteRule "~/wsapi/2.0/verify" "/ttype/yubikey" [PT]

If you use nginx there is a similar line provided as a comment to the nginx configuration as well.

110 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.7 Policies

Policies can be used to define the reaction and behaviour of the system.

Each policy defines the behaviour in a certain area, called scope. privacyIDEA knows the scopes:

1.7.1 Admin policies

Admin policies are used to regulate the actions that administrators are allowed to do. Technically admin policies
control the use of the REST API Token endpoints, System endpoints, Realm endpoints and Resolver endpoints.
Admin policies are implemented as decorators in Policy Module and Policy Decorators.

The user in the admin policies refers to the name of the administrator.

Starting with privacyIDEA 2.4 admin policies can also store a field “admin realm”. This is used, if you define realms
to be superuser realms. See The Config File for information how to do this. Read So what’s the thing with all the
admins? for more information on the admin realms.

This way it is easy to define administrative rights for big groups of administrative users like help desk users in the IT
department.

All administrative actions also refer to the defined user realm. Meaning an administrator may have many rights in one
user realm and only a few rights in another realm.

Creating a policy with scope:admin, admin-realm:helpdesk, user:frank, action:enable and
realm:sales means that the administrator frank in the admin-realm helpdesk is allowed to enable tokens in the
user-realm sales.

Note: Aslong as no admin policy is defined all administrators are allowed to do everything.

The following actions are available in the scope admin:

tokenlist

type: bool

This allows the administrator to list existing tokens in the specified user realm. Note, that the resolver in this policy is
ignored.

If the policy with the action tokenlist is not bound to any user realm, this acts as a wild card and the admin is
allowed to list all tokens.

If the action tokenlist is not active, but admin policies exist, then the admin is not allowed to list any tokens.

Note: As with all boolean policies, multiple fokenlist policies add up to create the resulting rights of the administrator.
So if there are multiple matching policies for different realms, the admin will have list rights on all mentioned realms
independent on the priority of the policies.

1.7. Policies 111

privacylDEA Authentication System, Release 3.6.1

okens sers = Machines onfig wdit & Components % Reiresl in [admin]
Q Tok iU = Mach £ Conf Q Aud & C < Refresh 5!5

= System O Policies ™ Events & Periodic Tasks () Tokens = Machines L Users @ Realms A CAs

All Policies R
Create a new Policy
Create new Policy
Policy Name losttoken_policy
Scope admin ~
Admin-Realm super ~
Action lost ®
Show selected actions only
user
token
system
tools
Admin s allowed to trigger the lost token
losttoken workflow.
enroliment
general

miscellaneous

machine
pin
User-Realm None Selected ~
User-Resolver None Selected ~ Check all possible resolvers of a user to match the
resolver in this policy.
Admin admin, superuser
Client 10.0.0.0/8, 110.0.0
Valid time Mon-Fri: 9-18, Sat: 10-15
Priority 1 &

In case of conflicting policies, the policy with the lowest priority number will take precedence.

Additional conditions Active Section Key Comparator Value

=+ Add a condition

Fig. 55: The Admin scope provides an additional field ‘admin realm’.

112 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

init
type: bool

There are init actions per token type. Thus you can create policy that allow an administrator to enroll SMS tokens
but not to enroll HMAC tokens.

enable

type: bool

The enable action allows the administrator to activate disabled tokens.
disable

type: bool

Tokens can be enabled and disabled. Disabled tokens can not be used to authenticate. The disable action allows
the administrator to disable tokens.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.
set

type: bool
Tokens can have additional token information, which can be viewed in the token_details.

If the set action is defined, the administrator allowed to set those token information.
setpin

type: bool

If the setpin action is defined, the administrator is allowed to set the OTP PIN of a token.

setrandompin

type: bool

If the setrandompin action is defined, the administrator is allowed to call the endpoint, that sets a random token
PIN.

1.7. Policies 113

privacylDEA Authentication System, Release 3.6.1

enrollpin

type: bool

If the action enrollpin is defined, the administrator can set a token PIN during enrollment. If the action is not
defined and the administrator tries to set a PIN during enrollment, this PIN is deleted from the request.

otp_pin_maxlength

type: integer
range: 0 - 31

This is the maximum allowed PIN length the admin is allowed to use when setting the OTP PIN.

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer
range: 0 - 31

This is the minimum required PIN the admin must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the admin sets it.
c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [[].:,;-_<>+*!1/()=7$§ %o &#~"].

[allowedchars] is a specific list of allowed characters.

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would require the admin to
choose OTP PINs that consist of letters and digits which have a minimum length of 8.

cn

test1234 and rest12$$ would be valid OTP PINs. restABCD would not be a valid OTP PIN.
The logic of the otp_pin_contents can be enhanced and reversed using the characters + and —.
—cn (denial)

The PIN must not contain a character and must not contain a number. test/234 would not be a valid
PIN, since it does contains numbers and characters. test/// would not be a valid PIN, since it contains
characters.

—s (denial)

114 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

The PIN must not contain a special character. **test1234* would be a valid PIN. test12$$ would not.
+cn (grouping)

combines the two required groups. L.e. the OTP PIN should contain characters from the sum of the two
groups. test1234, test12$$, test and 1234 would all be valid OTP PINs. Note, how this is different to —s,
since it allows special characters to be included.

[123456]
allows the digtits 1-6 to be used. 1722 would be a valid PIN. /177 would not be a valid PIN.

otp_pin_set_random

type: integer
range: 1-31

The administrator can set a random pin for a token with the endpoint t oken/setrandompin. This policy is needed
to define how long the PIN will be.

Note: The PIN will consist of digits and letters.

resync

type: bool

If the resync action is defined, the administrator is allowed to resynchronize a token.

assign

type: bool

If the assign action is defined, the administrator is allowed to assign a token to a user. This is used for assigning an
existing token to a user but also to enroll a new token to a user.

Without this action, the administrator can not create a connection (assignment) between a user and a token.

unassign

type: bool

If the unassign action is defined, the administrator is allowed to unassign tokens from a user. L.e. the administrator
can remove the link between the token and the user. The token still continues to exist in the system.

1.7. Policies 115

privacylDEA Authentication System, Release 3.6.1

import

type: bool

If the import action is defined, the administrator is allowed to import token seeds from a token file, thus creating
many new token objects in the systems database.

The right to upload tokens can be limited to certain realms. Thus the administrator could only upload tokens into realm
he is allowed to manage.

remove

type: bool

If the remove action is defined, the administrator is allowed to delete a token from the system.

Note: If a token is removed, it can not be recovered.

Note: All audit entries of this token still exist in the audit log.

userlist

type: bool

If the userlist action is defined, the administrator is allowed to view the user list in a realm. An administrator
might not be allowed to list the users, if he should only work with tokens, but not see all users at once.

Note: If an administrator has any right in a realm, the administrator is also allowed to view the token list.

checkstatus

type: bool

If the checkstatus action is defined, the administrator is allowed to check the status of open challenge requests.

manageToken

type: bool
If the manageToken action is defined, the administrator is allowed to manage the realms of a token.

A token may be located in multiple realms. This can be interesting if you have a pool of spare tokens and several
realms but want to make the spare tokens available to several realm administrators. (Administrators, who have only
rights in one realm)

Then all administrators can see these tokens and assign the tokens. But as soon as the token is assigned to a user in
one realm, the administrator of another realm can not manage the token anymore.

116 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

getserial

type: bool

If the get serial action is defined, the administrator is allowed to calculate the token serial number for a given OTP
value.

getrandom

type: bool

The get random action allows the administrator to retrieve random keys from the endpoint getrandom. This is an
endpoint in System endpoints.

getrandom can be used by the client, if the client has no reliable random number generator. Creating API keys for the
Yubico Validation Protocol uses this endpoint.

getchallenges

type: bool

This policy allows the administrator to retrieve a list of active challenges of a challenge response tokens. The admin-
istrator can view these challenges in the web UL

losttoken

type: bool
If the 1osttoken action is defined, the administrator is allowed to perform the lost token process.

To only perform the lost token process the actions copytokenuser and copytokenpin are not necessary!

adduser

type: bool

If the adduser action is defined, the administrator is allowed to add users to a user store.

Note: The user store still must be defined as editable, otherwise no users can be added, edited or deleted.

updateuser

type: bool

If the updateuser action is defined, the administrator is allowed to edit users in the user store.

1.7. Policies 117

privacylDEA Authentication System, Release 3.6.1

deleteuser

type: bool

If the deleteuser action is defined, the administrator is allowed to delete an existing user from the user store.

copytokenuser

type: bool

If the copytokenuser action is defined, the administrator is allowed to copy the user assignment of one token to
another.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

copytokenpin

type: bool

If the copytokenpin action is defined, the administrator is allowed to copy the OTP PIN from one token to another
without knowing the PIN.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

smtpserver_write

type: bool

To be able to define new SMTP server configuration or delete existing ones, the administrator needs this rights
smtpserver_write.

smtpserver_read

type: bool

Allow the administrator to read the SMTP server configuration.
smsgateway_write

type: bool

To be able to define new SMS Gateway configuration or delete existing ones, the administrator needs the right
smsgateway_write.

118 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

smsgateway_read

type: bool

Allow the administrator to read the SMS Gateway configuration.
periodictask_write

type: bool

Allow the administrator to write or delete Periodic Tasks definitions.
periodictask_read

type: bool

Allow the administrator to read the Periodic Tasks definitions.
eventhandling_write

type: bool

Allow the administrator to configure Event Handler.
eventhandling_read

type: bool

Allow the administrator to read Event Handler.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read event handlers,
will allow the administrator to see all event handler definitions.

policywrite, policyread, policydelete

type: bool

Allow the administrator to write, read or delete policies.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read policies, will allow
the administrator to see all policies.

1.7. Policies 119

privacylDEA Authentication System, Release 3.6.1

resolverwrite, resolverread, resolverdelete

type: bool

Allow the administrator to write, read or delete user resolvers and realms.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read resolvers, will
allow the administrator to see all resolvers and realms.

mresolverwrite, mresolverread, mresolverdelete

type: bool

Allow the administrator to write, read or delete machine resolvers.
configwrite, configread, configdelete

type: bool

Allow the administrator to write, read or delete system configuration.
auditlog

type: bool

The administrators are allowed to view the audit log. If the policy contains a user realm, than the administrator is only
allowed to see entries which contain this very user realm. A list of user realms may be defined.

To learn more about the audit log, see Audit.
auditlog_download

type: bool

The administrator is allowed to download the audit log.

Note: The download is not restricted to filters, hidden columns and audit age. Thus, if you want to avoid, that an
administrator can see older logs or columns, hidden by hide_audit_columns, you need to disallow downloading the
data. Otherwise he may download the audit log and look at older entries manually.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the
administrator is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

120 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

hide_audit_columns

type: string

This species a blank separated list of audit columns, that should be removed from the response and also from the
WebULI. For example a value sig_check log_level will hide these two columns.

The list of available columns can be checked by examining the response of the request to the Audit endpoint.

trigger_challenge

type: bool

If set the administrator is allowed to call the API /validate/triggerchallenge. This API can be used to send
an OTP SMS to user without having specified the PIN of the SMS token.

The usual setup that one administrative account has only this single policy and is only used for triggering challenges.

New in version 2.17.

hotp_2step and totp_2step

type: string

This allows or forces the administrator to enroll a smartphone based token in two steps. In the second step the
smartphone generates a part of the OTP secret, which the administrator needs to enter. (see Two Step Enrollment).
Possible values are allow and force. This works in conjunction with the enrollment parameters {type/_2step_clientsize,
{type}_2step_serversize, {type}_2step_difficulty.

Such a policy can also be set for the user. See hotp_2step and totp_2step.

New in version 2.21

hotp_hashlib and totp_hashlib

type: string

Force the admin to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled in the web UI. Possible values are shal, sha256 and sha512, default is shal.

New in 3.2

hotp_otplen and totp_otplen

type: int

Force the admin to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled in the web UI. Possible values are 6 or 8, default is 6.

New in 3.2

1.7. Policies 121

privacylDEA Authentication System, Release 3.6.1

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

New in 3.2

system_documentation

type: bool

The administrator is allowed to export a complete system documentation including resolvers and realm. The docu-
mentation is created as restructured text.

sms_gateways

type: string

Usually an SMS token sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank-separated list of configured SMS gateways. It allows the administrator to define an individual
SMS gateway during token enrollment.

New in version 3.0.

indexedsecret_force_attribute

type: string

If an administrator enrolls an indexedsecret token then the value of the given user attribute is set as the secret. The
admin does not know the secret and can not change the secret.

For more details of this token type see Indexed Secret Token.

New in version 3.3.

certificate_trusted_Attestation_CA_path

type: string

An administrator can enroll a certificate token for a user. If an attestation certificate is provided in addition, this policy
holds the path to a directory, that contains trusted CA paths. Each PEM encoded file in this directory needs to contain
the root CA certificate at the first position and the consecutive intermediate certificates.

An additional enrollment policy certificate_require_attestation, if an attestation certificate is required.

New in version 3.5.

122 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

set_custom_user_attributes

type: string
New in version 3.6

This policy defines which additional attributes an administrator is allowed to set. It can also define, to which value the
admin is allowed to set such attribute. For allowing all values, the asterisk (“*”°) is used.

Note: Commas are not allowed in policy actions value, so the setting has to be defined by separating colons (“:”’) and
spaces.

Each key is enclosed in colons and followed by a list of values separated by whitespaces, thus values are not allowed
to contain whitespaces.

Example:
department sales finance :city: * :%: 1 2

:department: sales finance means thatthe administrator can set an additional attribute “department” with
the allowed values of “sales” or “finance”.

:city: means that the administrator can set an additional attribute “city” to any value.

:*%: 1 2 means that the administrator can set any other additional attribute either to the value “1” or to the value
£62”.

delete_custom_user_attributes

type: string

This takes a space separated list of attributes that the administrator is allowed to delete. You can use the asterisk “*”
to indicate, that this policy allows the administrator to delete any additional attribute.

Example:
attrl attr2 department

The administrator is allowed to delete the attributes “attr1”, “attr2” and the attributes “department” of the correspond-
ing users.

Note: If this policy is not set, the admin is not allowed to delete any custom user attributes.

New in version 3.6

1.7.2 User Policies

In the Web UI users can manage their own tokens. User can login to the Web UI with the username of their useridre-
solver. Le. if a user is found in an LDAP resolver pointing to Active Directory the user needs to login with his domain
password.

User policies are used to define, which actions users are allowed to perform.

The user policies also respect the client input, where you can enter a list of I[P addresses and subnets (like
10.2.0.0/16).

1.7. Policies 123

privacylDEA Authentication System, Release 3.6.1

Using the client parameter you can allow different actions in if the user either logs in from the internal network or
remotely from the internet via the firewall.

Technically user policies control the use of the REST API Token endpoints and are checked using Policy Module and
Policy Decorators.

Note: If no user policy is defined, the user has all actions available to him, to manage his tokens.

The following actions are available in the scope user:

enroll

type: bool

There are enrol1l actions per token type. Thus you can create policies that allow the user to enroll SMS tokens but
not to enroll HMAC tokens.

assgin

type: bool

The user is allowed to assgin an existing token, that is located in his realm and that does not belong to any other user,
by entering the serial number.

disable

type: bool

The user is allowed to disable his own tokens. Disabled tokens can not be used to authenticate.
enable

type: bool

The user is allowed to enable his own tokens.

delete

type: bool

The user is allowed to delete his own tokens from the database. Those tokens can not be recovered. Anyway, the audit
log concerning these tokens remains.

124 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

unassign

type: bool

The user is allowed to drop his ownership of the token. The token does not belong to any user anymore and can be
reassigned.

resync
type: bool

The user is allowed to resynchronize the token if it has got out of synchronization.
reset

type: bool

The user is allowed to reset the failcounter of the token.

setpin

type: bool

The user is allowed to set the OTP PIN for his tokens.

setrandompin

type: bool

If the setrandompin action is defined, the user is allowed to call the endpoint, that sets a random PIN on his
specified token.

setdescription

type: bool

The user is allowed to set the description of his tokens.
enrollpin

type: bool

If the action enrollpin is defined, the user can set a token PIN during enrollment. If the action is not defined and
the user tries to set a PIN during enrollment, this PIN is deleted from the request.

1.7. Policies 125

privacylDEA Authentication System, Release 3.6.1

otp_pin_maxlength

type: integer
range: 0 - 31

This is the maximum allowed PIN length the user is allowed to use when setting the OTP PIN.

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer
range: 0 - 31

This is the minimum required PIN the user must use when setting the OTP PIN.

otp_pin_contents

type: string
contents: cns
This defines what characters an OTP PIN should contain when the user sets it.

This takes the same values like the admin policy ofp_pin_contents.

auditlog

type: bool
This action allows the user to view and search the audit log for actions with his own tokens.

To learn more about the audit log, see Audit.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the user
is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

126 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

hide_audit_columns

type: string

This species a blank separated list of audit columns, that should be removed from the response (Audit endpoint) and
also from the WebUI. For example a value sig_check log_level will hide these two columns.

The list of available columns can be checked by examining the response of the request to the Audit endpoint.
updateuser

type: bool

If the updateuser action is defined, the user is allowed to change his attributes in the user store.

Note: To be able to edit the attributes, the resolver must be defined as editable.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.

password_reset

type: bool
Introduced in version 2.10.

If the user is located in an editable user store, this policy can define, if the user is allowed to perform a password reset.
During the password reset an email with a link to reset the password is sent to the user.

hotp_2step and totp_2step

type: string

This allows or forces the user to enroll a smartphone based token in two steps. In the second step the smartphone
generates a part of the OTP secret, which the user needs to enter. (see Two Step Enrollment). Possible values are allow
and force. This works in conjunction with the enrollment parameters {type}_2step_clientsize, {type}_2step_serversize,
{type}_2step_difficulty.

Such a policy can also be set for the administrator. See hotp_2step and totp_2step.

New in version 2.21

1.7. Policies 127

privacylDEA Authentication System, Release 3.6.1

sms_gateways

type: string

Usually an SMS tokens sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank separated list of configured SMS gateways. It allows the user to define an individual SMS gateway
during token enrollment.

New in version 3.0.

hotp_hashlib and totp_hashlib

type: string

Force the user to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled/hidden in the web UL Possible values are shal, sha256 and sha512, default is shal.

hotp_otplen and totp_otplen

type: int

Force the user to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled/hidden in the web UI. Possible values are 6 or 8, default is 6.

hotp_force_server_generate and totp_force_server_generate

type: bool

Enforce the key generation on the server. A corresponding input field for the key data will be disabled/hidden in the
web Ul Default value is false.

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

indexedsecret_force_attribute

type: string

If a user enrolls an indexedsecret token then the value of the given user attribute is set as the secret. The user does not
see the value and can not change the value.

For more details of this token type see Indexed Secret Token.

New in version 3.3.

128 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

certificate_trusted_Attestation_CA_path

type: string

A user can enroll a certificate token. If an attestation certificate is provided in addition, this policy holds the path to
a directory, that contains trusted CA paths. Each PEM encoded file in this directory needs to contain the root CA
certificate at the first position and the consecutive intermediate certificates.

An additional enrollment policy certificate_require_attestation, if an attestation certificate is required.

New in version 3.5.

set_custom_user_attributes

type: string

This defines how a user is allowed to set his own attributes. It uses the same setting as the admin policy
set_custom_user_attributes.

s

Note: Using a “*’ in this setting allows the user to set any attribute or any value and thus the user can overwrite
existing attributes from the user store. If policies, depending on user attributes are defined, then the user would be able
to change the matching of the policies. Use with CAUTION!

New in version 3.6

delete_custom_user_attributes

type: string

This defines how a user is allowed to delete his own attributes. It uses the same setting as the admin policy
delete_custom_user_attributes.

Note: Using a “*’ in this setting allows the user to delete any attribute and thus the user can change overwritten
attributes and revert to the user store attributes. If policies, depending on user attributes are defined, then the user
would be able to change the matching of the policies. Use with CAUTION!

New in version 3.6

1.7.3 Authentication policies
The scope authentication gives you more detailed possibilities to authenticate the user or to define what happens during
authentication.

Technically the authentication policies apply to the REST API Validate endpoints and are checked using Policy Module
and Policy Decorators.

The following actions are available in the scope authentication:

1.7. Policies 129

privacylDEA Authentication System, Release 3.6.1

otppin

type: string

This action defines how the fixed password part during authentication should be validated. Each token has its own
OTP PIN, but you can choose how the authentication should be processed:

otppin=tokenpin
This is the default behaviour. The user needs to pass the OTP PIN concatenated with the OTP value.
otppin=userstore

The user needs to pass the user store password concatenated with the OTP value. It does not matter if
the OTP PIN is set or not. If the user is located in an Active Directory the user needs to pass his domain
password together with the OTP value.

Note: The domain password is checked with an LDAP bind right at the moment of authentication. So if the user is
locked or the password was changed authentication will fail.

otppin=none

The user does not have to pass any fixed password. Authentication is only done via the OTP value.

passthru

type: str

If the user has no token assigned, he will be authenticated against the userstore or against the given RADIUS configu-
ration. L.e. the user needs to provide the LDAP- or SQL-password or valid credentials for the RADIUS server.

Note: This is a good way to do a smooth enrollment. Users having a token enrolled will have to use the token, users
not having a token, yet, will be able to authenticate with their domain password.

It is also a way to do smooth migrations from other OTP systems. The authentication request of users without a token
is forwarded to the specified RADIUS server.

Note: The passthru policy overrides the authorization policy for fokentype. l.e. a user may authenticate due to the
passthru policy (since he has no token) although a tokentype policy is active!

Warning: If the user has the right to delete his tokens in selfservice portal, the user could delete all his tokens
and then authenticate with his static password again.

130 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

passthru_assign

type: str

This policy is only evaluated, if the policy passthru is set. If the user is authenticated against a RADIUS server,
then privacyIDEA splits the sent password into PIN and OTP value and tries to find an unassigned token, that is in the
user’s realm by using the OTP value. If it can identify this token, it assigns this token to the user and sets the sent PIN.

The policy is configured with a string value, that contains * the position of the PIN * the OTP length and * the number
of OTP values tested for each unassigned token (optional, default=100).

Examples are
e 8:pin would be an eight digit OTP value followed by the PIN

* pin:6:10000 would be the PIN followed by an 6 digit OTP value, 10.000 otp values would be checked for
each token.

Note: This method can be used to automatically migrated tokens from an old system to privacyIDEA. The adminis-
trator needs to import all seeds of the old tokens and put the tokens in the user’s realm.

