
privacyIDEA Authentication System
Release 3.2.1

Cornelius Kölbel

Jan 10, 2020

Contents

1 Table of Contents 3

2 Indices and tables 357

HTTP Routing Table 359

Python Module Index 363

Index 365

i

ii

privacyIDEA Authentication System, Release 3.2.1

privacyIDEA is a modular authentication system. Using privacyIDEA you can enhance your existing applications
like local login, VPN, remote access, SSH connections, access to web sites or web portals with a second factor
during authentication. Thus boosting the security of your existing applications. Originally it was used for OTP
authentication devices. But other “devices” like challenge response and SSH keys are also available. It runs on Linux
and is completely Open Source, licensed under the AGPLv3.

privacyIDEA can read users from many different sources like flat files, different LDAP services, SQL databases and
SCIM services. (see Realms)

Authentication devices to provide two factor authentication can be assigned to those users, either by administrators
or by the users themselves. Policies define what a user is allowed to do in the web UI and what an administrator is
allowed to do in the management interface.

The system is written in python, uses flask as web framework and an SQL database as datastore. Thus it can be
enrolled quite easily providing a lean installation. (see Installation)

Contents 1

privacyIDEA Authentication System, Release 3.2.1

2 Contents

CHAPTER 1

Table of Contents

1.1 Overview

privacyIDEA is a system that is used to manage devices for two factor authentication. Using privacyIDEA you can
enhance your existing applications like local login, VPN, remote access, SSH connections, access to web sites or web
portals with a second factor during authentication. Thus boosting the security of your existing applications.

In the beginning there were OTP tokens, but other means to authenticate like SSH keys are added. Other concepts like
handling of machines or enrolling certificates are coming up, you may monitor this development on Github.

privacyIDEA is a web application written in Python based on the flask micro framework. You can use any webserver
with a wsgi interface to run privacyIDEA. E.g. this can be Apache, Nginx or even werkzeug.

A device or item used to authenticate is still called a “token”. All token information is stored in an SQL database,
while you may choose, which database you want to use. privacyIDEA uses SQLAlchemy to map the database to
internal objects. Thus you may choose to run privacyIDEA with SQLite, MySQL, PostgreSQL, Oracle, DB2 or other
database.

The code is divided into three layers, the API, the library and the database layer. Read about it at Code Documentation.
privacyIDEA provides a clean REST API.

Administrators can use a Web UI or a command line client to manage authentication devices. Users can log in to the
Web UI to manage their own tokens.

Authentication is performed via the API or certain plugins for FreeRADIUS, simpleSAMLphp, Wordpress, Contao,
Dokuwiki. . . to either provide default protocols like RADIUS or SAML or to integrate into applications directly.

Due to this flexibility there are also many different ways to install and setup privacyIDEA. We will take a look at
common ways to setup privacyIDEA in the section Installation but there are still many others.

1.2 Installation

The ways described here to install privacyIDEA are

• the installation via the Python Package Index, which can be used on any Linux distribution and

3

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://www.sqlalchemy.org/

privacyIDEA Authentication System, Release 3.2.1

• ready made Ubuntu Packages for Ubuntu 14.04LTS and

• ready made Debian Packages for Debian Wheezy.

If you want to upgrade from a privacyIDEA 1.5 installation please read Upgrading.

privacyIDEA needs python 2.7 to run properly!

1.2.1 Python Package Index

You can install privacyidea on usually any Linux distribution in a python virtual environment. This way you keep all
privacyIDEA code in one defined subdirectory.

Note: privacyIDEA depends on python 2.7 to run properly.

You first need to install some development packages. E.g. on debian based distributions the packages are called

• libjpeg-dev

• libz-dev

• python-dev

• libffi-dev

• libssl-dev

• libxslt1-dev

Now you can install privacyIDEA like this:

virtualenv /opt/privacyidea

cd /opt/privacyidea
source bin/activate

Now you are within the python virtual environment. Within the environment you can now run:

pip install privacyidea

To achieve a deterministic installation, you can now pin the installed versions to our tested versions like this:

pip install -r lib/privacyidea/requirements.txt

Please see the section The Config File for a quick setup of your configuration.

Then create the encryption key and the signing keys:

pi-manage create_enckey
pi-manage create_audit_keys

Create the database and the first administrator:

pi-manage createdb
pi-manage admin add admin -e admin@localhost

Now you can run the server for your first test:

4 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

pi-manage runserver

Stamp the database, so that privacyIDEA has the right database schema version. This is important for later update
processes:

pi-manage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations

Depending on the database you want to use, you may have to install additional packages.

1.2.2 Ubuntu Packages

There are ready made packages for Ubuntu. Up to privacyIDEA 2.23 packages are available for Ubuntu 14.04 LTS
and 16.04 LTS4. These are available via a public ppa repository1.

Starting with privacyIDEA 3.0 packages are available for Ubuntu 16.04LTS and 18.04LTS5.

Installing privacyIDEA 3.0 or higher

Before installing privacyIDEA 3.0 or upgrading to 3.0 you need to add the repository.

Add repository

The packages are digitally signed. First you need to download the signing key:

wget https://lancelot.netknights.it/NetKnights-Release.asc

On Ubuntu 16.04 check the fingerprint of the key:

gpg --with-fingerprint NetKnights-Release.asc

On 18.04 you need to run:

gpg --dry-run --import --with-fingerprint NetKnights-Release.asc

The fingerprint of the key is:

pub 4096R/AE250082 2017-05-16 NetKnights GmbH <release@netknights.it>
Key fingerprint = 0940 4ABB EDB3 586D EDE4 AD22 00F7 0D62 AE25 0082

Now add the signing key to your system:

apt-key add NetKnights-Release.asc

Now you need to add the repository for your release (either xenial/16.04LTS or bionic/18.04LTS)

You can do this by running the command:

add-apt-repository http://lancelot.netknights.it/community/xenial/stable

or:
4 Starting with privacyIDEA 2.15 Ubuntu 16.04 packages are provided
1 https://launchpad.net/~privacyidea
5 Starting with privacyIDEA 3.0 Ubuntu 16.04 and 18.04 packages are provided, Ubuntu 14.04 packages are dropped.

1.2. Installation 5

https://launchpad.net/~privacyidea

privacyIDEA Authentication System, Release 3.2.1

add-apt-repository http://lancelot.netknights.it/community/bionic/stable

As an alternative you can add the repo in a dedicated file. Create a new file /etc/apt/sources.list.d/
privacyidea-community.list with the following contents:

deb http://lancelot.netknights.it/community/xenial/stable xenial main

or:

deb http://lancelot.netknights.it/community/bionic/stable bionic main

New installation of privacyIDEA 3.0

Now run:

apt update
apt install privacyidea-apache2

Upgrading privacyIDEA to 3.0

If you want to upgrade your privacyIDEA on Ubuntu to privacyIDEA 3.0, you need to add a new repository configu-
ration as described in Add repository.

Now you can simply run:

apt update
apt dist-upgrade

After this it is a good idea to remove old, unused packages by running:

apt autoremove

Installing privacyIDEA 2.23

If you want to for any reason install the old version 2.23.x, this is still available in a public ppa repository1. Install it
like this:

add-apt-repository ppa:privacyidea/privacyidea
apt-get update

There are the base packages python-privacyidea and the administrator tool privacyideaadm.

But we recommend installing the meta package:

apt-get install privacyidea-apache2

which will install the code, the webserver and the database and configure everything accordingly. If you do not like
the Apache2 webserver you could alternatively use the meta package privacyidea-nginx.

After installing with Apache2 or Nginx you only need to create your first administrator and you are done:

pi-manage admin add admin -e admin@localhost

6 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Now you may proceed to First Steps.

Note: The packages privacyidea-apache2 and privacyidea-nginx assume that you want to run a privacyIDEA system.
These packages deactivate all other (default) websites. You can install the package privacyidea-mysql to install the
privacyIDEA application and setup the database. After this, you need to configure the webserver on your own.

Note: To get the latest development snapshots, you can use the repository ppa:privacyidea/privacyidea-dev. But
these packages might be broken sometimes!

FreeRADIUS

privacyIDEA has a perl module to “translate” RADIUS requests to the API of the privacyIDEA server. This module
plugs into FreeRADIUS. The FreeRADIUS does not have to run on the same machine like privacyIDEA. To install
this module run:

apt-get install privacyidea-radius

For further details see rlm_perl.

SimpleSAMLphp

Starting with 1.4 privacyIDEA also supports SAML via a plugin for simpleSAMLphp2. The simpleSAMLphp service
does not need to run on the same machine like the privacyIDEA server.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-simplesamlphp

For further details see simpleSAMLphp Plugin.

PAM

privacyIDEA also comes with a PAM library to add two factor authentication to any Linux system. You can run
one central privacyIDEA server and configure all other systems using the PAM library to authenticate against this
privacyIDEA.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-pam

For further details see Pluggable Authentication Module.

OTRS

OTRS is an important Open Source Ticket Request System. It is written in Perl and privacyIDEA provides an authen-
tication plugin to authenticate at OTRS with two factors.

To install it on Ubuntu 14.04 please run:
2 https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

1.2. Installation 7

https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

privacyIDEA Authentication System, Release 3.2.1

apt-get install privacyidea-otrs

For further details and configuration see OTRS.

1.2.3 Debian Packages

Wheezy

You can install privacyIDEA on Debian Wheezy either via the Python Package Index or with a ready made Wheezy
package.

The available Wheezy package privacyidea-venv_2.1~dev0_amd64.deb contains a complete virtual environment with
all necessary dependent modules. To install it run:

dpkg -i privacyidea-venv_2.1~dev0_amd64.deb

This will install privacyIDEA into a virtual environment at /opt/privacyidea/privacyidea-venv.

You can enter the virtual environment by:

source /opt/privacyidea/privacyidea-venv/bin/activate

Jessie

At the moment you can use the Ubuntu Trusty packages with Debian Jessie.

Thus you can create a file /etc/apt/sources.list.d/privacyidea.list with the content:

deb http://ppa.launchpad.net/privacyidea/privacyidea/ubuntu trusty main

Add the GPG key to the keyring:

gpg --keyserver keyserver.ubuntu.com --recv-keys C24DCF7D
gpg --armor --export C24DCF7D | apt-key add -

Now run:

apt-get update
apt-get install privacyidea-apache2

As an alternative you can find a complete guideline how to setup privacyIDEA including RADIUS here3.

Running privacyIDEA with Apache2 and MySQL

If you installed via pip or the Wheezy package you need to create and fill the config directory /etc/privacyidea
manually:

cp /opt/privacyidea/privacyidea-venv/etc/privacyidea/dictionary \
/etc/privacyidea/

Create a config /etc/privacyidea/pi.cfg like this:
3 http://www.routerperformance.net/howtos/install-privacyidea-2-13-on-a-clean-debian-8-jessie/

8 Chapter 1. Table of Contents

http://www.routerperformance.net/howtos/install-privacyidea-2-13-on-a-clean-debian-8-jessie/

privacyIDEA Authentication System, Release 3.2.1

Your database
SQLALCHEMY_DATABASE_URI = 'mysql://pi:password@localhost/pi'
This is used to encrypt the auth_token
SECRET_KEY = 'choose one'
This is used to encrypt the admin passwords
PI_PEPPER = "choose one"
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'
#CRITICAL = 50
#ERROR = 40
#WARNING = 30
#INFO = 20
#DEBUG = 10
PI_LOGLEVEL = 20

You need to create the above mentioned logging directory /var/log/privacyidea.

You need to create the above mentioned database with the corresponding user access:

mysql -u root -p -e "create database pi"
mysql -u root -p -e "grant all privileges on pi.* to 'pi'@'localhost' \
identified by 'password'"

With this config file in place you can create the database tables, the encryption key and the audit keys:

pi-manage createdb
pi-manage create_enckey
pi-manage create_audit_keys

Now you can create the first administrator:

pi-manage admin add administrator

The system is set up. You now only need to configure the Apache2 webserver.

The Apache2 needs a wsgi script that could be located at /etc/privacyidea/piapp.wsgi and look like this:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production", \
config_file="/etc/privacyidea/pi.cfg")

Finally you need to create a Apache2 configuration /etc/apache2/sites-available/privacyidea.
conf which might look like this:

WSGIPythonHome /opt/privacyidea/privacyidea-venv
<VirtualHost _default_:443>

ServerAdmin webmaster@localhost
You might want to change this
ServerName localhost

DocumentRoot /var/www

(continues on next page)

1.2. Installation 9

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

<Directory />
For Apache 2.4 you need to set this:
Require all granted
Options FollowSymLinks
AllowOverride None

</Directory>

We can run several instances on different paths with different configurations
WSGIScriptAlias / /etc/privacyidea/piapp.wsgi
#
The daemon is running as user 'privacyidea'
This user should have access to the encKey database encryption file
WSGIDaemonProcess privacyidea processes=1 threads=15 display-name=%{GROUP}

→˓user=privacyidea
WSGIProcessGroup privacyidea
WSGIPassAuthorization On

ErrorLog /var/log/apache2/error.log

LogLevel warn
LogFormat "%h %l %u %t %>s \"%m %U %H\" %b \"%{Referer}i\" \"%{User-agent}i\""

→˓privacyIDEA
CustomLog /var/log/apache2/ssl_access.log privacyIDEA

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on

If both key and certificate are stored in the same file, only the
SSLCertificateFile directive is needed.
SSLCertificateFile /etc/ssl/certs/privacyideaserver.pem
SSLCertificateKeyFile /etc/ssl/private/privacyideaserver.key

<FilesMatch "\.(cgi|shtml|phtml|php)$">
SSLOptions +StdEnvVars

</FilesMatch>
<Directory /usr/lib/cgi-bin>

SSLOptions +StdEnvVars
</Directory>
BrowserMatch ".*MSIE.*" \

nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

</VirtualHost>

The configuration assumes, a user privacyidea, which you need to create:

useradd -r -m privacyidea

The files in /etc/privacyidea and the logfiles in /var/log/privacyidea/ should be restricted to this user.

1.2.4 CentOS Installation

10 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Step-by-Step installation on CentOS

In this chapter we describe a way to install privacyIDEA on CentOS 7 based on the installation via Python Package
Index. It follows the approach used in the enterprise packages (See RPM Repository).

Setting up the required services

In this guide we use Python 2.7 even though its end-of-life draws closer. CentOS 7 will support Python 2 until the end
of its support frame. Basically the steps for using privacyIDEA with Python 3 are the same but several other packages
need to be installed1.

First the necessary packages need to be installed:

$ yum install mariadb-server httpd mod_wsgi mod_ssl python-virtualenv policycoreutils-
→˓python

Now enable and configure the services:

$ systemctl enable --now httpd
$ systemctl enable --now mariadb
$ mysql_secure_installation

Setup the database for the privacyIDEA server:

$ echo 'create database pi;' | mysql -u root -p
$ echo 'create user "pi"@"localhost" identified by "<dbsecret>";' | mysql -u root -p
$ echo 'grant all privileges on pi.* to "pi"@"localhost";' | mysql -u root -p

If this should be a pinned installation (i.e. with all the package pinned to the versions with which we are develop-
ing/testing), some more packages need to be installed for building these packages:

$ yum install gcc postgresql-devel

Create the necessary directories:

$ mkdir /etc/privacyidea
$ mkdir /opt/privacyidea
$ mkdir /var/log/privacyidea

Add a dedicated user for the privacyIDEA server and change some ownerships:

$ useradd -r -M -d /opt/privacyidea privacyidea
$ chown privacyidea:privacyidea /opt/privacyidea /etc/privacyidea /var/log/privacyidea

Install the privacyIDEA server

Now switch to that user and install the virtual environment for the privacyIDEA server:

$ su - privacyidea

Create the virtual environment:

1 https://stackoverflow.com/questions/42004986/how-to-install-mod-wgsi-for-apache-2-4-with-python3-5-on-centos-7

1.2. Installation 11

https://stackoverflow.com/questions/42004986/how-to-install-mod-wgsi-for-apache-2-4-with-python3-5-on-centos-7

privacyIDEA Authentication System, Release 3.2.1

$ virtualenv /opt/privacyidea

and activate it:

$. /opt/privacyidea/bin/activate

If this should be a pinned installation (that is the environment we use to build and test), we need to install some pinned
dependencies first. They should match the version of the targeted privacyIDEA:

(privacyidea)$ pip install -r https://raw.githubusercontent.com/privacyidea/
→˓privacyidea/v3.0.2/requirements.txt

Then just install the targeted privacyIDEA version with:

(privacyidea)$ pip install privacyidea==3.0.2

Setting up privacyIDEA

In order to setup privacyIDEA a configuration file must be added in /etc/privacyidea/pi.cfg. It should look
something like this:

import logging
The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super']
Your database
SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://pi:<dbsecret>@localhost/pi'
This is used to encrypt the auth_token
#SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
#PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_AUDIT_SQL_TRUNCATE = True
The Class for managing the SQL connection pool
PI_ENGINE_REGISTRY_CLASS = "shared"
PI_AUDIT_POOL_SIZE = 20
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'
PI_LOGLEVEL = logging.INFO

Make sure the configuration file is not world readable:

(privacyidea)$ chmod 640 /etc/privacyidea/pi.cfg

More information on the configuration parameters can be found in The Config File.

In order to secure the installation a new PI_PEPPER and SECRET_KEY must be generated:

(privacyidea)$ PEPPER="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "PI_PEPPER = '$PEPPER'" >> /etc/privacyidea/pi.cfg
(privacyidea)$ SECRET="$(tr -dc A-Za-z0-9_ </dev/urandom | head -c24)"
(privacyidea)$ echo "SECRET_KEY = '$SECRET'" >> /etc/privacyidea/pi.cfg

From now on the pi-manage-tool can be used to configure and manage the privacyIDEA server:

12 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(privacyidea)$ pi-manage create_enckey # encryption key for the database
(privacyidea)$ pi-manage create_audit_keys # key for verification of audit log
→˓entries
(privacyidea)$ pi-manage createdb # create the database structure
(privacyidea)$ pi-manage db stamp head -d /opt/privacyidea/lib/privacyidea/migrations/
→˓ # stamp the db

An administrative account is needed to configure and maintain privacyIDEA:

(privacyidea)$ pi-manage admin add <admin-user>

Setting up the Apache webserver

Now We need to set up apache to forward requests to privacyIDEA, so the next steps are executed as the root-user
again.

First the SELinux settings must be adjusted in order to allow the httpd-process to access the database and write to
the privacyIDEA logfile:

$ semanage fcontext -a -t httpd_sys_rw_content_t "/var/log/privacyidea(/.*)?"
$ restorecon -R /var/log/privacyidea

and:

$ setsebool -P httpd_can_network_connect_db 1

If something does not seem right, check for “denied” entries in /var/log/audit/audit.log

For testing purposes we use a self-signed certificate which should already have been created. In production environ-
ments this should be replaced by a certificate from a trusted authority.

To correctly load the apache config file for privacyIDEA we need to disable some configuration first:

$ cd /etc/httpd/conf.d
$ mv ssl.conf ssl.conf.inactive
$ mv welcome.conf welcome.conf.inactive
$ curl -O https://raw.githubusercontent.com/NetKnights-GmbH/centos7/master/SOURCES/
→˓privacyidea.conf

And we need a corresponding wsgi-script file in /etc/privacyidea/:

$ cd /etc/privacyidea
$ curl -O https://raw.githubusercontent.com/NetKnights-GmbH/centos7/master/SOURCES/
→˓privacyideaapp.wsgi

After a restart of the apache webserver ($ systemctl restart httpd) everything should be up and running.
You can log in with Your admin user at https://<privacyidea server> and start enrolling tokens.

RPM Repository

For customers with a valid service level agreement2 with NetKnights there is an RPM repository, that can be used to
easily install and update privacyIDEA on CentOS 7 / RHEL 7. For more information see3.

2 https://netknights.it/en/leistungen/service-level-agreements/
3 https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

1.2. Installation 13

https://netknights.it/en/leistungen/service-level-agreements/
https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

privacyIDEA Authentication System, Release 3.2.1

1.2.5 Upgrading

If you installed privacyIDEA via DEB or RPM repository you can use the normal system ways of apt-get, aptitude
and rpm to upgrade privacyIDEA to the current version.

If you want to upgrade your Ubuntu installtion from privacyIDEA 2.23 to privacyIDEA 3.0, please read Upgrading
privacyIDEA to 3.0.

Basic pip upgrade process

If you install privacyIDEA into a python virtualenv like /opt/privacyidea, you can follow this basic upgrade process.

First you might want to backup your program directory:

tar -zcf privacyidea-old.tgz /opt/privacyidea

and your database:

source /opt/privacyidea/bin/activate
pi-manage backup create

Running upgrade

Starting with version 2.17 the script privacyidea-pip-update performs the update of the python virtualenv
and the DB schema.