Warning: This can be very time consuming if the OTP values to check is set to high!

passOnNoToken

type: bool

If the user has no token assigned an authentication request for this user will always be true.

Warning: Only use this if you know exactly what you are doing.

passOnNoUser

type: bool

If the user does not exist, the authentication request is successful.

Warning: Only use this if you know exactly what you are doing.

smstext

type: string

This is the text that is sent via SMS to the user trying to authenticate with an SMS token. You can use the tags <otp>
and <serial>. Texts containing whitespaces must be enclosed in single quotes.

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Starting with version 3.6 the smstext can contain a lot more tags similar to the policy emailtext:

1.7. Policies 131

privacylDEA Authentication System, Release 3.6.1

* {otp} or <otp> the One-Time-Password

e {serial} or <serial> the serial number of the token.

* {user} the given name of the token owner.

» {givenname} the given name of the token owner.

¢ {surname} the surname of the token owner.

* {username} the loginname of the token owner.

¢ {userrealm} the realm of the token owner.

* {tokentype} the type of the token.

 {recipient_givenname} the given name of the recipient.

* {recipient_surname} the surname of the recipient.

¢ {time} the current server time in the format HH:MM:SS.

¢ {date} the current server date in the format YYYY-MM-DD
In the SMS Gateway configuration the tag {otp} will be replaced by the custom message, set with this policy.

Default: <otp>

Note: The length of an SMS is limited to 140 characters due to the definition of SMS. You should take care, that the
smstext does not exceed this limit. SMS gateways could reject too long messages or the delivery could fail.

Note: Some apps may be able to handle incoming OTPs as a so called origin-bound one-time code in the format:

Your OTP is {otp}
@privacyidea.mydomain.com #{otp}

smsautosend

type: bool

A new OTP value will be sent via SMS if the user authenticated successfully with his SMS token. Thus the user does
not have to trigger a new SMS when he wants to login again.

emailtext

type: string
This is the text that is sent via Email to be used with Email Token. This text should contain the OTP tag.
The text can contain the following tags, that will be filled:

e {otp} or <otp> the One-Time-Password

e {serial} or <serial> the serial number of the token.

* {user} the given name of the token owner.

 {givenname} the given name of the token owner.

¢ {surname} the surname of the token owner.

132 Chapter 1. Table of Contents

https://github.com/wicg/sms-one-time-codes

privacylDEA Authentication System, Release 3.6.1

* {username} the loginname of the token owner.

¢ {userrealm} the realm of the token owner.

» {tokentype} the type of the token.

* {recipient_givenname} the given name of the recipient.

* {recipient_surname} the surname of the recipient.

e {time} the current server time in the format HH:MM:SS.

¢ {date} the current server date in the format YYYY-MM-DD

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Default: <otp>

You can also provide the filename to an email template. The filename must be prefixed with £ile: like file:/
etc/privacyidea/emailtemplate.html. The template is an HTML file.

Note: If a message text is supplied directly, the email is sent as plain text. If the email template is read from a file, a
HTML-only email is sent instead.

emailsubject

type: string
This is the subject of the Email sent by the Email Token. You can use the same tags as mentioned in emailtext.

Default: Your OTP

emailautosend

type: bool

If set, a new OTP Email will be sent, when successfully authenticated with an Email Token.

mangle

type: string

The mangle policy can mangle the authentication request data before they are processed. l.e. the parameters user,
pass and realm can be modified prior to authentication.

This is useful if either information needs to be stripped or added to such a parameter. To accomplish that, the mangle
policy can do a regular expression search and replace using the keyword user, pass (password) and realm.

A valid action could look like this:

action: mangle=user/.« (.{4})/user\\1/

This would modify a username like “userwithalongname” to “username”, since it would use the last four characters of
the given username (“name”) and prepend the fixed string “user”.

1.7. Policies 133

privacylDEA Authentication System, Release 3.6.1

This way you can add, remove or modify the contents of the three parameters. For more information on the regular
expressions see'.

Note: You must escape the backslash as \\ to refer to the found substrings.

Example: A policy to remove whitespace characters from the realm name would look like this:

’ action: mangle=realm/\\s//

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

’action: mangle=pass/ .+ (.{6})/\\1/

Example: If you want to strip a string from the front of a username, for example to have “admin_username” resolve
to just “username”, it would look like this:

’ action: mangle=user/admin_ (.x) /\\1/

challenge_response

type: string

This is a list of token types for which challenge response can be used during authentication. The list is separated by
whitespaces like “hotp totp”.

change_pin_via_validate

type: bool

This works with the enrollment policies change_pin_on_first_use and change_pin_every. When a PIN change is due,
then a successful authentication will start a challenge response mechanism in which the user is supposed to enter a
new PIN two times.

Only if the user successfully changes the PIN the authentication process is finished successfully. E.g. if the user enters
two different new PINSs, the authentication process will fail.

Note: The application must support several consecutive challenge response requests.

u2f_facets

type: string

This is a white space separated list of domain names, that are trusted to also use a U2F device that was registered with
privacylDEA.

You need to specify a list of FQDNs without the https scheme like:
“hostl.example.com host2.example.com firewall.example.com”

For more information on configuring U2F see U2F.

! https://docs.python.org/2/library/re html

134 Chapter 1. Table of Contents

https://docs.python.org/2/library/re.html

privacylDEA Authentication System, Release 3.6.1

reset_all _user_tokens

type: bool

If a user authenticates successfully all failcounter of all of his tokens will be reset. This can be important, if using
empty PINs or otppin=None.

auth_cache

type: string

The Authentication Cache caches the credentials of a successful authentication and allows to use the same credentials
- also with an OTP value - for the specified amount of time and optionally for a specified number of authentications.

The time to cache the credentials can be specified like “4h”, “Sm”, “2d”, “3s” (hours, minutes, days, seconds). The
number of allowed authentications can be specified as a whole number, greater than zero.

The notation “4h/5m” means, that credentials are cached for 4 hours, but may only be used again, if every 5 minutes the
authentication occurs. If the authentication with the same credentials would not occur within 5 minutes, the credentials
can not be used anymore.

The notation ‘“2m/3” means, that credentials are cached for 2 minutes, but may only be used 3 times in this timeframe.

In future implementations the caching of the credentials could also be dependent on the clients IP address and the user
agent.

Note: Cache entries are written to the database table authcache. Please note that expired entries are automatically
deleted only when the user attempts to log in with the same expired credentials again. In all other cases, expired entries
need to be deleted from this table manually by running:

’pifmanage authcache cleanup —--minutes MIN

which deletes all cache entries whose last authentication has occurred at least MIN minutes ago. As an example:

’pifmanage authcache cleanup —--minutes 300

will delete all authentication cache entries whose last authentication happened more than 5 hours ago.

It may make sense to create a cronjob that periodically cleans up old authentication cache entries.

Note: The AuthCache only works for user authentication, not for authentication with serials.

push_text_on_mobile

type: string

This is the text that should be displayed on the push notification during the login process with a Push Token. You can
choose different texts for different users or IP addresses. This way you could customize push notifications for different
applications.

1.7. Policies 135

privacylDEA Authentication System, Release 3.6.1

push_title_on_mobile

type: string

This is the title of the push notification that is displayed on the user’s smartphone during the login process with a Push
Token.

push_wait

type: int

This can be set to a number of seconds. If this is set, the authentication with a push token is only performed via one
request to /validate/check. The HTTP request to /validate/check will wait up to this number of seconds
and check, if the push challenge was confirmed by the user.

This way push tokens can be used with any non-push-capable applications.

Sensible numbers might be 10 or 20 seconds.

Note: This behaviour can interfere with other tokentypes. Even if the user also has a normal HOTP token, the
/validate/check request will only return after this number of seconds.

Warning: Using simple webserver setups like Apache WSGI this actually can block all available worker threads,
which will cause privacyIDEA to become unresponsive if the number of open PUSH challenges exceeds the num-
ber of available worker threads!

push_allow_polling

type: string

This policy configures if push tokens are allowed to poll the server for open challenges (e.g. when the the third-party
push service is unavailable or unreliable).

The following options are available:
allow

Allow push tokens to poll for challenges.
deny

Deny push tokens to poll for challenges. This basically returns a 403 error when requesting the poll
endpoint.

token

Allow | Deny polling based on the individual token. The tokeninfo key polling_allowed is checked.
If the value evaluates to False, polling is denied for this token. If it evaluates to True or is not set,
polling is allowed for this token.

The default is to allow polling

136 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

challenge_text, challenge_text_header, challenge_test_footer

Using these policies the administrator can modify the challenge texts of e.g. Email-Token or SMS-Token. The action
challenge_text changes the challenge text in general, no matter which challenge response token is used.

If the challenge_text_header is set and if there are more matching challenge response tokens, then the texts of all
tokens are concatenated together. Double challenge texts are reduced to one text only.

The challenge_text_header and challenge_text_footer may contain HTML. If the challenge_text_header ends with
an or , then all the challenge texts are formatted as an ordered or unordered list. In this case the chal-
lenge_text_footer also should contain the closing tag.

Note: The footer will only be used, if the header is also set.

indexedsecret_challenge_text

The Indexed Secret Token asks the user to provide the characters of the secret from certain positions. The default text
is:

Please enter the position 3,1,6,7 from your secret.

with 3,1,6,7 being the positions of the characters, the user is supposed to enter. This text can be changed with this
policy setting. The text needs to contain the python formatting tag {0/s} which will be replaced with the list of the
requested positions.

For more details of this token type see Indexed Secret Token.

indexedsecret_count
The Indexed Secret Token asks the used for a number of characters from a shared secret. The default number to ask is
2.

The number of requested positions can be changed using this policy.

webauthn_allowed_transports

type: string

This action determines, which transports may be used to communicate with the authenticator, during authentication.
For instance, if the authenticators used support both an USB connection and NFC wireless communication, they can
be limited to USB only using this policy. The allowed transports are given as a space-separated list.

The default is to allow all transports (equivalent to a value of usb ble nfc internal).

1.7. Policies 137

privacylDEA Authentication System, Release 3.6.1

webauthn_timeout

type: integer
This action sets the time in seconds the user has to confirm an authentication request on his WebAuthn authenticator.

This is a client-side setting, that governs how long the client waits for the authenticator. It is independent of the time
for which a challenge for a challenge response token is valid, which is governed by the server and controlled by a
separate setting. This means, that if you want to increase this timeout beyond two minutes, you will have to also
increase the challenge validity time, as documented in Challenge Validity Time.

This setting is a hint. It is interpreted by the client and may be adjusted by an arbitrary amount in either direction, or
even ignored entirely.

The default timeout is 60 seconds.

Note: If you set this policy you may also want to set webauthn_timeout.

webauthn_user_verification_requirement

type: string

This action configures whether the user’s identity should be checked when authenticating with a WebAuthn token. If
this is set to required, any user signing in with their WebAuthn token will have to provide some form of verification.
This might be biometric identification, or knowledge-based, depending on the authenticator used.

This defaults to preferred, meaning user verification will be performed if supported by the token.

Note: User verification is different from user presence checking. The presence of a user will always be confirmed
(by asking the user to take action on the token, which is usually done by tapping a button on the authenticator). User
verification goes beyond this by ascertaining, that the user is indeed the same user each time (for example through
biometric means), only set this to required, if you know for a fact, that you have authenticators, that actually support
some form of user verification (these are still quite rare in practice).

Note: If you configure this, you will likely also want to configure webauthn_user_verification_requirement.

question_number

type: integer

The questionnaire token can ask more than one question during one authentication process. It will ask the first question,
verify the answer, ask the next question and verify the answer. This policy setting defines how many questions the
user needs to answer. (default: 1)

Note: A question will be asked only once, unless the policy requires more questions to be asked, than the token has
available answers.

138 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.7.4 Authorization policies

The scope authorization provides means to define what should happen if a user proved his identity and authenticated
successfully.

Authorization policies take the realm, the user and the client into account.

Technically the authorization policies apply to the Validate endpoints and are checked using Policy Module and Policy
Decorators.

The following actions are available in the scope authorization:

authorized

This is the basic authorization, that either grants the user access or denies access via the /validate endpoints (see
Validate endpoints). The default behaviour is to grant access, if and after the user has authenticated successfully.

Using authorized=deny_access specific authentication requests can be denied, even if the user has provided
the correct credentials.

In combination with different IP addresses and policy priorities the adminitator can generically deny_access with the
lowest policy priority and grant_access for specific requests e.g. originating from specific IP addresses to certain users
by defining higher policy priorities.

Note: Since authorized is checked as a postpolicy the OTP value used during an authentication attempt will be
invalidated even if the authorized policy denies the access.

Note: The actual “success” of the authentication can be changed to “failed” by this postpolicy. L.e. pre-event handlers
(Pre and Post Handling) would still see the request as successful before it would be changed by this policy and match
the event handler condition result value == True.

tokentype

type: string

Users will only be authorized with this very tokentype. The string can hold a space separated list of case sensitive
tokentypes. It should look like:

hotp totp spass

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with one
special token type while allowing access to less sensitive areas with other token types.

1.7. Policies 139

privacylDEA Authentication System, Release 3.6.1

application_tokentype

type: bool

If this policy is set, an application may add a parameter type as tokentype in the authentication request like
validate/check,validate/samlcheck or validate/triggerchallenge.

Then the application can determine via this parameter, which tokens of a user should be checked.

E.g. when using this in triggerchallenge, an application could assure, that only SMS tokens are used for authentication.

serial

type: string
Users will only be authorized with the serial number. The string can hold a regular expression as serial number.

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with hardware
tokens like the Yubikey, while allowing access to less secure areas also with a Google Authenticator.

tokeninfo

type: string
Users will only be authorized if the tokeninfo field of the token matches this regular expression.

This is checked after the authentication request, so that a valid OTP value can not be used anymore, even if authoriza-
tion is forbidden.

A valid action could look like
action = key/regexp/
Example:
action = last_auth/*2018.*/

This would mean the tokeninfo field needs to start with “2018.

setrealm

type: string

This policy is checked before the user authenticates. The realm of the user matching this policy will be set to the realm
in this action.

Note: This can be used if the user can not pass his realm when authenticating at a certain client, but the realm needs
to be available during authentication since the user is not located in the default realm.

140 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

no_detail on_success

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user authenticated successfully this additional information will not be returned.

no_detail_on_fail

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user fails to authenticate this additional information will not be returned.

api_key_required

type: bool
This policy is checked before the user is validated.

You can create an API key, that needs to be passed to use the validate APIL. If an API key is required, but no key is
passed, the authentication request will not be processed. This is used to avoid denial of service attacks by a rogue user
sending arbitrary requests, which could result in the token of a user being locked.

You can also define a policy with certain IP addresses without issuing API keys. This would result in “blocking” those
IP addresses from using the validate endpoint.

You can issue API keys like this:

pi-manage api createtoken -r validate

The API key (Authorization token) which is generated is valid for 365 days.

The authorization token has to be used as described in Authentication endpoints.

auth_max_success

type: string

Here you can specify how many successful authentication requests a user is allowed to perform during a given time.
If this value is exceeded, the authentication attempt is canceled.

Specify the value like 2 / 5m meaning 2 successful authentication requests per 5 minutes. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and 4 (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

1.7. Policies 141

privacylDEA Authentication System, Release 3.6.1

auth_max_fail

type: string

Here you can specify how many failed authentication requests a user is allowed to perform during a given time.
If this value is exceeded, authentication is not possible anymore. The user will have to wait.

If this policy is not defined, the normal behaviour of the failcounter applies. (see Reset Fail Counter)

Specify the value like 2/1m meaning 2 successful authentication requests per minute. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and % (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

last_auth

type: string
You can define if an authentication should fail, if the token was not successfully used for a certain time.

Specify a value like 12h, 123d or 2y to disallow authentication, if the token was not successfully used for 12 hours,
123 days or 2 years.

The date of the last successful authentication is store in the fokeninfo field of a token and denoted in UTC.

u2f_req

type: string
Only the specified U2F devices are authorized to authenticate. The administrator can specify the action like this:
u2f_req=subject/.* Yubico.*/

CLRNY3

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information from the attestation certificate is stored in the tokeninfo. Only if the regexp matches this
value, the authentication with such U2F device is authorized.

add_user_in_response

type: bool

In case of a successful authentication additional user information is added to the response. A dictionary containing
user information is added in detail->user.

142 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

add_resolver_in_response

type: bool

In case of a successful authentication the resolver and realm of the user are added to the response. The names are
added in detail->user-resolver and detail->user-realm.

webauthn_authenticator_selection_list

type: string

This action configures a whitelist of authenticator models which may be authorized. It is a space-separated list of
AAGUIDs. An AAGUID is a hexadecimal string (usually grouped using dashes, although these are optional) identi-
fying one particular model of authenticator. To limit enrollment to a few known-good authenticator models, simply
specify the AAGUIDs for each model of authenticator that is acceptable. If multiple policies with this action apply,
the set of acceptable authenticators will be the union off all authenticators allowed by the various policies.

If this action is not configured, all authenticators will be deemed acceptable, unless limited through some other action.

Note: If you configure this, you will likely also want to configure webauthn_authenticator_selection_list

webauthn_req

type: string
This action allows filtering of WebAuthn tokens by the fields of the attestation certificate.
The action can be specified like this:

webauthn_req=subject/.* Yubico.*/

LLINNY3

The the key word can be “subject”, “issuer” or “serial”’. Followed by a regular expression. During registration of
the WebAuthn authenticator the information is fetched from the attestation certificate. Only if the attribute in the
attestation certificate matches accordingly the token can be enrolled.

Note: If you configure this, you will likely also want to configure webauthn_req

1.7.5 Enrollment policies

The scope enrollment defines what happens during enrollment either by an administrator or during the user self enroll-
ment.

Enrollment policies take the realms, the client (see Policies) and the user settings into account.

Technically enrollment policies control the use of the REST API Token endpoints and specially the init and assign-
methods.

Technically the decorators in AP/ Policies are used.

The following actions are available in the scope enrollment:

1.7. Policies 143

privacylDEA Authentication System, Release 3.6.1

max_token_per_realm

type: int

This is the maximum allowed number of tokens in the specified realm.

Note: If you have several realms with realm admins and you imported a pool of hardware tokens you can thus limit
the consumed hardware tokens per realm.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_token_per_user

type: int
Limit the maximum number of tokens per user in this realm.

There are also token type specific policies to limit the number of tokens of a specific token type, that a user is allowed
to have assigned.

Note: If you do not set this action, a user may have unlimited tokens assigned.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_active_token_per_user

type: int
Limit the maximum number of active tokens per user.

There are also token type specific policies to limit the number of tokens of a specific token type, that a user is allowed
to have assigned.

Note: Inactive tokens will not be taken into account. If the token already exists, it can be recreated if the token is
already active.

144 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

tokenissuer

type: string

This sets the issuer label for a newly enrolled Google Authenticator. This policy takes a fixed string, to add additional
information about the issuer of the soft token.

Starting with version 2.20 you can use the tags {user}, {realm}, {serial} and as new tags {givenname}
and {surname} in the field issuer.

Note: A good idea is to set this to the instance name of your privacyIDEA installation or the name of your company.

tokenlabel

type: string

This sets the label for a newly enrolled Google Authenticator. Possible tags to be replaces are <u> for user, <r> for
realm an <s> for the serial number.

The default behaviour is to use the serial number.

Note: This is useful to identify the token in the Authenticator App.

Note: Starting with version 2.19 the usage of <u>, <s> and <r> is deprecated. Instead you should use {user},
{realm}, {serial} and as new tags {givenname} and {surname}.

Warning: If you are only using <u> or {user} as tokenlabel and you enroll the token without a user, this will
result in an invalid QR code, since it will have an empty label. You should rather use a label like “{user} @ {realm}”,
which would result in “@”.

autoassighment

type: string

allowed values: any_pin, userstore

Users can assign a token just by using this token. The user can take a token from a pool of unassigned tokens. When
this policy is set, and the user has no token assigned, autoassignment will be done: The user authenticates with a new

PIN or his userstore password and an OTP value from the token. If the OTP value is correct the token gets assigned to
the user and the given PIN is set as the OTP PIN.

Note: Requirements are:
1. The user must have no other tokens assigned.
2. The token must be not assigned to any user.
3. The token must be located in the realm of the authenticating user.

4. (The user needs to enter the correct userstore password)

1.7. Policies 145

mailto:\protect \T1\textbraceleft user\protect \T1\textbraceright @\protect \T1\textbraceleft realm

privacylDEA Authentication System, Release 3.6.1

Warning: If you set the policy to any_pin the token will be assigned to the user no matter what pin he enters. In
this case assigning the token is only a one-factor-authentication: the possession of the token.

otp_pin_random

type: int

Generates a random OTP PIN of the given length during enrollment. Thus the user is forced to set a certain OTP PIN.

Note: To use the random PIN, you also need to define a pinhandling policy.

pinhandling

type: string

Ifthe otp_pin_random policy is defined, you can use this policy to define, what should happen with the random pin.
The action value take the class of a PinHandler like privacyidea.lib.pinhandling.base.PinHandler.
The base PinHandler just logs the PIN to the log file. You can add classes to send the PIN via EMail or print it in a
letter.

For more information see the base class PinHandler.

change_pin_on_first_use

type: bool

If the administrator enrolls a token or resets a PIN of a token, then the PIN of this token is marked to be changed on
the first (or next) use. When the user authenticates with the old PIN, the user is authenticated successfully. But the
detail-response contains the keys “next_pin_change” and “pin_change”. If “pin_change” is True the authenticating
application must trigger the change of the PIN using the API /foken/setpin. See Token endpoints.

Note: If the application does not honour the “pin_change” attribute, then the user can still authenticate with his old
PIN.

Note: Starting with version 3.4 privacyIDEA also allows to force the user to change the PIN in such a case using the
policy change_pin_via_validate.

146 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

change_pin_every

type: string

This policy requires the user to change the PIN of his token on a regular basis. Enter a value follewed by “d”, e.g.
change the PIN every 180 days will be “180d”.

The date, when the PIN needs to be changed, is returned in the API response of /validate/check. For more information
see change_pin_first_use. To specify the contents of the PIN see User Policies.

otp_pin_encrypt

type: bool
If set the OTP PIN of a token will be encrypted. The default behaviour is to hash the OTP PIN, which is safer.

registration.length

type: int

This is the length of the generated registration codes.

registration.contents

type: string
contents: cns
This defines what characters the registrationcodes should contain.

This takes the same values like the admin policy op_pin_contents.

lostTokenPWLen

type: int

This is the length of the generated password for the lost token process.

lostTokenPWContents

type: string
This is the contents that a generated password for the lost token process should have. You can use
* c: for lowercase letters
* n: for digits
* s: for special characters (#$%&()*+,-./;;:<=>7@[]"_)
* C: for uppercase letters

¢ 8: Base58 character set

1.7. Policies 147

privacylDEA Authentication System, Release 3.6.1

Example:

The action lostTokenPWLen=10, lostTokenPWContents=Cns could generate a password like AC#/49MK)).