Just enter your python virtualenv (you already did so, when running the backup) and run the command:

privacyidea-pip-update

The following parameters are allowed:

-f or --force skips the safety question, if you really want to update.

-s or --skipstamp skips the version stamping during schema update.

-n or --noshema completely skips the schema update and only updates the code.

Manual upgrade

Now you can upgrade the installation:

source /opt/privacyidea/bin/activate
pip install --upgrade privacyidea

Usually you will need to upgrade/migrate the database:

privacyidea-schema-upgrade /opt/privacyidea/lib/privacyidea/migrations

Now you need to restart your webserver for the new code to take effect.

14 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Upgrade to privacyIDEA 2.12

In privacyIDEA 2.12 the Event Handler framework was added. Two new tables “eventhandler” and “eventhandlerop-
tion” were added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

Upgrade to privacyIDEA 2.11

In privacyIDEA 2.11 the RADIUS server definition was added. RADIUS servers can be used in RADIUS tokens and
in the RADIUS passthru policy.

A new database table “radiusserver” was added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

Upgrade to privacyIDEA 2.10

In privacyIDEA 2.10 SMTP servers were added. SMTP servers can be used for notifications, registration and also for
Email token and SMS token.

SMTP servers need a new database table “smtpserver”.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

privacyIDEA 2.10 can import all kind of PSKC token files. These XML files need to be parsed. Therefore Beautiful-
Soup4 and lxml is used. On pip installations you need to install a package like libxslt1-dev.

Upgrade From privacyIDEA 2.x to 2.3

In 2.3 the priority of resolvers in realms was added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

Note: You need to specify the path to the migrations scripts. This could be /usr/lib/privacyidea/migrations.

Note: When upgrading with the Ubuntu LTS packages, the database update is performed automatically.

1.2. Installation 15

privacyIDEA Authentication System, Release 3.2.1

Upgrade From privacyIDEA 1.5

Warning: privacyIDEA 2.0 introduces many changes in database schema, so at least perform a database backup!

Stopping Your Server

Be sure to stop your privacyIDEA server.

Upgrade Software

To upgrade the code enter your python virtualenv and run:

pip install --upgrade privacyidea

Configuration

Read about the configuration in the The Config File.

You can use the old enckey, the old signing keys and the old database uri. The values can be found in your old
ini-file as privacyideaSecretFile, privacyideaAudit.key.private, privacyideaAudit.key.
public and sqlalchemy.url. Your new config file might look like this:

config_path = "/home/cornelius/tmp/pi20/etc/privacyidea/"
This is your old database URI
Note the three slashes!
SQLALCHEMY_DATABASE_URI = "sqlite:///" + config_path + "token.sqlite"
This is new!
SECRET_KEY = 't0p s3cr3t'
This is new
#This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
This is your old encryption key!
PI_ENCFILE = config_path + 'enckey'
THese are your old signing keys
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = config_path + 'private.pem'
PI_AUDIT_KEY_PUBLIC = config_path + 'public.pem'

To verify the new configuration run:

pi-manage create_enckey

It should say, that the enckey already exists!

Migrate The Database

You need to upgrade the database to the new database schema:

pi-manage db upgrade -d lib/privacyidea/migrations

16 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: In the Ubuntu package the migrations folder is located at /usr/lib/privacyidea/migrations/.

Create An Administrator

With privacyIDEA 2.0 the administrators are stored in the database. The password of the administrator is salted and
also peppered, to avoid having a database administrator slip in a rogue password.

You need to create new administrator accounts:

pi-manage addadmin <email-address> <admin-name>

Start The Server

Run the server:

pi-manage runserver

or add it to your Apache or Nginx configuration.

1.2.6 The Config File

privacyIDEA reads its configuration from different locations:

1. default configuration from the module privacyidea/config.py

2. then from the config file /etc/privacyidea/pi.cfg if it exists and then

3. from the file specified in the environment variable PRIVACYIDEA_CONFIGFILE.

export PRIVACYIDEA_CONFIGFILE=/your/config/file

The configuration is overwritten and extended in each step. I.e. values define in privacyidea/config.py that
are not redefined in one of the other config files, stay the same.

You can create a new config file (either /etc/privacyidea/pi.cfg) or any other file at any location and set the
environment variable. The file should contain the following contents:

The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super', 'administrators']
Your database
SQLALCHEMY_DATABASE_URI = 'sqlite:////etc/privacyidea/data.sqlite'
This is used to encrypt the auth_token
SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/home/cornelius/src/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/home/cornelius/src/privacyidea/public.pem'
PI_AUDIT_MODULE = <python audit module>
PI_AUDIT_SQL_URI = <special audit log DB uri>
PI_LOGFILE = '....'

(continues on next page)

1.2. Installation 17

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

PI_LOGLEVEL = 20
PI_INIT_CHECK_HOOK = 'your.module.function'
PI_CSS = '/location/of/theme.css'
PI_UI_DEACTIVATED = True

Note: The config file is parsed as python code, so you can use variables to set the path and you need to take care for
indentations.

SQLALCHEMY_DATABASE_URI defines the location of your database. You may want to use the MySQL database
or Maria DB. There are two possible drivers, to connect to this database. Please read MySQL database connect string.

The SUPERUSER_REALM is a list of realms, in which the users get the role of an administrator.

PI_INIT_CHECK_HOOK is a function in an external module, that will be called as decorator to token/init and
token/assign. This function takes the request and action (either “init” or “assing”) as an arguments and can
modify the request or raise an exception to avoid the request being handled.

There are three config entries, that can be used to define the logging. These are PI_LOGLEVEL, PI_LOGFILE,
PI_LOGCONFIG. These are described in Debugging and Logging.

You can use PI_CSS to define the location of another cascading style sheet to customize the look and fell. Read more
at Themes.

Note: If you ever need passwords being logged in the log file, you may set PI_LOGLEVEL = 9, which is a lower
log level than logging.DEBUG. Use this setting with caution and always delete the logfiles!

privacyIDEA digitally signs the responses. You can disable this using the parameter PI_NO_RESPONSE_SIGN. Set
this to True to suppress the response signature.

You can set PI_UI_DEACTIVATED = True to deactivate the privacyIDEA UI. This can be interesting if you are
only using the command line client or your own UI and you do not want to present the UI to the user or the outside
world.

Note: The API calls are all still accessible, i.e. privacyIDEA is technically fully functional.

Engine Registry Class

The PI_ENGINE_REGISTRY_CLASS option controls the pooling of database connections opened by SQL resolvers
and the SQL audit module. If it is set to "null", SQL connections are not pooled at all and new connections are
opened for every request. If it is set to "shared", connections are pooled on a per-process basis, i.e. every wsgi
process manages one connection pool for each SQL resolver and the SQL audit module. Every request then checks
out connections from this shared pool, which reduces the overall number of open SQL connections. If the option is
left unspecified, its value defaults to "null".

Audit parameters

PI_AUDIT_MODULE lets you specify an alternative auditing module. The default which is shipped with privacyIDEA
is privacyidea.lib.auditmodules.sqlaudit. There is no need to change this, unless you know exactly
what you are doing.

18 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

You can change the servername of the privacyIDEA node, which will be logged to the audit log using the variable
PI_AUDIT_SERVERNAME.

You can run the database for the audit module on another database or even server. For this you can specify the database
URI via PI_AUDIT_SQL_URI.

PI_AUDIT_TRUNCATE = True lets you truncate audit entries, that to the length of the database fields.

In certain cases when you experiencing problems you may use the parameters PI_AUDIT_POOL_SIZE and
PI_AUDIT_POOL_RECYCLE. However, they are only effective if you also set PI_ENGINE_REGISTRY_CLASS
to "shared".

If you by any reason want to avoid signing audit entries you can set PI_AUDIT_NO_SIGN = True. If
PI_AUDIT_NO_SIGN is set to True audit entries will not be signed and also the signature of audit entries will
not be verified. Audit entries will appears with signature fail.

Monitoring parameters

PI_MONITORING_MODULE lets you specify an alternative statistics monitoring module. The monitoring module
takes care of writing values with timestamps to a store. This is used e.g. by the EventCounter and SimpleStats.

The first available monitoring module is privacyidea.lib.monitoringmodules.sqlstats. It accepts the
following additional parameters:

PI_MONITORING_SQL_URI can hold an alternative SQL connect string. If not specified the normal
SQLALCHEMY_DATABASE_URI is used.

PI_MONITORING_POOL_SIZE (default 20) and PI_MONITORING_POOL_RECYCLE (default 600) let you con-
figure pooling. It uses the settings from the above mentioned PI_ENGINE_REGISTRY_CLASS.

Note: A SQL database is probably not the best database to store time series. Other monitoring modules will follow.

privacyIDEA Nodes

privacyIDEA can run in a redundant setup. For statistics and monitoring purposes you can give these different nodes,
dedicated names.

PI_NODE is a string with the name of this very node. PI_NODES is a list of all available nodes in the cluster.

If PI_NODE is not set, then PI_AUDIT_SERVERNAME is used as node name. If this is also not set, the node name
is returned as “localnode”.

Trusted JWTs

Other applications can use the API without the need to call the /auth endpoint. This can be achieved by trusting
private RSA keys to sign JWTs. You can define a list of corresponding public keys that are trusted for certain users
and roles using the parameter PI_TRUSTED_JWT:

PI_TRUSTED_JWT = [{"public_key": "-----BEGIN PUBLIC KEY-----
→˓\nMIIBIjANBgkqhkiG9w0BAQEF...",

"algorithm": "RS256",
"role": "user",
"realm": "realm1",
"username": "userA",
"resolver": "resolverX"}]

1.2. Installation 19

privacyIDEA Authentication System, Release 3.2.1

This entry means, that the private key, that corresponds to the given public key can sign a JWT, that can impersonate
as the userA in resolver resolverX in realmA.

A JWT can be created like this:

auth_token = jwt.encode(payload={"role": "user",
"username": "userA",
"realm": "realm1",
"resolver": "resolverX"},
key=private_key,
algorithm="RS256")

Note: The user and the realm do not necessarily need to exist in any resolver! But there probably must be certain
policies defined for this user. If you are using an administrative user, the realm for this administrative must be defined
in pi.cfg in the list SUPERUSER_REALM.

1.2.7 Debugging and Logging

You can set PI_LOGLEVEL to a value 10 (Debug), 20 (Info), 30 (Warning), 40 (Error) or 50 (Critical). If you
experience problems, set PI_LOGLEVEL = 10 restart the web service and resume the operation. The log file
privacyidea.log should contain some clues.

You can define the location of the logfile using the key PI_LOGFILE. Usually it is set to:

PI_LOGFILE = "/var/log/privacyidea/privacyidea.log"

Advanced Logging

You can also define a more detailed logging by specifying a log configuration file like this:

PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

Such a configuration could look like this:

[formatters]
keys=detail

[handlers]
keys=file,mail

[formatter_detail]
class=privacyidea.lib.log.SecureFormatter
format=[%(asctime)s][%(process)d][%(thread)d][%(levelname)s][%(name)s:%(lineno)d]
→˓%(message)s

[handler_mail]
class=logging.handlers.SMTPHandler
level=ERROR
formatter=detail
args=('mail.example.com', 'privacyidea@example.com', ['admin1@example.com',\

'admin2@example.com'], 'PI Error')

[handler_file]

(continues on next page)

20 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

Rollover the logfile at midnight
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=DEBUG
args=('/var/log/privacyidea/privacyidea.log',)

[loggers]
keys=root,privacyidea

[logger_privacyidea]
handlers=file,mail
qualname=privacyidea
level=DEBUG

[logger_root]
level=ERROR
handlers=file

The file structure follows1 and can be used to define additional handlers like logging errors to email addresses.

Note: In this example a mail handler is defined, that will send emails to certain email addresses, if an ERROR occurs.

1.2.8 The WSGI Script

Apache2 and Nginx are using a WSGI script to start the application.

This script is usually located at /etc/privacyidea/privacyideaapp.py or /etc/privacyidea/
privacyideaapp.wsgi and has the following contents:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production",

config_file="/etc/privacyidea/pi.cfg")

In the create_app-call you can also select another config file.

Note: This way you can run several instances of privacyIDEA in one Apache2 server by defining several WSGIScrip-
tAlias definitions pointing to different wsgi-scripts, that again reference different config files with different database
definitions.

Running Apache instances

To run further Apache instances add additional lines in your Apache config:

1 https://docs.python.org/2/library/logging.config.html#configuration-file-format

1.2. Installation 21

https://docs.python.org/2/library/logging.config.html#configuration-file-format

privacyIDEA Authentication System, Release 3.2.1

WSGIScriptAlias /instance1 /etc/privacyidea1/privacyideaapp.wsgi
WSGIScriptAlias /instance2 /etc/privacyidea2/privacyideaapp.wsgi
WSGIScriptAlias /instance3 /etc/privacyidea3/privacyideaapp.wsgi
WSGIScriptAlias /instance4 /etc/privacyidea4/privacyideaapp.wsgi

It is a good idea to create a subdirectory in /etc for each instance. Each wsgi script needs to point to the corresponding
config file pi.cfg.

Each config file can define its own

• database

• encryption key

• signing key

• . . .

To create the new database you need the command pi-manage. The command pi-manage reads the configuration from
/etc/privacyidea/pi.cfg.

If you want to use another instance with another config file, you need to set an environment variable and create the
database like this:

PRIVACYIDEA_CONFIGFILE=/etc/privacyidea3/pi.cfg pi-manage createdb

This way you can use pi-manage for each instance.

1.2.9 The pi-manage Script

pi-manage is the script that is used during the installation process to setup the database and do many other tasks.

Note: The interesting thing about pi-manage is, that it does not need the server to run as it acts directly on the
database. Therefor you need read access to /etc/privacyidea/pi.cfg and the encryption key.

If you want to use a config file other than /etc/privacyidea/pi.cfg, you can set an environment variable:

PRIVACYIDEA_CONFIGFILE=/home/user/pi.cfg pi-manage

pi-manage always takes a command and sometimes a sub command:

pi-manage <command> [<subcommand>] [<parameters>]

For a complete list of commands and sub commands use the -h parameter.

You can do the following tasks.

Encryption Key

You can create an encryption key and encrypt the encryption key.

Create encryption key:

pi-manage create_enckey

22 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: This command takes no parameters. The filename of the encryption key is read from the configuration. The
key will not be created, if it already exists.

The encryption key is a plain file on your hard drive. You need to take care, to set the correct access rights.

You can also encrypt the encryption key with a passphrase. To do this do:

pi-manage encrypt_enckey /etc/privacyidea/enckey

and pipe the encrypted enckey to a new file.

Read more about the database encryption and the enckey in Security Modules.

Backup and Restore

You can create a backup which will be save to /var/lib/privacyidea/backup/.

The backup will contain the database dump and the complete directory /etc/privacyidea. You may choose if you want
to add the encryption key to the backup or not.

Warning: If the backup includes the database dump and the encryption key all seeds of the OTP tokens can be
read from the backup.

As the backup contains the etc directory and the database you only need this tar archive backup to perform a complete
restore.

Rotate Audit Log

Audit logs are written to the database. You can use pi-manage to perform a log rotation.

pi-manage rotate_audit

You can specify a highwatermark and a lowwatermark, age or a config file. Read more about it at Cleaning up entries.

API Keys

You can use pi-manage to create API keys. API keys can be used to

1. secure the access to the /validate/check API or

2. to access administrative tasks via the REST API.

You can create API keys for /validate/check using the command

pi-manage api createtoken -r validate

If you want to secure the access to /validate/check you also need to define a policy in scope authorizaion.
See api_key_required.

If you wan to use the API key to automate administrative REST API calls, you can use the command:

pi-manage api createtoken -r admin

1.2. Installation 23

privacyIDEA Authentication System, Release 3.2.1

This command also generates an admin account name. But it does not create this admin account. You need to do so
using pi-manage admin. You can now use this API key to enroll tokens as administrator.

Note: These API keys are not persistant. They are not stored in the privacyIDEA server. The API key is connected to
the username, that is also generated. This means you have to create an administrative account with this very username
to use this API key for this admin user. You also should set policies for this admin user, so that this API key has only
restricted rights!

Note: The API key is valid for 365 days.

Policies

You can use pi-manage policy to enable, disable, create and delete policies. Using the sub commands
p_export and p_import you can also export a backup of your policies and import this policy set later.

This could also be used to transfer the policies from one privacyIDEA instance to another.

1.2.10 Security Modules

Note: For a normal installation this section can be safely ignored.

privacyIDEA provides a security module that takes care of

• encrypting the token seeds,

• encrypting passwords from the configuration like the LDAP password,

• creating random numbers,

• and hashing values.

Note: The Security Module concept can also be used to add a Hardware Security Module to perform the above
mentioned tasks.

Default Security Module

The default security module is implemented with the operating systems capabilities. The encryption key is located
in a file enckey specified via PI_ENCFILE in the configuration file (The Config File).

This enckey contains three 32byte keys and is thus 96 bytes. This file has to be protected. So the access rights to this
file are set accordingly.

In addition you can encrypt this encryption key with an additional password. In this case, you need to enter the
password each time the privacyIDEA server is restarted and the password for decrypting the enckey is kept in memory.

The pi-manage Script contains the instruction how to encrypt the enckey

After starting the server, you can check, if the encryption key is accessible. To do so run:

24 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

privacyidea -U <yourserver> --admin=<youradmin> securitymodule

The output will contain "is_ready": True to signal that the encryption key is operational.

If it is not yet operational, you need to pass the password to the privacyIDEA server to decrypt the encryption key. To
do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule \
--module=default

Note: If the security module is not operational yet, you might get an error message “HSM not ready.”.

PKCS11 Security Module

The PKCS11 Security Module can be used to encrypt data with an hardware security module, that is connected via the
PKCS11 interface. To encrypt and decrypt data you can use an RSA key pair that is stored on the HSM.

To activate this module add the following to the configuration file (The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.pkcs11.PKCS11SecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

PI_HSM_MODULE_KEY_ID is the key id (integer) on the HSM.

AES HSM Security Module

The AES Hardware Security Module can be used to encrypt data with an hardware security module (HSM) connected
via the PKCS11 interface. This module allows to use AES keys stored in the HSM to encrypt and decrypt data.

This module uses three keys, similarly to the content of PI_ENCFILE, identified as token, config and value.

To activate this module add the following to the configuration file (The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.aeshsm.AESHardwareSecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full specified path to the shared object file in
the file system.

PI_HSM_MODULE_SLOT is the slot on the HSM where the keys are located (default: 1).

PI_HSM_MODULE_PASSWORD is the password to access the slot.

PI_HSM_MODULE_MAX_RETRIES is the number privacyIDEA tries to perform a cryptographic operation like de-
crypt, encrypt or random if the first attempt with the HSM fails. The default value is 5.

Note: Some PKCS11 libraries for network attached HSMs also implement a retry. You should take this into account,
since retries would multiply and it could take a while till a request would finally fail.

1.2. Installation 25

privacyIDEA Authentication System, Release 3.2.1

PI_HSM_MODULE_KEY_LABEL is the label prefix for the keys on the HSM (default: privacyidea). In order to
locate the keys, the module will search for key with a label equal to the concatenation of this prefix, _ and the key
identifier (respectively token, config and value).

PI_HSM_MODULE_KEY_LABEL_TOKEN is the label for token key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_CONFIG is the label for config key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_VALUE is the label for value key (defaults to value based on
PI_HSM_MODULE_KEY_LABEL setting).

After installation you might want to take a look at First Steps.

1.3 First Steps

You installed privacyIDEA successfully according to Installation and created an administrator using the command
pi-manage admin as e.g. described in Ubuntu Packages.

These first steps will guide you through the tasks of logging in to the management web UI, attaching your first users
and enrolling the first token.

1.3.1 Login to the Web UI

privacyIDEA has only one login form that is used by administrators and normal users to login. Administrators will
be able to configure the system and to manage all tokens, while normal users will only be able to manage their own
tokens.

You should enter your username with the right realm. You need to append the realm to the username like
username@realm.

Login for administrators

Administrators can authenticate at this login form to access the management UI.

Administrators are stored in the database table Admin and can be managed with the tool:

pi-manage admin ...

The administrator just logs in with his username.

Note: You can configure privacyIDEA to authenticate administrators against privacyIDEA itself, so that administra-
tors need to login with a second factor. See So what’s the thing with all the admins? how to do this.

Login for normal users

Normal users authenticate at the login form to be able to manage their own tokens. By default users need to authenticate
with the password from their user source.

E.g. if the users are located in an LDAP or Active Directory the user needs to authenticate with his LDAP/AD
password.

26 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

But before a user can login, the administrator needs to configure realms, which is described in the next step Creating
your first realm.

Note: The user my either login with his password from the userstore or with any of his tokens.

Note: The administrator may change this behaviour by creating an according policy, which then requires the user
to authenticate against privacyIDEA itself. I.e. this way the user needs to authenticate with a second factor/token to
access the self service portal. (see the policy section login_mode)

1.3.2 Creating your first realm

Note: When the administrator logs in and no useridresolver and no realm is defined, a popup appears, which asks
you to create a default realm. During these first steps you may say “No”, to get a better understanding.

Users in privacyIDEA are read from existing sources. See Realms for more information.

In these first steps we will simply read the users from your /etc/passwd file.

Create a UserIdResolver

The UserIdResolver is the connector to the user source. For more information see UserIdResolvers.

• Go to Config -> Users to create a UserIdResolver.

Fig. 1: Create the first UserIdResolver

• Choose New passwdresolver and

• Enter the name “myusers”.

• Save it.

You just created your first connection to a user source.

1.3. First Steps 27

privacyIDEA Authentication System, Release 3.2.1

Fig. 2: Create the first UserIdResolver

Create a Realm

User sources are grouped togeather to a so called “realm”. For more information see Realms.

• Go to Config -> Realms

• Enter “realm1” as the new realm name and select the priority 1.

• Check the resolver “myusers” to be included into this realm.

• Save it.

Fig. 3: Create the first Realm

• Go to Users and you will see the users from the /etc/passwd.

Congratulation! You created your first realm.

28 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 4: The users from /etc/passwd

You are now ready to enroll a token to a user. Read Enrolling your first token.

1.3.3 Enrolling your first token

You may now enroll a new token. In this example we are using the Google Authenticator App, that you need to install
on your smartphone.

• Go to Tokens -> Enroll Token

• Select the username root. When you start typing “r”, “o”. . . the system will find the user root automatically.

• Enter a PIN. I entered “test” . . .

• . . . and click “Enroll Token”.

• After enrolling the token you will see a QR code, that you need to scan with the Google Authenticator App.

• Click on the serial number link at the top of the dialog.

• Now you see the token details.

• Left to the button “Test Token” you can enter the PIN and the OTP value generated by the Google Authenticator.

• Click the button “Test Token”. You should see a green “matching 1 tokens”.

Congratulations! You just enrolled your first token to a user.

Now you are ready to attach applications to privacyIDEA in order to add two factor authentication to those applications.
To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

1.3. First Steps 29

privacyIDEA Authentication System, Release 3.2.1

Fig. 5: The Token Enrollment Dialog

Fig. 6: Enrollment Success

30 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 7: Test the Token

1.3. First Steps 31

privacyIDEA Authentication System, Release 3.2.1

After these first steps you will be able to start attaching applications to privacyIDEA in order to add two factor
authentication to those applications. You can

• use a PAM module to authenticate with OTP at SSH or local login

• or the RADIUS plugin to configure your firewall or VPN to use OTP,

• or use an Apache2 plugin to do Basic Authentication with OTP.

• You can also setup different web applications to use OTP.

To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

1.4 Configuration

The configuration menu can be used to define useridresolvers and realms, set the system config and the token config.

It also contains a shortcut to the policy tab (see Policies).

1.4.1 UserIdResolvers

Each organisation or company usually has its users managed at a central location. This is why privacyIDEA does not
provide its own user management but rather connects to existing user stores.

UserIdResolvers are connectors to those user stores, the locations, where the users are managed. Nowadays this can
be LDAP directories or especially Active Directory, some times FreeIPA or the Redhat 389 service. But classically
users are also located in files like /etc/passwd on standalone unix systems. Web services often use SQL databases as
user store.

Today with many more online cloud services SCIM is also an uprising protocol to access userstores.

privacyIDEA already comes with UserIdResolvers to talk to all these user stores:

• Flatfile resolver,

• LDAP resolver,

• SQL resolver,

• SCIM resolver.

Note: New resolver types (python modules) can be added easily. See the module section for this (UserIdResolvers).

You can create as many UserIdResolvers as you wish and edit existing resolvers. When you have added all config-
uration data, most UIs of the UserIdResolvers have a button “Test resolver”, so that you can test your configuration
before saving it.

Starting with privacyIDEA 2.4 resolvers can be editable, i.e. you can edit the users in the user store. Read more about
this at Manage Users.

Note: Using the policy authentication:otppin=userstore users can authenticate with the password from
their user store, being the LDAP password, SQL password or password from flat file.

32 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Flatfile resolver

Flatfile resolvers read files like /etc/passwd.

Note: The file /etc/passwd does not contain the unix password. Thus, if you create a flatfile resolver from this
file the functionality with otppin=userstore is not available. You can create a flatfile with passwords using the
tool privacyidea-create-pwidresolver-user.

Create a flat file like this:

privacyidea-create-pwidresolver-user -u user2 -i 1002 >> /your/flat/file

LDAP resolver

The LDAP resolver can be used to access any kind of LDAP service like OpenLDAP, Active Directory, FreeIPA,
Penrose, Novell eDirectory.

Fig. 8: LDAP resolver configuration

In case of Active Directory connections you might need to check the box No anonymous referral chasing.
The underlying LDAP library is only able to do anonymous referral chasing. Active Directory will produce an error
in this case1.

1 http://blogs.technet.com/b/ad/archive/2009/07/06/referral-chasing.aspx

1.4. Configuration 33

http://blogs.technet.com/b/ad/archive/2009/07/06/referral-chasing.aspx

privacyIDEA Authentication System, Release 3.2.1

The Server URI can contain a comma separated list of servers. The servers are used to create a server pool and are
used with a round robin strategy3.

Example:

ldap://server1, ldaps://server2:1636, server3, ldaps://server4

This will create LDAP requests to

• server1 on port 389

• server2 on port 1636 using SSL

• server3 on port 389

• server4 on port 636 using SSL.

The Bind Type with Active Directory can either be chosen as “Simple” or as “NTLM”.

Note: When using bind type “Simple” you need to specify the Bind DN like
cn=administrator,cn=users,dc=domain,dc=name. When using bind type “NTLM” you need to specify Bind
DN like DOMAINNAME\username.

The LoginName attribute is the attribute that holds the loginname. It can be changed to your needs.

Starting with version 2.20 you can provide a list of attributes in LoginName Attribute like:

sAMAccountName, userPrincipalName

This way a user can login with either his sAMAccountName or his principalName.

The searchfilter is used to list all possible users, that can be used in this resolver. The searchfilter is used for
forward and backward search the object in LDAP.

The attribute mapping maps LDAP object attributes to user attributes in privacyIDEA. privacyIDEA knows
the following attributes:

• phone,

• mobile,

• email,

• surname,

• givenname,

• password

• accountExpires.

The above attributes are used for privacyIDEA’s normal functionality and are listed in the userview. However, with
a SAML authentication request user attributes can be returned. (see SAML Attributes). To return arbitrary attributes
from the LDAP you can add additional keys to the attribute mapping with a key, you make up and the LDAP attribute
like:

"homedir": "homeDirectory",
"studentID": "objectGUID"

3 https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

34 Chapter 1. Table of Contents

https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

privacyIDEA Authentication System, Release 3.2.1

“homeDirectory” and “objectGUID” being the attributes in the LDAP directory and “homedir” and “studentID” the
keys returned in a SAML authentication request.

The MULTIVALUEATTRIBUTES config value can be used to specify a list of user attributes, that should return
a list of values. Imagine you have a user mapping like { "phone" : "telephoneNumber", "email"
: "mail", "surname" : "sn", "group": "memberOf"}. Then you could specify ["email",
"group"] as the multi value attribute and the user object would return the emails and the group memberships of the
user from the LDAP server as a list.

Note: If the MULTIVALUEATTRIBUTES is left blank the default setting is “mobile”. I.e. the mobile number will
be returned as a list.

The MULTIVALUEATTRIBUTES can be well used with the samlcheck endpoint (see Validate endpoints) or with
the policy add_user_in_response.

The UID Type is the unique identifier for the LDAP object. If it is left blank, the distinguished name will be used.
In case of OpenLDAP this can be entryUUID and in case of Active Directory objectGUID. For FreeIPA you can use
ipaUniqueID.

Note: The attributes entryUUID, objectGUID, and ipaUniqueID are case sensitive!

The option No retrieval of schema information can be used to disable the retrieval of schema informa-
tion4 in order to improve performance. This checkbox is deactivated by default and should only be activated after
having ensured that schema information are unnecessary.

The CACHE_TIMEOUT configures a short living per process cache for LDAP users. The cache is not shared between
different Python processes, if you are running more processes in Apache or Nginx. You can set this to 0 to deactivate
this cache.

The Server pool retry rounds and Server pool skip timeout settings configure the behavior of the LDAP server pool.
When establishing a LDAP connection, the resolver uses a round-robin strategy to select a LDAP server from the pool.
If the current server is not reachable, it is removed from the pool and will be re-inserted after the number of seconds
specified in the skip timeout. If no server from the pool is reachable, the servers are queried again from the beginning.
If a reachable server has not been found after the number of rounds specified in the retry rounds, the request fails.

By default, knowledge about unavailable pool servers is not persisted between requests. Consequently, a new request
may retry to reach unavailable servers, even though the skip timeout has not passed yet. If the Per-process server
pool is enabled, knowledge about unavailable servers is persisted within each process. This setting may improve
performance in situations in which a LDAP server from the pool is down for extended periods of time.

TLS certificates

Starting with privacyIDEA 2.18 in case of encrypted LDAPS connections privacyIDEA can verify the TLS certificate.
(Python >= 2.7.9 required) To have privacyIDEA verify the TLS certificate you need to check the according checkbox.

You can specify a file with the trusted CA certificate, that signed the TLS certificate. The default CA filename is
/etc/privacyidea/ldap-ca.crt and can contain a list of base64 encoded CA certificates. PrivacyIDEA will use the CA
file if specifed. If you leave the field empty it will also try the system certificate store (/etc/ssl/certs/ca-certificates.crt
or /etc/ssl/certs/ca-bundle.crt).

4 http://ldap3.readthedocs.io/schema.html

1.4. Configuration 35

http://ldap3.readthedocs.io/schema.html

privacyIDEA Authentication System, Release 3.2.1

Modifying users

Starting with privacyIDEA 2.12 you can define the LDAP resolver as editable. I.e. you can create and modify users
from within privacyIDEA.

There are two additional configuration parameters for this case.

DN Template defines how the DN of the new LDAP object should be created. You can use username, surname,
givenname and basedn to create the distiguished name.

Examples:

CN=<givenname> <surname>,<basedn>

CN=<username>,OU=external users,<basedn>

uid=<username>,ou=users,o=example,c=com

Object Classes defines which object classes the user should be assigned to. This is a comma separated list. The
usual object classes for Active Directory are

top, person, organizationalPerson, user, inetOrgPerson

Expired Users

You may set

“accountExpires”: “accountExpires”

in the attribute mapping for Microsoft Active Directories. You can then call the user listing API with the parameter
accountExpires=1 and you will only see expired accounts.

This functionality is used with the script privacyidea-expired-users.

SQL resolver

The SQL resolver can be used to retrieve users from any kind of SQL database like MySQL, PostgreSQL, Oracle,
DB2 or sqlite.

In the upper frame you need to configure the SQL connection. The SQL resolver uses SQLAlchemy internally. In the
field Driver you need to set a driver name as defined by the SQLAlchemy dialects like “mysql” or “postgres”.

In the SQL attributes frame you can specify how the users are identified.

The Database table contains the users.

Note: At the moment only one table is supported, i.e. if some of the user data like email address or telephone number
is located in a second table, those data can not be retrieved.

The Limit is the SQL limit for a userlist request. This can be important if you have several thousand user entries in
the table.

The Attribute mapping defines which table column should be mapped to which privayIDEA attribute. The
known attributes are:

• userid (mandatory),

• username (mandatory),

• phone,

36 Chapter 1. Table of Contents

http://sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_9/dialects/

privacyIDEA Authentication System, Release 3.2.1

Fig. 9: SQL resolver configuration

1.4. Configuration 37

privacyIDEA Authentication System, Release 3.2.1

• mobile,

• email,

• givenname,

• surname,

• password.

The password attribute is the database column that contains the user password. This is used, if you are doing user
authentication against the SQL database.

Note: There is no standard way to store passwords in an SQL database. There are several different ways to do this.
privacyIDEA supports the most common ways like Wordpress hashes starting with $P or $S. Secure hashes starting
with {SHA} or salted secure hashes starting with {SSHA}, {SSHA256} or {SSHA512}. Password hashes of length 64
are interpreted as OTRS sha256 hashes.

You can mark the users as Editable. The Password_Hash_Type can be used to determine wich hash algorithm
should be used, if a password of an editable user is written to the database.

You can add an additional Where statement if you do not want to use all users from the table.

The poolSize and poolTimeout determine the pooling behaviour. The poolSize (default 5) determine how
many connections are kept open in the pool. The poolTimeout (default 10) specifies how long the application waits
to get a connection from the pool.

Note: The pooling parameters only have effect if the PI_ENGINE_REGISTRY_CLASS config option is set to
"shared" (see Engine Registry Class). If you then have several SQL resolvers with the same connection and
pooling settings, they will use the same shared connection pool. If you change the connection settings of an existing
connection, the connection pool for the old connection settings will persist until the respective connections are closed
by the SQL server or the web server is restarted.

Note: The Additional connection parameters refer to the SQLAlchemy connection but are not used at
the moment.

SCIM resolver

SCIM is a “System for Cross-domain Identity Management”. SCIM is a REST-based protocol that can be used to ease
identity management in the cloud.

The SCIM resolver is tested in basic functions with OSIAM2, the “Open Source Idenitty & Access Management”.

To connect to a SCIM service you need to provide a URL to an authentication server and a URL to the resource server.
The authentication server is used to authenticate the privacyIDEA server. The authentication is based on a client
name and the Secret for this client.

Userinformation is then retrieved from the resource server.

The available attributes for the Attribute mapping are:

• username (mandatory),

• givenname,

2 http://www.osiam.org

38 Chapter 1. Table of Contents

http://www.osiam.org

privacyIDEA Authentication System, Release 3.2.1

• surname,

• phone,

• mobile,

• email.

User Cache

privacyIDEA does not implement local user management by design and relies on UserIdResolvers to connect to exter-
nal user stores instead. Consequently, privacyIDEA queries user stores quite frequently, e.g. to resolve a login name
to a user ID while processing an authentication request, which may introduce a significant slowdown. In order to
optimize the response time of authentication requests, privacyIDEA 2.19 introduces the user cache which is located
in the local database. It can be enabled in the system configuration (see User Cache).

A user cache entry stores the association of a login name in a specific UserIdResolver with a specific user ID for a
predefined time called the expiration timeout, e.g. for one week. The processing of further authentication requests by
the same user during this timespan does not require any queries to the user store, but only to the user cache.

The user cache should only be enabled if the association of users and user ID is not expected to change often: In case
a user is deleted from the user store, but can still be found in the user cache and still has assigned tokens, the user will
still be able to authenticate during the expiration timeout! Likewise, any changes to the user ID will not be noticed by
privacyIDEA until the corresponding cache entry expires.

Expired cache entries are not deleted from the user cache table automatically. Instead, the tool
privacyidea-usercache-cleanup should be used to delete expired cache entries from the database, e.g.
in a cronjob.

However, cache entries are removed at some defined events:

• If a UserIdResolver is modified or deleted, all cache entries belonging to this resolver are deleted.

• If a user is modified or deleted in an editable UserIdResolver, all cache entries belonging to this user are deleted.

Note: Realms with multiple UserIdResolvers are a special case: If a user userX tries to authenticate in a realm
with two UserIdResolvers resolverA (with highest priority) and resolverB, the user cache is queried to find the
user ID of userX in the UserIdResolver resolverA. If the cache contains no matching entry, resolverA itself is
queried for a matching user ID! Only if resolverA does not find a corresponding user, the user cache is queried to
determine the user ID of userX in resolverB. If no matching entry can be found, resolverB is queried.

1.4.2 Realms

Users need to be in realms to have tokens assigned. A user, who is not member of a realm can not have a token
assigned and can not authenticate.

You can combine several different UserIdResolvers (see UserIdResolvers) into a realm. The system knows one default
realm. Users within this default realm can authenticate with their username.

Users in realms, that are not the default realm, need to be additionally identified. Therefor the users need to authenticate
with their username and the realm like this:

user@realm

1.4. Configuration 39

privacyIDEA Authentication System, Release 3.2.1

Relate User to a Realm

There are several options to relate a user to a specific realm during authentication. Usually, if only a login name is
given, the user will be searched in the default realm.

If a realm parameter is given in a /auth or /validate/check request, it supersedes a possible split realm.

The following table shows different combinations of user(name)-parameter and realm-parameter. Depending on the
Split @ Sign-setting, this shows in which realm the user will be searched:

Input parameter Split @ Sign-setting
user(name) realm true false
user – user defrealm user defrealm
user realm1 user realm1 user realm1
user unknown – –
user@realm1 – user realm1 user@realm1 defrealm
user@realm1 realm1 user realm1 user@realm1 realm1
user@realm1 realm2 user realm2 user@realm1 realm2
user@realm2 realm1 user realm1 user@realm2 realm1
user@realm1 unknown – –
user@unknown – user@unknown defrealm user@unknown defrealm
user@unknown realm1 user@unknown realm1 user@unknown realm1
user@unknown unknown – –

Note: Be aware that if the Split @ Sign-setting is true, a realm parameter is given and a user name with an @-sign is
given where the part after the @ denotes a valid realm, the realm parameter will take precedence.

List of Realms

The realms dialog gives you a list of the already defined realms.

It shows the name of the realms, whether it is the default realm and the names of the resolvers, that are combined to
this realm.

You can delete or edit an existing realm or create a new realm.

Edit Realm

Each realm has to have a unique name. The name of the realm is case insensitive. If you create a new realm with the
same name like an existing realm, the existing realm gets overwritten.

If you click Edit Realm you can select which userresolver should be contained in this realm. A realm can contain
several resolvers.

Resolver Priority

Within a realm you can give each resolver a priority. The priority is used to find a user that is located in several
resolvers. If a user is located in more than one resolver, the user will be taken from the resolver with the lowest
number in the priority.

Priorities are numbers between 1 and 999. The lower the number the higher the priority.

40 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 10: Edit a realm

Example:

A user “administrator” is located in a resolver “users” which contains all Active Directory users. And the “adminis-
trator” is located in a resolver “admins”, which contains all users in the Security Group “Domain Admins” from the
very same domain. Both resolvers are in the realm “AD”, “admins” with priority 1 and “users” with priority 2.

Thus the user “administrator@AD” will always resolve to the user located in resolver “admins”.

This is useful to create policies for the security group “Domain Admins”.

Note: A resolver has a priority per realm. I.e. a resolver can have a different priority in each realm.

Autocreate Realm

If you have a fresh installation, no resolver and no realm is defined. To get you up and running faster, the system will
ask you, if it should create the first realm for you.

If you answer “yes”, it will create a resolver named “deflocal” that contains all users from /etc/passwd and a realm
named “defrealm” with this very resolver.

Thus you can immediately start assigning and enrolling tokens.

If you check “Do not ask again” this will be stored in a cookie in your browser.

1.4. Configuration 41

mailto:administrator@AD

privacyIDEA Authentication System, Release 3.2.1

Note: The realm “defrealm” will be the default realm. So if you create a new realm manually and want this new
realm to be the default realm, you need to set this new realm to be default manually.

1.4.3 System Config

The system configuration has three logical topics: Settings, token default settings and GUI settings.

Fig. 11: The system config

Settings

Split @ Sign

splitAtSign defines if the username like user@company given during authentication should be split into the
loginname user and the realm name company. In most cases this is the wanted behaviour so this is enabled by default.

But given your users log in with email addresses like user@gmail.com and otheruser@outlook.com you probably do
not want to split.

How a user is related to a realm is described here: Relate User to a Realm

This option also affects the login via the Authentication endpoints

SAML Attributes

Return SAML attributes defines if during an SAML authentication request additional SAML attributes should
be returned. Usually an authentication response only returns true or false.

42 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

The SAML attributes are the known attributes that are defined in the attribute mapping e.g. of the LDAP resolver like
email, phone, givenname, surname or any other attributes you fetch from the LDAP directory. For more information
read LDAP resolver.

In addition you can set the parameter ReturnSamlAttributesOnFail. In this case the response contains the
SAML attributes of the user, even if the user failed to authenticate.

FailCounterIncOnFalsePin

If during authentication the given PIN matches a token but the OTP value is wrong the failcounter of the tokens for
which the PIN matches, is increased. If the given PIN does not match any token, by default no failcounter is increased.
The later behaviour can be adapted by FailCounterIncOnFalsePin. If FailCounterIncOnFalsePin is
set and the given OTP PIN does not match any token, the failcounter of all tokens is increased.

Automatically clearing Failcounter

If the failcounter reaches the maximum the token gets a timestamp, when the max fail count was reached. After the
specified amount of minutes in failcounter_clear_timeout the following will clear the failcounter again:

• A successful authentication with correct PIN and correct OTP value

• A successfully triggered challenge (Usually this means a correct PIN)

• An authentication with a correct PIN, but a wrong OTP value (Only if Resetting Failcounter on correct PIN is
set).