Note: If you combine 8 with e.g. C there will be double characters like “A”, “B”... Thus, those characters will have
a higher probability of being part of the password. Also C would again add the character “I”, which is not part of
Base58.

lostTokenValid

type: int

This is how many days the replacement token for the lost token should be valid. After this many days the replacement
can not be used anymore.

yubikey_access_code

type: string

This is a 12 character long access code in hex format to be used to initialize yubikeys. If no access code is set,
yubikeys can be re-initialized by everybody. You can choose a company wide access code, so that Yubikeys can only
be re-initialized by your own system.

You can add two access codes separated by a colon to change from one access code to the other.

313233343536:414243444546

papertoken_count

type: int

This is a specific action of the paper token. Here the administrator can define how many OTP values should be printed
on the paper token.

tantoken_count

type: int

This is a specific action for the TAN token. The administrator can define how many TANs will be generated and
printed.

u2f_req

type: string
Only the specified U2F devices are allowed to be registered. The action can be specified like this:

u2f_req=subject/.*Yubico.*/

CLRNY3

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information is fetched from the attestation certificate. Only if the attribute in the attestation certificate
matches accordingly the token can be registered.

148 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

u2f_no_verify_certificate

type: bool

By default the validity period of the attestation certificate of a U2F device gets verified during the registration process.
If you do not want to verify the validity period, you can check this action.

{type} 2step_clientsize, {type} 2step_serversize, {type} 2step_difficulty

type: string

These are token type specific parameters. They control the key generation during the 2step token enrollment (see 7wo
Step Enrollment).

The serversize is the optional size (in bytes) of the server’s key part. The clientsize is the size (in bytes) of
the smartphone’s key part. The difficulty is a parameter for the key generation. In the implementation in version
2.21 PBKDF?2 is used. In this case the difficulty specifies the number of rounds.

This is new in version 2.21.

type: bool

During enrollment of a privacyIDEA Authenticator smartphone app this policy is used to force the user to protect the
token with a PIN.

Note: This only works with the privacyIDEA Authenticator. This policy has no effect, if the QR code is scanned with
other smartphone apps.

This is new in version 3.1.

push_firebase_configuration

type: string

For enrolling a Push Token, the administrator can select which Firebase configuration should be used. The adminis-
trator can create several connections to the Firebase service (see Firebase Provider). This way even different Firebase
configurations could be used depending on the user’s realm or the IP address.

This is new in version 3.0.

Starting with version 3.6, if the push token is supposed to run in poll-only mode, then the entry “poll only” can be
selected instead of a firebase configuration. In this mode, neither the privacyIDEA server nor the smartphone app will
connect to Google Firebase during enrollment or authentication. Note, that you also need to set the authentication
policy push_allow_polling to allow the push token to poll for challenges.

1.7. Policies 149

privacylDEA Authentication System, Release 3.6.1

push_registration_url

type: string

This is the URL of your privacyIDEA server, which the push App should connect to for the second registration step.
This URL usually ends with /ttype/push. Note, that the smartphone app may connect to a different privacyIDEA
URL than the URL of the privacyIDEA Web UI.

push_ttl

This is the time (in minutes) how long the privacyIDEA server accepts the response of the second registration step.
The smartphone could have connection issues, so the second step could take some time to happen.

webauthn_relying_party_id

type: string

This action sets the relying party id to use for the enrollment of new WebAuthn tokens, at defined by the WebAuthn
specification'. Please note, that a token will be rolled out with one particular ID and that the relying party of an
existing token can not be changed. In order to change the relying party id for existing tokens, they need to be deleted
and new tokens need to be enrolled. This is a limitation of the WebAuthn standard and is unlikely to change in the
future.

The relying party id is a valid domain string that identifies the WebAuthn Relying Party on whose behalf a given
registration or authentication ceremony is being performed. A public key credential can only be used for authentication
with the same entity (as identified by RP ID) it was registered with.

This id needs to be a registrable suffix of or equal to the effective domain for each webservice the tokens should be
used with. This means if the token is being enrolled on — for example — https://login.example.com, them the relying
party ID may be either login.example.com, or example.com, but not — for instance — m.login.example.com, or com.
Similarly, a token enrolled with a relying party ID of login.example.com might be used by https://login.example.com,
or even https://m.login.example.com:1337, but not by https://example.com (because the RP ID login.example.com is
not a valid relying party ID for the domain example.com).

Note: This action needs to be set to be able to enroll WebAuthn tokens. For an overview of all the settings required
for the use of WebAuthn, see WebAuthn Token Config.

webauthn_relying_party _name

type: string

This action sets the human-readable name for the relying party, as defined by the WebAuthn specification”. It should
be the name of the entity whose web applications the WebAuthn tokens are used for.

Note: This action needs to be set to be able to enroll WebAuthn tokens. For an overview of all the settings required
for the use of WebAuthn, see WebAuthn Token Config.

! https://w3.org/TR/webauthn-2/#rp-id
2 https://w3.org/TR/webauthn-2/#webauthn-relying-party

150 Chapter 1. Table of Contents

https://w3.org/TR/webauthn-2/#rp-id
https://w3.org/TR/webauthn-2/#webauthn-relying-party

privacylDEA Authentication System, Release 3.6.1

webauthn_timeout

type: integer
This action sets the time in seconds the user has to confirm enrollment on his WebAuthn authenticator.

This is a client-side setting, that governs how long the client waits for the authenticator. It is independent of the time
for which a challenge for a challenge response token is valid, which is governed by the server and controlled by a
separate setting. This means, that if you want to increase this timeout beyond two minutes, you will have to also
increase the challenge validity time, as documented in Challenge Validity Time.

This setting is a hint. It is interpreted by the client and may be adjusted by an arbitrary amount in either direction, or
even ignored entirely.

The default timeout is 60 seconds.

Note: If you set this policy you may also want to set webauthn_timeout.

webauthn_authenticator_attachment

type: string

This action configures whether to limit roll out of WebAuthn tokens to either only platform authenticators, or only
platform authenticators. Cross-platform authenticators are authenticators, that are intended to be plugged into different
devices, whereas platform authenticators are those, that are built directly into one particular device and can not (easily)
be removed and plugged into a different device.

The default is to allow both platform and cross-platform attachment for authenticators.

webauthn_authenticator_selection_list

type: string

This action configures a whitelist of authenticator models which may be enrolled. It is a space-separated list of
AAGUIDs. An AAGUID is a hexadecimal string (usually grouped using dashes, although these are optional) identi-
fying one particular model of authenticator. To limit enrollment to a few known-good authenticator models, simply
specify the AAGUIDs for each model of authenticator that is acceptable. If multiple policies with this action apply,
the set of acceptable authenticators will be the union off all authenticators allowed by the various policies.

If this action is not configured, all authenticators will be deemed acceptable, unless limited through some other action.

Note: If you configure this, you will likely also want to configure webauthn_authenticator_selection_list.

webauthn_user_verification_requirement

type: string

This action configures whether the user’s identity should be checked when rolling out a new WebAuthn token. If this
is set to required, any user rolling out a new WebAuthn token will have to provide some form of verification. This
might be biometric identification, or knowledge-based, depending on the authenticator used.

This defaults to preferred, meaning user verification will be performed if supported by the token.

1.7. Policies 151

privacylDEA Authentication System, Release 3.6.1

Note: User verification is different from user presence checking. The presence of a user will always be confirmed
(by asking the user to take action on the token, which is usually done by tapping a button on the authenticator). User
verification goes beyond this by ascertaining, that the user is indeed the same user each time (for example through
biometric means), only set this to required, if you know for a fact, that you have authenticators, that actually support
some form of user verification (these are still quite rare in practice).

Note: If you configure this, you will likely also want to configure webauthn_user_verification_requirement.

webauthn_public_key_credential_algorithm_preference

type: string

This action configures which algorithms should be preferred for the creation of WebAuthn asymmetric cryptography
key pairs, and in which order. privacyIDEA currently supports ECDSA as well as RSASSA-PSS. Please check back
with the manufacturer of your authenticators to get information on which algorithms are acceptable to your model of
authenticator.

The default is to allow both ECDSA and RSASSA-PSS, but to prefer ECDSA over RSASSA-PSS.

Note: Not all authenticators will supports all algorithms. It should not usually be necessary to configure this action.
Do not change this preference, unless you are sure you know what you are doing!

webauthn_authenticator_attestation_form

type: string

This action configures whether to request attestation data when enrolling a new WebAuthn token. Attestation is used
to verify, that the authenticator being enrolled has been made by a trusted manufacturer. Since depending on the
authenticator this may include personally identifying information, indirect attestation can be requested. If indirect
attestation is requested the client may pseudonymize the attestation data. Attestation can also be turned off entirely.

The default is to request direct (full) attestation from the authenticator.

Note: In a normal business-context it will not be necessary to change this. If this is set to none, webau-
thn_authenticator_attestation_level must also be none.

Note: Authenticators enrolled with this option set to none can not be filtered using webauthn_req and webau-
thn_authenticator_selection_list or webauthn_req and webauthn_authenticator_selection_list, respectively. Applying
these filters is not possible without attestation information, since the fields these actions rely upon will be miss-
ing. With indirect attestation, checking may be possible (depending on the client). If any of webauthn_req, we-
bauthn_authenticator_selection_list, webauthn_req, or webauthn_authenticator_selection_list are set and apply to a
request for a token without attestation information, access will be denied.

152 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

webauthn_authenticator_attestation_level

type: string

This action determines whether and how strictly to check authenticator attestation data. Set this to none, to allow
any authenticator, even if the attestation information is missing completely. If this is set to trusted, strict checking is
performed. No authenticator is allowed, unless it contains attestation information signed by a certificate trusted for
attestation.

Note: Currently the certificate that signed the attestation needs to be trusted directly. Traversal of the trust path is not
yet supported!

The default is untrusted. This will perform the attestation check like normal, but will not fail the attestation, if the
attestation is self-signed, or signed by an unknown certificate.

Note: In order to be able to use frusted attestation, a directory needs to be provided, containing the certificates trusted
for attestation. See WebAuthn Token Config for details.

Note: If this is set to untrusted, a manipulated token could send a self-signed attestation message with
modified a modified AAGUID and faked certificate fields in order to bypass webauthn_req and webau-
thn_authenticator_selection_list, or webauthn_req and webauthn_authenticator_selection_list, respectively. If this
is of concern for your attack scenarios, please make sure to properly configure your attestation roots!

webauthn_req

type: string
This action allows filtering of WebAuthn tokens by the fields of the attestation certificate.
The action can be specified like this:

webauthn_req=subject/.* Yubico.*/

CEINNT3

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of
the WebAuthn authenticator the information is fetched from the attestation certificate. Only if the attribute in the
attestation certificate matches accordingly the token can be enrolled.

Note: If you configure this, you will likely also want to configure webauthn_req.

certificate_require_attestation

type: string

When enrolling a certificate token, privacyIDEA can require that an attestation certificate is passed along to verify, if
the key pair was generated on a (PIV) smartcard.

This policy can be set to:
e ignore (default): Ignore any existence of an attestation certificate

» verify: If an attestation certificate is passed along during enrollment, the attestation ceritificate gets verified.

1.7. Policies 153

privacylDEA Authentication System, Release 3.6.1

e require_and_verify: An attestation certificate is required and verified. If no attestation certificate is
provided, the enrollment will fail.

The trusted root certificate authorities and intermediate certificate authorities can be configured via the policies certifi-
cate_trusted_Attestation_CA_path and :ref:"user_trusted_attestation_CA

1.7.6 WebUI Policies
login_mode

type: string
allowed values: “userstore”, “privacyIDEA”, “disable”

If set to userstore (default), users and administrators need to authenticate with the password of their userstore, being
an LDAP service or an SQL database.

If this action is set to login_mode=privacyIDEA, the users and administrators need to authenticate against privacyIDEA
when logging into the WebUI. L.e. they can not login with their domain password anymore but need to authenticate
with one of their tokens.

If set to login_mode=disable the users and administrators of the specified realms can not login to the UI anymore.

Warning: If you set this action and the user deletes or disables all his tokens, he will not be able to login anymore.

Note: Administrators defined in the database using the pi-manage command can still login with their normal pass-
words.

Note: A sensible way to use this, is to combine this action in a policy with the client parameter: requiring the
users to login to the Web UI remotely from the internet with OTP but still login from within the LAN with the domain
password.

Note: Another sensible way to use this policy is to disable the login to the web UI either for certain IP addresses
(client) or for users in certain realms.

remote_user

type: string
This policy defines, if the login to the privacyIDEA using the web servers integrated authentication (like basic authen-
tication or digest authentication) should be allowed.

LEINT3

Possible values are “disable”, “allowed” and ““force”.

If set to “allowed” a user can choose to use the REMOTE_USER or login with credentials. If set to “force”, the user
can not switch to login with credentials but can only login with the REMOTE_USER from the browser.

154 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Note: The policy is evaluated before the user is logged in. At this point in time there is no realm known, so a policy
to allow remote_user must not select any realm.

Note: The policy setting “force” only works on the UI level. On the API level the user could still log in with
credentials! If you want to avoid this, see the next note.

Note: The policy login_mode and remote_user work independent of each other. L.e. you can disable login_mode and
allow remote_user.

You can use this policy to enable Single-Sign-On and integration into Kerberos or Active Directory. Add the following
template into you apache configuration in /etc/apache2/sites-available/privacyidea.conf:

<Directory />
For Apache 2.4 you need to set this:
Require all granted
Options FollowSymLinks
AllowOverride None

SSLRequireSSL
AuthType Kerberos
AuthName "Kerberos Login"
KrbMethodNegotiate On
KrbMethodK5Passwd On
KrbAuthRealms YOUR-REALM
Krbb5KeyTab /etc/apache2/http.keytab
KrbServiceName HTTP
KrbSaveCredentials On
<RequireAny>
Either we need a URL with no authentication or we need a valid user
<RequireAny>
Any of these URL do NOT need a basic authentication
Require expr %{REQUEST_URI} =~ m#"/validate#
Require expr %{REQUEST_URI} =~ m#"/ttype#
</RequireAny>
Require valid-user
</RequireAny>
</Directory>

logout_time

type: int
Set the timeout, after which a user in th WebUI will be logged out. The default timeout is 120 seconds.

Being a policy this time can be set based on clients, realms and users.

1.7. Policies 155

privacylDEA Authentication System, Release 3.6.1

token_page_size

type: int

By default 15 tokens are displayed on one page in the token view. On big screens you might want to display more
tokens. Thus you can define in this policy how many tokens should be displayed.

user_page_size

type: int

By default 15 users are displayed on one page in the user view. On big screens you might want to display more users.
Thus you can define in this policy how many users should be displayed.

policy_template_url

type: str
Here you can define a URL from where the policies should be fetched. The default URL is a Github repository'.

Note: When setting a template_url policy the modified URL will only get active after the user has logged out and in
again.

default_tokentype

type: str

You can define which is the default tokentype when enrolling a new token in the Web UL This is the token, which will
be selected, when entering the enrollment dialog.

tokenwizard

type: bool

If this policy is set and the user has no token, then the user will only see an easy token wizard to enroll his first token.
If the user has enrolled his first token and he logs in to the web UI, he will see the normal view.

The user will enroll a token defined in default_tokentype.
Other sensible policies to combine are in User Policies the OTP length, the TOTP timestep and the HASH-lib.

You can add a prologue and epilog to the enrollment wizard in the greeting and after the token is enrolled and e.g. the
QR code is displayed.

Create the files
* static/customize/views/includes/token.enroll.pre.top.html
* static/customize/views/includes/token.enroll.pre.bottom.html
* static/customize/views/includes/token.enroll.post.top.html

* static/customize/views/includes/token.enroll.post.bottom.html

! https://github.com/privacyidea/policy-templates/.

156 Chapter 1. Table of Contents

https://github.com/privacyidea/policy-templates/

privacylDEA Authentication System, Release 3.6.1

to display the contents in the first step (pre) or in the second step (post).

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

realm_dropdown

type: str

If this policy is activated the web UI will display a realm dropdown box. Of course this policy can not filter for users
or realms, since the user is not known at this moment.

The type of this action was changed to “string” in version 2.16. You can set a space separated list of realm names.
Only these realmnames are displayed in the dropdown box.

Note: The realm names in the policy are not checked, if they really exist!

search_on_enter

type: bool

The searching in the user list is performed as live search. Each time a key is pressed, the new substring is searched in
the user store.

Sometimes this can be too time consuming. You can use this policy to change the bahaviour that the administrator
needs to press enter to trigger the search.

(Since privacyIDEA 2.17)

custom_baseline

type: str

The administrator can replace the file templates/baseline.html with another template. This way he can
change the links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/
mybase.html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specity
different baselines for different client IP addresses.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

1.7. Policies 157

privacylDEA Authentication System, Release 3.6.1

custom_menu

type: str

The administrator can replace the file templates/menu.html with another template. This way he can change the
links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/mymenu.
html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specify
different menus for different client IP addresses.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

hide_buttons

type: bool
Buttons for actions that a user is not allowed to perform, are hidden instead of being disabled.

(Since privacylIDEA 3.0)

token_rollover

type: str

This is a whitespace separated list of tokentypes, for which a rollover button is displayed in the token details. This
button will generate a new token secret for the displayed token.

This e.g. enables a user to transfer a softtoken to a new device while keeping the token number restricted to 1.

(Since privacyIDEA 3.6)

login_text

type: str

This way the text “Please sign in” on the login dialog can be changed. Since the policy can also depend on the IP
address of the client, you can also choose different login texts depending on from where a user tries to log in.

(Since privacylIDEA 3.0)

show_android_privacyidea_authenticator

type: bool

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the Google Play Store where he can directly install the privacyIDEA Authenticator App for Android devices.

(Since privacylDEA 3.3)

158 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

show_ios_privacyidea_authenticator

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the Apple App Store where he can directly install the privacyIDEA Authenticator App for iOS devices.

type: bool

(Since privacylDEA 3.3)

show_custom_authenticator

type: str

If this policy is activated, the enrollment page for HOTP, TOTP and Push tokens will contain a QR code, that leads the
user to the given URL.

The idea is, that an organization running privacyIDEA can create its own URL, where the user is taken to, e.g.
» Show information about the used Authenticator apps. ..

* Do a device identification and automatically redirect the user to Google Play Store or Apple App Store. Thus
only need the user to show one QR code. ..

« If an organization has it’s own customized app or chooses to use another app, lead the user to another App in
the Google Play Store or Apple App Store.

Other scenarios are possible.

(Since privacylIDEA 3.3)

show_node

type: bool
If this policy is activated the UI will display the name of the privacyIDEA node in the top left corner next to the logo.

This is useful, if you have a lot of different privacyIDEA nodes in a redundant setup or if you have test instances and
prodcutive instances. This way you can easily distinguish the different instances.

(Since privacyIDEA 3.5)

indexedsecret_preset_attribute

type: str
The secret in the enrollment dialog of the tokentype indexedsecret is preset with the value of the given user attribute.
For more details of this token type see Indexed Secret Token.

(Since privacyIDEA 3.3)

1.7. Policies 159

privacylDEA Authentication System, Release 3.6.1

admin_dashboard

type: bool

If this policy is activated, the static dashboard can be accessed by administrators. It is displayed as a starting page
in the WebUI and contains information about token numbers, authentication requests, recent administrative changes,
policies, event handlers and subscriptions.

(Since privacylDEA 3.4)
1.7.7 Register Policy

User registration

Starting with privacyIDEA 2.10 users are allowed to register with privacyIDEA. L.e. a user that does not exist in a
given realm and resolver can create a new account.

Note: Registering new users is only possible, if there is a writeable resolver and if the necessary policy in the scope
register is defined. For editable UserldResolvers see UserldResolvers.

If a register policy is defined, the login window of the Web UI gets a new link “Register”.

privacylDEA Register Login

Enter your username and password and click Log In to authenticate.

Please sign in

Fig. 56: Next to the login button is a new link ‘register’, so that new users are able to register.

A user who clicks the link to register a new account gets this registration dialog:

During registration the user is also enrolled Registration token. This registration code is sent to the user via a notifica-
tion email.

Note: Thus - using the right policies in scope webui and authentication - the user could login with the password he
set during registration an the registration code he received via email.

160 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

privacylDEA Register | Login

Here you may register a new user account

Register

Username

Usemame l

Surname

{ Surname l

Given name

{ Given name l

Email

E |

Mobile

Mobile

Phone

Phone

Password

Password f|
‘ Password f|

Fig. 57: Registration form

1.7. Policies 161

privacylDEA Authentication System, Release 3.6.1

Policy settings

In the scope register several settings define the behaviour of the registration process.

Edit Policy register

Policy Name register

If you change the name of the policy, it will create a new policy
with the new name!

Scope register -
Action G themis The SMTP server configuration, that should be used fo
smtpconfig send the registration email.
¥l realm local Define in which realm the user should be registered.
“| resolver localusers Define in which resolver the user should be registered.
User-Realm None Selected ~
User-Resolver None Selected ~
User admin, superuser
Client 10.0.0.0/8, 110.0.0.124

+Create Policy

Fig. 58: Creating a new registration policy

realm

type: string

This is the realm, in which a new user will be registered. If this realm is not specified, the user will be registered in the
default realm.

resolver

type: string

This is the resolver, in which the new user will be registered. If this resolver is not specified, registration is not
possible!

Note: This resolver must be an editable resolver, otherwise the user can not be created in this resolver.

162 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

smtpconfig

type: string

This is the unique identifier of the SMTP server configuration. This SMTP server is used to send the notification email
with the registration code during the registration process.

Note: If there is no smpconfig or set to a wrong identifier, the user will get no notification email.

requiredemail

type: string
This is a regular expression according to'.
Only email addresses matching this regular expression are allowed to register.

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

action: requiredemail=/.x+@mydomain\..x/

This will allow all email addresses from the domains mydomain.com, mydomain.net etc. . .

You can define as many policies as you wish to. The logic of the policies in the scopes is additive.

6 0 Tokens R Users = Machines %FConfig QAudit & Components Z Refresh
o System & Policies ™ Events @ Periodic Tasks Q Tokens = Machines L Users @ Realms A CAs
AIREIEES Prioritys | Actives PolicyNames |V | Scopes | Y pciion Realm User Resolver Cli
Create new Policy 1 o v caread admin { "caconnectorread™: [| [0 il
true } "admin"
]
v hide_welcome webul { i} i} 0 0

“hide_welcome_info":
true, “logout_time":
"43089" }

v superuser admin { "adduser": true 0 [0 0
"assign’: true, "admin”

Fig. 59: Policy Definition

Starting with privacyIDEA 2.5 you can use policy templates to ease the setup.

! https://docs.python.org/2/library/re html

1.7. Policies 163

https://docs.python.org/2/library/re.html

privacylDEA Authentication System, Release 3.6.1

1.7.8 Policy Templates

Policy templates are defined in a Github repository which can be changed using a WebUI policy policy_template_url.
The templates are fetched from the given repository URL during runtime.

=& System O Policies = ™ Events & Periodic Tasks 0 Tokens ~ = Machines L Users @ Realms M CAs

All Policies

Create new Policy

Create a new Policy

Policy Name I policy1 I

Policy Templates enroll_tokenlabel get the tokenlabel of a Google Authenticator to a sensible value during enroliment

helpdesk A helpdesk user, who is allowed to manage all token stuff
hide_welcome Hide the welcome dialog from the administrator.
selfservicet Some sensible actions for users in the WebUI

superuser An administrator, who is allowed to do everything

webui Users need to authenticate against privacylDEA

webui2 Users need to authenticate against their userstore

The policy templates are json files, which can contain common settings, that can be used to start your own polices.
When creating a new policy, you can select an existing policy template as a starting point.

You may also fork the github repository and commit pull request to improve the policy templates. Or you may fork
the github repository and use your own policy template URL for your policy templates.

A policy templates looks like this:

{

"name": "template_namel",

"scope": "enrollment",

"action": {
"tokenlabel": "<u>Q@<r>/<s>",
"autoassignment": true

}

realms, resolver and clients are not used in the templates.

A template must be referenced in a special index. json file:

{
"template_namel": "descriptionl",
"template_name2": "description2"

where the key is the name of the template file and the value is a description displayed in the WebUI.

Each policy can contain the following attributes:

164 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

policy name

A unique name of the policy. The name is the identifier of the policy. If you create a new policy with the
same name, the policy is overwritten.

Note: In the web UI and the API policies can only be created with the characters 0-9, a-z, A-Z, “_”, “-%,
”” and “.”. On a library level or during migration scripts policies with other characters could be created.

scope
The scope of the policy as described above.
action

This is the important part of the policy. Each scope provides its own set of actions. An ac-
tion describes that something is allowed or that some behaviour is configured. A policy can con-
tain several actions. Actions can be of type boolean, string or integer. Boolean actions are
enabled by just adding this action - like scope=user:action=disable, which allows the
user to disable his own tokens. string and integer actions require an additional value - like
scope=authentication:action="'otppin=userstore’.

user

This is the user, for whom this policy is valid. Depending on the scope the user is either an administrator
or a normal authenticating user.

If this field is left blank, this policy is valid for all users.
resolver
This policy will be valid for all users in this resolver.

If this field is left blank, this policy is valid for all resolvers.

Note: Starting with version 2.17 you can use the parameter check_all_resolvers. This is Check
all possible resolvers of a user to match the resolver in this policy in the Web UI.

Assume a user user@realml is contained in resolverl and resolver2 in the realm realmli, where resolverl
is the resolver with the highest priority. If the user authenticates as user@realmli, only policies for re-
solverl will match, since the user is identified as user.resolverl @realml.

If you also want to match a policy with resolver=resolver?2, you need to select Check all possible
resolvers in this policy. Thus this policy will match for all users, which are als contained in resolver2 as
a secondary resolver.

realm

This is the realm, for which this policy is valid.

If this field is left blank, this policy is valid for all realms.
client

This is the requesting client, for which this action is valid. I.e. you can define different policies if the user
access is allowed to manage his tokens from different IP addresses like the internal network or remotely
via the firewall.

You can enter several IP addresses or subnets divided by comma. Exclude item by prepending a minus
sign (like 10.2.0.0/16, -10.2.0.1, 192.168.0.1).

privacyIDEA Node

1.7. Policies 165

privacylDEA Authentication System, Release 3.6.1

(added in privacyIDEA 3.4)

If you have a redundant setup requests can hit different dedicated nodes of your privacyIDEA cluster. If
you want a policy to only be valid for certain privacyIDEA Nodes, you can set a list of allowed nodes.

This can be useful if you e.g. only want certain administrative actions on dedicated nodes.
The nodes are configured in pi.cfg. See The Config File.

time
(added in privacylDEA 2.12)

In the time field of a policy you can define a list of time ranges. A time range can consist of day of weeks
(dow) and of times in 24h format. Possible values are:

<dow>: <hh>-<hh>
<dow>: <hh:mm>-<hh:mm>
<dow>—-<dow>: <hh:mm>-<hh:mm>

You may use any combination of these. Like:

Mon-Fri: 8-18

to define certain policies to be active throughout working hours.

Note: If the time of a policy does not match, the policy is not found. Thus you can get effects you did
not plan. So think at least rwice before using time restricted policies.

priority
(added in privacyIDEA 2.23)

The priority field of policies contains a positive number and defaults to 1. In case of policy conflicts,
policies with a lower priority number take precedence.

It can be used to resolve policy conflicts. An example is the passthru policy: Assume there
are two passthru policies poll and pol2 that define different action values, e.g. poll defines
passthru=userstore and pol2 defines passthru=radiusl. If multiple policies match for
an incoming authentication request, the priority value is used to determine the policy that should take
precedence: Assuming poll has a priority of 3 and pol2 has a priority of 2, privacyIDEA will honor
only the pol2 policy and authenticate the user against the RADIUS server radiusl.

Policy conflicts can still occur if multiple policies with the same priority specify different values for the
same action.

additional conditions
(added in privacyIDEA 3.1)

Using conditions, you can specify more advanced rules that determine whether a policy is valid for a
request.

Conditions are described in

166 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.7.9 Policy conditions
Since privacyIDEA 3.1, policy conditions allow to define more advanced rules for policy matching, i.e. for determining
which policies are valid for a specific request.

Conditions can be added to a policy via the WebUL. In order for a policy to take effect during the processing of a
request, the request has to match not only the ordinary policy attributes (see Policies), but also all additionally defined
conditions that are currently active. If no active conditions are defined, only the ordinary policy attributes are taken
into account.

Each policy condition performs a comparison of two values. The left value is taken from the current request. The
comparison operator (called Comparator) and the right value are entered in the policy definition. Each condition
consists of five parts:

e Active determines if the condition is currently active.

* Section refers to an aspect of the incoming request on which the condition is applied. The available sections
are predefined, see Sections.

* The meaning of Key depends on the chosen Section. Typically, it determines the exact property of the
incoming request on which the condition is applied.

* Comparator defines the comparison to be performed. The available comparators are predefined, see Com-
parators.

* Value determines the value the property should be compared against.

Sections

privacyIDEA implements three sections userinfo, token, tokeninfo and HTTP Request Headers.

userinfo

The section userinfo can be used to define conditions that are checked against attributes of the current user in the
request (the so-called handled user). The validity of a policy condition with section userinfo is determined as
follows:

* privacyIDEA retrieves the userinfo of the currently handled user. These are the user attributes as they are
determined by the respective resolver. This is configured via the attribute mappings of resolvers (see UserldRe-
solvers).

* Then, it retrieves the userinfo attribute given by Key

* Finally, it uses the Comparator to compare the contents of the userinfo attribute with the given Value. The
result of the comparison determines if the request matches the condition or not.

Note: There are situations in which the currently handled user cannot be determined. If privacyIDEA encounters a
policy with userinfo conditions in such a situation, it throws an error and the current request is aborted.

Likewise, privacyIDEA raises an error if Key refers to an unknown userinfo attribute, or if the condition definition is
invalid due to some other reasons. More detailed information are then written to the logfile.

As an example for a correct and useful userinfo condition, let us assume that you have configured a realm ldaprealm
with a single LDAP resolver called Idapres. This resolver is configured to fetch users from a OpenLDAP server, with
the following attribute mapping:

1.7. Policies 167

privacylDEA Authentication System, Release 3.6.1

{ "phone": "telephoneNumber",
"mobile": "mobile",
"email": "mailPrimaryAddress",
"groups": "memberOf",
"surname": "sn",
"givenname": "givenName" }

You can further define groups to be a multi-value attribute by setting the Multivalue Attributes option to
["groups"].

According to this mapping, users of Idaprealm will have userinfo entries phone, mobile, email, groups,
surname and givenname which are filled with the respective values from the LDAP directory.

You can now configure a policy that disables the WebUI login for all users in the LDAP group cn=Restricted
Login, cn=groups,dc=test, dc=intranet with an email address ending in @Gexample.com:

¢ Scope: webui
e Action: 1login_mode=disable
¢ 1) additional condition (active):
— Section: userinfo
- Key: email
— Comparator: matches
— Value: . xQexample.com
2) additional condition (active):
— Section: userinfo
— Key: groups
— Comparator: contains
— Value: cn=Restricted Login, cn=groups,dc=test,dc=intranet

The policy only takes effect if the user that is trying to log in has a matching email address and is a member of the
specified group. In other words, members of the group with an email address ending in @privacyidea.org will
still be allowed to log in.

Note: Keep in mind that changes in the LDAP directory may not be immediately visible to privacyIDEA due to
caching settings (see LDAP resolver).

If the userinfo of the user that is trying to log in does not contain attributes email or groups (due to a resolver
misconfiguration, for example), privacyIDEA throws an error and the request is aborted.

168 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

tokeninfo

The tokeninfo condition works the same way as userinfo but matches the tokeninfo instead.

Note: Similar to the userinfo condition, a policy with an active tokeninfo condition will throw an exception whenever
the token object cannot be determined (usually from the serial).

token

The token condition works on the database columns of the token. This would be description, otplen, count,
serial, active but most importantly also failcount and tokentype.

Note: A policy with an active tokeninfo condition will throw an exception whenever the token object cannot be
determined. It will also throw an error, if the request Key does not exist as a database column.

Note: The matching is case sensitive. Note, that e.g. token types are stored in lower case in the database.

Example: The administrator could define a dedicated policy in the scope user with the action delete and the token
condition active, <, 1. For an inactive token the attribute act ive would evaluate to 0 and thus be smaller than 1.
An active token would evaluate to 1. This would allow the user to delete only inactive tokens, but not still active
tokens.

HTTP Request Header

The section HTTP Request header can be used to define conditions that are checked against the request header
key-value pairs.

The Key specifies the request header key. It is case-sensitive.

privacyIDEA uses the Comparator to check if the value of a header is equal or a substring of the required value.

Note: privacyIDEA raises an error if Key refers to an unknown request header. If the header in question is missing,
the policy can not get completely evaluated. Be aware that requests, that do not contain the header Key will always
fail! Thus, if you are using uncommon headers you should in addition restrict the policy e.g. to client IPs, to assure,
that a request from this certain IP address will always contain the header, that is to be checked.

Comparators

The following comparators can be used in definitions of policy conditions:

* equals evaluates to true if the left value is equal to the right value, according to Python semantics. !equals
evaluates to true if this is not the case.

e contains evaluates to true if the left value (a list) contains the right value as a member. ! contains evaluates
to true if this is not the case.

1.7. Policies 169

privacylDEA Authentication System, Release 3.6.1

* in evaluates to true if the left value is contained in the list of values given by the right value. The right value is
a comma-separated list of values. Individual values can be quoted using double-quotes. ! in evaluates to true if
the left value is not found in the list given by the right value.

* matches evaluates to true if the left value completely matches the regular expression given by the right value.
!matches evaluates to true if this is not the case.

Error Handling

privacyIDEA’s error handling when checking policy conditions is quite strict, in order to prevent policy misconfigura-
tion from going unnoticed. If privacyIDEA encounters a policy condition that evaluates neither to true nor false, but
simply invalid due to a misconfiguration, privacyIDEA throws an error and the current request is aborted.

1.8 Event Handler

Added in version 2.12.
What is the difference between Policies and event handlers?
Policies are used to define the behaviour of the system. With policies you can change the way the system reacts.

With event handlers you do not change the way the system reacts. But on certain events you can trigger a new action
in addition to the behaviour defined in the policies.

These additional actions are also logged to the audit log. These actions are marked as EVENT in the audit log and you
can see, which event triggered these actions. Thus a single API call can cause several audit log entries: One for the
API call and more for the triggered actions.

1.8.1 Events

Each API call is an event and you can bind arbitrary actions to each event as you like.

Internally events are marked by a decorator “event” with an event identifier. At the moment not all events might be
tagged. Please drop us a note to tag all further API calls.

privacylDEA [Tokens L Users = Machines = ##Config Q Audit

= System £ Policies [~ Events 0 Tokens = Machines A Users @ Realms A CAs

All Event Handlers

Create new Event Handler

Id Events Handlermodule Condition Action Options

5 ["token_init"] UserNotification sendmail { "emailconfig™: "themis" } fiDelete

Fig. 60: An action is bound to the event token_init.

170 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.8.2 Pre and Post Handling

Added in Version 2.23.

With most event handlers you can decide if you want the action to be taken before the actual event or after the actual
event. Le. if all conditions would trigger certain actions the action is either triggered before (pre) the API request is
processed or after (post) the request is processed.

Up to version 2.22 all actions where triggered after the request. In this case additional information from the response
is available. E.g. if a user successfully authenticated the event will know the serial number of the token, which the
user used to authenticate.

If the action is triggered before the API request is processed, the event can not know if the authentication request will
be successful or which serial number a token would have. However, triggering the action before the API request is
processed can have some interesting other advantages:

Example for Pre Handling
The administrator can define an event definition that would trigger on the event validate/check in case the the
authenticating user does not have any token assigned.

The pre event definition could call the Tokenhandler with the enroll action and enroll an email token with dy-
namic_email for this very user.

When the API request validate/check is now processed, the user actually now has an email token and can
authenticate via challenge response with this very email token without an administrator ever enrolling or assigning a
token for this user.

1.8.3 Handler Modules and Actions
The actions are defined in handler modules. So you bind a handler module and the action, defined in the handler
module, to the events.

The handler module can define several actions and each action in the handler module can require additional options.

1.8.4 Conditions

Added in version 2.14

An event handler module may also contain conditions. Only if all conditions are fulfilled, the action is triggered.
Conditions are defined in the class property conditions and checked in the method check_condition. The base class for
event handlers currently defines those conditions. So all event handlers come with the same conditions.

Note: In contrast to other conditions, the condition checking for tokenrealms, tokenresolvers, serial
and user_token_number also evaluates to true, if this information can not be checked. IL.e. if a request does not
contain a serial or if the serial can not be determined, this condition will be evaluated as fulfilled.

Event Handlers are a mighty and complex tool to tweek the functioning of your privacyIDEA system. We recommend
to test your definitions thoroughly to assure your expected outcome.

1.8. Event Handler 171

privacylDEA Authentication System, Release 3.6.1

S System D Policies | ™ Events [Tokens = Machines R Users @ Realms R CAs

All Event Handlers

Create new Event Handler

Edit Event Handler 5

Events foken_init «
Handlermodule UserNotification v
Condition
Action sendmail v
Options
emailconfig themis Y

Send notification email via this email server.

+Create Event Handler Definition

Fig. 61: The event sendmail requires the option emailconfig.

Basic conditions

The basic event handler module has the following conditions.
client_ip

The action is triggered if the client IP matches this value. The value can be a comma-separated list of single addresses
or networks. To exclude entries, put a minus sign:

192.168.0.0/24,-192.168.0.12,10.0.0.2

count_auth

This can be >100’, ‘<99’ or ‘=100’, to trigger the action, if the tokeninfo field ‘count_auth’ is bigger than 100, less
than 99 or exactly 100.

count_auth_fail

This can be >100’, ‘<99’, or ‘=100’, to trigger the action, if the difference between the tokeninfo field ‘count_auth’
and ‘count_auth_success is bigger than 100, less than 99 or exactly 100.

count_auth_success

This can be “>100’, ‘<99°, or ‘=100, to trigger the action, if the tokeninfo field ‘count_auth_success’ is bigger than
100, less than 99 or exactly 100.

failcounter

This is the failcount of the token. It is increased on failed authentication attempts. If it reaches max_failcount
increasing will stop and the token is locked. See Reset Fail Counter.

The condition can be set to >9’, ‘=10, or ‘<5’ and it will trigger the action accordingly.

172 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

detail_error_message

This condition checks a regular expression against the detail section in the API response. The field
detail->error—->message is evaluated.

Error messages can be manyfold. In case of authentication you could get error messages like:
“The user can not be found in any resolver in this realm!”
With token/init you could get:

“missing Authorization header”

Note: The field detail->error->message is only available in case of an internal
error, i.e. if the response status is "~ “False.

detail_message

This condition checks a regular expression against the detail section in the API response. The field
detail->message is evaluated.

Those messages can be manyfold like:
“wrong otp pin”
“wrong otp value”

“Only 2 failed authentications per 1:00:00”

Note: The field detail->message is available in case of status True, like an authentication request that was
handled successfully but failed.

detail_message

Here you can enter a regular expression. The condition only applies if the regular expression matches the detail-
>message in the response.

last_auth

This condition checks if the last authentication is older than the specified time delta. The timedelta is specified with
“h” (hours), “d” (days) or “y” (years). Specifying /80d would mean, that the action is triggered if the last successful
authentication with the token was performed more than 180 days ago.

This can be used to send notifications to users or administrators to inform them, that there is a token, that might be
orphaned.

logged_in_user

This condition checks if the logged in user is either an administrator or a normal user. This way the administrator can
bind actions to events triggered by normal users or e.g. by help desk users. If a help desk user enrolls a token for a
user, the user might get notified.

If a normal user enrolls some kind of token, the administrator might get notified.
otp_counter

The action is triggered, if the otp counter of a token has reached the given value. The value can either be an exact
match or greater (“>100’) or less (‘<200’) then a specified limit.

The administrator can use this condition to e.g. automatically enroll a new paper token for the user or notify the user
that nearly all OTP values of a paper token have been spent.

1.8. Event Handler 173

privacylDEA Authentication System, Release 3.6.1

realm

The condition realm matches the user realm. The action will only trigger, if the user in this event is located in the
given realm.

This way the administrator can bind certain actions to specific realms. E.g. some actions will only be triggered, if the
event happens for normal users, but not for users in admin- or helpdesk realms.

resolver

The resolver of the user, for which this event should apply.
result_status

The result.status within the response is True or False.
result_value

This condition checks the result of an event.

E.g. the result of the event validate_check can be a failed authentication. This can be the trigger to notify either the
token owner or the administrator.

rollout_state

This is the rollout_state of a token. A token can be rolled out in several steps like the 2step HOTP/TOTP token. In this
case the attribute “rollout_state” of the token contains certain values like ‘clientwait’ or ‘enrolled’. This way actions
can be triggered, depending on the step during an enrollment process.

serial
The action will only be triggered, if the serial number of the token in the event does match the regular expression.

This is a good idea to combine with other conditions. E.g. only tokens with a certain kind of serial number like Google
Authenticator will be deleted automatically.

token_has_owner

The action is only triggered, if the token is or is not assigned to a user.

token_is_orphaned

The action is only triggered, if the user, to whom the token is assigned, does not exist anymore.
token_locked

The action is only triggered, if the token in the event is locked, i.e. the maximum failcounter is reached. In such a case
the user can not use the token to authenticate anymore. So an action to notify the user or enroll a new token can be
triggered.

token_validity_period

Checks if the token is in the current validity period or not. Can be set to True or False.

Note: token_validity_period==False will trigger an action if either the validitiy period is either over or
has not started, yet.

tokeninfo

The tokeninfo condition can compare any arbitrary tokeninfo field against a fixed value. You can compare strings and
integers. Integers are converted automatically. Valid compares are:

my Value == 1000 myValue > 1000 myValue < 99 myTokenInfoField == EnrollmentState myTokenIn-
foField < ABC myTokenInfoField > abc

174 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

“myValue” and “myTokenInfoField” being any possible tokeninfo fields.
Starting with version 2.20 you can also compare dates in the isoformat like that:
my Value > 2017-10-12T10:00+0200 my Value < 2020-01-01T00:00+0000

In addition you can also use the tag {now/ to compare to the curren time and you can add offsets to {now/ in seconds,
minutes, hours or days:

myValue < {now} myValue > {now }+10d myValue < {now }-5h

Which would match if the tokeninfo myValue is a date, which is later than 10 days from now or it the tokeninfo
myValue is a date, which is 5 more than 5 hours in the past.

tokenrealm

In contrast to the realm this is the realm of the token - the fokenrealm. The action is only triggered, if the token within
the event has the given tokenrealm. This can be used in workflows, when e.g. hardware tokens which are not assigned
to a user are pushed into a kind of storage realm.

tokenresolver
The resolver of the token, for which this event should apply.
tokentype

The action is only triggered if the token in this event is of the given type. This way the administrator can design
workflows for enrolling and reenrolling tokens. E.g. the tokentype can be a registration token and the registration code
can be easily and automatically sent to the user.

user_token_number
The action is only triggered, if the user in the event has the given number of tokens assigned.

This can be used to e.g. automatically enroll a token for the user if the user has no tokens left (token_number == 0) of
to notify the administrator if the user has to many tokens assigned.

counter
The counter condition can compare the value of any arbitrary event counter against a fixed value. Valid compares are:
myCounter == 1000 myCounter > 1000 myCounter < 1000

“myCounter” being any event counter set with the Counter Handler Module.

Note: A non-existing counter value will compare as 0 (zero).

1.8.5 Managing Events

Using the command pi-manage events you can list, delete, enable and disable events. You can also export the
complete event definitions to a file or import the event definitions from a file again. During import you can specify
if you want to remove all existing events or if you want to add the events from the file to the existing events in the
database.

Note: Events are identified by an id! Due to database restrictions the id is ignored during import. So importing an
event with the same name will create a second event with the same name but another id.

1.8. Event Handler 175

privacylDEA Authentication System, Release 3.6.1

1.8.6 Available Handler Modules

User Notification Handler Module

The user notification handler module is used to send emails token owners or administrators in case of any event.

Possible Actions
sendmail

The sendmail action sends an email to the specified email address each time the event handler is triggered.
emailconfig
* required Option
The email is sent via this SMTP server configuration.
To
* required Option
This specifies to which type of user the notification should be sent. Possible recipient types are:
¢ token owner,
* logged in user,
¢ admin realm,
¢ internal admin,
* email address.