A “0” means automatically clearing the fail counter is not used.

Note: After the maximum failcounter is reached, new requests will not update the mentioned timestamp.

Also see How to mitigate brute force and lock tokens.

Resetting Failcounter on correct PIN

After the above mentioned timeout the failcounter is reset by a successful authentication (correct PIN and OTP value)
or by the correct PIN of a challenge response token.

It can be also reset by the correct PIN of any token, when setting ResetFailcounterOnPIN to True. The default
behaviour is, that the correct PIN of a normal token will not reset the failcounter after the clearing timeout.

Prepend PIN

PrependPin defines if the OTP PIN should be given in front (“pin123456”) or in the back (“12345pin”) of the OTP
value.

AutoResync

Auto resync defines if the system should try to resync a token if a user provides a wrong OTP value. AutoResync
works like this:

• If the counter of a wrong OTP value is within the resync window, the system remembers the counter of the OTP
value for this token in the token info field otp1c.

1.4. Configuration 43

privacyIDEA Authentication System, Release 3.2.1

• Now the user needs to authenticate a second time within auto resync timeout with the next successive
OTP value.

• The system checks if the counter of the second OTP value is the successive value to otp1c.

• If it is, the token counter is set and the user is successfully authenticated.

Note: AutoResync works for all HOTP and TOTP based tokens including SMS and Email tokens.

User Cache

The setting User Cache expiration in seconds is used to enable the user cache and configure its expi-
ration timeout. If its value is set to 0 (which is the default value), the user cache is disabled. Otherwise, the value
determines the time in seconds after which entries of the user cache expire. For more information read User Cache.

Note: If the user cache is already enabled and you increase the expiration timeout, expired entries that still exist in
the user cache could be considered active again!

Override Authorization Client

Override Authorization client is important with client specific policies (see Policies) and RADIUS
servers or other proxies. In case of RADIUS the authenticating client for the privacyIDEA system will always be
the RADIUS server, which issues the authentication request. But you can allow the RADIUS server IP to send another
client information (in this case the RADIUS client) so that the policy is evaluated for the RADIUS client. A RADIUS
server may add the API parameter client with a new IP address. A HTTP reverse proxy may append the respective
client IP to the X-Forwarded-For HTTP header.

This field takes a comma separated list of sequences of IP Networks mapping to other IP networks.

Examples

10.1.2.0/24 > 192.168.0.0/16

Proxies in the sub net 10.1.2.0/24 may mask as client IPs 192.168.0.0/16. In this case the policies for the corresponding
client in 192.168.x.x apply.

172.16.0.1

The proxy 172.16.0.1 may mask as any arbitrary client IP.

10.0.0.18 > 10.0.0.0/8

The proxy 10.0.0.18 may mask as any client in the subnet 10.x.x.x.

Note that the proxy definitions may be nested in order to support multiple proxy hops. As an example:

10.0.0.18 > 10.1.2.0/24 > 192.168.0.0/16

means that the proxy 10.0.0.18 may map to another proxy into the subnet 10.1.2.x, and a proxy in this subnet may
mask as any client in the subnet 192.168.x.x.

With the same configuration, a proxy 10.0.0.18 may map to an application plugin in the subnet 10.1.2.x, which may
in turn use a client parameter to mask as any client in the subnet 192.168.x.x.

44 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Token default settings

Reset Fail Counter

DefaultResetFailCount will reset the failcounter of a token if this token was used for a successful authentica-
tion. If not checked, the failcounter will not be resetted and must be resetted manually.

Note: The following settings are token specific value which are set during enrollment. If you want to change this
value of a token later on, you need to change this at the tokeninfo dialog.

Maximum Fail Counter

DefaultMaxFailCount is the maximum failcounter a token way get. If the failcounter exceeds this number the
token can not be used unless the failcounter is resetted.

Note: In fact the failcounter will only increase till this maxfailcount. Even if more failed authentication request occur,
the failcounter will not increase anymore.

Sync Window

DefaultSyncWindow is the window how many OTP values will be calculated during resync of the token.

OTP Length

DefaultOtpLen is the length of the OTP value. If no OTP length is specified during enrollment, this value will be
used.

Count Window

DefaultCountWindow defines how many OTP values will be calculated during an authentication request.

Challenge Validity Time

DefaultChallengeValidityTime is the timeout for a challenge response authentication. If the response is set
after the ChallengeValidityTime, the response is not accepted anymore.

SerialLength

The default length of generated serial numbers is an 8 digit hex string. If you need another length, it can be configured
in the database table Config with the key word SerialLength.

1.4. Configuration 45

privacyIDEA Authentication System, Release 3.2.1

No Authenitcation Counter

Usually privacyIDEA keeps track of how often a token is used for authentication and how often this authentication
was successful. This is a per token counter. This information is written to the token database as a parameter of each
token.

The setting “Do not use an authentication counter per token” (no_auth_counter) means that privacyIDEA does
not track this information at all.

1.4.4 Tokens

Supported Tokens

privacyIDEA supports a wide variety of tokens by different hardware vendors. It also supports token apps on the
smartphone.

Tokens not listed, will be probably supported, too, since most tokens use standard algorithms.

If in doubt drop your question on the mailing list.

Hardware Tokens

The following hardware tokens are known to work well.

Yubikey. The Yubikey is supported in all modes: AES (Yubikey), HOTP and Yubico Cloud. You can initialize the
Yubikey yourself, so that the secret key is not known to the vendor.

eToken Pass. The eToken Pass is a push button token by SafeNet. It can be initialized with a special hardware device.
Or you get a seed file, that you need to import to privacyIDEA. The eToken Pass can run as HOTP or TOTP token.

eToken NG OTP. The eToken NG OTP is a push button token by SafeNet. As it has a USB connector, you can
initialize the token via the USB connector. Thus the hardware vendor does not know the secret key.

DaPlug. The DaPlug token is similar to the Yubikey and can be initialized via the USB connector. The secret key is
not known to the hardware vendor.

Smartdisplayer OTP Card. This is a push button card. It features an eInk display, that can be read very good in all
light condition at all angles. The Smartdisplayer OTP card is initialized at the factory and you get a seed file, that you
need to import to privacyIDEA.

Feitian. The C100 and C200 tokens are classical, reasonably priced push button tokens. The C100 is an HOTP token
and the C200 a TOTP token. These tokens are initialized at the factory and you get a seed file, that you need to import
to privacyIDEA.

U2F. The Yubikey and the Daplug token are known U2F devices to work well with privacyIDEA. See U2F.

Smartphone Apps

privacyIDEA Authenticator. Our own privacyIDEA Authenticator is based on the concept of the Google Authenti-
cator and works with the usual QR Code key URI enrollment. But on top it also allows for a more secure enrollment
process (See Two Step Enrollment). It can be used for HOTP, TOTP and Push Token.

Google Authenticator. The Google Authenticator is working well in HOTP and TOTP mode. If you choose “Generate
OTP Key on the Server” during enrollment, you can scan a QR Code with the Google Authenticator. See Enrolling
your first token to learn how to do this.

46 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

FreeOTP. privacyIDEA is known to work well with the FreeOTP App. The FreeOTP App is a TOTP token. So if you
scan the QR Code of an HOTP token, the OTP will not validate.

mOTP. Several mOTP Apps like “Potato”, “Token2” or “DroidOTP” are supported.

Authentication Modes

privacyIDEA supports a variety of tokens that implement different authentication flows. We call these flows authenti-
cation modes. Currently, tokens may implement three authentication modes, namely authenticate, challenge
and outofband.

Application plugins need to implement the three authentication modes separately, as the modes differ in their user
experience. For example:

• The HOTP token type implements the authenticate mode, which is a single-shot authentication flow. For
each authentication request, the user uses their token to generate a new HOTP value and enters it along with
their OTP PIN. The plugin sends both values to privacyIDEA, which decides whether the authentication is valid
or not.

• The E-Mail and SMS token types implement the challenge mode. With such a token, the authentication flow
consists of two steps: In a first step, the plugin triggers a challenge. privacyIDEA sends the challenge response
— a fresh OTP value — to the user via E-Mail or SMS. In a second step, the user responds to the challenge
by entering the respective OTP value in the plugin’s login form. The plugin sends the challenge response to
privacyIDEA, which decides whether the authentication is valid or not.

• The PUSH and TiQR token types implement the outofband mode. With a PUSH token, the authentication
step also consists of two steps: In a first step, the user triggers a challenge. privacyIDEA pushes the challenge
to the user’s smartphone app. In a second step, the user approves the challenge on their phone, and the app
responds to the challenge by communicating with the privacyIDEA server on behalf of the user. The plugin
periodically queries privacyIDEA to check if the challenge has been answered correctly and the authentication
is valid.

The following describes the authentication flows of the three authentication modes in more detail.

authenticate mode

• The user enters a OTP PIN along with an OTP value.

• The plugin sends a request to the /validate/check endpoint:

POST /validate/check

user=<user>&pass=<PIN+OTP>

and privacyIDEA returns whether the authentication request has succeeded or not.

challenge mode

• The plugin triggers a challenge, for example via the /validate/triggerchallenge end-
point:

POST /validate/triggerchallenge

user=<user>

1.4. Configuration 47

privacyIDEA Authentication System, Release 3.2.1

Alternatively, a challenge can be triggered via the /validate/check endpoint with the PIN of a
challenge-response token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id and asks
the user for the challenge response.

• The user enters the challenge response, which we call OTP. The plugin forwards the response to
privacyIDEA along with the transaction ID:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=<OTP>

and privacyIDEA returns whether the authentication request succeeded or not.

outofband mode

• The plugin triggers a challenge, for example via the /validate/triggerchallenge endpoint:

POST /validate/triggerchallenge

user=<user>

or via the /validate/check endpoint with the PIN of a out-of-band token:

POST /validate/check

user=<user>&pass=<PIN>

In both variants, the plugin receives a transaction ID which we call transaction_id. The plugin may now
periodically query the status of the challenge by polling the /validate/polltransaction endpoint:

GET /validate/polltransaction

transaction_id=<transaction_id>

If this endpoint returns false, the challenge has not been answered yet.

• The user approves the challenge on a separate device, e.g. their smartphone app. The app communicates with a
tokentype-specific endpoint of privacyIDEA, which marks the challenge as answered. The exact communication
depends on the token type.

• Once /validate/polltransaction returns true, the plugin must finalize the authentication via the
/validate/check endpoint:

POST /validate/check

user=<user>&transaction_id=<transaction_id>&pass=

For the pass parameter, the plugin sends an empty string.

This step is crucial because the /validate/check endpoint takes defined authentication and authorization
policies into account to decide whether the authentication was successful or not.

48 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: The /validate/polltransaction endpoint does not require authentication and does not in-
crease the failcounters of tokens. Hence, attackers may try to brute-force transaction IDs of correctly answered
challenges. Due to the short expiration timeout and the length of the randomly-generated transaction IDs, it is
unlikely that attackers correctly guess a transaction ID in time. Nonetheless, plugins must not allow users to
inject transaction IDs, and plugins must not leak transaction IDs to users.

Supported Tokentypes

At the moment the following tokentypes are supported:

• HOTP - event based One Time Password tokens based on RFC4225.

• TOTP - time based One Time Password tokens based on RFC6238.

• Push Token - A challenge response token, that sends a challenge to the user’s smartphone and the user simply
accepts the request to login.

• mOTP - time based One Time Password tokens for mobile phones based on an a public Algorithm.

• Paper Token - event based One Time Password tokens that get you list of one time passwords on a sheet of paper.

• Questionnaire Token - A token that contains a list of answered questions. During authentication a random
question is presented as challenge from the list of answered questions is presented. The user must give the right
answer.

• EMail - A token that sends the OTP value to the EMail address of the user.

• Four Eyes - Meta token that can be used to create a Two Man Rule.

• password - A password token used for losttoken scenario.

• Registration - A special token type used for enrollment scenarios (see Registration Code).

• Simple Pass - A token that only consists of the Token PIN.

• Certificates - A token that represents a client certificate.

• SSH Keys - An SSH public key that can be managed and used in conjunction with the Client machines concept.

• Remote - A virtual token that forwards the authentication request to another privacyIDEA server.

• RADIUS - A virtual token that forwards the authentication request to a RADIUS server.

• SMS - A token that sends the OTP value to the mobile phone of the user.

• Spass - Simple Pass Token - The simple pass token. A token that has no OTP component and just consists of the
OTP pin or (if otppin=userstore is set) of the userstore password.

• TiQR - A Smartphone token that can be used to login by only scanning a QR code.

• OCRA - A basic OATH Challenge Response token.

• U2F - A U2F device as specified by the FIDO Alliance. This is a USB device to be used for challenge response
authentication.

• VASCO - The proprietary VASCO token.

• Yubico - A Yubikey hardware that authenticates against the Yubico Cloud service.

• Yubikey - A Yubikey hardware initialized in the AES mode, that authenticates against privacyIDEA.

• Daplug - A hardware OTP token similar to the Yubikey.

The Tokentypes:

1.4. Configuration 49

https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
http://motp.sourceforge.net
https://en.wikipedia.org/wiki/Two-man_rule

privacyIDEA Authentication System, Release 3.2.1

Four Eyes

Starting with version 2.6 privacyIDEA supports 4 Eyes Token. This is a meta token, that can be used to define, that
two or more token must be used to authenticate. This way, you can set up a “two man rule”.

You can define, from which realm how many unique tokens need to be present, when authenticating:

Fig. 12: Enroll a 4 eyes token

In this example authentication will only be possbile if at least two tokens from realm2 and one token from realm sqlite
are present.

Authentication is done by concatenating the OTP PINs and the OTP values of all tokens. The concatenation is split by
the separator character.

It does not matter, in which order the tokens from the realms are entered.

Example

Authentication as:

username: "root@r2"
password: "pin123456 secret789434 key098123"

The three blocks separated by the blank are checked, if they match tokens in the realms realm2 and sqlite.

The response looks like this in case of success:

{
"detail": {
"message": "matching 1 tokens",
"serial": "PI4E000219E1",
"type": "4eyes"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,

(continues on next page)

50 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"value": true
},
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"

}

In case of a failed authentication the response looks like this:

{
"detail": {
"foureyes": "Only found 0 tokens in realm themis",
"message": "wrong otp value",
"serial": "PI4E000219E1",
"type": "4eyes"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},
"version": "privacyIDEA 2.6dev0",
"versionnumber": "2.6dev0"

}

Note: The 4Eyes Token verifies that unique tokens from each realm are used. I.e. if you require 2 tokens from a
realm, you can not use the same token twice.

Warning: But it does not verify, if these two unique tokens belong to the same user. Thus you should create a
poliy, that in such a realm a user may only have on token.

Certificates

Starting with version 2.3 privacyIDEA supports certificates. A user can

• upload a certificate request,

• upload a certificate or

• he can generate a certificate request in the browser.

privacyIDEA does not sign certificate requests itself but connects to existing certificate authorities. To do so, you need
to define CA Connectors.

Certificates are attached to the user just like normal tokens. One token of type certificate always contains only one
certificate.

If you have defined a CA connector you can upload a certificate signing request (CSR) via the Token Enroll Dialog in
the WebUI.

You need to choose the CA connector. The certificate will be signed by the CA accordingly. Just like all other tokens
the certificate token can be attached to a user.

1.4. Configuration 51

privacyIDEA Authentication System, Release 3.2.1

Fig. 13: Upload a certificate signing request

Generating Signing Requests

You can also generate the signing request directly in your browser.

Note: This uses the keygen HTML-tag that is not supported by the Internet Explorer!

Fig. 14: Generate a certificate signing request

When generating the certificate signing request this way the RSA keypair is generated on the client side in the browser.

The certificate is signed by the CA connected by the chosen CA connector.

Afterwards the user can install the certificate into the browser.

Note: By requiring OTP authentication for the users to login to the WebUI (see login_mode) you can have two factor

52 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 15: Download or install the client certificate

authentication required for the user to be allowed to enroll a certificate.

EMail

The token type email sends the OTP value in an EMail to the user. You can configure the EMail server in Email OTP
Token.

Fig. 16: Enroll an EMail token

When enrolling an EMail token, you only need to specify the email address of the user.

The EMail token is a challenge response token. I.e. when using the OTP PIN in the first authentication request, the
sending of the EMail will be triggered and in a second authentication request the OTP value from the EMail needs to
be presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation Email Token.

1.4. Configuration 53

privacyIDEA Authentication System, Release 3.2.1

HOTP

The HOTP token is - together with the TOTP - the most common token. The HOTP Algorithm is defined in RFC4225.
The HOTP token is an event base token. The HOTP algorithm has some parameter, like if the generated OTP value
will be 6 digits or 8 digits or if the SHA1 oder the SHA256 hashing algorithm is used.

The HOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

Hardware tokens

There are many token vendors out there who are using the official algorithm to build and sell hardware tokens. You
can get HOTP based hardware tokens in different form factors, as a normal key fob for your key ring or as a display
card for your purse.

Preseeded or Seedable

Usually the hardware tokens like keyfobs or display cards contain a secret key that was generated and implanted at the
vendors factory. The vender ships the tokens and a seed file.

Warning: In this case privacyIDEA can not guarantee that the secret seed of the token is unique and if you are
using a real strong factor.

privacyIDEA also supports the following seedable HOTP tokens:

• SafeNet eToken NG OTP

• SafeNet eToken Pass

• Yubikey in OATH mode

• Daplug

Those tokens can be initialized by privacyIDEA. Thus you can be sure, that only you are in possession of the secret
seed.

Experiences

The above mentioned hardware tokens are known to play well with privacyIDEA. In theory all OATH/HOTP tokens
should work well with privacyIDEA. However, there are good experiences with Smartdisplayer OTP cards1 and Feitian
C2002 tokens.

Software tokens

Besides the hardware tokens there are also software tokens, implemented as Apps for your smartphone. These software
tokens allow are seedable, so there is no vendor, knowing the secret seed of your OTP tokens.

But software tokens are software after all on device prone to security issues.

1 https://netknights.it/en/produkte/smartdisplayer/
2 https://netknights.it/en/produkte/oath-hotptotp/

54 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc4226
https://netknights.it/en/produkte/smartdisplayer/
https://netknights.it/en/produkte/oath-hotptotp/

privacyIDEA Authentication System, Release 3.2.1

Experiences

The Google Authenticator can be enrolled easily in HOTP mode using the QR-Code enrollment Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

Enrollment

Default settings for HOTP tokens can be configured at HOTP Token Config.

Fig. 17: Enroll an HOTP token

During enrollment you can choose, if the server should generate the key or if you have a key, that you can enter into
the enrollment page.

As mentioned earlier, you can also choose the OTP length and the hash algoriothm.

Fig. 18: If the server generated the secret seed, you can scan the QR-Code

After enrolling the token, the QR-Code, containing the secret seed, is displayed, so that you can scan this with your
smartphone and import it to your app.

1.4. Configuration 55

privacyIDEA Authentication System, Release 3.2.1

OCRA

Starting with version 2.20 privacyIDEA supports common OCRA tokens. OCRA tokens can not be enrolled via the
UI but need to be imported via a seed file. The OATH CSV seed file would look like this:

<serial>, <seed>, ocra, <ocrasuite>

The OCRA token is a challenge/response token. So the first authentication request issues a challenge. This challenge
is the input for the response of the OCRA token.

For more information see OCRA Token.

DisplayTAN token

privacyIDEA supports the DisplayTAN1, which can be used for securing banking transactions. The OCRA Algorithm
is used to digitally sign transaction data. The transcation data can be verified by the user on an external banking card.
All cryptographical processes are running on the external card, so that an attacker can not interfere with the user’s
component.

The DisplayTAN cards would be imported into privacyIDEA using the token import.

A banking website will use the Validate endpoints API.

The first call will trigger the challenge response mechanism. The first call needs to contain the transaction data: the
recipient’s account number and amount of money to transfer:

<account>~<amount>~

Please note the tilde:

POST https://privacyidea.example.com/validate/check

pass=pin
serial=ocra1234
challenge=1234567890~423,40~
addrandomchallenge=20
hashchallenge=sha1

This will result in a response like this:

{
"jsonrpc": "2.0",
"signature": "128057011582042...408",
"detail": {

"multi_challenge": [
{
"attributes": {
"qrcode": "data:image/png;base64, iVBORw0KG..RK5CYII=",
"original_challenge": "83507112 ~320,

00~cfbGSopfdDROOMjeu3IR",
"challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
},
"serial": "ocra1234",
"transaction_id": "05221757445370623976"

}

(continues on next page)

1 http://www.display-tan.com/

56 Chapter 1. Table of Contents

http://www.display-tan.com/

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

],
"threadid": 139847557760768,
"attributes": {
"qrcode": "data:image/png;base64, iVBO...CYII=",
"original_challenge": "83507112 ~320,00~cfbGSopfdDROOMjeu3IR",
"challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
},
"message": "Please answer the challenge",
"serial": "ocra1234",
"transaction_id": "05221757445370623976"

},
"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",
"result": {

"status": true,
"value": false

},
"time": 1504005837.417481,
"id": 1

}

Note: The response also contains the QR code. The banking website should show the QR code, so that the user can
scan it with the DisplayTAN App to transfer the data to the card.