Depending on the recipient type you can enter additional information. The recipient type email takes a comma sepa-
rated list of email addresses.

reply_to
Adds the specified Reply—-To header to the email.
subject
The subject can take the same tags as the body, except for the {googleurl_img}.
mimetype
Possible mime types are:
* plain (default)
* html

You can choose if the email should be sent as plain text or HTML. If the email is sent as HTML, you can do the
following:

’Your new token

Which will create a clickable link. Clicked on the smartphone, the token will be imported to the smartphone app.

You can also do this:

’

176 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

This will add the QR Code as an inline data image into the HTML email.

Warning: The KEY URI and the QR Code contain the secret OTP key in plain text. Everyone who receives this
data has a detailed copy of this token. Thus we very much recommend to never send these data in an unencrypted
email!

attach_qrcode

Instead of sending the QR-Code as an inline data image (which is not supported by some email clients (i.e. Outlook)
or GMail'), enabling this option sends the email as a multipart message with the QR-Code image as an attachment.
The attached image can be referenced in a HTML body via CID URL? with the Content-ID t oken_image:

sendsms

The sendsms action sends an SMS to the specified number each time the event handler is triggered.
To
* required Option
Possible recipients are:
* tokenowner
smsconfig
* required Option

The SMS Gateway configuration for sending the notification.

savefile

The savefile action saves a file to a spool directory. Each time the event handler is triggered a new file is saved.

In the pi.cfg file you can use the setting PI_NOTIFICATION_HANDLER_SPOOLDIRECTORY to configure a
spool directory, where the notification files will be written. The default file location is /var/lib/privacyidea/
notifications/. The directory needs to be writable for the user privacyidea.

filename
* required option

* The filename of the saved file. It can contain the tag { random} which will create a 16 characters long alpha
numeric string. Thus you could have a filename like notification-{random}.csv.

In addition you can use all tags that can be used in the body also in the filename (some of them might not make a lot
of sense!).

Note: Existing files are overwritten.

1 https://stackoverflow.com/a/42014708/7036742
2 https://tools.ietf.org/html/rfc2392

1.8. Event Handler 177

https://stackoverflow.com/a/42014708/7036742
https://tools.ietf.org/html/rfc2392

privacylDEA Authentication System, Release 3.6.1

Body for all actions

All actions take the common option body:

body

Here the administrator can specify the body of the notification, that is sent or saved.

optional for sendmail and sendsms

required for savefile

following tags

{admin} name of the logged in user.

{realm} realm of the logged in user.

{action} the action that the logged in user performed.

{serial} the serial number of the token.

{url} the URL of the privacyIDEA system.

{user} the given name of the token owner.

{givenname} the given name of the token owner.

{surname} the surname of the token owner.

{username} the loginname of the token owner.

{userrealm} the realm of the token owner.

{tokentype} the type of the token.

{registrationcode} the registration code in the detail response.
{recipient_givenname} the given name of the recipient.
{recipient_surname} the surname of the recipient.

{googleurl_value} is the KEY URI for a google authenticator.
{googleurl_img} is the data image source of the google authenticator QR code.
{time} the current server time in the format HH:MM:SS.

{date} the current server date in the format YYYY-MM-DD
{client_ip} the client IP of the client, which issued the original request.

{ua_browser} the user agent of the client, which issued the original request.

The body may contain the

{ua_string} the complete user agent string (including version number), which issued the original request.

{pin} the PIN of the token when set with /token/setrandompin. You can remove the PIN from the

response using the response mangler.

178

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Code

This is the event handler module for user notifications. It can be bound to each event and can perform the action:
* sendmail: Send an email to the user/token owner
* sendsms: We can also notify the user with an SMS.
« savefile: Create a file which can be processed later

The module is tested in tests/test_lib_eventhandler_usernotification.py

class privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
Allowed token owner

ADMIN REALM = 'admin realm'
EMATIL = 'email'

INTERNAL_ADMIN = 'internal admin'
LOGGED_IN USER = 'logged in_user'’

TOKENOWNER = 'tokenowner'

class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions
It returns an identifier, which can be used in the eventhandling definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This eventhandler notifies the user about actions on his tokens'

do (action, options=None)
This method executes the defined action in the given event.

Parameters
* action -

* options (dict) — Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'UserNotification'

1.8. Event Handler 179

privacylDEA Authentication System, Release 3.6.1

Token Handler Module

The token event handler module is used to perform actions on tokens in certain events.

This way you can define workflows to automatically modify tokens, delete or even create new tokens.

Possible Actions
set tokenrealm

Here you can set the token realms of the token.

E.g. You could use this action to automatically put all newly enrolled tokens into a special realm by attaching
this action to the event token_init.

delete

The token which was identified in the request will be deleted if all conditions are matched.

unassign

The token which was identified in the request will be unassign from the user if all conditions are matched.

disable

The token which was identified in the request will be disabled if all conditions are matched.

enable

The token which was identified in the request will be enabled if all conditions are matched.

enroll

If all conditions are matched a new token will be enrolled. This new token can be assigned to a user, which was
identified in the request.

The administrator can specify the tokentype and the realms of the new token. By default the generation of the token
will use the parameter genkey, to generate the otp key. (see Token endpoints).

The action enroll also can take the options dynamic_phone (in case of tokentype SMS) and dynamic_email (in
case of tokentype email). Then these tokens are created with a dynamic loadable phone number or email address, that
is read from the user store on each authentication request.

Finally the administrator can specify the option additional_params. This needs to be a dictionary with parameters,
that get passed to the init request. You can specify all parameters, that would be used ina /token/init request:

{“hashlib”: “sha256”, “type”: “totp”, “genkey’: 0, “otpkey’”: “31323334”}

180 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

would create a TOTP token, that uses the SHA256 hashing algorithm instead of SHA1. genkey: 0 overrides the
default behaviour of generating an OTP secret. Instead the fixed OTP secret “31323334” (otpkey) is used.

If the tokentype is set to “email” or “sms”, you can also specify an SMTP server or SMS gateway configuration for
the token enrolled by selecting a configuration in the corresponding field (smtp_identifier or sms_identifier). If none
is selected, then the default system configuration will be used.

set description

If all conditions are matched the description of the token identified in the request will be set.

You can use the tag { current_time} or {now} to set the current timestamp. In addition you can append an offset
to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days in the passt
or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s (seconds), m
(minutes), h (hours) and d (days).

Other tags are {client_1ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent.

set validity

If all conditions are matched the validity period of the token will be set.

There are different possibilities to set the start and the end of the validity period. The event definition can either contain
a fixed date and time or if can contain a time offset.

Fixed Time
A fixed time can be specified in the following formats.
Only date without time:
* 2016/12/23
» 23.12.2016
Date with time:
* 2016/12/23 9:30am
* 2016/12/23 11:20:pm
* 23.12.2016 9:30
* 23.12.2016 23:20
Starting with version 2.19 we recommend setting the fixed time in the ISO 8601 corresponding time format
* 2016-12-23T15:30+0600
Time Offset

You can also specify a time offset. In this case the validity period will be set such many days after the event occurred.
This is indicated by using a “+” and a specifier for days (d), hours (h) and minutes (m).

E.g. +30m will set to start the validity period in 30 minutes after the event occurred.

+30d could set the validity period to end 30 days after an event occurred.

Note: This way you could easily define a event definition, which will set newly enrolled tokens to be only valid for a
certain amount of days.

1.8. Event Handler 181

privacylDEA Authentication System, Release 3.6.1

set countwindow

Here the count window of a token can be set. This requires an integer value.

set tokeninfo

Using the action set tokeninfo you can set any arbitrary tokeninfo attribute for the token. You need to specify
the key of the tokeninfo and the value.

In the value field you can use the tag {current_time} to set the current timestamp. In addition you can append
an offset to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days
in the passt or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s
(seconds), m (minutes), h (hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent and {username} and {realm} for information on the user in the parameters.

Note: Some tokens have token specific attributes that are stored in the tokeninfo. The TOTP token type has a
timeWindow. The TOTP and the HOTP token store the hashlib in the tokeninfo, the SMS token stores the
phone number.

Note: You can use this to set the t imeWindow of a TOTP token for Automatic initial synchronization.

set failcounter

Using the action set failcounter you can reset the fail counter by setting it to 0 or also “block” the token by
setting the fail counter to what ever value the “max_fail” is, e.g. 10. Only integer values are allowed.

See Reset Fail Counter.

change failcounter

Using the action change failcounter you can increase or decrease the fail counter. Positive and negative integer
values are allowed. Positive values will increase the fail counter, negative values will decrease it.

Note: To limit a token handler in decreasing the fail counter, you may use the event handler condition failcounter (c.f.
Conditions) and set it to e.g. “>-5". Once this condition is not met anymore, the event handler will not be triggered.

182 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

set max failcount

Using the action set max failcount you can set the maximum failcounter of a token to the specific value. Only
integer values are allowed.

See Reset Fail Counter.

set random pin

Sets a random PIN for the handled token. The PIN is then added to the response in detail->pin. This can be used
in the notification handler. Please take care, that probably the PIN needs to be removed from the response using the
response mangler handler after handling it with the notification handler.

Code

This is the event handler module for token actions. You can attach token actions like enable, disable, delete, unas-
sign,... of the

* current token

* all the user’s tokens
* all unassigned tokens
* all disabled tokens

class privacyidea.lib.eventhandler.tokenhandler .ACTION_TYPE
Allowed actions

CHANGE_FAILCOUNTER = 'change failcounter'
DELETE = 'delete'
DELETE_ TOKENINFO = 'delete tokeninfo'

DISABLE = 'disable'
ENABLE = 'enable'

INIT = 'enroll'

SET_ COUNTWINDOW 'set countwindow'

SET_DESCRIPTION = 'set description'
SET_FAILCOUNTER = 'set failcounter'
SET_MAXFAIL = 'set max failcount'
SET_RANDOM PIN = 'set random pin'
SET TOKENINFO = 'set tokeninfo'

SET TOKENREALM = 'set tokenrealm'
SET_VALIDITY = 'set validity'

UNASSIGN = 'unassign'

1.8. Event Handler 183

privacylDEA Authentication System, Release 3.6.1

class privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions
It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can trigger new actions on tokens.'

do (action, options=None)
This method executes the defined action in the given event.

Parameters
e action-

* options (dict) — Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns
identifier = 'Token'

class privacyidea.lib.eventhandler.tokenhandler.VALIDITY
Allowed validity options

END = 'valid till'

START = 'valid from'

Script Handler Module

The script event handler module is used to trigger external scripts in case of certain events.

This way you can even add external actions to your workflows. You could trigger a database dump, an external printing
device, a backup and much more.

Possible Actions

The actions of the script event handler are the scripts located in a certain script directory. The default script directory
is /etc/privacyidea/scripts.

You can change the location of the script directory and give the new directory in the parameter
PI_SCRIPT_HANDLER_DIRECTORY in your pi.cfgq file.

184 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Possible Options

Options can be passed to the script. Your script has to take care of the parsing of these parameters.

logged_in_role

Add the role of the logged in user. This can be either admin or user. If there is no logged in user, none will be passed.

The script will be called with the parameter:

—-logged_in_role <role>

logged_in_user

Add the logged in user. If there is no logged in user, none will be passed.

The script will be called with the parameter:

—-logged_in_user <username>(@<realm>

realm

Add ——realm <realm> as script parameter. If no realm is given, none will be passed.

serial

Add —-serial <serial number> as script parameter. If no serial number is given, none will be passed.

sync_to_database

Finish current transaction before running the script. This is useful if changes to the database should be made available
to the script or the running request.

user

Add --serial <username>' as script parameter. If no username is given, none will be passed.

Note: A possible script you could call is the privacyidea-get-unused-tokens.

1.8. Event Handler 185

privacylDEA Authentication System, Release 3.6.1

Counter Handler Module

The counter event handler module is used to count certain events. You can define arbitrary counter names and each
occurrence of an event will modify the counter in the counter table according to the selected action.

These counters can be used to graph time series of failed authentication, assigned tokens, user numbers or any other
data with any condition over time.

Possible Actions
increase_counter

This action increases the counter in the database table eventcounter. If the counter does not exists, it will be
created and increased.

decrease_counter

This action decreases the counter in the database table eventcounter. If the counter does not exists, it will be
created and decreased.

Note: This action will not decrease the counter beyond zero unless the option allow_negative_values is
enabled.

reset_counter

This action resets the counter in the database table eventcounter to zero.

Possible Options
counter_name

This is the name of the counter in the database. You can have as many counters in as many event handlers as you like.

allow_negative_values

Only available for the decrease_counter action. Allows the counter to become negative. If set to False
(default) decreasing stops at zero. .. note:: Since the option allow_negative_values is an attribute of
the counter event handler action (and not the counter itself in the database) it is possible to define multiple event
handler accessing the same counter. Thus if a negative counter is accessed by an event handler with the option
allow_negative_values set to true, the counter will be reset to zero

186 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Federation Handler Module

The federation event handler can be used to configure relations between several privacyIDEA instances. Requests can
be forwarded to child privacyIDEA instances.

Note: The federation event handler can modify the original response. If the response was modified a new field
origin will be added to the detail section in the response. The origin will contain the URL of the privacyIDEA
server that finally handled the request.

Possible Actions
forward

A request (usually an authentication request validate_check) can be forwarded to another privacyIDEA instance. The
administrator can define privacyIDEA instances centrally at config -> privacyIDEA servers.

In addition to the privacyIDEA instance the action forward takes the following parameters:

client_ip The original client IP will be passed to the child privacyIDEA server. Otherwise the child privacyIDEA
server will use the parent privacyIDEA server as client.

Note: You need to configure the allow override client in the child privacyIDEA server.

realm The forwarding request will change the realm to the specified realm. This might be necessary since the
child privacyIDEA server could have different realms than the parent privacyIDEA server.

resolver The forwarding request will change the resolver to the specified resolver. This might be necessary since
the child privacyIDEA server could have different resolvers than the parent privacyIDEA server.

One simple possibility would be, that a user has a token in the parent privacyIDEA server and in the child privacyIDEA
server. Configuring a forward event handler on the parent with the condition result_value = False would
have the effect, that the user can either authenticate with the parent’s token or with the child’s token on the parent
privacyIDEA server.

Federation can be used, if privacyIDEA was introduced in a subdivision of a larger company. When privacyIDEA
should be enrolled to the complete company you can use federation. Instead of dropping the privacyIDEA instance
in the subdivision and installing on single central privacyIDEA, the subdivision can still go on using the original
privacyIDEA system (child) and the company will install a new top level privacyIDEA system (parent).

Using the federation handler you can setup many other, different scenarios we can not think of, yet.

Code

This is the event handler module for privacyIDEA federations. Requests can be forwarded to other privacyIDEA
servers.

class privacyidea.lib.eventhandler.federationhandler .ACTION_TYPE
Allowed actions

FORWARD = 'forward'

class privacyidea.lib.eventhandler.federationhandler.FederationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

1.8. Event Handler 187

privacylDEA Authentication System, Release 3.6.1

It also returns a list of allowed action and conditions
It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions
description = 'This event handler can forward the request to other privacyIDEA servers

do (action, options=None)
This method executes the defined action in the given event.

Parameters
* action -

* options (dict) — Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'Federation'

RequestMangler Handler Module
The RequestMangler is a special handler module, that can modify the request parameters of an HTTP request. This
way privacyIDEA can change the data that is processed within the request.

Usually this handler is used in the pre location. However there might be occasions when you want to modify param-
eters only before passing them to the next post handler. In this case you can also use the RequestMangler handler in
the post location.

Possible Actions
delete

This action simply deletes the given parameter from the request.

E.g. you could in certain cases delete the transaction_id from a /validate/check request. This way you
would render challenge response inactive.

set

This action is used to add or modify additional request parameters.
You can set a parameter with the value or substrings of another parameter.

This is why this action takes the additional options value, match_parameter and match_pattern. match_pattern always
needs to match the complete value of the match_parameter.

If you simply want to set a parameter to a fixed value you only need the options:
* parameter: as the name of the parameter you want to set and

e value: to set to a fixed value.

188 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

If you can to set a parameter based on the value of another parameter, you can use the regex notation () and the python
string formatting tags {0}, {1}.

Example 1

To set the realm based on the username parameter:

parameter: realm
match_parameter: username
match_pattern: .xQ@(.x)
value: {0}

A request like:

username=surname.givenname@example.com
realm=

with an empty realm will be modified to:

username=surname.givenname@example.com
realm=example.com

since, the pattern . «@ (.) will match the email address and extract the domain after the “@” sign. The python tag
“{0}” will be replaced with the matching domainname.

Example 2

To simply change the domain name in the very same parameter:

parameter: username
match_parameter: username
match_pattern: (.x)@example.com
value: {0}@newcompany.com

A request like:

’username:surname.givenname@example.com

will be modified to:

’username:surname.givenname@newcompany.com

Note: The match_pattern in the above example will not match “surname.givenname @example.company”, since it
always matches the complete value as mentioned above.

Code

This is the event handler module modifying request parameters.

class privacyidea.lib.eventhandler.requestmangler .ACTION_TYPE
Allowed actions

DELETE = 'delete'

SET = 'set'

1.8. Event Handler 189

mailto:surname.givenname@example.company

privacylDEA Authentication System, Release 3.6.1

class privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions
It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can modify the parameters in the request.'

do (action, options=None)
This method executes the defined action in the given event.

Parameters
e action-

* options (dict) — Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'RequestMangler'

ResponseMangler Handler Module

The ResponseMangler is a special handler module, that can modify the response of an HTTP request. This way
privacyIDEA can change the data sent back to the client, depending on certain conditions.

All actions take a JSON pointer, which looks like a path variable like /result/value.

Possible Actions
delete

This action simply deletes the given JSON pointer from the response.

Note: All keys underneath a node are deleted as well. So if the event handler deletes /detail, the entries /
detail/message and /detail/error will also be deleted.

Example

You can use this to delete /detail/googleurl, /detail/ocathurl and /detail/otpkeyina /token/
init event to hide the created QR code from the helpdesk admin. This way the QR code could be used internally,
but could be hidden from the administrator.

190 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

set

This action is used to add additional pointers to the JSON response or to modify existing entries. Existing entries are
overwritten.

This action takes the additional attributes t ype and value.

The value can be returned as a string, an integer or a boolean.

Code

This is the event handler module that can mangle the JSON response. We can add or delete key or even subtrees in the
JSON response of a request.

The key is identified by a JSON Pointer (see https://tools.ietf.org/html/rfc6901)

class privacyidea.lib.eventhandler.responsemangler .ACTION_TYPE
Allowed actions

DELETE = 'delete'
SET = 'set'

class privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions
It returns an identifier, which can be used in the eventhandlig definitions

property actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

property allowed positions
This returns the allowed positions of the event handler definition. The ResponseMangler can only be
located at the “post” position

Returns list of allowed positions
description = 'This event handler can mangle the JSON response.'

do (action, options=None)
This method executes the defined action in the given event.

Parameters
e action-

* options (dict) — Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'ResponseMangler'

1.8. Event Handler 191

https://tools.ietf.org/html/rfc6901

privacylDEA Authentication System, Release 3.6.1

Logging Handler Module

The logging event handler can be used to log the occurrence of an event to the python logging facility. You can log
arbitrary events with a configurable log message, loglevel and logger instance. Several tags are available to customize
the log message.

The configuration to handle the log messages can be defined in detail with the Advanced Logging.

Possible Actions

logging

Emit a log message to the python logging facility when the specified event gets triggered (and the conditions match).
name
* default: pi-eventlogger

The name of the logger to use when emitting the log message. This can be used for a fine-grained control of the log
messages via Advanced Logging.

Note: Logger names beginning with privacyidea will be handled by the default privacyIDEA logger and will
end up in the privacyIDEA log.

level
* default: INFO
The log level for the emitted log message. The following levels are available:
¢ ERROR
* WARNING
e INFO
e DEBUG
message
* default: "event={action} triggered"
The message to send to the logging facility. This message can be customized with the following tags:
* {admin} The logged in user.
* {realm} The realm of the logged in user.
* {action} The action which triggered this event.
e {serial} The serial of a token used in this event.
* {url} The URL of the privacyIDEA system.
e {user} The given name of the token owner.
¢ {surname} The surname of the token owner.
* {givenname} The given name of the token owner.
* {username} The login of the token owner.

e {userrealm} The realm of the token owner.

192 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

* {tokentype} The type of the token.

e {time} The current server time (format: HH:MM:SS).

* {date} The current server date (format: YYYY-MM-DD).

* {client_ip} The IP of the client who triggered the event.

* {ua_browser} The user agent of the client, which issued the original request.

* {ua_string} The complete user agent string (including version number) which issued the original request.

Note: Not all tags are available in every event. It depends on the called API-Endpoint and passed parameter which
tags exist. If a tag does not exist during the event handling, an empty string will be inserted.

1.9 Periodic Tasks

Starting with version 2.23, privacyIDEA comes with the ability to define periodically recurring tasks in the Web UL
The purpose of such tasks is to periodically execute certain processes automatically. The administrator defines which
tasks should be executed using task modules. Currently there are task modules for simple statistics and for handling
recorded events. Further task modules can be added easily.

As privacylDEA is a web application, it can not actually execute the defined periodic tasks itself. For that, priva-
cyIDEA comes with a script privacyidea—cron which must be invoked by the system cron daemon. This can,
for example, be achieved by creating a file /et c/cron.d/privacyidea with the following contents (this is done
automatically by the Ubuntu package):

*/5 * & x x privacyidea privacyidea-cron run_scheduled -c

This tells the system cron daemon to invoke the privacyidea—cron script every five minutes. At each invocation,
the privacyidea—cron script determines which tasks should be executed and execute the scheduled tasks. The
—c option tells the script to be quiet and only print to stderr in case of an error (see The privacyidea-cron script).

Periodic tasks can be managed in the WebUI by navigating to Config->Periodic Tasks:

6 [Tokens L Users = Machines | %¥Config QAudit & Components 2 Refresh
2 System D Policies ™ Events EE Periodic Tasks [Tokens = Machines A Users @ Realms A cas
All Periodic Tasks Order Active Descrlption Interval Taskmodule Nodes Optlons
Create new Periodic Task 0o [v count 510** EventCounter [localnode” {"stats_key": "authentications”, 1 Delete
authentications ~ * "event_counter":

"authentications_counter" }

Fig. 62: Periodic task definitions

Every periodic task has the following attributes:
description A human-readable, unique identifier

active A boolean flag determining whether the periodic task should be run or not.

1.9. Periodic Tasks 193

privacylDEA Authentication System, Release 3.6.1

order A number (at least zero) that can be used to rearrange the order of periodic tasks. This is used by
privacyidea—cron to determine the running order of tasks if multiple periodic tasks are scheduled to be
run. Tasks with a lower number are run first.

interval The periodicity of the task. This uses crontab notation, e.g. +/30 * * = =« runs the task every 30 minutes.

Keep in mind that the entry in the system crontab determines the minimal resolution of periodic tasks: If you
specify a periodic task that should be run every two minutes, but the privacyidea-cron script is invoked
every five minutes only, the periodic task will actually be executed every five minutes!

nodes The names of the privacyIDEA nodes on which the periodic task should be executed. This is useful in a
redundant master-master setup, because database-related tasks should then only be run on one of the nodes
(because the replication will take care of propagating the database changes to the other node). The name of the
local node as well as the names of remote nodes are configured in The Config File.

taskmodule The task module determines the actual activity of the task. privacyIDEA comes with several task mod-
ules, see Task Modules.

options The options are a set of key-value pairs that configure the behavior of the task module. Each task module can
have it’s own allowed options.

1.9.1 Task Modules

privacyIDEA comes with the following task modules:

SimpleStats

The SimpleStats task module is a Periodic Tasks to collect some basic statistics from the token database and write
them to the time series database table MonitoringStats.

Options

The SimpleStats task module provides the following boolean options:
total_tokens

If activated, the total number of tokens in the token database will be monitored.
hardware_tokens

If activated, the total number of hardware tokens in the token database will be monitored.
software_tokens

If activated, the total number of software tokens in the token database will be monitored.
unassigned_hardware_tokens

If activated, the number of hardware tokens in the token database which are not assigned to a user will be
monitored.

assigned_tokens
If activated, the number of tokens in the token database which are assigned to users will be monitored.
user_with_token

If activated, the number of users which have at least one token assigned will be monitored.

194 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Note: The statistics key, with which the time series is identified in the MonitoringStats table, is the same as the
option name.

Using a statistic with the same key in a different module, which writes to the MonitoringStats table, will corrupt
the data.

Note: For each of these basic statistic values the token database will be queried. To avoid excessive load on the
database, the SimpleStats task should not be executed too often.

EventCounter

The Event Counter task module can be used with the Periodic Tasks to create time series of certain events. An event
could be a failed authentication request. Using the Event Counter, privacyIDEA can create graphs that display the
development of failed authentication requests over time.

To do this, the Event Counter task module reads a counter value from the database table EventCounter and adds
this current value in a time series in the database table MonitoringStats. As the administrator can use the event
handler Counter Handler Module to record any arbitrary event under any condition, this task module can be used
to graph any metrics in privacyIDEA, be it failed authentication requests per time unit, the number of token delete
requests or the number of PIN resets per month.

Options

The Event Counter task module provides the following options:
event_counter

This is the name of the event counter key, that was defined in a Counter Handler Module definition and
that is read from the database table EventCounter.

stats_key

This is the name of the statistics key that is written to the MonitoringStats database table. The event
counter key stores the current number of counted events, the stats_key takes the current number and
stores it with the timestamp as a time series.

reset_event_counter

This is a boolean value. If it is set to true (the checkbox is checked), then the event counter will be reset
to zero, after the task module has read the key.

Resetting the the event counter results in a time series of “events per time interval”’. The time
intervall is specified by the time intervall in which the Event Counter task module is called. If
reset_event_counter is not checked, then the event handler will continue to increase the counter
value. Use this, if you want to create a time series, that displays the absolute number of events.

1.9. Periodic Tasks 195

privacylDEA Authentication System, Release 3.6.1

1.9.2 The privacyidea-cron script
The privacyidea-cron script is used to execute periodic tasks defined in the Web Ul The run_scheduled
command collects all active jobs that are scheduled to run on the current node and executes them. The order is

determined by their ordering values (tasks with low values are executed first). The —c option causes the script to
is useful if the script is executed via the system crontab, as it causes the script to only print to stderr in case of errors.

The 11ist command can be used to get an overview of defined jobs, and the run_manually command can be used
to manually invoke tasks even though they are not scheduled to be run.

1.10 Audit

The systems provides a sophisticated audit log, that can be viewed in the WebUI.

 Tokens L Users = Machines £ Config Q Audit & Componenis < Refresh
g ¥

Q Log

First evious 3 5 6 9 xt | Las
© Download 2033 entries found.

number date ¥ action Y success ¥ actiondetail ¥ serial ¥ tokentype Y administrator Y user Y realm ¥ resolver ¥ policie

2033 2020-03-05 GET n admin superc
14:43:03 Isubscriptions/

2032 2020-03-05 GET n admin superu
14:43:03 /subscriptions/

2031 2020-03-05 GET /client/ n admin super.
14:43:03

2030 2020-03-05 GET /client/ n admin superu
14:43:03

2029 2020-0305 POST/auth [admin Idap_realm hide_w
14:43:02

2028 2020-03-05 POST /auth n admin Idap_realm

14:42:59

Fig. 63: Audit Log

privacyIDEA comes with a default SQL audit module (see Audit log).

Starting with version 3.2 privacyIDEA also provides a Logger Audit and a Container Audit which can be used to send
privacyIDEA audit log messages to services like splunk or logstash.

1.10.1 SQL Audit

Cleaning up entries
The sglaudit module writes audit entries to an SQL database. For performance reasons the audit module does no
log rotation during the logging process.

But you can set up a cron job to clean up old audit entries. Since version 2.19 audit entries can be either cleaned up
based on the number of entries or based on on the age.

Cleaning based on the age takes precedence:

You can specify a highwatermark and a lowwatermark. To clean up the audit log table, you can call pi-manage at
command line:

196 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

pi-manage rotate_audit —--highwatermark 20000 --lowwatermark 18000

This will, if there are more than 20.000 log entries, clean all old log entries, so that only 18000 log entries remain.
Cleaning based on the age:
You can specify the number of days, how old an audit entry may be at a max.
pi-manage rotate_audit —age 365
will delete all audit entries that are older than one year.
Cleaning based on the config file:

Using a config file you can define different retention times for the audit data. E.g. this way you can define, that audit
entries about token listings can be deleted after one month, while the audit information about token creation will only
deleted after ten years.

The config file is a YAML format and looks like this:

DELETE auth requests of nils after 10 days

- rotate: 10
user: nils
action: .x/validate/check.x*

DELETE auth requests of friedrich after 7 days
- rotate: 7

user: friedrich

action: .x/validate/check.*

Delete nagios user test auth directly
- rotate: 0

user: nagiosuser

action: POST /validate/check. x

Delete token listing after one month
- rotate: 30
action: "“GET /token

Delete audit logs for token creating after 10 years
— rotate: 3650
action: POST /token/init

Delete everything else after 6 months
- rotate: 180
action: .x

This is a list of rules. privacyIDEA iterates over all audit entries. The first matching rule for an entry wins. If the rule
matches, the audit entry is deleted if the entry is older than the days specified in “rotate”.

If is a good idea to have a catch-all rule at the end.

CLINNT3

Note: The keys “user”, “action”... correspond to the column names of the audit table. You can use any column name
EE NS 17’ (3 RN T bEENNTS CE T
b

here like “date”, “action”, “action_detai success”, “serial”, “administrator”, “user”, “realm”... for a complete list
see the model definition. You may use Python regular expressions for matching.

You can the add a call like

pi-manage rotate_audit —config /etc/privacyidea/audit.yaml

1.10. Audit 197

privacylDEA Authentication System, Release 3.6.1

in your crontab.

Access rights

You may also want to run the cron job with reduced rights. I.e. a user who has no read access to the original pi.cfg
file, since this job does not need read access to the SECRET or PEPPER in the pi.cfg file.

So you can simply specify a config file with only the content:

PI_AUDIT_SQL_URI = <your database uri>

Then you can call pi-manage like this:

PRIVACYIDEA CONFIGFILE=/home/cornelius/src/privacyidea/audit.cfg \
pi-manage rotate_audit

This will read the configuration (only the database uri) from the config file audit .cfg.

Table size

Sometimes the entries to be written to the database may be longer than the column in the database. You should set
PI_AUDIT_SQL_TRUNCATE = True
in pi.cfqg. This will truncate each entry to the defined column length.

However, if you sill want to fetch more information in the audit log, you can increase the column length directly in
the database by the usual database means. However, privacyIDEA does not know about this, and will still truncate the
entries to the originally defined length.

To avoid this, you need to tell privacyIDEA about the changes. In :ref:cfgfile pi.cfg add the setting like:
PI_AUDIT_SQL_COLUMN_LENGTH = {*“user”: 100, “policies”: 1000}

which will increase truncation of the user column to 100 and the policies column to 1000. Check the database schema
for the available columns.

1.10.2 Logger Audit

The Logger Audit module can be used to write audit log information to the Python logging facility and thus write log
messages to a plain file, a syslog daemon, an email address or any destination that is supported by the Python logging
mechanism. The log message passed to the python logging facility is a JSON-encoded string of the fields of the audit
entry.

You can find more information about this in Advanced Logging.

To activate the Logger Audit module you need to configure the following settings in your pi . cfg file:

PI_AUDIT_MODULE = "privacyidea.lib.auditmodules.loggeraudit"
PI_AUDIT_SERVERNAME = "your choice"
PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

You can optionally set a custom logging name for the logger audit with:

PI_AUDIT_LOGGER_QUALNAME = "pi-audit"

198 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

It defaults to the module name privacyidea.lib.auditmodules.loggeraudit. In contrast to the SOL
Audit you need a PI_LOGCONF IG otherwise the Logger Audit will not work correctly.

In the logging. cfg you then need to define the audit logger:

[logger_audit]

handlers=audit
qualname=privacyidea.lib.auditmodules.loggeraudit
level=INFO

[handler_audit]
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=INFO
args=('/var/log/privacyidea/audit.log"',)

Note, that the 1evel always needs to be INFO. In this example the audit log will be written to the file /var/log/
privacyidea/audit.log.

Finally you need to extend the following settings with the defined audit logger and audit handler:

[handlers]
keys=file,audit

[loggers]
keys=root,privacyidea, audit

Note: The Logger Audit only allows to write audit information. It can not be used to read data. So if you are only
using the Audit Logger, you will not be able to view audit information in the privacyIDEA Web UI! To still be able to
read audit information, take a look at the Container Audit.

Note: The policies auth_max_success and auth_max_fail depend on reading the audit log. If you use a non readable
audit log like the Logger Audit these policies will not work.

1.10.3 Container Audit

The Container Audit module is a meta audit module, that can be used to write audit information to more than one audit
module.

It is configured in the pi . cf£g like this:

PI_AUDIT_MODULE = 'privacyidea.lib.auditmodules.containeraudit'
PI_AUDIT_CONTAINER WRITE = ['privacyidea.lib.auditmodules.sqglaudit', 'privacyidea.lib.
—auditmodules.loggeraudit']

PI_AUDIT_CONTAINER_READ = 'privacyidea.lib.auditmodules.sqglaudit'

The key PI_AUDIT_CONTAINER_WRITE contains a list of audit modules, to which the audit information should be
written. The listed audit modules need to be configured as mentioned in the corresponding audit module description.

The key PI_AUDIT_CONTAINER_READ contains one single audit module, that is capable of reading information.
In this case the SOL Audit module can be used. The Logger Audit module can not be used for reading!

1.10. Audit 199

privacylDEA Authentication System, Release 3.6.1

Using the Container Audit module you can on the one hand send audit information to external services using the
Logger Audit but also keep the audit information visible within privacyIDEA using the SOL Audit module.

1.11 Machines

privacyIDEA lets you define Machine Resolvers to connect to existing machine stores. The idea is for users to be
able to authenticate on those client machines. Not in all cases an online authentication request is possible, so that
authentication items can be passed to those client machines.

In addition you need to define, which application on the client machine the user should authenticate to. Different
application require different authentication items.

Therefore privacyIDEA can define application types. At the moment privacyIDEA knows the application luks,
offline and ssh. You can write your own application class, which is defined in Application Class.

You need to assign an application and a token to a client machine. Each application type can work with certain token
types and each application type can use additional parameters.

Note: Not all tokens work well with all applications!

1.11.1 SSH

Currently working token types: SSH
Parameters:
user (optional, default=root)

When the SSH token type is assigned to a client, the user specified in the user parameter can login with the private key
of the SSH token.

In the sshd_config file you need to configure the AuthorizedKeysCommand. Set it to:

privacyidea—-authorizedkeys

This will fetch the SSH public keys for the requesting machine.

The command expects a configuration file /etc/privacyidea/authorizedkeyscommand which looks like this:

[Default]
url=https://localhost
admin=admin
password=test
nosslcheck=False

Note: To disable a SSH key for all servers, you simple can disable the SSH token in privacyIDEA.

Warning: In a productive environment you should not set nosslcheck to true, otherwise you are vulnerable to
man in the middle attacks.

200 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

1.11.2 LUKS

Currently working token types: Yubikey Challenge Response

Parameters:

slot The slot to which the authentication information should be written

partition The encrypted partition (usually /dev/sda3 or /dev/sdaS5)

These authentication items need to be pulled on the client machine from the privacyIDEA server.

Thus, the following script need to be executed with root rights (able to write to LUKS) on the client machine:

privacyidea—-luks-assign (@secrets.txt --clearslot ——name salt-minion

For more information please see the man page of this tool.

1.11.3 Offline

Currently working token types: HOTP.

Parameters:

user The local user, who should authenticate. (Only needed when calling machine/get_auth_items)
count The number of OTP values passed to the client.

The offline application also triggers when the client calls a /validate/check. If the user authenticates successfully with
the correct token (serial number) and this very token is attached to the machine with an offline application the response
to validate/check is enriched with a “auth_items” tree containing the salted SHA512 hashes of the next OTP values.

The client can cache these values to enable offline authentication. The caching is implemented in the privacyIDEA
PAM module.

The server increases the counter to the last offline cached OTP value, so that it will not be possible to authenticate with
those OTP values available offline on the client side.

1.12 Workflows and Tools

This section describes workflows and tools.

1.12.1 Import

Seed files that contain the secret keys of hardware tokens can be imported to the system via the menu Import.

The default import options are to import SafeNet XML file, OATH CSYV files, Yubikey CSV files or PSKC files.

1.12. Workflows and Tools 201

privacylDEA Authentication System, Release 3.6.1

GPG Encryption

Starting with privacyIDEA 2.14 you can import GPG encrypted seed files. All files mentioned below can be encrypted
this way.

privacyIDEA needs its own GPG key. You may create one like this:

mkdir /etc/privacyidea/gpg
GNUPGHOME=/etc/privacyidea/gpg gpg —-—-gen-key

Then make sure, that the directory /etc/privacyidea/gpg is chown 700 for the user privacyidea.

Now you can export the public key and hand it to your token vendor:

GNUPGHOME=/etc/privacyidea/gpg gpg —a —-—export <keyid>

Now the token vendor can send the seed file GPG encrypted. You do not need to decrypt the file and store the decrypted
file on a network folder. Just import the GPG encrypted file to privacyIDEA!

Note: Using the key PI_GNUPG_HOME in pi.cfg you can change the default above mentioned GNUPGHOME
directory.

Note: privacyIDEA imports an ASCII armored file. The file needs to be encrypted like this:

gpg -e -a -r <keyid> import.csv

OATH CSV

This is a very simple CSV file to import HOTP, TOTP or OATH tokens. You can also convert your seed easily to this
file format, to import the tokens.

The file format for TOTP tokens looks like this:

<serial>, <seed>, TOTP, <otp length>, <time step>

For HOTP tokens like:

<serial>, <seed>, [HOTP, <otp length>, <counter>]

For OCRA tokens it looks like this:

<serial>, <seed>, OCRA, <ocra suite>

serial is the serial number of the token that will also be used to identify the token in the database. Importing the same
serial number twice will overwrite the token data.

seed is the secret key, that is used to calculate the OTP value. The seed is provided in a hexadecimal notation.
Depending on the length either the SHA1 or SHA256 hash algorithm is identified.

type is either HOTP, TOTP or OCRA.
otp length is the length of the OTP value generated by the token. This is usually 6 or 8.
time step is the time step of TOTP tokens. This is usually 30 or 60.

202 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

ocra suite is the ocra suite of the OCRA token according to'.

For TAN tokens it looks like this:

<serial>, <n/a>, TAN, <list of tans>

The list of tans is a whitespace separated list.

Note: The Hash algorithm (SHA1, SHA256, SHA512) is derived from the length of the seed. If the length of the
seed does not match any Hash algorithm, the default SHAI is used.

Import format version 2

A new import format allows to prepend a user, to whom the imported token should be assigned.
The file format needs to start with the first line

version: 2
and the first three colums will be the user:

<username>, <resolver>, <realm>, <serial>, <seed>, <type>, ...

Note: The import will bail out, if a specified user does not exist.

Yubikey CSV

Here you can import the CSV file that is written by the ykpersgui’. privacyIDEA can import all Yubikey modes, either
Yubico mode or HOTP mode.

Note: The Yubikey in HOTP mode defaults to the Hash algorithm SHAI.

For more information about enrolling Yubikeys see Yubikey Enrollment Tools.

PSKC

The Portable Symmetric Key Container is specified in’>. OATH compliant token vendors provide the token seeds in a
PSKC file. privacyIDEA lets you import PSKC files. All necessary information (OTP length, Hash algorithm, token
type) are read from the file.

Note: In PSKC the Hash algorithm is specified in the <Suite> tag. If it is not specified, SHA1 is used as the default.
The length of the seed is not used to determine the Hash algorithm.

PSKC files can be encrypted - either with a password or an AES key. You can provide this during the upload.

! http://tools.ietf.org/html/rfc628 7#section-6
2 http://www.yubico.com/products/services- software/personalization-tools/use/
3 https://tools.ietf.org/html/rfc6030

1.12. Workflows and Tools 203

http://tools.ietf.org/html/rfc6287#section-6
http://www.yubico.com/products/services-software/personalization-tools/use/
https://tools.ietf.org/html/rfc6030

privacylDEA Authentication System, Release 3.6.1

YubiKey Personalization Tool -9

Yubico OTP OATH-HOTP Static Password Challenge-Response About

No YubiKey inserted

Configuration Slot

Select the configuration slot to be programmed

@ Configuration Slot 1) Configuration Slot 2 9
@ Program Multiple YubiKeys Configuration Protection (6 bytes Hex) 9
| Automatically program YubiKeys when inserted | Yubikey(s) unprotected - Keep it that way = |
:) Pr status:
Parameter Generation Scheme @ (e 21 S e (el
| Increment Identities; Randomize Secret =] New Access Code Firmware Version:
N/A
OATH-HOTP Parameters Serial Number
| OATH Token Identifier (6 bytes) Q Dec: NfA
OMP (1) + TT (1) + MUI (4) 00 0D 0O 0O 000D Generate MUI Hex: N/A
HOTP Length @® 6 Digits () 8 Digits % e Modhex: M/A
Moving Factor Seed | Fixed zero) 0 7] Features Supported
Secret Key (20 bytes Hex) 6ded Bdd3ad 2dfa9adb2dad 21 85c9e0 38 05 7f ad| | Generate | Q Yubico OTP N/A
2 Configurations N/A
Actions OATH-HOTP N/A
Press Write Configuration button to program your YubiKey's selected configuration slot Static Password N/A
Si Code Mod N/A
Write Configuration Stop | Reset | | Back | can tode Hode /
h h Challenge-Response N/A
Updatable N/A
Results
= Ndef N/A
#* OATH Token Identifier Status Timestamp
SafeNet XML

Safenet or former Aladdin provided seed files in their own XML format. This is the format to choose, if you have a
file, that looks like this:

<Tokens>
<Token serial="00040008CFA5">
<CaseModel>5</CaseModel>
<Model>101</Model>
<ProductionDate>02/19/2009</ProductionDate>
<ProductName>Safeword Alpine</ProductName>
<Applications>
<Application ConnectorID="{abl397d2-ddb6-4705-b66e-9£83£322deb9}">
<Seed>123412354</Seed>
<MovingFactor>1</MovingFactor>
</Application>
</Applications>
</Token>

<Token ...>
</Token>
</Tokens>

Note: The HASH algorithm defaults to SHA1. Unless the length of the seed is 64 characters, then SHA256 is
assumed.

204 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Note: This format is deprecated. Safenet nowadays might provide you an XML file, which is probably a PKCS file.
Please check the file contents!

1.12.2 Token Enrollment Wizard

The enrollment wizard helps the user to enroll his first token. When enrolling the first token, we assume, that the user
is not very familiar with the privacyIDEA web UI. So the enrollment wizard only contains a very reduced API.

Necessary requirements for the enrollment wizard
¢ The enrollment wizard will only be displayed, if the user has no token assigned, yet. Thus the user must be able
to login to the web UI with his userstore password. This is the default behaviour or set the corresponding policy.
 Set a policy in scope webui and activate the policy action tokenwizard.
» The user will not be able to choose a token type. But the default token type will be enrolled.

You can see the token enrollment wizard in action here: https://www.youtube.com/watch?v=diAGbsiG8_A

Customization
There are two dialog windows in the wizard. You can configure the text in the wizard in your html templates defined
in these files:

Before the token is enrolled you can add your custom text in these two files static/customize/views/includes/token.enroll.pre.top.ht
static/customize/views/includes/token.enroll.pre.bottom.html

When it is enrolled and the user needs to do something (e.g. scanning the qr-code), you can modify the text here:
static/customize/views/includes/token.enroll.post.top.html static/customize/views/includes/token.enroll.post.bottom.html

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

Example

Your privacyIDEA system is running in the URL sub path /pi. The files could be addressed via a path component
mydesign (in this case pi/mydesign). Thus the WebUI will look for the files in the URL path /pi/mydesign/
views/includes/.

So you setin pi.cfq:
PI_CUSTOMIZATION = “/mydesign”

Your customized files are located in /etc/privacyidea/customize/views/includes/. In the Apache
webserver you need to map /pi/mydesignto /etc/privacyidea/customize:

Alias /pi/mydesign /etc/privacyidea/customize

1.12. Workflows and Tools 205

https://www.youtube.com/watch?v=diAGbsiG8_A

privacylDEA Authentication System, Release 3.6.1

1.12.3 Enrollment Tools

This section describes the usage of several software tools to facilitate and automate token enrollment with priva-
cyIDEA. This is especially important for hardware tokens whose secrets have to be brought to the system.

Yubikey Enrollment Tools

The Yubikey can be used with privacyIDEA in Yubico’s own AES mode (Yubico OTP), in the HOTP mode (OATH-
HOTP) or the seldom used static password mode.

This section describes tools which can be used to initialize and enroll a Yubikey with privacyIDEA.

If not using the Yubico mode, the Yubikey has to be initialized/configured which creates a new secret on the device
that has to be imported to privacyIDEA.

privacyIDEA ships tools to (mass-)enroll Yubikeys in AES mode (Yubikey Token) or HOTP mode (HOTP Token).

privacyidea CLI tool

For Linux Clients, there is the privacyidea command line client', to initialize the Yubikeys. You can use the mass
enrollment, which eases the process of initializing a whole bunch of tokens.