The user can verify the data on the card and transaction data will be digitally signed on the card. The card will calculate
an OTP value for this very transaction.

The banking website can now send the OTP value to privacyIDEA to check, if the user authorized the correct transac-
tion data. The banking site will issue this request:

POST https://privacyidea.example.com/validate/check

serial=ocra1234
transaction_id=05221757445370623976
pass=54006635

privcyIDEA will respond with a usual authentication response:

{
"jsonrpc": "2.0",
"signature": "162....2454851",
"detail": {

"message": "Found matching challenge",
"serial": "ocra1234",
"threadid": 139847549368064

},
"versionnumber": "2.20.dev2",
"version": "privacyIDEA 2.20.dev2",
"result": {

"status": true,
"value": true

},
"time": 1504005901.823667,
"id": 1

}

1.4. Configuration 57

privacyIDEA Authentication System, Release 3.2.1

Paper Token

The token type paper lets you print out a list of OTP values, which you can use to authenticate and cross of the list.

The paper token is based on the HOTP. I.e. you need to use one value after the other.

Customization

CSS

You can customize the look and feel of the printed paper token. You may change the style sheep papertoken.css
which is only loaded for printing.

Header and Footer

Then you may add a header in front and a footer behind the table containing the OTP values.

Create the files

• static/customize/views/includes/token.enrolled.paper.top.html

• static/customize/views/includes/token.enrolled.paper.bottom.html

to display the contents before (top) and behind (bottom) the table.

Within these html templates you may use angular replacements. To get the serial number of the token use

{{ tokenEnrolled.serial }}

to get the name and realm of the user use

{{ newUser.user }} {{ newUser.realm }}

A good example for the token.enrolled.paper.top.html is:

<h1>{{ enrolledToken.serial }}</h1> <p>

Please use the OTP values of your paper token in order one after the other. You may scratch of
or otherwise mark used values.

</p>

A good example for the token.enrolled.paper.bottom.html is:

<p> The paper token is a weak second factor. Please assure, that noone gets hold of this paper and can
make a copy of it.

</p> <p>

Store it at a safe location.

</p>

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

58 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

OTP Table

If you want to change the complete layout of the table you need to overwrite the file static/components/
token/views/token.enrolled.paper.html. The scope variable {{ enrolledToken.otps }} contains an ob-
ject with the complete OTP value list.

Push Token

The push token uses the privacyIDEA Authenticator app. You can get it from Google Play Store or Apple App Store.

The token type push sends a cryptographic challenge via the Google Firebase service to the smartphone of the user.
This push notification is displayed on the smartphone of the user with a text that tells the user that he or somebody else
requests to login to a service. The can simply accept this request. The smartphone sends a cryptographically signed
response to the privacyIDEA server and the login request gets marked as confirmed in the privacyIDEA server. The
application checks for this mark and logs the user in automatically.

To allow privacyIDEA to send push notifications, a Firebase service needs to be configured. To do so see Firebase
Provider.

The PUSH token implements the outofband mode.

Configuration

The minimum necessary configuration is an enrollment policy push_firebase_configuration.

With the authentication policies push_text_on_mobile and push_title_on_mobile you can define the contents of
the push notification.

If you want to use push tokens with legacy applications that are not yet set up to be compatible with out-of-band
tokens, you can set the authentication policy push_wait. Please note, that setting this policy can interfere with
other tokentypes and will impact performance, as detailed in the documentation for push_wait.

Enrollment

The enrollment of the push token happens in two steps.

Step 1

The user scans a QR code. This QR code contains the basic information for the push token and a enrollment URL, to
which the smartphone should respond in the enrollment process.

The smartphone stores this data and creates a new key pair.

Step 2

The smartphone sends its Firebase ID, the public key of the keypair, the serial number and an enrollment credential
back to the enrollment URL of the privacyIDEA server.

The server responds with it’s public key for this token.

1.4. Configuration 59

privacyIDEA Authentication System, Release 3.2.1

Authentication

Triggering the challenge

The authentication request is triggered by an application just the same like for any challenge response tokens either
with the PIN to the endpoint /validate/check or via the endpoint /validate/triggerchallenge.

privacyIDEA sends a cryptographic challenge with a signature to the Firebase service. The firebase service sends the
notification to the smartphone, which can verify the signature using the public key from enrollment step 2.

Accepting login

The user can now accept the login by tapping on the push notification. The smartphone sends the signed challenge
back to the authentication URL of the privacyIDEA server. The privacyIDEA server verifies the response and marks
this authentication request as successfully answered.

Login to application

The application can check with the orignial transaction ID with the privacyIDEA server, if the challenge has been
successfully answered and automatically login the user.

More information

For a more detailed insight see the code documentation Push Token.

For an in depth view of the protocol see [the github issue](https://github.com/privacyidea/privacyidea/issues/1342) and
[the wiki page](https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken).

Questionnaire Token

The administrator can define a list of questions and also how many answers to the questions a user needs to define.

During enrollment of such a question type token the user answers at least as many questions as specified with answers
only he knows.

This token is a challenge response token. During authentication the user must give the token PIN and the a random
question from the answered question is chosen. The user has to answer with the same answer he defined earlier.

Note: If the administrator changes the questions _after_ a token was enrolled, the enrolled token still works with the
old questions and answers. I.e. an enrolled token is not affected by changing the questions by the administrator.

RADIUS

The token type RADIUS forwards the authentication request to a RADIUS Server.

When forwarding the authentication request, you can change the username and mangle the password.

Check the PIN locally

60 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/issues/1342
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken

privacyIDEA Authentication System, Release 3.2.1

Fig. 19: Enroll a RADIUS token

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the RADIUS server.

RADIUS Server

The RADIUS server, to which the authentication request will be forwarded. You can specify the port like my.
radius.server:1812.

RADIUS User

When forwarding the request to the RADIUS server, the authentication request will be issued for this user. If the user
is left empty, the RADIUS request will be sent with the same user.

RADIUS Secret

The RADIUS secret for this RADIUS client.

Note: Using the RADIUS token you can design migration scenarios. When migrating from other (proprietary) OTP
solutions, you can enroll a RADIUS token for the users. The RADIUS token points to the RADIUS server of the
old solution. Thus the user can authenticate against privacyIDEA with the old, proprietary token, till he is enrolled a
new token in privacyIDEA. The interesting thing is, that you also get the authentication request with the proprietary
token in the audit log of privacyIDEA. This way you can have a scenario, where users are still using old tokens and
other users are already using new (privacyIDEA) tokens. You will see all authentication requests in the pricacyIDEA
system.

Registration

(See Registration Code)

The registration token can be used to create a registration code for a user. This registration code can be sent via postal
mail to the user, so that the user can use this registration code as a second factor to login to a portal.

After a one single use, the registration code is deleted and can not be used a second time.

Note: The registration code can only be enrolled via the API to provide automated smooth workflow to your needs.

1.4. Configuration 61

privacyIDEA Authentication System, Release 3.2.1

For a more detailed insight see the code documentation Registration Code Token.

Remote

The token type remote forwards the authentication request to another privacyIDEA Server.

When forwarding the authentication request, you can

• change the username

• change the resolver

• change the realm

• change the serial number

and mangle the password.

Fig. 20: Enroll a Remote token

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the remote privacyIDEA server.

Remote Server

The privacyIDEA server, to which the authentication request will be forwarded. The path /validate/check will
be added automatically. So a sensible input would be https://my.other.server/.

Remote Serial

If the Remote Serial is specified the given password will be checked against the serial number on the remote priva-
cyIDEA server. Usernames will be ignored.

Remote User

When forwarding the request to the remote server, the authentication request will be issued for this user.

62 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Remote Realm

When forwarding the request to the remote server, the authentication request will be issued for this realm.

Remote Resolver

When forwarding the request to the remote server, the authentication request will be issued for this resolver.

Note: You can use Remote Serial to forward the request to a central privacyIDEA server, that only knows tokens but
has no knowledge of users. Or you can use Remote Serial to forward the request to an existing to on localhost thus
adding a second user to the same token.

SMS

The token type sms sends the OTP value via an SMS service. You can configure the SMS service in SMS OTP Token.

Fig. 21: Enroll an SMS token

When enrolling an SMS token, you only need to specify the mobile phone number.

SMS token is a challenge response token. I.e. when sending the OTP PIN in the first authentication request, the
sending of the SMS will be triggered and in a second authentication request the OTP value from the SMS needs to be
presented. It implements the challenge authentication mode.

For a more detailed insight see the code documentation SMS Token.

Spass - Simple Pass Token

The OTP component of the spass token is always true. Thus the user only needs to provide the OTP pin or the userstore
password - depending on the policy settings.

For a more detailed insight see the code documentation SPass Token.

SSH Keys

The token type sshkey is the public SSH key, that you can upload and assign to a user. The SSH key is only used for
the application type SSH in conjunction with the Client machines concept.

A user or the administrator can upload the public SSH key and assign to a user.

Paste the SSH key into the text area. The comment in the SSH key will be used as token comment. You can assign the
SSH key to a user and then use the SSH key in Application Definitions SSH.

1.4. Configuration 63

privacyIDEA Authentication System, Release 3.2.1

Fig. 22: Enroll an SSH key token

64 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: This way you can manage SSH keys centrally, as you do not need to distribute the SSH keys to all machines.
You rather store the SSH keys centrally in privacyIDEA and use privacyidea-authorizedkeys to fetch the keys in real
time during the login process.

TAN Token

(added in version 2.23)

The token type tan is related to the Paper Token.

In contrast to the paper token, a user can use the OTP values of a tan token in any arbitrary order.

A tan token can either be initialized with random OTP values. In this case the HOTP mechanism is used. Or it can be
initialized or imported with a dedicated list of TANs.

Import of TAN token

The import schema for TAN tokens via the OATH CSV file look like this:

<serial>, <seed>, tan, <white space separated list of tans>

The TANs are located in the 4th column. TANs are separated by blanks or whitespaces. The <seed> is not used with
a TAN token. You can leave this blank or set to any (not used) value.

TiQR

Starting with version 2.6 privacyIDEA supports the TiQR token. The TiQR token is a smartphone token, that can be
used to login by only scanning a QR code.

The TiQR token implements the outofband authentication mode.

The token is also enrolled by scanning a QR code.

You can only enroll a TiQR token, when a user is selected.

Note: You can not enroll a TiQR token without assign the token to a user.

For more technical information about the TiQR token please see TiQR Token.

TOTP

The TOTP token is - together with the HOTP - the most common token. The TOTP Algorithm is defined in RFC6238.
The TOTP token is a time based token. Roughly speaking the TOTP algorithm is the same algorithm like the HOTP,
where the event based counter is replaced by the unix timestamp.

The TOTP algorithm has some parameter, like if the generated OTP value will be 6 digits or 8 digits or if the SHA1
oder the SHA256 hashing algorithm is used and the timestep being 30 or 60 seconds.

The TOTP token implements the authenticate mode. With a suitable challenge_response policy, it may also be used
in the challenge mode.

1.4. Configuration 65

https://tools.ietf.org/html/rfc6238

privacyIDEA Authentication System, Release 3.2.1

Fig. 23: Choose a user for the TiQR token

66 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Hardware tokens

The information about preseeded token and seedable tokens is the same as described in the section about HOTP.

The only available seedable pushbutton TOTP token is the SafeNet eToken Pass. The Yubikey can be used as a TOTP
token, but only in conjunction with a smartphone app, since the yubikey has not its own clock.

Software tokens

Experiences

The Google Authenticator and the FreeOTP token can be enrolled easily in TOTP mode using the QR-Code enrollment
Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

Enrollment

Default settings for TOTP tokens can be configured at TOTP Token Config.

The enrollment is the same as described in HOTP. However, when enrolling TOTP token, you can specify some
additional parameters.

Fig. 24: Enroll an TOTP token

U2F

Starting with version 2.7 privacyIDEA supports U2F tokens. The administrator or the user himself can register a U2F
device and use this U2F token to login to the privacyIDEA web UI or to authenticate at applications.

When enrolling the token a key pair is generated and the public key is sent to privacyIDEA. During this process the
user needs to prove that he is present by either pressing the button (Yubikey) or by replugging the device (Plug-up
token).

The device is identified and assigned to the user.

1.4. Configuration 67

privacyIDEA Authentication System, Release 3.2.1

Note: This is a normal token object which can also be reassigned to another user.

Note: As the key pair is only generated virtually, you can register one physical device for several users.

For configuring privacyIDEA for the use of U2F token, please see U2F Token Config.

For further details and for information how to add this to your application you can see the code documentation at U2F
Token.

VASCO

Starting with version 2.22 privacyIDEA supports VASCO tokens.

VASCO OTP tokens are a proprietary OTP token. You can import the VASCO blobs from a CSV file or you the
administrator can enroll a single VASCO token.

Note: privacyIDEA uses a proprietary VASCO library vacman to verify the OTP values. Please note that you need to
license this library from VASCO Data Security N.V. directly. The privacyIDEA project does not provide this library.

Yubico

The token type yubico authenticates against the Yubico Cloud mode. You need to configure this at Yubico Cloud mode.

Fig. 25: Enroll a Yubico token

The token is enrolled by simply saving the Yubikey token ID in the token object. You can either enter the 12 digit ID
or you can simply press the Yubikey button in the input field, which will also assign the token.

Yubikey

The Yubikey is initialized with privacyIDEA and works in Yubicos own AES mode. It outputs a 44 character OTP
value, consisting of a 12 character prefix and a 32 character OTP. But in contrast to the Yubico Cloud mode, in this
mode the secret key is contained within the token and your own privacyIDEA installation.

If you have the time and care about privacy, you should prefer the Yubikey AES mode over the Yubico Cloud mode.

There are three possible ways to enroll a Yubikey token.

68 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: We recommend that you use the privacyidea command line client, to initialize the Yubikeys. You can use
the mass enrollment, which eases the process of initializing a whole bunch of tokens.

Run the command like this:

privacyidea -U https://your.privacyidea.server -a admin token \
yubikey_mass_enroll --yubimode YUBICO

This command initializes the token and stores the AES secret and prefix in privacyidea, so the token is immediatly
useful. You can choose the slot with --yubislot. For further help call privcyidea yubikey_mass_enroll
with the --help option.

The second way to enroll a yubikey token is also using yubikey_mass_enroll, but with the option --filename
to write to token configuration into the specified file. The resulting file can then be imported into privacyidea: Select
Tokens -> Import Tokens, select “OATH CSV” and the file you just created.

Using the yubikey personalization GUI

Third and last you can use the privacyIDEA Web UI to enroll a Yubikey AES mode token, if you have initialized the
yubikey with the external ykpersonalize tool.

Fig. 26: Use the yubikey-personalization-gui to initialize the yubikey

When using the yubikey personalization GUI you need to copy the value of “Secret Key (16 bytes Hex)”. This is the
secret OTP key, which you need to copy and paste in the field “OTP Key” in the privacyIDEA Web UI.

In the field “Test Yubikey” push the Yubikey button. This will grab the yubikey’s public identifier and also determine
the lenght of the otp value. The field OTP value is automatically filled.

1.4. Configuration 69

privacyIDEA Authentication System, Release 3.2.1

Fig. 27: Enroll a Yubikey AES mode token

Redirect api url to privacyideas /ttype/yubikey

Yubico servers use /wsapi/2.0/verify as the path in the validation URL. Some tools (e.g. Kolab 2fa) let the
user/admin change the api host, but not the rest of the URL. Let’s redirect the api URL to privacyideas /ttype/yubikey
- you’ll need to enable the following two lines in /etc/apache2/site-enabled/privacyidea.conf:

RewriteEngine on RewriteRule “^/wsapi/2.0/verify” “/ttype/yubikey” [PT]

If you use nginx there is a similar line provided as a comment to the nginx configuration as well.

Token configuration

Each token type can provide its own configuration dialog.

In this configuration dialog you can define default values for these token types.

Email OTP Token

The Email OTP token creates a OTP value and sends this OTP value to the email address of the uses. The Email can
be triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the Email is triggered. The user is denied the access.

Seconds step

In the second step the user authenticates with the OTP PIN and the OTP value he received via Email. The user is
granted access.

70 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 28: Token Configuration: SMS

Fig. 29: Email Token configuration

1.4. Configuration 71

privacyIDEA Authentication System, Release 3.2.1

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

Configuration Parameters

You can configure the mail parameters for the Email Token centrally at Config -> Tokens -> Email.

Mail Server

The name or IP address of the mail server that is used to send emails.

Port

The port of the mail server.

Mail User

If the mail server requires authentication you need to enter a username. If no username is entered, no authentication is
performed on the mail server.

Mail User Password

The password of the mail username to send emails.

Mail Sender Address

The mail address of the mail sender. This needs to correspond to the Mail User.

OTP validity time

This is the time in seconds, for how long the sent OTP value is valid. If a user tries to authenticate with the sent OTP
value after this time, authentication will fail.

Use TLS

Whether the mail server should use TLS.

Concurrent Challenges

The config entry email.concurrent_challenges will save the sent OTP value in the challenge database. This
way several challenges can be open at the same time. The user can answer the challenges in an arbitrary order. Set
this to a true value.

HOTP Token Config

SMS OTP Token

The SMS OTP token creates a OTP value and sends this OTP value to the mobile phone of the user. The SMS can be
triggered by authenticating with only the OTP PIN:

First step

In the first step the user will enter his OTP PIN and the sending of the SMS is triggered. The user is denied the access.

72 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 30: HOTP Token configuration

Second step

In the second step the user authenticates with the OTP PIN and the OTP value he received via SMS. The user is granted
access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

A python SMS provider module defines how the SMS is sent. This can be done using an HTTP SMS Gateway.
Most services like Clickatel or sendsms.de provide such a simple HTTP gateway. Another possibility is to send SMS
via sipgate, which provides an XMLRPC API. The third possibility is to send the SMS via an SMTP gateway. The
provider receives a specially designed email and sends the SMS accordingly. The last possibility to send SMS is to
use an attached GSM modem.

Starting with version 2.13 the SMS configuration has been redesigned. You can now centrally define SMS gate-
ways. These SMS gateways can be used for sending SMS OTP token but also for the event notifications. (See User
Notification Handler Module)

For configuring SMS Gateways read SMS Gateway configuration. I this token configuration you can select on defined
gateway to send SMS for authentication.

Configuration Parameters

Concurrent Challenges

The config entry sms.concurrent_challenges will save the sent OTP value in the challenge database. This
way several challenges can be open at the same time. The user can answer the challenges in an arbitrary order. Set
this to a true value.

TiQR Token Config

TiQR Registration Server

You need at least enter the TiQR Registration Server. This is the URL of your privacyIDEA installation, that can be
reached from the smartphone during enrollment. So your smartphone needs to be on the same LAN (WLAN) like the
privacyIDEA server or the enrollment URL needs to be accessible from the internet.

1.4. Configuration 73

privacyIDEA Authentication System, Release 3.2.1

Fig. 31: TiQR Token configuration

74 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

You also need to specify the path, which is usually /ttype/tiqr.

During enrollment the parameter action=metadata and action=enrollment is added.

Note: We do not recommend putting the registration URL on the internet.

TiQR Authentication Server

This is the URL that is used during authentication. This can be another URL than the Registration Server. If it is left
blank, the URL of the Registration Server is used.

During authentication the parameter operation=login is added.

TOTP Token Config

Fig. 32: TOTP Token configuration

U2F Token Config

AppId

You need to configure the AppId of the privacyIDEA server. The AppId is define in the FIDO specification1.

The AppId is the URL of your privacyIDEA and used to find or create the right key pair on the U2F device. The AppId
must correspond the the URL that is used to call the privacyIDEA server.

Note: if you register a U2F device with an AppId https://privacyidea.example.com and try to authenticate at https:
//10.0.0.1, the U2F authentication will fail.

1 https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

1.4. Configuration 75

https://privacyidea.example.com
https://10.0.0.1
https://10.0.0.1
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

privacyIDEA Authentication System, Release 3.2.1

Note: The AppId must not contain any trailing slashes!

Facets

If specifying the AppId as the FQDN you will only be able to authenticate at the privacyIDEA server itself or at any
application in a sub directory on the privacyIDEA server. This is OK, if you are running a SAML IdP on the same
server.

But if you also want to use the U2F token with other applications, you need to specify the AppId like this:

https://privacyidea.example.com/pi-url/ttype/u2f

pi-url is the path, if you are running the privacyIDEA instance in a sub folder.