Run the command like this:

privacyidea -U https://your.privacyidea.server -a admin token \
yubikey_mass_enroll —--yubimode YUBICO

This command initializes the device and creates a new token with the AES secret and prefix in privacyIDEA. You can
enroll Yubikeys in HOTP mode by using the option ——yubimode HOTP which is also the default. You can choose
the slot with ——yubislot. For further help call privacyidea yubikey_mass_enroll with the ——help
option and refer to the documentation of the tool”.

You can also use yubikey_mass_enroll with the option ——filename to write the token configuration to the
specified file, which can be imported later via the privacyIDEA WebUI at Select Tokens -> Import Tokens. There,
select OATH CSV and the file you just created.

Yubikey Personalization GUI

You can also initialize the Yubikey with the official Yubico personalization GUI® and use the obtained secret to enroll
the Yubikey with privacyIDEA. For both AES (Yubico OTP) and OATH-HOTP mode, there are two possibilities to
initialize the Yubikey with privacyIDEA.

! https://github.com/privacyidea/privacyideaadm/
2 https://github.com/privacyidea/privacyideaadm/blob/master/doc/index.rst
3 https://www.yubico.com/products/services-software/download/yubikey- personalization-tools/

206 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyideaadm/
https://github.com/privacyidea/privacyideaadm/blob/master/doc/index.rst
https://www.yubico.com/products/services-software/download/yubikey-personalization-tools/

privacylDEA Authentication System, Release 3.6.1

Manual token enroliment

To initialize a single Yubikey in AES mode (Yubico OTP) use the Quick button and copy the displayed secret labeled
with “Secret Key (16 bytes Hex)” to the field OTP Key on the enrollment form in the privacyIDEA WebUI.

Yubico OTP OATH-HOTP Static Password Challenge-Response Abou

Configuration Slot
Select the configuration slot to be programmed

@ Configuration Slot 1 B Configuration Slot 2 @

Yubico OTP Parameters (auto generated)

Public Identity (6 bytes Modhex) vv ge ct gi nrjv @
] Hide values
Private Identity (6 bytes Hex) 42 dB b6 1215 7b @
Secret Key (16 bytes Hex) f0 9c 4f 1b de af 7b 44 =f 40 4= fb 2b 22 62 7c @
Actions
Press Write Configuration button to program your YubiKey's selected configuration slot
Write Configuration Upload to Yubico Regenerate Back
Fig. 64: Initialize a Yubikey in AES mode (Yubikey OTP)

Enroll a new token

Yubikey AES mode: One Time Passwords with Yubikey. v
The Yubikey Token is an USB device that emits an event based One Time Password. You can initialize the Yubikey using the YubiKey personalization tools.
The secret hex key and the final OTP length are needed here. For tokens compatible with the Yubico cloud ser the OTP length must be 44 (12
characters UID and 32 characters OTP). When programming the taken for the Yubico cloud service, the Public Identity Length must be & bytes, which will
give you a UID with 12 characters. The current OTP length of a programmed Yubikey can automatically be determined by inserting it in the test field.
Token data

Test Yubikey

OTP Key

| Enter OTP ke
OTPIength

Description

Fig. 65: Enroll a Yubikey AES mode token in privacyIDEA

In the field “Test Yubikey” touch the Yubikey button. This will determine the length of the OTP value and the field
OTP length is automatically filled.

Note: The length of the unique passcode for each OTP is 32 characters at the end of the OTP value. The remaining
characters at the beginning of the OTP value form the Public ID of the device. They remain constant for each OTP*.

4 https://developers.yubico.com/OTP/OTPs_Explained.html

1.12. Workflows and Tools 207

https://developers.yubico.com/OTP/OTPs_Explained.html

privacylDEA Authentication System, Release 3.6.1

privacyIDEA takes care of separating these parts but it needs to know the complete length of the OTP value to work
correctly.

The process is similar for the HOTP mode. You have to deselect OATH Token Identifier. Copy the displayed secret to
the HOTP Enrollment form in privacyIDEA.

Yubico OTP OATH-HOTP Static Password Challenge-Response About

Configuration Slot

Select the configuration slot to be programmed
® Configuration Slot 1 Configuration Slot 2 9
OATH-HOTP Parameters (auto generated)
OATH Token Identifier {6 bytes) ubnu 58 07 3152 Generate MUI e
HOTP Length 8 £ Digits 8 Digits (7]
Hide secret
Secret Key (20 bytes Hex) cd 7c e3 0d 80 c6 5 9e 75 Ba ee 85 2e 80 09 3f 90 c6 7fed 9
Actions
Press Write Configuration button to program your Yubikey's selected configuration slot
Write Configuration Regenerate Back

Fig. 66: To initialize a single Yubikey in HOTP mode, deselect OATH Token Identifier.

Note: In the case of HOTP mode privacyIDEA can not necessarily distinguish a Yubikey in HOTP mode from a
smartphone App in HOTP mode. Using the above mentioned mass-enrollment, the token serial number is used to
distinguish these tokens.

Mass enroliment

To initialize one or more Yubikeys it is convenient to write the created token secrets to a file which can be imported
in the privacyIDEA WebUI. To do this, activate Settings -> Log configuration output. We recommend to select Yubico
format since here privacyIDEA is able to detect the Yubikey mode and sets the serial accordingly prepending UBOM
or UBAM. PSKC format is also supported upon import. You may also use the Flexible format to set custom token
serials upon import with OATH CSV.

To set a custom serial for Yubikey Tokens, set the Flexible format to:

’YUBIAES{serial}_{configSlot},{secretKeyTxt},yubikey

For Yubikeys in HOTP mode, set the output format as:

’YUBIHOTP{serial}_{configSlot},{secretKeyTxt},hotp,{hotpDigits}

Upon clicking Write Configuration for the first time, you will be prompted to select an output file name and the
generated configuration is written both to the device and to the selected file. In the Advanced mode select Program
Multiple Yubikeys and Automatically program Yubikeys when inserted to program each Yubikey automatically after
you insert it.

208 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Y7 YubiKey Personalization Tool

Yubico OTP OATH-HOTP Static Password Challenge-Response About

Configuration Slot

Select the configuration slot to be programmed

® Configuration Slat 1 (O) Configuration Slot 2 (7]
Program Multiple YubiKeys Configuration Protection (6 bytes Hex) @
Automatically program Yubikeys when inserted Yubikey(s) unprotected - Keep it that way -
Parameter Generation Scheme (7] Current ACFESS Seis

Use Serial Number
Increment Identities; Randomize Secret - New Access Code

Use Serial Number
OATH-HOTP Parameters
[] oATH Token Identifier (6 bytes) All numeric (7]
OMP (1) + TT (1) + MUI (4) 00D 00 00000000 Generate MUI
HOTP Length ® 6 Digits () 8 Digits 7]
Moving Factor Seed Fixed zero | 0 @
Secret Key (20 bytes Hex) |1.2 53 9b 72 e5 06 2e c0 6d 82 4f 35 23 29 08 16 cb dd f:| Generate | @
Actions

Press Write Configuration button to program your YubiKey's selected configuration slot

Write Configuration Stop Reset Back
Results
OATH Token Identifier Status Timestamp

Fig. 67: Write Configuration initializes the Yubikey

1.12. Workflows and Tools 209

privacylDEA Authentication System, Release 3.6.1

During this process the token secrets are automatically appended to the selected export file. Note again, that for HOTP,
you have to deselect OATH Token Identifier.

After mass-initialization, the token secrets have to be imported to privacyIDEA according to the output format (see
Import).

1.12.4 Tools

privacyIDEA comes with a list of command line tools, which also help to automate tasks.

privacyidea-token-janitor

Starting with version 2.19 privacyIDEA comes with a token janitor script. This script can find orphaned tokens, unused
tokens or tokens of specific type, description or token info.

It can unassign, delete or disable those tokens and it can set additional tokeninfo or descriptions.

Starting with version 3.4 it can also set the tokenrealms of the found tokens.

If you are unsure to directly delete orphaned tokens, because there might be a glimpse in the connection to your user
store, you could as well in a first step mark the orphaned tokens. A day later you could run the script again and delete
those tokens, which are (still) orphaned and marked.

privacyidea-get-unused-tokens
The script privacyidea—-get—-unused-tokens allows you to search for tokens, which were not used for au-
thentication for a while. These tokens can be listed, disabled, marked or deleted.

You can specify how old the last authentication of such a token has to be. You can use the tags & (hours), d (day) and
y (year). Sepcifying 180d will find tokens, that were not used for authentication for the last 180 days.

The command:

privacyidea-get-unused-tokens disable 180d

will disable those tokens.

This script can be well used with the Script Handler Module.

1.12.5 Two Step Enroliment

Starting with version 2.21 privacyIDEA allows to enroll smartphone based tokens in a 2step enrollment.

With the rise of the smartphones and the fact that every user has a smartphone, carries it with him all the time and
cares about it a lot, using the smartphone for authentication gets more and more attractive to IT departments.

Google came up with the Key URI' to use a QR code to easily enroll a smartphone token, i.e. transport the OTP secret
from the server to the phone. However this bears some security issues as already pointed out”.

This is why privacyIDEA allows to generate the OTP secret from a server component and from a client component
(generated by the smartphone). This way the enrolled token is more tightly bound to this single smartphone and can
not be copied that easily anymore.

! https://github.com/google/google-authenticator/wiki/Key- Uri- Format
2 https://netknights.it/en/the- problem-with-the- google-authenticator/

210 Chapter 1. Table of Contents

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://netknights.it/en/the-problem-with-the-google-authenticator/

privacylDEA Authentication System, Release 3.6.1

Workflow

In a two step enrollment process the user clicks in the Web Ul to enroll a token. The server generates a QR code and
the user will scan this QR code with his smartphone app. The QR code contains the server component of the key and
the information, that a second component is needed.

The smartphone generates the second component and displays this to the user.
The user enters this second component into the privacyIDEA Web UL

Both the smartphone and the server calculate the OTP secret from both components.

Two Step policies

Two step enrollment is controlled by policies in the admin/user scope and in the enrol lment scope.

Thus the administrator can allow or force a user (or other administrators) to do a two step enrollment. This way it is
possible to avoid the enrollment of insecure Google Authenticator QR codes in the complete installation. (hotp_2step
and totp_2step).

The default behaviour is to not allow a two step enrollment. Only if a corresponding admin or user policy is defined,
two step enrollment is possible.

Key generation

In addition the administrator can define an enrollment policy to specify necessary parameters for the key genera-
tion.

Two step enrollment is possible for HOTP and TOTP tokens. Thus the administrator can define token type
specific policies in the scope enrollment: hotp_2step_clientsize, totp_2step_clientsize,
hotp_2step_difficulty... see {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

privacylDEA Authenticator

The privacyIDEA Authenticator’ that is available from the Google Play Store supports the two step enrollment.

Specification

The two step enrollment simply adds some parameters to the original Key URI.

2step_output

This is the resulting key size, which the smartphone should generate (in bytes).

2step_salt

This is the length of the client component that the smartphone should generate (in bytes).
2step_difficulty

This is the number of rounds for the PBKDF?2 that the smartphone should use to generate the OTP secret.
The secret parameter of the Key URI contains the server component.

The smartphone app then generates the client component, which is 2step_salt random bytes. It is then displayed
in a human-readable format called base32check:

3 https://play.google.com/store/apps/details ?id=it.netknights.piauthenticator

1.12. Workflows and Tools 211

https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

privacylDEA Authentication System, Release 3.6.1

b32encode (shal (client_component) .digest () [0:4] + client_component) .strip("=")

In other words, the first four bytes of the client component’s SHA-1 hash are concatenated with the actual client
component. The result is encoded using base32, whereas trailing padding characters are removed.

The second step of the enrollment process is realized as another request to the /token/init endpoint:

POST /token/init

serial=<token serial>
otpkey=<base32check (client_component) >
otpkeyformat=base32check

Server and smartphone app then use PBKDF2 to generate the final secret (see* for parameter names):

secret = PBKDF2 (P=hexlify(<server component>),
S=<client component>,
c=<2step_difficulty>
dkLen=<2step_output>)

whereas hex1ify (<server component>) denotes a hex-encoding (using lowercase letters) of the byte array
which comprises the server component.

Note: Please note that the two-step enrollment process is currently not designed to protect against malicious attackers.
Depending on the choice of iteration count and salt size, an attacker who knows the server component and an OTP
value may be able to obtain the client component with a brute-force approach. However, two-step enrollment is still
an improvement to the status quo, as a simple copy of the QR code does not immediately leak the OTP secret and
obtaining the OTP secret using brute-force is not trivial.

1.13 Job Queue

privacyIDEA workflows often entail some time-consuming tasks, such as sending mails or SMS or saving usage
statistics. Executing such tasks during the handling of API requests negatively affects performance. Starting with
version 3.0, privacyIDEA allows to delegate certain tasks to external worker processes by using a job queue.

As an example, assume that privacyIDEA receives an authentication request by a user with an email token (see Email)
via HTTP. privacyIDEA will send a one-time password via E-Mail. In order to do so, it communicates with a SMTP
server. Normally, privacyIDEA handles all communication during the processing of the original authentication request,
which increases the response time for the HTTP request, especially if the SMTP server is at a remote location.

A job queue can help to reduce the response time as follows. Instead of communicating with the SMTP server during
request handling, privacyIDEA stores a so-called job in a job queue which says “Send an E-Mail to xyz@example.com
with content “..."”. privacyIDEA does not wait for the E-Mail to be actually sent, but already sends an HTTP response.
An external worker process then retrieves the job from the queue and actually sends the corresponding E-Mail.

Using a job queue may improve the performance of your privacyIDEA server in case of a flaky connection to the
SMTP server. Authentication requests that send E-Mails are then handled faster (because the privacyIDEA server
does not actually communicate with the SMTP server), which means that the corresponding web server worker thread
can handle the next request faster.

privacyIDEA 3.0 implements a job queue based on huey which uses a Redis server to store jobs. As of version 3.0,
privacyIDEA allows to offload sending mails to the queue. Other jobs will be implemented in future versions.

4 https://www.ietf.org/rfc/rfc2898.txt

212 Chapter 1. Table of Contents

mailto:xyz@example.com
https://huey.readthedocs.io/en/latest/
https://redis.io/
https://www.ietf.org/rfc/rfc2898.txt

privacylDEA Authentication System, Release 3.6.1

1.13.1 Configuration

The job queue is disabled by default. In order to enable it, add the following configuration option to pi.cfg:

PI_JOB_QUEUE_CLASS = 'privacyidea.lib.queues.huey_queue.HueyQueue'

After a server restart, you will be able to instruct individual SMTP servers to send all mails via the job queue by
checking a corresponding box in the SMTP server configuration (see SMTP server configuration). This means that
you can have separate SMTP server configurations, some of which send mails via the job queue, some of which send
mails during the request processing.

Note that you need to run a Redis server which is reachable for the privacyIDEA server. By default, huey assumes a
locally running Redis server. You can use a configuration option to provide a different URL (see here for information
on the URL format):

’PI_JOB_QUEUE_URL = 'redis://somehost'

In addition to the privacyIDEA server, you will have to run a worker process which fetches jobs from the queue and
executes them. You can start it as follows:

’privacyideafqueuefhuey

By default, the worker process logs to privacyidea-queue. log in the current working directory. You can pass
a different logfile by using the —1 option:

’privacyideafqueuefhuey -1 /var/log/queue.log

As the script is heavily based on the huey consumer script, you can find information about additional options in the
huey documentation.

Note that a side-effect of the queue is that the privacyIDEA server will not throw or log errors if a mail could not be
sent. Hence, it is important to monitor the queue log file for errors.

1.14 Application Plugins

privacyIDEA comes with application plugins. These are plugins for applications like PAM, OTRS, Apache2, FreeRA-
DIUS, ownCloud, simpleSAMLphp or Keycloak which enable these application to authenticate users against priva-
cyIDEA.

You may also write your own application plugin or connect your own application to privacyIDEA. This is quite simple
using a REST API Validate endpoints. In order to support more sophisticated token types like challenge-response or
out-of-band tokens, you should take a look at the various Authentication Modes.

1.14.1 Pluggable Authentication Module

The PAM module of privacyIDEA directly communicates with the privacyIDEA server via the API. The PAM module
also supports offline authentication. In this case you need to configure an offline machine application. (See Offfine)

You can install the PAM module by using the source code file. It is a python module, that requires python-pam:

git clone https://github.com/privacyidea/pam_python.git
cd pam_python

pip install -r requirements.txt

python ./setup.py install

1.14. Application Plugins 213

https://redis.io/
https://redis-py.readthedocs.io/en/latest/#redis.ConnectionPool.from_url
https://huey.readthedocs.io/en/latest/consumer.html#options-for-the-consumer
https://github.com/privacyidea/pam_python

privacylDEA Authentication System, Release 3.6.1

The configuration could look like this:

. pam_python.so /path/to/privacyidea_pam.py
url=https://localhost prompt=privacyIDEA_Authentication

The URL parameter defaults to https://localhost. You can also add the parameters realm= and debug.

If you want to disable certificate validation, which you should not do in a productive environment, you can use the
parameter nosslverify.

A new parameter cacerts= lets you define a CA Cert-Bundle file, that contains the trusted certificate authorities in
PEM format.

The default behaviour is to trigger an online authentication request. If the request was successful, the user is logged
in. If the request was done with a token defined for offline authentication, then in addition all offline information is
passed to the client and cached on the client so that the token can be used to authenticate without the privacyIDEA
server available.

try_first_pass

Starting with version 2.8 privacyidea_pam supports try_first_pass. In this case the password that exists in the PAM
stack will be sent to privacyIDEA. If this password is successfully validated, than the user is logged in without addi-
tional requests. If the password is not validated by privacyIDEA, the user is asked for an additional OTP value.

Note: This can be used in conjunction with the passthru policy. In this case users with no tokens will be able to login
with only the password in the PAM stack.

Use cases SSH and VPN

PrivacyIDEA can be easily used to setup a secure SSH login combining SSH keys with a second factor. The configu-
ration is given in SSH Keys and OTP: Really strong two factor authentication on the privacyIDEA website.

Read more about how to use PAM to do openvpn.

1.14.2 Using pam_yubico

If you are using yubikey tokens you might also use pam_yubico. You can use Yubikey tokens for two more or
less distinct applications. The first is using privacyideas PAM module as described above. In this case privacyidea
handles the policies for user access and password validation. This works fine, when you only use privacyidea for token
validation.

The second mode is using the standard PAM module for yubikeys from Yubico pam_yubico to handle the token
validation. The upside ist that you can use the PAM module included with you distribution, but there are downsides as
well.

* You can’t set a token PIN in privacyidea, because pam_yubico tries to use the token PIN entered by the user
as a system password (which is likely to fail), i.e. the PIN will be stripped by pam_yubico and will not reach
the privacyIDEA system.

* Setting the policy which tokens are valid for which users is done either in ~/ . yubico/authorized_keys
or in the file given by the authfile option in the PAM configuration. The api server will only validate the
token, but not check any kind of policy.

You can work around the restrictions by using a clever combination of tokentype yubikey and yubico as follows:

214 Chapter 1. Table of Contents

https://www.privacyidea.org/ssh-keys-and-otp-really-strong-two-factor-authentication/

privacylDEA Authentication System, Release 3.6.1

* enroll a yubikey token with yubikey_mass_enroll --mode YUBICO.
* do not set a token password.

* do not assign the token to a user.

* please make a note of yubikey.prefix (12 characters starting with vv).

Now the token can be used with pam_yubico, but will not allow any user access in privacyidea. If you want to use
the token with pam_yubico see the manual page for details. You’ll want something like the following in your PAM
config:

auth required pam_yubico.so id=<apiid> key=<API key> \
urllist=https://<privacyidea-server>/ttype/yubikey authfile=/etc/yubikeys/
—authorized_yubikeys

The file /etc/yubikeys/authorized_yubikeys contains a line for each user with the username and the
allowed tokens delimited by ““:”, for example:

<username>:<serial numberl>:<prefixl>:<prefix2>

Now create a second token representing the Yubikey, but this time use the Yubico Cloud mode. Go to Tokens ->
Enroll Token and select Yubico Cloud mode. Enter the 12 characters prefix you noted above and assign this token
to a user and possibly set a token PIN. It would be nice to have the the serial number of the UBCM token correspond
to the UBAM token, but this is right now not possible with the WebUL.

In the WebUI, test the UBAM token without a Token PIN, test the UBCM token with the stored Token PIN, and check
the token info afterwards. Check the yubikey token via /ttype/yubikey, for example with:

ykclient —--debug --url https://<privacyidea>/ttype/yubikey —--apikey "<API key>" "apiid
—" <otp>

There should be successful authentications (count_auth_success), but no failures.

1.14.3 FreeRADIUS

Starting with privacyIDEA 2.19, there are two ways to integrate FreeRADIUS:

» Using a Perl-based privacyIDEA plugin, which is available for FreeRADIUS 2.0.x and above. It supports
advanced use cases (such as challenge-response authentication or attribute mapping). Read more about it at
rlm_perl.

» Using the rlm_rest plugin provided by FreeRADIUS 3.0.x and above. However, this setup does not support
challenge-response or attribute mapping. Read more about it at rlm_rest.

With either setup, you can test the RADIUS setup using a command like this:

echo "User-Name=user, User-Password=password" | radclient -sx yourRadiusServer \
auth topsecret

Note: Do not forget to configure the clients. conf accordingly.

1.14. Application Plugins 215

privacylDEA Authentication System, Release 3.6.1

1.14.4 Microsoft NPS server

You can also use the Microsoft Network Protection Server with privacyIDEA. A full featured integration guide can be
found at the NetKnights webpage.

1.14.5 simpleSAMLphp Plugin

You can install the plugin for simpleSAMLphp using the source files from the GitHub Repository simplesamplphp-
module-privacyidea.

Follow the simpleSAMLphp instructions to configure your authsources.php. A usual configuration will look like this:

'example-privacyidea' => array(
'privacyidea:privacyidea’,

/ *
* The name of the privacyidea server and the protocol
* A port can be added by a colon
* Required.
*/

'privacyideaserver' => 'https://your.server.com',

/ *

* Check if the hostname matches the name in the certificate
* Optional.

*/

'sslverifyhost' => False,

/ *
x Check if the certificate is valid, signed by a trusted CA
* Optional.
*/

'sslverifypeer' => False,

/ *
* The realm where the user is located in.
* Optional.
*/

'realm' => '"',

/
x This is the translation from privacyIDEA attribute names to
* SAML attribute names.