/ttype/u2f is the endpoint that returns a trusted facets list. Trusted facets are other hosts in the domain example.com.
You need to define a policy that contains a list of the other hosts (u2f_facets).

For more information on AppId and trusted facets see1.

For further details and for information how to add U2F to your application you can see the code documentation at U2F
Token.

Workflow

You can use a U2F token on privacyIDEA and other hosts in the same Domain. To do so you need to do the following
steps:

1. Configure the AppId to reflect your privacyIDEA server:

https://pi.your-network.com/ttype/u2f

Add the path /ttype/u2f is crucial. Otherwise privacyIDEA will not return the trusted facets.

2. Define a policy with the list of trusted facets. (see u2f_facets). Add the FQDNs of the hosts to the policy:

saml.your-network.com otherapp.your-network.com vpn.your-network.com

Note: The privacyIDEA plugin for simpleSAMLphp supports U2F with privacyIDEA starting with version
2.8.

3. Now register a U2F token on https://pi.your-network.com. Due to the trusted facets you will also be able to use
this U2F token on the other hosts.

4. Now got to https://saml.your-network.com and you will be able to authenticate with the very U2F token without
any further registering.

Yubico Cloud mode

The Yubico Cloud mode sends the One Time Password emitted by the yubikey to the Yubico Cloud service or another
(possibly self hosted) validation server.

To contact the Yubico Cloud service you need to get an API key and a Client ID from Yubico and enter these here in
the config dialog. In that case you can leave the Yubico URL blank and privacyidea will use the Yubico servers.

76 Chapter 1. Table of Contents

https://privacyidea.example.com/pi-url/ttype/u2f
https://pi.your-network.com/ttype/u2f
https://pi.your-network.com
https://saml.your-network.com

privacyIDEA Authentication System, Release 3.2.1

Fig. 33: Configure the Yubico Cloud mode

You can use another validation host, e.g. a self hosted validation server. If you use privacyidea token type yu-
bikey, you can use the URL https://<privacyideaserver>/ttype/yubikey, other validation servers might use https:
//<validationserver>/wsapi/2.0/verify. You’ll get the Client ID and API key from the configuration of your valida-
tion server.

You can get your own API key at1.

Yubikey AES mode

The Yubico AES mode uses the same kind of token as the Yubico Cloud service, but validates the OTP in your local
privacyidea server. So the secrets stay local to your system and are not stored in Yubico’s Cloud service.

Fig. 34: Configure the Yubikey AES mode

1 https://upgrade.yubico.com/getapikey/.

1.4. Configuration 77

https:/
https:/
https:/
https://upgrade.yubico.com/getapikey/

privacyIDEA Authentication System, Release 3.2.1

You can have more than one Client with a Client ID connect to your server. The Client ID starts with yubikey.apiid.
and is followed by the API ID, which you’ll need to configure your clients. With create new API key you
generate a new API for that specific Client ID. The API key is used to sign the validation request sent to the server
and the server signs the answer too. That way tampering or MITM attacks might be detected. It is possible to validate
token without the API key, but then the request and answer can’t be verify against the key. It is useful to use HTTPS
for your validation requests, but this is another kind of protection.

OTP validation can either use the privacyidea API /validate/check or the Yubikey validation protocol /ttype/yubikey or
- if enabled in your webserver configuration - /wsapi/2.0/verify.

1.4.5 CA Connectors

You can use privacyIDEA to enroll certificates and assign certificates to users.

You can define connections to Certifacte Authorities, that are used when enrolling certificates.

Fig. 35: A local CA definition

When you enroll a Token of type certificate the Certificate Signing Request gets signed by one of the CAs attached to
privacyIDEA by the CA connectors.

The first CA connector that ships with privacyIDEA is a connector to a local openSSL based Certificate Authority as
shown in figure A local CA definition.

When enrolling a certificate token you can choose, which CA should sign the certificate request.

78 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 36: Enrolling a certificate token

1.4. Configuration 79

privacyIDEA Authentication System, Release 3.2.1

Local CA Connector

The local CA connector calls a local openssl configuration.

Starting with privacyIDEA version 2.12 an example openssl.cnf is provided in /etc/privacyidea/CA/openssl.cnf.

Note: This configuration and also this description is ment to be as an example. When setting up a productive CA,
you should ask a PKI consultant for assistance.

Manual Setup

1. Modify the parameters in the file /etc/privacyidea/CA/openssl.cnf according to your needs.

2. Create your CA certificate:

openssl req -days 1500 -new -x509 -keyout /etc/privacyidea/CA/ca.key \
-out /etc/privacyidea/CA/ca.crt \
-config /etc/privacyidea/CA/openssl.cnf

chmod 0600 /etc/privacyidea/CA/ca.key
touch /etc/privacyidea/CA/index.txt
echo 01 > /etc/privacyidea/CA/serial
chown -R privacyidea /etc/privacyIDEA/CA

3. Now set up a local CA connector within privacyIDEA with the directory /etc/privacyidea/CA and the files
accordingly.

Easy Setup

Starting with privacyIDEA version 2.18 it gets easier to setup local CAs.

You can use the pi-manage tool to setup a new CA like this:

pi-manage ca create myCA

This will ask you for all necessary parameters for the CA and then automatically

1. Create the files for this new CA and

2. Create the CA connector in privacyIDEA.

Management

There are different ways to enroll a certificate token. See Certificates.

When an administrator revokes a certificate token, the certificate is revoked and a CRL is created.

Note: privacyIDEA does not create the CRL regularly. The CRL usually has a validity period of 30 days. I.e. you
need to create the CRL on a regular basis. You can use openssl to do so or the pi-manage command.

Starting with version 2.18 the pi-manage command has an additional sub-command ca:

pi-manage ca list

80 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

lists all configured CA connectors. You can use the -v switch to get more information.

You can create a new CRL with the command:

pi-manage ca create_crl <CA name>

This command will check the overlap period and only create a new CRL if it is necessary. If you want to force the
creation of the CRL, you can use the switch -f.

For more information on pi-manage see The pi-manage Script.

Templates

The local CA supports a kind of certificate templates. These “templates” are predefined combinations of extensions
and validity days, as they are passed to openssl via the parameters -extensions and -days.

This way the administrator can define certificate templates with certain X.509 extensions like keyUsage, extended-
KeyUsage, CDPs or AIAs and certificate validity periods.

The extensions are defined in YAML file and the location of this file is added to the CA connector definition.

The file can look like this, defining three templates “user”, “webserver” and “template3”:

user: days: 365 extensions: “user”

webserver: days: 750 extensions: “server”

template3: days: 10 extensions: “user”

1.4.6 SMTP server configuration

Starting with privacyIDEA 2.10 you can define SMTP server configurations. SMTP server endpoints.

An SMTP server configuration contains the

• server as FQDN or IP address,

• the port,

• the sender email address,

• a username and password in case of authentication and

• a TLS flag.

Each SMTP server configuration is address via a unique identifier. You can then use such a configuration for Email or
SMS token, for PIN handling or for User registration.

Under Config->Sytem->SMTP servers you can get a list of all configured SMTP servers, create new server definitions
and delete them.

Using the unique identifier like themis you can use this SMTP server definition in e.g. a policy for user registraion.

In the edit dialog you can enter all necessary attributes to talk to the SMTP server. You can also send a test email, to
verify if your settings are correct.

In case a Job Queue is configured, the SMTP server dialog shows a checkbox that enables sending all emails for the
given SMTP server configuration via the job queue. Note that if the checkbox is checked, any test email will also be
sent via the queue. This also means that privacyIDEA will display a success notice when the job has been sent to the
queue successfully, which does not necessarily mean that the mail was actually sent. Thus, it is important to check
that the test email is actually received.

1.4. Configuration 81

privacyIDEA Authentication System, Release 3.2.1

Fig. 37: The list of SMTP servers.

Fig. 38: Edit an existing SMTP server definition.

82 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

1.4.7 SMS Gateway configuration

You can centrally define SMS gateways that can be used to send SMS with the SMS token (SMS OTP Token) or to use
the SMS gateway for sending notifications.

There are different providers (gateways) to deliver SMS.

HTTP provider

The HTTP provider can be used for any SMS gateway that provides a simple HTTP POST or GET request. This is the
most commonly used provider. Each provider type defines its own set of parameters.

The following parameters can be used. These are parameters, that define the behaviour of the SMS Gateway definition.

URL

This is the URL for the gateway.

HTTP_METHOD

Can be GET or POST.

USERNAME and PASSWORD

These are the username and the password if the HTTP request requires basic authentication.

RETURN_SUCCESS

You can either use RETURN_SUCCESS or RETURN_FAIL. If the text of RETURN_SUCCESS is found
in the HTTP response of the gateway privacyIDEA assumes that the SMS was sent successfully.

RETURN_FAIL

If the text of RETURN_FAIL is found in the HTTP response of the gateway privacyIDEA assumes that
the SMS could not be sent and an error occurred.

PROXY

You can specify a proxy to connect to the HTTP gateway.

PARAMETER

This can contain a dictionary of arbitrary fixed additional parameters. Usually this would also contain an
ID or a password to identify you as a sender.

CHECK_SSL

If the URL is secured via TLS (HTTPS), you can select, if the certificate should be verified or not.

TIMEOUT

The timeout for contacting the API and receiving a response.

Options

You can define additional options. These are sent as parameters in the GET or POST request.

Note: The fixed parameters and the options can not have the same name! If you need an options, that has the same
name as a parameter, you must not fill in the corresponding parameter.

1.4. Configuration 83

privacyIDEA Authentication System, Release 3.2.1

Note: You can use the tags {phone} and {otp} to specify the mobile number and the otp value.

Examples

Clickatell

In case of the Clickatell provider the configuration will look like this:

• URL: http://api.clickatell.com/http/sendmsg

• HTTP_METHOD: GET

• RETURN_SUCCESS: ID

Set the additional options to be passed as HTTP GET parameters:

• user: YOU

• password: your password

• api_id: you API ID

• text: “Your OTP value is {otp}”

• to: {phone}

This will consturct an HTTP GET request like this:

http://api.clickatell.com/http/sendmsg?user=YOU&password=YOU&\
api_id=YOUR API ID&text=....&to=....

where text and to will contain the OTP value and the mobile phone number. privacyIDEA will assume a successful
sent SMS if the response contains the text “ID”.

GTX-Messaging

GTX-Messaging is an SMS Gateway located in Germany.

The configuration looks like this (see2):

• URL: https://http.gtx-messaging.net/smsc.php

• HTTP_METHOD: GET

• CHECK_SSL: yes

• RETURN_SUCCESS: 200 OK

You need to set the additional options:

• user: <your account>

• pass: <the account password>

• to: {phone}

• text: Your OTP value is {otp}.

2 https://www.gtx-messaging.com/de/api-docs/http/

84 Chapter 1. Table of Contents

http://api.clickatell.com/http/sendmsg
https://http.gtx-messaging.net/smsc.php
https://www.gtx-messaging.com/de/api-docs/http/

privacyIDEA Authentication System, Release 3.2.1

Note: The user and pass are not the credentials you use to login. You can find the required credentials for sending
SMS in your GTX messaging account when viewing the details of your routing account.

Twilio

You can also use the Twilio service for sending SMS.1.

• URL: https://api.twilio.com/2010-04-01/Accounts/B. . . 8/Messages

• HTTP_METHOD: POST

For basic authentication you need:

• USERNAME: your accountSid

• PASSWORD: your password

Set the additional options as POST parameters:

• From: your Twilio phone number

• Body: {otp}

• To: {phone}

Sipgate provider

The sipgate provider connects to https://samurai.sipgate.net/RPC2 and takes only two arguments USERNAME and
PASSWORD.

Parameters:

USERNAME

The sipgate username.

PASSWORD

The sipgate password.

PROXY

You can specify a proxy to connect to the HTTP gateway.

It takes not options.

If you activate debug log level you will see the submitted SMS and the response content from the Sipgate gateway.

SMTP provider

The SMTP provider sends an email to an email gateway. This is a specified, fixed mail address.

The mail should contain the phone number and the OTP value. The email gateway will send the OTP via SMS to the
given phone number.

SMTPIDENTIFIED

Here you can select on of your centrally defined SMTP servers.

1 https://www.twilio.com/docs/api/rest/sending-messages

1.4. Configuration 85

https://api.twilio.com/2010-04-01/Accounts/B...8/Messages
https://samurai.sipgate.net/RPC2
https://www.twilio.com/docs/api/rest/sending-messages

privacyIDEA Authentication System, Release 3.2.1

MAILTO

This is the address where the email with the OTP value will be sent. Usually this is a fixed email address
provided by your SMTP Gateway provider. But you can also use the tags {phone} and {otp} to replace
the phone number or the one time password.

SUBJECT

This is the subject of the email to be sent. You can use the tags {phone} and {otp} to replace the
phone number or the one time password.

BODY

This is the body of the email. You can use this to explain the user, what he should do with this email. You
can use the tags {phone} and {otp} to replace the phone number or the one time password.

The default SUBJECT is set to {phone} and the default BODY to {otp}. You may change the SUBJECT and the BODY
accordingly.

SMPP Provider

The SMPP provider was added in privacyIDEA 2.22. It uses an SMS Center via the SMPP protocol to deliver SMS to
the users.

You need to specify the SMSC_HOST and SMSC_PORT to talk to the SMS center. privacyIDEA need to authen-
ticate against the SMS center. For this you can add the parameters SYSTEM_ID and PASSWORD. The parameter
S_ADDR is the sender’s number, shown to the users receiving an SMS. For the other parameters contact your SMS
center operator.

Firebase Provider

The Firebase provider was added in privacyIDEA 3.0. It sends notifications via the Google Firebase service and this
is used for the Push Token.

registration URL

This is the URL of your privacyIDEA server, which the push App should connect to for the second reg-
istration step. This URL usually ends with /ttype/push. Note, that the FQDN of your privacyIDEA
server could be different for the smartphone App to connect to, than you usually use for connecting via
the Web interface.

time to live

This is the time (in seconds) how long the privacyIDEA server accepts the response of the second regis-
tration step. The smartphone could have connection issues, so the second step could take some time to
happen.

JSON config file

This is the location of the configuration file of the Firebase service. It has to be located on the privacyIDEA
server.

projectid

The project ID of the Firebase project, that is used to connect the app to.

projectnumber*

The project number of the Firebase project, that is used to connect the app to.

appid

86 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

The app ID your app should use to connect to the Firebase service.

apikey

The API key your app should use to connect to the Firebase service.

You can get all the necessary values JSON config file, project ID, project number, app ID and API key from your
Firebase console.

1.4.8 privacyIDEA Appliance

privacyIDEA offers an appliance tool to manage your token administrators, RADIUS clients and also setup MySQL
master-master replication. It can be found in a Github repository1.

This tool is supposed to run on Ubuntu 16.04 LTS. You can find a ready install ISO at another Github reposity2.

Note: The ready made Ubuntu package is only available with a Service Level Agreement from the company
NetKnights3.

To configure the system, login as the user root on your machine and run the command:

pi-appliance

This will bring you to this start screen.

You can configure privacyidea settings, the log level, administrators, encryption key and much more. You can configure
the webserver settings and RADIUS clients.

All changes done in this setup tool are directly read from and written to the corresponding configuration files. The
setup tool parses the original nginx and freeradius configuration files. So there is no additional place where this data
is kept.

Note: You can also edit the clients.conf and other configuration files manually. The setup tool will also read those
manual changes!

Backup and Restore

Starting with version 1.5 the setup tool also supports backup and restore. Backups are written to the directory
/var/lib/privacyidea/backup.

The backup contains all privacyIDEA configuration, the contents of the directory /etc/privacyidea, the encryption key,
the configured administrators, the complete token database (MySQL) and Audit log. Furthermore if you are running
FreeRADIUS the backup also contains the /etc/freeradius/clients.conf file.

Schedulded backup

At the configuration point Configure Backup you can define times when a scheduled backup should be performed.
This information is written to the file /etc/crontab.

1 https://github.com/NetKnights-GmbH/privacyidea-appliance
2 https://github.com/NetKnights-GmbH/privacyidea-appliance-iso
3 https://netknights.it/en/produkte/privacyidea/

1.4. Configuration 87

https://github.com/NetKnights-GmbH/privacyidea-appliance
https://github.com/NetKnights-GmbH/privacyidea-appliance-iso
https://netknights.it/en/produkte/privacyidea/

privacyIDEA Authentication System, Release 3.2.1

Fig. 39: Start screen of the appliance setup tool.

Fig. 40: Configure privacyidea

88 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 41: You can create new token administrators, delete them and change their passwords.

Fig. 42: In the FreeRADIUS settings you can create and delete RADIUS clients.

1.4. Configuration 89

privacyIDEA Authentication System, Release 3.2.1

Fig. 43: Scheduled backup

You can enter minutes, hours, day of month, month and day of week. If the entry should be valid for each e.g. month
or hour, you need to enter a ‘*’.

In this example the 10 17 * * * (minute=10, hour=17) means to perform a backup each day and each month at 17:10
(5:10pm).

The example 1 10 1 * * (minute=1, hour=10, day of month=1) means to perform a backup on the first day of each
month at 10:01 am.

Thus you could also perform backups only once a week at the weekend.

Immediate backup

If you want to run a backup right now you can choose the entry Backup now.

Restore

The entry View Backups will list all the backups available.

You can select a backup and you are asked if you want to restore the data.

Warning: Existing data is overwritten and will be lost.

1.5 Components

Starting with privacyIDEA 2.15 you can see privacyIDEA components in the Web UI. privacyIDEA collects authenti-
cating clients with their User Agent. Usually this is a type like PAM, FreeRADIUS, OTRS, Wordpress. . . This overview
helps you to understand your network and keep track which clients are connected to your network.

90 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 44: All available backups

Fig. 45: components

1.5. Components 91

privacyIDEA Authentication System, Release 3.2.1

1.6 Tokenview

The administrator can see all the tokens of all realms he is allowed to manage in the tokenview. Each token can be
located in several realms and be assigned to one user. The administrator can see all the details of the token.

Fig. 46: Token View

The administrator can click on one token, to show more details of this token and to perform actions on this token.

1.6.1 Token Details

The Token Details give you more information about the token and also let the administrator perform specific tasks for
this token.

At the bottom you see the assigned user. You can click on the username and change to the User Details.

Lost token

When a user has lost a token, the administrator or the user can create a temporary password token for the user to login.

The administrator has to select the token that was lost and click the button Lost token. A new token of type PW
is generated. The OTP PIN of the old token is automatically copied to the new token. Thus the administrator does not
know the OTP PIN, while the user can use his old PIN.

A long password is displayed to the administrator and the administrator can read this password to the user. The user
now can authenticate with his old OTP PIN and the long password.

The lost token is deactivated.

Get Serial

The administrator can enter a OTP value that was generated by an unknown token. Then the serial number for the
corresponding token is search and displayed.

Note: Since OTP values for all matching tokens need to be calculated, this can be time consuming!

Token settings

You can change the following token settings.

92 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 47: Token Detail

1.6. Tokenview 93

privacyIDEA Authentication System, Release 3.2.1

MaxFail and FailCount

If the login fail counter reaches the MaxFail the user can not login with this token anymore. The
Failcounter FailCount has to be reset to zero.

TokenDesc

The token description is also displayed in the tokenview. You can set a description to make it easier to
identify a token.

CountWindow

The CountWindow is the look ahead window of event based tokens. If the user pressed the button on
an event based token the counter in the token is increased. If the user does not use this otp value to
authenticate, the server does not know, that the counter in the token was increased. This way the counter
in the token can get out of sync with the server.

SyncWindow

If a token was out of sync (see CountWindow), then it needs to be synchronized. This is done by enter-
ing two consecutive OTP values. The server searches these two values within the next CountWindow
(default 1000) values.

OtpLen

This is the length of the OTP value that is generated by the token. The password that is entered by the
user is split according to this length. 6 or 8 characters are split as OTP value and the rest is used as static
password (OTP PIN).

Hashlib

The HOTP algorithm can be used with SHA1 or SHA256.

Tokeninfo - Auth max

The administrator can set a value how often this token may be used for authentication. If the number of
authentication try exceed this value, the token can not be used, until this Auth max value is increased.

Note: This way you could create tokens, that can be used only once.

Tokeninfo - Auth max success

The administrator can set a value how often this token may be used to successfully authenticate.

Tokeninfo - Valid start

A timestamp can be set. The token will only be usable for authentication after this start time.

Tokeninfo - Valid end

A timestamp can be set. The token can only be used before this end time.

Note: This way you can create temporary tokens for guests or short time or season employees.

Resync Token

The administrator can select one token and then enter two consecutive OTP values to resynchonize the token if it was
out of sync.

94 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

set token realm

A token can be assigned to several realms. This is important if you have administrators for different realms. A realm
administrator is only allowed to see tokens within his realms. He will not see tokens, that are not in his realm. So you
can assign a token to realm A and realm B, thus the administrator A and the administrator B will be able to see the
token.

get OTP

If the corresponding getOTP policy (Policies) is set, the administrator can get the OTP values of a token from the
server without having the token with him.

Note: Of course this is a potential backdoor, since the administrator could login as the user/owner of this very token.

enroll

You can enroll a token either from the Token View or from the User Details. When enrolling a token from the User
Details the token is directly assigned to the user.

If you enroll the token from the token view, you can select a user, to whom the token will be assigned.

When enrolling a token, you can select the token type and according to the token type other necessary information.

Fig. 48: Token enrollment dialog

1.6. Tokenview 95

privacyIDEA Authentication System, Release 3.2.1

assign

This function is used to assign a token to a user. Select a realm and start typing a username to find the user, to whom
the token should be assigned.

unassign

In the token details view you can unassign the token. After that, the token can be assigned to a new user.

enable

If a token is disabled, it can be enabled again.

disable

Tokens can be disabled. Disabled tokens still belong to the assigned user but those tokens can not be used to authenti-
cate. Disabled tokens can be enabled again.

set PIN

You can set the OTP PIN or the mOTP PIN for tokens.

Reset Failcounter

If a used locked his token, since he entered wrong OTP values or wrong OTP PINs, the fail counter has reached the mail
failcount. The administrator or help desk user can select those tokens and click the button reset failcounter
to reset the fail counter to zero. The tokens can be used for authentication again.

delete

Deleting a token will remove the token from the database. The token information can not be recovered. But all events
that occurred with this token still remain in the audit log.

1.7 Userview

The administrator can see all users in realms he is allowed to manage.

Note: Users are only visible, if the useridresolver is located within a realm. If you only define a useridresolver but no
realm, you will not be able to see the users!

You can select one of the realms in the left drop down box. The administrator will only see the realms in the drop
down box, that he is allowed to manage.

The list shows the users from the select realm. The username, surname, given name, email and phone are filled
according to the definition of the useridresolver.

Even if a realm contains several useridresolvers all users from all resolvers within this realm are displayed.

96 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 49: User View. List all users in a realm.

1.7.1 User Details

When clicking on a username, you can see the users details and perform several actions on the user.

You see a list of the users tokens and change to the Token Details.

Enroll tokens

In the users details view you can enroll additional tokens to the user. In the enrollment dialog the user will be selected
and you only need to choose what tokentype you wish to enroll for this user.

Assign tokens

You can assign a new, already existing token to the user. Just start typing the token serial number. The system will
search for tokens, that are not assigned yet and present you a list to choose from.

View Audit Log

You can also click View user in Audit log which will take you to the Audit log with a filter on this very user, so that
you will only see audit entries regarding this user.

Edit user

If the user is located in a resolver, that is marked as editable, the administrator will also see a button “Edit User”. To
read more about this, see Manage Users.

1.7.2 Manage Users

Since version 2.4 privacyIDEA allows you to edit users in the configured resolvers. At the moment this is possible for
SQL resolvers.

In the resolver definition you need to check the new checkbox Edit user store.

1.7. Userview 97

privacyIDEA Authentication System, Release 3.2.1

Fig. 50: User Details.

Fig. 51: Users in SQL can be edited, when checking the checkbox.

98 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

In the Users Detail view, the administrator then can click the button “Edit” and modify the user data and also set a new
password.

Fig. 52: Edit the attributes of an existing user.

Note: The data of the user will be modified in the user store (database). Thus the users data, which will be returned
by a resolver, is changed. If the resolver is contained in several realms these changes will reflect in all realms.

If you want to add a user, you can click on Add User in the User View.

Fig. 53: Add a new user.

Users are contained in resolvers and added to resolvers. So you need to choose an existing resolver and not a realm.
The user will be visible in all realms, the resolver is contained in.

Note: Of course you can set policies to allow or deny the administrator these rights.

1.7. Userview 99

privacyIDEA Authentication System, Release 3.2.1

Simple local users setup

You can setup a local users definition quite easily. Run:

pi-manage resolver create_internal test

This will create a database table “users_test” in your token database. And it will create a resolver “test” that refers to
this database table.

Then you can add this resolver to realm:

pi-manage realm create internal_realm test

Which will create a realm “internal_realm” containing the resolver “test”. Now you can start adding users to this
resolver as described above.

Note: This is an example of how to get started with users quite quickly. Of course you do not need to save the users
table in the same database as the tokens. But in scenarios, where you do not have existing user stores or the user stores
are managed by another department or are not accessible easily this may be sensible way.

1.8 Policies

Policies can be used to define the reaction and behaviour of the system.

Each policy defines the behaviour in a certain area, called scope. privacyIDEA knows the scopes:

1.8.1 Admin policies

Admin policies are used to regulate the actions that administrators are allowed to do. Technically admin policies
control the use of the REST API Token endpoints, System endpoints, Realm endpoints and Resolver endpoints.

Admin policies are implemented as decorators in Policy Module and Policy Decorators.

The user in the admin policies refers to the name of the administrator.

Starting with privacyIDEA 2.4 admin policies can also store a field “admin realm”. This is used, if you define realms
to be superuser realms. See The Config File for information how to do this. Read So what’s the thing with all the
admins? for more information on the admin realms.

This way it is easy to define administrative rights for big groups of administrative users like help desk users in the IT
department.

All administrative actions also refer to the defined user realm. Meaning an administrator may have many rights in one
user realm and only a few rights in another realm.

Creating a policy with scope:admin, admin-realm:helpdesk, user:frank, action:enable and
realm:sales means that the administrator frank in the admin-realm helpdesk is allowed to enable tokens in the
user-realm sales.

Note: As long as no admin policy is defined all administrators are allowed to do everything.

The following actions are available in the scope admin:

100 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 54: The Admin scope provides an additional field ‘admin realm’.

tokenlist

type: bool

This allows the administrator to list existing tokens in the specified user realm. Note, that the resolver in this policy is
ignored.

If the policy with the action tokenlist is not bound to any user realm, this acts as a wild card and the admin is
allowed to list all tokens.

If the action tokenlist is not active, but admin policies exist, then the admin is not allowed to list any tokens.

Note: As with all boolean policies, multiple tokenlist policies add up to create the resulting rights of the administrator.
So if there are multiple matching policies for different realms, the admin will have list rights on all mentioned realms
independent on the priority of the policies.

init

type: bool

There are init actions per token type. Thus you can create policy that allow an administrator to enroll SMS tokens
but not to enroll HMAC tokens.

enable

type: bool

The enable action allows the administrator to activate disabled tokens.

1.8. Policies 101

privacyIDEA Authentication System, Release 3.2.1

disable

type: bool

Tokens can be enabled and disabled. Disabled tokens can not be used to authenticate. The disable action allows
the administrator to disable tokens.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.

set

type: bool

Tokens can have additional token information, which can be viewed in the Token Details.

If the set action is defined, the administrator allowed to set those token information.

setpin

type: bool

If the setpin action is defined, the administrator is allowed to set the OTP PIN of a token.

setrandompin

type: bool

If the setrandompin action is defined, the administrator is allowed to call the endpoint, that sets a random token
PIN.

enrollpin

type: bool

If the action enrollpin is defined, the administrator can set a token PIN during enrollment. If the action is not
defined and the administrator tries to set a PIN during enrollment, this PIN is deleted from the request.

otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the admin is allowed to use when setting the OTP PIN.

102 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the admin must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the admin sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [.:,;-_<>+*!/()=?$§%&#~^].

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would require the admin to
choose OTP PINs that consist of letters and digits which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would not be a valid OTP PIN.

The logic of the otp_pin_contents can be enhanced and reversed using the characters + and -.

-cn would still mean, that the OTP PIN needs to contain letters and digits and it must not contain any other characters.

-cn (substraction)

test1234 would be a valid OTP PIN, but test12$$ and testABCS would not be valid OTP PINs. The later
since it does not contain digits, the first (test12$$) since it does contain a special character ($), which it
should not.

+cn (grouping)

combines the two required groups. I.e. the OTP PIN should contain characters from the sum of the two
groups. test1234, test12$$, test and 1234 would all be valid OTP PINs.

otp_pin_set_random

type: integer

range: 1-31

The administrator can set a random pin for a token with the endpoint token/setrandompin. This policy is needed
to define how long the PIN will be.

1.8. Policies 103

privacyIDEA Authentication System, Release 3.2.1

Note: The PIN will consist of digits and letters.

resync

type: bool

If the resync action is defined, the administrator is allowed to resynchronize a token.

assign

type: bool

If the assign action is defined, the administrator is allowed to assign a token to a user. This is used for assigning an
existing token to a user but also to enroll a new token to a user.

Without this action, the administrator can not create a connection (assignment) between a user and a token.

unassign

type: bool

If the unassign action is defined, the administrator is allowed to unassign tokens from a user. I.e. the administrator
can remove the link between the token and the user. The token still continues to exist in the system.

import

type: bool

If the import action is defined, the administrator is allowed to import token seeds from a token file, thus creating
many new token objects in the systems database.

remove

type: bool

If the remove action is defined, the administrator is allowed to delete a token from the system.

Note: If a token is removed, it can not be recovered.

Note: All audit entries of this token still exist in the audit log.

userlist

type: bool

If the userlist action is defined, the administrator is allowed to view the user list in a realm. An administrator
might not be allowed to list the users, if he should only work with tokens, but not see all users at once.

104 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: If an administrator has any right in a realm, the administrator is also allowed to view the token list.

checkstatus

type: bool

If the checkstatus action is defined, the administrator is allowed to check the status of open challenge requests.

manageToken

type: bool

If the manageToken action is defined, the administrator is allowed to manage the realms of a token.

A token may be located in multiple realms. This can be interesting if you have a pool of spare tokens and several
realms but want to make the spare tokens available to several realm administrators. (Administrators, who have only
rights in one realm)

Then all administrators can see these tokens and assign the tokens. But as soon as the token is assigned to a user in
one realm, the administrator of another realm can not manage the token anymore.

getserial

type: bool

If the getserial action is defined, the administrator is allowed to calculate the token serial number for a given OTP
value.

getrandom

type: bool

The getrandom action allows the administrator to retrieve random keys from the endpoint getrandom. This is an
endpoint in System endpoints.

getrandom can be used by the client, if the client has no reliable random number generator. Creating API keys for the
Yubico Validation Protocol uses this endpoint.

getchallenges

type: bool

This policy allows the administrator to retrieve a list of active challenges of a challenge response tokens. The admin-
istrator can view these challenges in the web UI.

losttoken

type: bool

If the losttoken action is defined, the administrator is allowed to perform the lost token process.

To only perform the lost token process the actions copytokenuser and copytokenpin are not necessary!

1.8. Policies 105

privacyIDEA Authentication System, Release 3.2.1

adduser

type: bool

If the adduser action is defined, the administrator is allowed to add users to a user store.

Note: The user store still must be defined as editable, otherwise no users can be added, edited or deleted.

updateuser

type: bool

If the updateuser action is defined, the administrator is allowed to edit users in the user store.

deleteuser

type: bool

If the deleteuser action is defined, the administrator is allowed to delete an existing user from the user store.

copytokenuser

type: bool

If the copytokenuser action is defined, the administrator is allowed to copy the user assignment of one token to
another.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

copytokenpin

type: bool

If the copytokenpin action is defined, the administrator is allowed to copy the OTP PIN from one token to another
without knowing the PIN.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

smtpserver_write

type: bool

To be able to define new SMTP server configuration or delete existing ones, the administrator needs this rights
smtpserver_write.

smtpserver_read

type: bool

Allow the administrator to read the SMTP server configuration.

106 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

smsgateway_write

type: bool

To be able to define new SMS Gateway configuration or delete existing ones, the administrator needs the right
smsgateway_write.

smsgateway_read

type: bool

Allow the administrator to read the SMS Gateway configuration.

periodictask_write

type: bool

Allow the administrator to write or delete Periodic Tasks definitions.

periodictask_read

type: bool

Allow the administrator to read the Periodic Tasks definitions.

eventhandling_write

type: bool

Allow the administrator to configure Event Handler.

eventhandling_read

type: bool

Allow the administrator to read Event Handler.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read event handlers,
will allow the administrator to see all event handler definitions.

policywrite, policyread, policydelete

type: bool

Allow the administrator to write, read or delete policies.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read policies, will allow
the administrator to see all policies.

1.8. Policies 107

privacyIDEA Authentication System, Release 3.2.1

resolverwrite, resolverread, resolverdelete

type: bool

Allow the administrator to write, read or delete user resolvers and realms.

Note: Currently the policies do not take into account resolvers, or realms. Having the right to read resolvers, will
allow the administrator to see all resolvers and realms.

mresolverwrite, mresolverread, mresolverdelete

type: bool

Allow the administrator to write, read or delete machine resolvers.

configwrite, configread, configdelete

type: bool

Allow the administrator to write, read or delete system configuration.

auditlog

type: bool

The administrators are allowed to view the audit log. If the policy contains a user realm, than the administrator is only
allowed to see entries which contain this very user realm. A list of user realms may be defined.

To learn more about the audit log, see Audit.

auditlog_download

type: bool

The administrator is allowed to download the audit log.

Note: The download is not restricted to filters and audit age. Thus, if you want to avoid, that an administrator can see
older logs, you need to disallow downloading the data. Otherwise he may download the audit log and look at older
entries manually.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the
administrator is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

108 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

trigger_challenge

type: bool

If set the administrator is allowed to call the API /validate/triggerchallenge. This API can be used to send
an OTP SMS to user without having specified the PIN of the SMS token.

The usual setup that one administrative account has only this single policy and is only used for triggering challenges.

New in version 2.17.

hotp_2step and totp_2step

type: string

This allows or forces the administrator to enroll a smartphone based token in two steps. In the second step the
smartphone generates a part of the OTP secret, which the administrator needs to enter. (see Two Step Enrollment).
Possible values are allow and force. This works in conjunction with the enrollment parameters {type}_2step_clientsize,
{type}_2step_serversize, {type}_2step_difficulty.

Such a policy can also be set for the user. See hotp_2step and totp_2step.

New in version 2.21

hotp_hashlib and totp_hashlib

type: string

Force the admin to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled in the web UI. Possible values are sha1, sha256 and sha512, default is sha1.

New in 3.2

hotp_otplen and totp_otplen

type: int

Force the admin to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled in the web UI. Possible values are 6 or 8, default is 6.

New in 3.2

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

New in 3.2

system_documentation

type: bool

The administrator is allowed to export a complete system documentation including resolvers and realm. The docu-
mentation is created as restructured text.

1.8. Policies 109

privacyIDEA Authentication System, Release 3.2.1

sms_gateways

type: string

Usually an SMS token sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank-separated list of configured SMS gateways. It allows the administrator to define an individual
SMS gateway during token enrollment.

New in version 3.0.

1.8.2 User Policies

In the Web UI users can manage their own tokens. User can login to the Web UI with the username of their useridre-
solver. I.e. if a user is found in an LDAP resolver pointing to Active Directory the user needs to login with his domain
password.

User policies are used to define, which actions users are allowed to perform.

The user policies also respect the client input, where you can enter a list of IP addresses and subnets (like
10.2.0.0/16).

Using the client parameter you can allow different actions in if the user either logs in from the internal network or
remotely from the internet via the firewall.

Technically user policies control the use of the REST API Token endpoints and are checked using Policy Module and
Policy Decorators.

Note: If no user policy is defined, the user has all actions available to him, to manage his tokens.

The following actions are available in the scope user:

enroll

type: bool

There are enroll actions per token type. Thus you can create policies that allow the user to enroll SMS tokens but
not to enroll HMAC tokens.

assgin

type: bool

The user is allowed to assgin an existing token, that is located in his realm and that does not belong to any other user,
by entering the serial number.

disable

type: bool

The user is allowed to disable his own tokens. Disabled tokens can not be used to authenticate.

110 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

enable

type: bool

The user is allowed to enable his own tokens.

delete

type: bool

The user is allowed to delete his own tokens from the database. Those tokens can not be recovered. Anyway, the audit
log concerning these tokens remains.

unassign

type: bool

The user is allowed to drop his ownership of the token. The token does not belong to any user anymore and can be
reassigned.

resync

type: bool

The user is allowed to resynchronize the token if it has got out of synchronization.

reset

type: bool

The user is allowed to reset the failcounter of the token.

setpin

type: bool

The user is allowed to set the OTP PIN for his tokens.

setrandompin

type: bool

If the setrandompin action is defined, the user is allowed to call the endpoint, that sets a random PIN on his
specified token.

setdescription

type: bool

The user is allowed to set the description of his tokens.

1.8. Policies 111

privacyIDEA Authentication System, Release 3.2.1

enrollpin

type: bool

If the action enrollpin is defined, the user can set a token PIN during enrollment. If the action is not defined and
the user tries to set a PIN during enrollment, this PIN is deleted from the request.

otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the user is allowed to use when setting the OTP PIN.

Note: There can be token type specific policies like spass_otp_pin_maxlength,
spass_otp_pin_minlength and spass_otp_pin_contents. If suche a token specific policy exists, it
takes priority of the common PIN policy.

otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the user must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the user sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [.:,;-_<>+*!/()=?$§%&#~^].

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would require the user to
choose OTP PINs that consist of letters and digits which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would not be a valid OTP PIN.

The logic of the otp_pin_contents can be enhanced and reversed using the characters + and -.

-cn would still mean, that the OTP PIN needs to contain letters and digits and it must not contain any other characters.

-cn (substraction)

test1234 would be a valid OTP PIN, but test12$$ and testABCS would not be valid OTP PINs. The later
since it does not contain digits, the first (test12$$) since it does contain a special character ($), which it
should not.

+cn (grouping)

112 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

combines the two required groups. I.e. the OTP PIN should contain characters from the sum of the two
groups. test1234, test12$$, test and 1234 would all be valid OTP PINs.

auditlog

type: bool

This action allows the user to view and search the audit log for actions with his own tokens.

To learn more about the audit log, see Audit.

auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not remove from the audit table but the user
is simply not allowed to view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

updateuser

type: bool

If the updateuser action is defined, the user is allowed to change his attributes in the user store.

Note: To be able to edit the attributes, the resolver must be defined as editable.

revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked. A locked token can not be modified
anymore. It can only be deleted.

Certain token types like certificate may define special actions when revoking a token.

password_reset

type: bool

Introduced in version 2.10.

If the user is located in an editable user store, this policy can define, if the user is allowed to perform a password reset.
During the password reset an email with a link to reset the password is sent to the user.

hotp_2step and totp_2step

type: string

This allows or forces the user to enroll a smartphone based token in two steps. In the second step the smartphone
generates a part of the OTP secret, which the user needs to enter. (see Two Step Enrollment). Possible values are allow

1.8. Policies 113

privacyIDEA Authentication System, Release 3.2.1

and force. This works in conjunction with the enrollment parameters {type}_2step_clientsize, {type}_2step_serversize,
{type}_2step_difficulty.

Such a policy can also be set for the administrator. See hotp_2step and totp_2step.

New in version 2.21

sms_gateways

type: string

Usually an SMS tokens sends the SMS via the SMS gateway that is system wide defined in the token settings. This
policy takes a blank separated list of configured SMS gateways. It allows the user to define an individual SMS gateway
during token enrollment.

New in version 3.0.

hotp_hashlib and totp_hashlib

type: string

Force the user to enroll HOTP/TOTP Tokens with the specified hashlib. The corresponding input selector will be
disabled/hidden in the web UI. Possible values are sha1, sha256 and sha512, default is sha1.

hotp_otplen and totp_otplen

type: int

Force the user to enroll HOTP/TOTP Tokens with the specified otp length. The corresponding input selector will be
disabled/hidden in the web UI. Possible values are 6 or 8, default is 6.

hotp_force_server_generate and totp_force_server_generate

type: bool

Enforce the key generation on the server. A corresponding input field for the key data will be disabled/hidden in the
web UI. Default value is false.

totp_timestep

type: int

Enforce the timestep of the time-based OTP token. A corresponding input selection will be disabled/hidden in the web
UI. Possible values are 30 or 60, default is 30.

1.8.3 Authentication policies

The scope authentication gives you more detailed possibilities to authenticate the user or to define what happens during
authentication.

Technically the authentication policies apply to the REST API Validate endpoints and are checked using Policy Module
and Policy Decorators.

The following actions are available in the scope authentication:

114 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

otppin

type: string

This action defines how the fixed password part during authentication should be validated. Each token has its own
OTP PIN, but you can choose how the authentication should be processed:

otppin=tokenpin

This is the default behaviour. The user needs to pass the OTP PIN concatenated with the OTP value.

otppin=userstore

The user needs to pass the user store password concatenated with the OTP value. It does not matter if
the OTP PIN is set or not. If the user is located in an Active Directory the user needs to pass his domain
password together with the OTP value.