*/

'attributemap' => array('username' => 'samlLoginName',
'surname' => 'surName',
'givenname' => 'givenName',
'email' => 'emailAddress',
'phone' => 'telePhone',
'mobile' => 'mobilePhone',

),
)y

216 Chapter 1. Table of Contents

https://netknights.it/en/nps-2012-for-two-factor-authentication-with-privacyidea/
https://github.com/privacyidea/simplesamlphp-module-privacyidea
https://github.com/privacyidea/simplesamlphp-module-privacyidea

privacylDEA Authentication System, Release 3.6.1

1.14.6 Keycloak
With the privacyIDEA keycloak-provider, there is a plugin available for the Keycloak identity manager. It is available
from the GitHub repository keycloak-provider.

Like simpleSAMLphp, it can be used to realize single sign-on use cases with a strong second factor authentication.

1.14.7 TYPO3

You can install the privacyIDEA extension from the TYPO3 Extension Repository. The privacyIDEA extension is
easily configured.

privacyIDEA Server URL

This is the URL of your privacyIDEA installation. You do not need to add the path validate/check. Thus the URL for
a common installation would be https://yourServer/.

Check certificate
Whether the validity of the SSL certificate should be checked or not.

Warning: If the SSL certificate is not checked, the authentication request could be modified and the answer to
the request can be modified, easily granting access to an attacker.

Enable privacyIDEA for backend users

If checked, a user trying to authenticate at the backend, will need to authenticate against privacyIDEA.
Enable privacyIDEA for frontend users

If checked, a user trying to authenticate at the frontend, will need to authenticate against privacyIDEA.
Pass to other authentication module

If the authentication at privacyIDEA fails, the credential the user entered will be verified against the next authentication
module.

This can come in handy, if you are setting up the system and if you want to avoid locking yourself out.

Anyway, in a productive environment you probably want to uncheck this feature.

1.14.8 OTRS

The OTRS Plugin can be found in its own GitHub Repository.
This perl module needs to be installed to the directory Kernel/System/Auth.

To activate the OTP authentication you need to add the following to Kernel/Config.pm:

$Self->{'AuthModule'} = 'Kernel::System::Auth::privacyIDEA';

$Self->{'AuthModule: :privacyIDEA::URL'} = \
"https://localhost/validate/check";

$Self->{'AuthModule: :privacyIDEA: :disableSSLCheck'} = "yes";

Note: As mentioned earlier you should only disable the checking of the SSL certificate if you are in a test environment.
For productive use you should never disable the SSL certificate checking.

1.14. Application Plugins 217

https://github.com/privacyidea/keycloak-provider
https://github.com/privacyidea/otrs

privacylDEA Authentication System, Release 3.6.1

Note: This plugin requires, that you also add the path validate/check to the URL.

1.14.9 Apache2

The Apache plugin uses mod_wsgi and redis to provide a basic authentication on Apache2 side and validating the
credentials against privacyIDEA.

You need the authentication script privacyidea_apache.py and a valid configuration in /etc/
privacyidea/apache.conf. Both can be found on GitHub.

To activate the OTP authentication on a “Location” or “Directory” you need to configure Apache? like this:

<Directory /var/www/html/secretdir>
AuthType Basic
AuthName "Protected Area"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/share/pyshared/privacyidea_apache.py
Require valid-user
</Directory>

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the
same one time password with each request. Thus the authentication module needs to cache the password when the
authentication is successful. Redis is used for caching the password.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The cached
credentials are stored as pbkdf2+sha512 hash.

1.14.10 NGINX

The NGINX plugin uses the internal scripting language 1ua of the NGINX webserver and redis as caching backend
to provide basic authentication against privacyIDEA.

You can retrieve the nginx plugin from GitHub.

To activate the OTP authentication on a “Location” you need to include the lua script that basically verifies the
given credentials against the caching backend. New authentications will be sent to a different (internal) location via
subrequest which points to the privacyIDEA authentication backend (via proxy_pass).

For the basic configuration you need to include the following lines to your 1ocation block:

location / {
additional plugin configuration goes here
access_by_lua_file 'privacyidea.lua';
}
location /privacyidea-validate-check {
internal;
proxy_pass https://privacyidea/validate/check;

218 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/tree/master/authmodules/apache2
https://github.com/dhoffend/lua-nginx-privacyidea

privacylDEA Authentication System, Release 3.6.1

You can customize the authentication plugin by setting some of the following variables in the secured location
block:

redis host:port
set Sprivacyidea_redis_host "127.0.0.1";
set S$privacyidea_redis_post 6379;

how long are accepted authentication allowed to be cached
1f expired, the user has to reauthenticate
set $privacyidea_ttl 900;

privacyIDEA realm. leave empty == default
set $privacyidea_realm 'somerealm'; # (optional)

pointer to the internal validation proxy pass
set $privacyidea_uri "/privacyidea-validate-check";

the http realm presented to the user
set $privacyidea_http_realm "Secure zone (use PIN + OTP)";

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the same
one time password with each reqeust. Thus the authentication module needs to cache the password as the successful
authentication. Redis is used for caching the password similar to the Apache?2 plugin.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The
cached credentials are stored as SHA1_HMAC hash. If you prefer a stronger hashing method feel free to
extend the given password_hash/verify functions using additional lua libraries (for example by using
lua-resty-string).

1.14.11 ownCloud

The ownCloud plugin is a ownCloud user backend. The directory user_privacyidea needs to be copied to your
owncloud apps directory.

privacylDEA

#| Use privacylDEA to authenticate the users.
#| Also allow users to authenticate with their normal password.
Verify the S5L certificate of the privacylDEA server.

URL of the privacylDEA server https://10.0.0.70

Fig. 68: Activating the ownCloud plugin

You can then activate the privacyIDEA ownCloud plugin by checking Use privacyIDEA to authenticate the users. All
users now need to be known to privacyIDEA and need to authenticate using the second factor enrolled in privacyIDEA
- be it an OTP token, Google Authenticator or SMS/Smartphone.

1.14. Application Plugins 219

privacylDEA Authentication System, Release 3.6.1

Checking Also allow users to authenticate with their normal passwords. lets the user choose if he wants to authenticate
with the OTP token or with his original password from the original user backend.

Note: At the moment using a desktop client with a one time password is not supported.

ownCloud 9.1 and Nextcloud 10 come with a new two factor framework. The new privacyIDEA ownCloud App
allows you to add a second factor, that is centrally managed by privacyIDEA to the ownCloud or Nextcloud installation.

The ownCloud privacyIDEA App is available from the ownCloud App Store.

The App requires a subscription file to work for more than ten users. You can get the subscription file from NetKnights.

1.14.12 Django

You can add two factor authentication with privacyIDEA to Django using this Django plugin.

You can simply add PrivacyIDEA class to the AUTHENTICATION_BACKENDS settings of Django.

1.14.13 OpenVPN

Read more about how to use OpenVPN with privacyidea at openvpn.

1.14.14 Windows

Credential Provider

The privacyIDEA Credential Provider adds two factor authentication to the Windows desktop or Terminal server. See
http://privacyidea-credential-provider.readthedocs.io

Provider Class

There is a dot Net provider class, which you can use to integrate privacyIDEA authentication into other products and
worflows. See https://github.com/sbidy/privacyIDEA_dotnetProvider

1.14.15 Further plugins

You can find further plugins for Dokuwiki, Wordpress, Contao and Django at cornelinux Github page.

1.15 Code Documentation

The code roughly has three levels: API, LIB and DB.

220 Chapter 1. Table of Contents

https://marketplace.owncloud.com/apps/twofactor_privacyidea
https://netknights.it/en/produkte/privacyidea-owncloud-app/
https://github.com/jeweber/django-privacyidea-auth
http://privacyidea-credential-provider.readthedocs.io
https://github.com/sbidy/privacyIDEA_dotnetProvider
https://github.com/cornelinux?tab=repositories

privacylDEA Authentication System, Release 3.6.1

1.15.1 APl level

The API level is used to access the system. For some calls you need to be authenticated as administrator, for some calls
you can be authenticated as normal user. These are the t oken and the audit endpoint. For calls to the validate
API you do not need to be authenticated at all.

At this level Authentication is performed. In the lower levels there is no authentication anymore.

The object g.logged_in_user is used to pass the authenticated user. The client gets a JSON Web Token to
authenticate every request.

API functions are decorated with the decorators admin_required and user_required to define access rules.

REST API
This is the REST API for privacyidea. It lets you create the system configuration, which is denoted in the system
endpoints.
Special system configuration is the configuration of
* the resolvers
* the realms
¢ the defaultrealm
* the policies.

Resolvers are dynamic links to existing user sources. You can find users in LDAP directories, SQL databases, flat
files or SCIM services. A resolver translates a loginname to a user object in the user source and back again. It is also
responsible for fetching all additional needed information from the user source.

Realms are collections of resolvers that can be managed by administrators and where policies can be applied.

Defaultrealm is a special endpoint to define the default realm. The default realm is used if no user realm is specified. If
a user from realm1 tries to authenticate or is addressed, the notation user @realm1 is used. If the @realm1 is omitted,
the user is searched in the default realm.

Policies are rules how privacyidea behaves and which user and administrator is allowed to do what.
Start to read about authentication to the API at Authentication endpoints.

Now you can take a look at the several REST endpoints. This REST API is used to authenticate the users. A user
needs to authenticate when he wants to use the API for administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py
You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

1.15. Code Documentation 221

mailto:user@realm1

privacylDEA Authentication System, Release 3.6.1

Audit endpoint

GET

GET

/audit/
return a paginated list of audit entries.

Params can be passed as key-value-pairs.

Httpparam timelimit A timelimit, that limits the recent audit entries. This param gets overwritten

by a policy auditlog_age. Can be 1d, 1m, 1h.

Example request:

GET /audit?realm=realml HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": |
{
"serial": "....",
"missing line": "..."

]
s

"version": "privacyIDEA unknown"

/audit/ (csvfile)
Download the audit entry as CSV file.

Params can be passed as key-value-pairs.

Example request:

GET /audit/audit.csv?realm=realml HTTP/1.
Host: example.com
Accept: text/csv

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

"id": 1,

"jsonrpc": "2.0",

"result": {
"status": true,
"value": [

{

(continues on next page)

222

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"serial": "....",

"missing_line": "..."
]
I

"version": "privacyIDEA unknown"

Authentication endpoints

This REST API is used to authenticate the users. A user needs to authenticate when he wants to use the API for
administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py
You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.
To authenticate you need to send a POST request to /auth containing username and password.

GET /auth/rights
This returns the rights of the logged in user.

Request Headers
» Authorization — The authorization token acquired by /auth request

POST /auth
This call verifies the credentials of the user and issues an authentication token, that is used for the later API
calls. The authentication token has a validity, that is usually 1 hour.

JSON Parameters
* username — The username of the user who wants to authenticate to the API.
* password — The password/credentials of the user who wants to authenticate to the APIL
* realm - The realm where the user will be searched.
Return A json response with an authentication token, that needs to be used in any further request.
Status Codes
* 200 OK —in case of success
* 401 Unauthorized — if authentication fails

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

username=admin
password=topsecret

Example Authentication Response:

1.15. Code Documentation 223

https://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacylDEA Authentication System, Release 3.6.1

HTTP/1.0 200 OK
Content-Length: 354

"id": 1,

"jsonrpc": "2.0",

"result": {
"status": true,
"value": {

}y

Content-Type: application/json

"version": "privacyIDEA unknown"

"token": "eyJhbGciOiJIUz....jdpn9kIjuGRnGe jmbFbM"

Response for failed authentication:

HTTP/1.1 401 UNAUTHORIZED

Content-Length: 203

"config": {
"logout_time": 30

Content-Type: application/json

llid": 1,
"jsonrpec": "2.0",
"result": {
"error": {
"code": -401,
"message": "missing Authorization header"
I
"status": false
I
"version": "privacyIDEA unknown",

Example Request:

Requests to privacyidea then should use this security token in the Authorization field in the header.

GET /users/ HTTP/1.1
Host: example.com
Accept: application/json

Authorization: eyJhbGciOiJIUz..

.. Jdpn9kIjuGRnGe jmbFbM

224

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Validate endpoints

This module contains the REST API for doing authentication. The methods are tested in the file
tests/test_api_validate.py

Authentication is either done by providing a username and a password or a serial number and a password.
Authentication workflow
Authentication workflow is like this:
In case of authenticating a user:
* privacyidea.lib.token.check user_pass()
e privacyidea.lib.token.check_ token_1list ()
* privacyidea.lib.tokenclass.TokenClass.authenticate()
e privacyidea.lib.tokenclass.TokenClass.check_pin()
e privacyidea.lib.tokenclass.TokenClass.check_otp()
In case if authenitcating a serial number:
* privacyidea.lib.token.check serial_pass ()
* privacyidea.lib.token.check token_1list ()
e privacyidea.lib.tokenclass.TokenClass.authenticate()
e privacyidea.lib.tokenclass.TokenClass.check pin()
* privacyidea.lib.tokenclass.TokenClass.check_otp()

GET /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.
Parameters
* user - The loginname/username of the user, who tries to authenticate.

¢ realm — The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

e serial — The serial number of the token.

* type — The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",

"signature": "1939...146964",

"detail": {"transaction_ids": ["03921966357577766962"],
"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",
"version": "privacyIDEA unknown",
"result": {"status": true,

(continues on next page)

1.15. Code Documentation 225

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"value": 1},
"time": 1482223663.517212,
"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []},
nign. l,
"Jsonrpc": "2.0",
"result": {"status": true,
"value": 0},

"signature": "205530282...54508",
"time": 1484303812.34657¢,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,

"id": 1,

"Jsonrpc": "2.0",

"result": {"error": {"code": 905,
"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},

"signature": "14468...081555",

"time": 1484303933.72481,

"version": "privacyIDEA 2.17"}

POST /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.
Parameters
* user — The loginname/username of the user, who tries to authenticate.

* realm — The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

e serial — The serial number of the token.

* type — The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
"signature": "1939...146964",

(continues on next page)

226 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"detail": {"transaction_ids": ["03921966357577766962"],
"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",

"version": "privacyIDEA unknown",

"result": {"status": true,

"value": 1},

"time": 1482223663.517212,

"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []1},

"id": 1,
"Jsonrpc": "2.0",

"result": {"status": true,
"value": 0},
"signature": "205530282...54508",

"time": 1484303812.346576,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,

"id": 1,

"Jsonrpc": "2.0",

"result": {"error": {"code": 905,
"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},

"signature": "14468...081555",

"time": 1484303933.72481,

"version": "privacyIDEA 2.17"}

GET /validate/polltransaction/ (transaction_id)

GET /validate/polltransaction
Given a mandatory transaction ID, check if any non-expired challenge for this transaction ID has been answered.
In this case, return true. If this is not the case, return false. This endpoint also returns false if no challenge with
the given transaction ID exists.

This is mostly useful for out-of-band tokens that should poll this endpoint to determine when to send an authen-
tication request to /validate/check.

JSON Parameters
e transaction_id — a transaction ID

POST /validate/offlinerefill
This endpoint allows to fetch new offline OTP values for a token, that is already offline. According to the
definition it will send the missing OTP values, so that the client will have as much otp values as defined.

Parameters

1.15. Code Documentation 227

privacylDEA Authentication System, Release 3.6.1

e serial — The serial number of the token, that should be refilled.
* refilltoken — The authorization token, that allows refilling.
* pass — the last password (maybe password+OTP) entered by the user

Return

GET /validate/samlcheck

GET /validate/radiuscheck

GET /validate/check

check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns
result->value: true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters
e serial — The serial number of the token, that tries to authenticate.
* user — The loginname/username of the user, who tries to authenticate.

e realm — The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

* type — The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

* pass — The password, that consists of the OTP PIN and the OTP value.

* otponly — If set to 1, only the OTP value is verified. This is used in the management UL
Only used with the parameter serial.

* transaction_id — The transaction ID for a response to a challenge request
* state - The state ID for a response to a challenge request
Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realml
pass=s3cretl123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

(continues on next page)

228

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"message": "matching 1 tokens",
"serial": "PISPOOOOABOO",
"type": "spass"

}I

"id": 1,

"Jsonrpc": "2.0",

"result": {
"status": true,
"value": true

}I

"wversion": "privacyIDEA unknown"

Example response for this first part of a challenge response authentication:

HTTP/1.1 200 OK
Content-Type: application/json

"detail": {
"serial": "PIEMOOOOABOOQO",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEMOOOOABOO",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},
{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}
1
by
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false
by
"version": "privacyIDEA unknown"

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

Example response for a successful authentication with /samlcheck:

HTTP/1.1 200 OK
Content-Type: application/json

"detail": {
"message": "matching 1 tokens",

(continues on next page)

1.15. Code Documentation 229

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"serial": "PISPOOOOAROO™,
"type": "spass"
}I
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {
"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": " /data/file/home/koelbel",
"resolver": "themis",
"surname": "Kolbel",
"givenname": "Cornelius",
"email": null},
"auth": true}
}I
"wversion": "privacyIDEA unknown"
}

The response in value->attributes can contain additional attributes (like “myOwn’’) which you can define in the

LDAP resolver in the attribute mapping.
POST /validate/samlcheck
POST /validate/radiuscheck
POST /validate/check

check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns

result—->value:

true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters

serial - The serial number of the token, that tries to authenticate.
user — The loginname/username of the user, who tries to authenticate.

realm — The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

type — The tokentype of the tokens, that are taken into account during authentication.
Requires authz policy application_tokentype. Is ignored when a distinct serial is given.

pass — The password, that consists of the OTP PIN and the OTP value.

otponly — If set to 1, only the OTP value is verified. This is used in the management UI.
Only used with the parameter serial.

transaction_id - The transaction ID for a response to a challenge request

state — The state ID for a response to a challenge request

230

Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/Jjson

user=user
realm=realml
pass=s3cretl123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/Jjson

"detail": {
"message": "matching 1 tokens",
"serial": "PISPOOOOABOO",
"type": "spass"

}I

"id": 1,

"jsonrpc": "2.0",

"result": {

"status": true,
"value": true

by

"version": "privacyIDEA unknown"

Example response for this first part of a challenge response authentication:

HTTP/1.1 200 OK
Content-Type: application/json

by

"detail": {
"serial": "PIEMOOOOABOO",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEMOOOOABOO",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},
{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}
]
}I
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

(continues on next page)

1.15. Code Documentation

231

privacylDEA Authentication System, Release 3.6.1

(continued from previous page)

"version": "privacyIDEA unknown"

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

Example response for a successful authentication with /samlcheck:

HTTP/1.1 200 OK
Content-Type: application/json
{
"detail": {
"message": "matching 1 tokens",
"serial": "PISPOOOOABOO",
"type": "spass"
}I
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {
"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": "/data/file/home/koelbel",
"resolver": "themis",
"surname": "Kolbel",
"givenname": "Cornelius",
"email": null},
"auth": true}
}I
"version": "privacyIDEA unknown"
}

The response in value->attributes can contain additional attributes (like “myOwn”) which you can define in the
LDAP resolver in the attribute mapping.

System endpoints

This is the REST API for system calls to create and read system configuration.
The code of this module is tested in tests/test_api_system.py

GET /system/names/caconnector
Return a list of defined CA connectors. Each item of the list is a dictionary with the CA connector information,
including the name and defined templates, but excluding the CA connector data. This endpoint requires the
enrollCERTIFICATE right.

GET /system/names/radius
Return the list of identifiers of all defined RADIUS servers. This endpoint requires the enrollRADIUS right.

232 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

GET /system/documentation
returns an restructured text document, that describes the complete configuration.

POST /system/setDefault
define default settings for tokens. These default settings are used when new tokens are generated. The default
settings will not affect already enrolled tokens.

JSON Parameters

e DefaultMaxFailCount — Default value for the maximum allowed authentication fail-
ures

* DefaultSyncWindow — Default value for the synchronization window
* DefaultCountWindow — Default value for the counter window
* DefaultOtpLen — Default value for the OTP value length — usually 6 or 8

* DefaultResetFailCount — Default value, if the FailCounter should be reset on suc-
cessful authentication [TruelFalse]

Return a json result with a boolean “result”: true

POST /system/setConfig
set a configuration key or a set of configuration entries

parameter are generic keyname=value pairs.
remark In case of key-value pairs the type information could be provided by an additional parameter with
same keyname with the postfix “.type”. Value could then be ‘password’ to trigger the storing of the value
in an encrypted form
JSON Parameters
* key — configuration entry name
* value - configuration value

* type — type of the value: int or string/text or password. password will trigger to store the
encrypted value

* description — additional information for this config entry

or
JSON Parameters
* pairs (key-value) — pair of &keyname=value pairs
Return a json result with a boolean “result”: true

Example request 1:

POST /system/setConfig
key=splitAtSign
value=true

Host: example.com
Accept: application/Jjson

Example request 2:

1.15. Code Documentation 233

privacylDEA Authentication System, Release 3.6.1

POST /system/setConfig
BINDDN=myName
BINDPW=mySecretPassword
BINDPW. type=password

Host: example.com
Accept: application/Jjson

GET /system/gpgkeys
Returns the GPG keys in the config directory specified by PI. GNUPG_HOME.

Return A json list of the public GPG keys

GET /system/random
This endpoint can be used to retrieve random keys from privacyIDEA. In certain cases the client might need
random data to initialize tokens on the client side. E.g. the command line client when initializing the yubikey
or the WebUI when creating Client API keys for the yubikey.

In this case, privacyIDEA can create the random data/keys.
Query Parameters
* len - The length of a symmetric key (byte)
* encode — The type of encoding. Can be “hex” or “b64”.
Return key material

POST /system/hsm
Set the password for the security module

GET /system/hsm
Get the status of the security module.

GET /system/ (key)

GET /system/
This endpoint either returns all config entries or only the value of the one config key.

This endpoint can be called by the administrator but also by the normal user, so that the normal user gets
necessary information about the system config

Parameters

* key — The key to return.
Return A json response or a single value, when queried with a key.
Rtype json or scalar

POST /system/test/ (tokentype)
The call /system/test/email tests the configuration of the email token.

DELETE /system/ (key)
delete a configuration key

JSON Parameters
* key — configuration key name

Returns a json result with the deleted value

234 Chapter 1. Table of Contents

privacylDEA Authentication System, Release 3.6.1

Resolver endpoints

The code of this module is tested in tests/test_api_system.py

POST /resolver/test
Send the complete parameters of a resolver to the privacyIDEA server to test, if these settings will result in a
successful connection. If you are testing existing resolvers, you can send the “__CENSORED__” passwor