Note: The domain password is checked with an LDAP bind right at the moment of authentication. So if the user is
locked or the password was changed authentication will fail.

otppin=none

The user does not have to pass any fixed password. Authentication is only done via the OTP value.

passthru

type: str

If the user has no token assigned, he will be authenticated against the userstore or against the given RADIUS configu-
ration. I.e. the user needs to provide the LDAP- or SQL-password or valid credentials for the RADIUS server.

Note: This is a good way to do a smooth enrollment. Users having a token enrolled will have to use the token, users
not having a token, yet, will be able to authenticate with their domain password.

It is also a way to do smooth migrations from other OTP systems. The authentication request of users without a token
is forwarded to the specified RADIUS server.

Note: The passthru policy overrides the authorization policy for tokentype. I.e. a user may authenticate due to the
passthru policy (since he has no token) although a tokentype policy is active!

Warning: If the user has the right to delete his tokens in selfservice portal, the user could delete all his tokens
and then authenticate with his static password again.

passthru_assign

type: str

This policy is only evaluated, if the policy passthru is set. If the user is authenticated against a RADIUS server,
then privacyIDEA splits the sent password into PIN and OTP value and tries to find an unassigned token, that is in the
user’s realm by using the OTP value. If it can identify this token, it assigns this token to the user and sets the sent PIN.

1.8. Policies 115

privacyIDEA Authentication System, Release 3.2.1

The policy is configured with a string value, that contains * the position of the PIN * the OTP length and * the number
of OTP values tested for each unassigned token (optional, default=100).

Examples are

• 8:pin would be an eight digit OTP value followed by the PIN

• pin:6:10000 would be the PIN followed by an 6 digit OTP value, 10.000 otp values would be checked for
each token.

Note: This method can be used to automatically migrated tokens from an old system to privacyIDEA. The adminis-
trator needs to import all seeds of the old tokens and put the tokens in the user’s realm.

Warning: This can be very time consuming if the OTP values to check is set to high!

passOnNoToken

type: bool

If the user has no token assigned an authentication request for this user will always be true.

Warning: Only use this if you know exactly what you are doing.

passOnNoUser

type: bool

If the user does not exist, the authentication request is successful.

Warning: Only use this if you know exactly what you are doing.

smstext

type: string

This is the text that is sent via SMS to the user trying to authenticate with an SMS token. You can use the tags <otp>
and <serial>.

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Default: <otp>

smsautosend

type: bool

A new OTP value will be sent via SMS if the user authenticated successfully with his SMS token. Thus the user does
not have to trigger a new SMS when he wants to login again.

116 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

emailtext

type: string

This is the text that is sent via Email to be used with Email Token. This text should contain the OTP value.

The text can contain the following tags, that will be filled:

• {serial} the serial number of the token.

• {user} the given name of the token owner.

• {givenname} the given name of the token owner.

• {surname} the surname of the token owner.

• {username} the loginname of the token owner.

• {userrealm} the realm of the token owner.

• {tokentype} the type of the token.

• {recipient_givenname} the given name of the recipient.

• {recipient_surname} the surname of the recipient.

• {time} the current server time in the format HH:MM:SS.

• {date} the current server date in the format YYYY-MM-DD

Starting with version 2.20 you can use the tag {challenge}. This will add the challenge data that was passed in the first
authentication request in the challenge parameter. This could contain banking transaction data.

Default: <otp>

You can also provide the filename to an email template. The filename must be prefixed with file: like file:/
etc/privacyidea/emailtemplate.html. The template is an HTML file.

Note: If a message text is supplied directly, the email is sent as plain text. If the email template is read from a file, a
HTML-only email is sent instead.

emailsubject

type: string

This is the subject of the Email sent by the Email Token. You can use the same tags as mentioned in emailtext.

Default: Your OTP

emailautosend

type: bool

If set, a new OTP Email will be sent, when successfully authenticated with an Email Token.

1.8. Policies 117

privacyIDEA Authentication System, Release 3.2.1

mangle

type: string

The mangle policy can mangle the authentication request data before they are processed. I.e. the parameters user,
pass and realm can be modified prior to authentication.

This is useful if either information needs to be stripped or added to such a parameter. To accomplish that, the mangle
policy can do a regular expression search and replace using the keyword user, pass (password) and realm.

A valid action could look like this:

action: mangle=user/.*(.{4})/user\\1/

This would modify a username like “userwithalongname” to “username”, since it would use the last four characters of
the given username (“name”) and prepend the fixed string “user”.

This way you can add, remove or modify the contents of the three parameters. For more information on the regular
expressions see1.

Note: You must escape the backslash as \ to refer to the found substrings.

Example: A policy to remove whitespace characters from the realm name would look like this:

action: mangle=realm/\\s//

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

action: mangle=pass/.*(.{6})/\\1/

Example: If you want to strip a string from the front of a username, for example to have “admin_username” resolve
to just “username”, it would look like this:

action: mangle=user/admin_(.*)/\\1/

challenge_response

type: string

This is a list of token types for which challenge response can be used during authentication. The list is separated by
whitespaces like “hotp totp”.

u2f_facets

type: string

This is a white space separated list of domain names, that are trusted to also use a U2F device that was registered with
privacyIDEA.

You need to specify a list of FQDNs without the https scheme like:

“host1.example.com host2.exmaple.com firewall.example.com”

For more information on configuring U2F see U2F Token Config.

1 https://docs.python.org/2/library/re.html

118 Chapter 1. Table of Contents

https://docs.python.org/2/library/re.html

privacyIDEA Authentication System, Release 3.2.1

reset_all_user_tokens

type: bool

If a user authenticates successfully all failcounter of all of his tokens will be reset. This can be important, if using
empty PINs or otppin=None.

auth_cache

type: string

The Authentication Cache caches the credentials of a successful authentication and allows to use the same credentials
- also with an OTP value - for the specified amount of time.

The time to cache the credentials can be specified like “4h”, “5m”, “2d” (hours, minutes days) or “4h/5m”. The
notation 4h/5m means, that credentials are cached for 4 hours, but only may be used again, if every 5 minutes the
authentication occurs. If the authentication with the same credentials would not occur within 5 minutes, the credentials
can not be used anymore.

In future implementations the caching of the credentials could also be dependent on the clients IP address and the user
agent.

Note: Cache entries are written to the database table authcache. Please note that expired entries are automatically
deleted only when the user attempts to log in with the same expired credentials again. In all other cases, expired entries
need to be deleted from this table manually by running:

pi-manage authcache cleanup --minutes MIN

which deletes all cache entries whose last authentication has occurred at least MIN minutes ago. As an example:

pi-manage authcache cleanup --minutes 300

will delete all authentication cache entries whose last authentication happened more than 5 hours ago.

It may make sense to create a cronjob that periodically cleans up old authentication cache entries.

Note: The AuthCache only works for user authentication, not for authentication with serials.

push_text_on_mobile

type: string

This is the text that should be displayed on the push notification during the login process with a Push Token. You can
choose different texts for different users or IP addresses. This way you could customize push notifications for different
applications.

push_title_on_mobile

type: string

This is the title of the push notification that is displayed on the user’s smartphone during the login process with a Push
Token.

1.8. Policies 119

privacyIDEA Authentication System, Release 3.2.1

push_wait

type: int

This can be set to a number of seconds. If this is set, the authentication with a push token is only performed via one
request to /validate/check. The HTTP request to /validate/check will wait up to this number of seconds
and check, if the push challenge was confirmed by the user.

This way push tokens can be used with any non-push-capable applications.

Sensible numbers might be 10 or 20 seconds.

Note: This behaviour can interfere with other tokentypes. Even if the user also has a normal HOTP token, the
/validate/check request will only return after this number of seconds.

Warning: Using simple webserver setups like Apache WSGI this actually can block all available worker threads,
which will cause privacyIDEA to become unresponsive if the number of open PUSH challenges exceeds the num-
ber of available worker threads!

challenge_text, challenge_text_header, challenge_test_footer

Using these policies the administrator can modify the challenge texts of e.g. Email-Token or SMS-Token. The action
challenge_text changes the challenge text in general, no matter which challenge response token is used.

If the challenge_text_header is set and if there are more matching challenge response tokens, then the texts of all
tokens are concatenated together. Double challenge texts are reduced to one text only.

The challenge_text_header and challenge_text_footer may contain HTML. If the challenge_text_header ends with
an or , then all the challenge texts are formatted as an ordered or unordered list. In this case the chal-
lenge_text_footer also should contain the closing tag.

Note: The footer will only be used, if the header is also set.

1.8.4 Authorization policies

The scope authorization provides means to define what should happen if a user proved his identity and authenticated
successfully.

Authorization policies take the realm, the user and the client into account.

Technically the authorization policies apply to the Validate endpoints and are checked using Policy Module and Policy
Decorators.

The following actions are available in the scope authorization:

tokentype

type: string

Users will only be authorized with this very tokentype. The string can hold a space separated list of case sensitive
tokentypes. It should look like:

120 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

hotp totp spass

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with one
special token type while allowing access to less sensitive areas with other token types.

serial

type: string

Users will only be authorized with the serial number. The string can hold a regular expression as serial number.

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with hardware
tokens like the Yubikey, while allowing access to less secure areas also with a Google Authenticator.

tokeninfo

type: string

Users will only be authorized if the tokeninfo field of the token matches this regular expression.

This is checked after the authentication request, so that a valid OTP value can not be used anymore, even if authoriza-
tion is forbidden.

A valid action could look like

action = key/regexp/

Example:

action = last_auth/^2018.*/

This would mean the tokeninfo field needs to start with “2018”.

setrealm

type: string

This policy is checked before the user authenticates. The realm of the user matching this policy will be set to the realm
in this action.

Note: This can be used if the user can not pass his realm when authenticating at a certain client, but the realm needs
to be available during authentication since the user is not located in the default realm.

1.8. Policies 121

privacyIDEA Authentication System, Release 3.2.1

no_detail_on_success

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user authenticated successfully this additional information will not be returned.

no_detail_on_fail

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user fails to authenticate this additional information will not be returned.

api_key_required

type: bool

This policy is checked before the user is validated.

You can create an API key, that needs to be passed to use the validate API. If an API key is required, but no key is
passed, the authentication request will not be processed. This is used to avoid denial of service attacks by a rogue user
sending arbitrary requests, which could result in the token of a user being locked.

You can also define a policy with certain IP addresses without issuing API keys. This would result in “blocking” those
IP addresses from using the validate endpoint.

You can issue API keys like this:

pi-manage api createtoken -r validate

The API key (Authorization token) which is generated is valid for 365 days.

The authorization token has to be used as described in Authentication endpoints.

auth_max_success

type: string

Here you can specify how many successful authentication requests a user is allowed to perform during a given time.
If this value is exceeded, the authentication attempt is canceled.

Specify the value like 2/5m meaning 2 successful authentication requests per 5 minutes. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

122 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

auth_max_fail

type: string

Here you can specify how many failed authentication requests a user is allowed to perform during a given time.

If this value is exceeded, authentication is not possible anymore. The user will have to wait.

If this policy is not defined, the normal behaviour of the failcounter applies. (see Reset Fail Counter)

Specify the value like 2/1m meaning 2 successful authentication requests per minute. If during the last 5 minutes 2
successful authentications were performed the authentication request is discarded. The used OTP value is invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

Note: This policy depends on reading the audit log. If you use a non readable audit log like Logger Audit this policy
will not work.

last_auth

type: string

You can define if an authentication should fail, if the token was not successfully used for a certain time.

Specify a value like 12h, 123d or 2y to disallow authentication, if the token was not successfully used for 12 hours,
123 days or 2 years.

The date of the last successful authentication is store in the tokeninfo field of a token and denoted in UTC.

u2f_req

type: string

Only the specified U2F devices are authorized to authenticate. The administrator can specify the action like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information from the attestation certificate is stored in the tokeninfo. Only if the regexp matches this
value, the authentication with such U2F device is authorized.

add_user_in_response

type: bool

In case of a successful authentication additional user information is added to the response. A dictionary containing
user information is added in detail->user.

add_resolver_in_response

type: bool

In case of a successful authentication the resolver and realm of the user are added to the response. The names are
added in detail->user-resolver and detail->user-realm.

1.8. Policies 123

privacyIDEA Authentication System, Release 3.2.1

1.8.5 Enrollment policies

The scope enrollment defines what happens during enrollment either by an administrator or during the user self enroll-
ment.

Enrollment policies take the realms, the client (see Policies) and the user settings into account.

Technically enrollment policies control the use of the REST API Token endpoints and specially the init and assign-
methods.

Technically the decorators in API Policies are used.

The following actions are available in the scope enrollment:

max_token_per_realm

type: int

This is the maximum allowed number of tokens in the specified realm.

Note: If you have several realms with realm admins and you imported a pool of hardware tokens you can thus limit
the consumed hardware tokens per realm.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_token_per_user

type: int

Limit the maximum number of tokens per user in this realm.

Note: If you do not set this action, a user may have unlimited tokens assigned.

Note: If there are multiple matching policies, the highest maximum allowed number of tokens among the matching
policies is enforced. Policy priorities are ignored.

max_active_token_per_user

type: int

Limit the maximum number of active tokens per user.

Note: Inactive tokens will not be taken into account. If the token already exists, it can be recreated if the token is
already active.

124 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

tokenissuer

type: string

This sets the issuer label for a newly enrolled Google Authenticator. This policy takes a fixed string, to add additional
information about the issuer of the soft token.

Starting with version 2.20 you can use the tags {user}, {realm}, {serial} and as new tags {givenname}
and {surname} in the field issuer.

Note: A good idea is to set this to the instance name of your privacyIDEA installation or the name of your company.

tokenlabel

type: string

This sets the label for a newly enrolled Google Authenticator. Possible tags to be replaces are <u> for user, <r> for
realm an <s> for the serial number.

The default behaviour is to use the serial number.

Note: This is useful to identify the token in the Authenticator App.

Note: Starting with version 2.19 the usage of <u>, <s> and <r> is deprecated. Instead you should use {user},
{realm}, {serial} and as new tags {givenname} and {surname}.

Warning: If you are only using <u> or {user} as tokenlabel and you enroll the token without a user, this will
result in an invalid QR code, since it will have an empty label. You should rather use a label like “{user}@{realm}”,
which would result in “@”.

autoassignment

type: string

allowed values: any_pin, userstore

Users can assign a token just by using this token. The user can take a token from a pool of unassigned tokens. When
this policy is set, and the user has no token assigned, autoassignment will be done: The user authenticates with a new
PIN or his userstore password and an OTP value from the token. If the OTP value is correct the token gets assigned to
the user and the given PIN is set as the OTP PIN.

Note: Requirements are:

1. The user must have no other tokens assigned.

2. The token must be not assigned to any user.

3. The token must be located in the realm of the authenticating user.

4. (The user needs to enter the correct userstore password)

1.8. Policies 125

mailto:\protect \T1\textbraceleft user\protect \T1\textbraceright @\protect \T1\textbraceleft realm

privacyIDEA Authentication System, Release 3.2.1

Warning: If you set the policy to any_pin the token will be assigned to the user no matter what pin he enters. In
this case assigning the token is only a one-factor-authentication: the possession of the token.

otp_pin_random

type: int

Generates a random OTP PIN of the given length during enrollment. Thus the user is forced to set a certain OTP PIN.

Note: To use the random PIN, you also need to define a pinhandling policy.

pinhandling

type: string

If the otp_pin_random policy is defined, you can use this policy to define, what should happen with the random pin.
The action value take the class of a PinHandler like privacyidea.lib.pinhandling.base.PinHandler.
The base PinHandler just logs the PIN to the log file. You can add classes to send the PIN via EMail or print it in a
letter.

For more information see the base class PinHandler.

change_pin_on_first_use

type: bool

If the administrator enrolls a token or resets a PIN of a token, then the PIN of this token is marked to be changed on
the first (or next) use. When the user authenticates with the old PIN, the user is authenticated successfully. But the
detail-response contains the keys “next_pin_change” and “pin_change”. If “pin_change” is True the authenticating
application must trigger the change of the PIN using the API /token/setpin. See Token endpoints.

Note: If the application does not honour the “pin_change” attribute, then the user can still authenticate with his old
PIN.

change_pin_every

type: string

This policy requires the user to change the PIN of his token on a regular basis. Enter a value follewed by “d”, e.g.
change the PIN every 180 days will be “180d”.

The date, when the PIN needs to be changed, is returned in the API response of /validate/check. For more information
see change_pin_on_first_use. To specifiy the contents of the PIN see User Policies.

126 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

otp_pin_encrypt

type: bool

If set the OTP PIN of a token will be encrypted. The default behaviour is to hash the OTP PIN, which is safer.

lostTokenPWLen

type: int

This is the length of the generated password for the lost token process.

lostTokenPWContents

type: string

This is the contents that a generated password for the lost token process should have. You can use

• c: for lowercase letters

• n: for digits

• s: for special characters (!#$%&()*+,-./:;<=>?@[]^_)

• C: for uppercase letters

• 8: Base58 character set

Example:

The action lostTokenPWLen=10, lostTokenPWContents=Cns could generate a password like AC#!49MK)).

Note: If you combine 8 with e.g. C there will be double characters like “A”, “B”. . . Thus, those characters will have
a higher probability of being part of the password. Also C would again add the character “I”, which is not part of
Base58.

lostTokenValid

type: int

This is how many days the replacement token for the lost token should be valid. After this many days the replacement
can not be used anymore.

yubikey_access_code

type: string

This is a 12 character long access code in hex format to be used to initialize yubikeys. If no access code is set,
yubikeys can be re-initialized by everybody. You can choose a company wide access code, so that Yubikeys can only
be re-initialized by your own system.

You can add two access codes separated by a colon to change from one access code to the other.

313233343536:414243444546

1.8. Policies 127

privacyIDEA Authentication System, Release 3.2.1

papertoken_count

type: int

This is a specific action of the paper token. Here the administrator can define how many OTP values should be printed
on the paper token.

tantoken_count

type: int

This is a specific action for the TAN token. The administrator can define how many TANs will be generated and
printed.

u2f_req

type: string

Only the specified U2F devices are allowed to be registered. The action can be specified like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a regular expression. During registration of the
U2F device the information is fetched from the attestation certificate. Only if the attribute in the attestation certificate
matches accordingly the token can be registered.

u2f_no_verify_certificate

type: bool

By default the validity period of the attestation certificate of a U2F device gets verified during the registration process.
If you do not want to verify the validity period, you can check this action.

{type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty

type: string

These are token type specific parameters. They control the key generation during the 2step token enrollment (see Two
Step Enrollment).

The serversize is the optional size (in bytes) of the server’s key part. The clientsize is the size (in bytes) of
the smartphone’s key part. The difficulty is a parameter for the key generation. In the implementation in version
2.21 PBKDF2 is used. In this case the difficulty specifies the number of rounds.

This is new in version 2.21.

type: bool

During enrollment of a privacyIDEA Authenticator smartphone app this policy is used to force the user to protect the
token with a PIN.

Note: This only works with the privacyIDEA Authenticator. This policy has no effect, if the QR code is scanned with
other smartphone apps.

This is new in version 3.1.

128 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

push_firebase_configuration

type: string

For enrolling a push token, the administrator can select which Firebase configuration should be used. The administrator
can create several connections to the Firebase service (see Firebase Provider). This way even different Firebase
configurations could be used depending on the user’s realm or the IP address.

This is new in version 3.0.

1.8.6 WebUI Policies

login_mode

type: string

allowed values: “userstore”, “privacyIDEA”, “disable”

If set to userstore (default), users and administrators need to authenticate with the password of their userstore, being
an LDAP service or an SQL database.

If this action is set to login_mode=privacyIDEA, the users and administrators need to authenticate against privacyIDEA
when logging into the WebUI. I.e. they can not login with their domain password anymore but need to authenticate
with one of their tokens.

If set to login_mode=disable the users and administrators of the specified realms can not login to the UI anymore.

Warning: If you set this action and the user deletes or disables all his tokens, he will not be able to login anymore.

Note: Administrators defined in the database using the pi-manage command can still login with their normal pass-
words.

Note: A sensible way to use this, is to combine this action in a policy with the client parameter: requiring the
users to login to the Web UI remotely from the internet with OTP but still login from within the LAN with the domain
password.

Note: Another sensible way to use this policy is to disable the login to the web UI either for certain IP addresses
(client) or for users in certain realms.

remote_user

type: string

This policy defines, if the login to the privacyIDEA using the web servers integrated authentication (like basic authen-
tication or digest authentication) should be allowed.

Possible values are “disable” and “allowed”.

1.8. Policies 129

privacyIDEA Authentication System, Release 3.2.1

Note: The policy is evaluated before the user is logged in. At this point in time there is no realm known, so a policy
to allow remote_user must not select any realm.

Note: The policy login_mode and remote_user work independent of each other. I.e. you can disable login_mode and
allow remote_user.

You can use this policy to enable Single-Sign-On and integration into Kerberos or Active Directory. Add the following
template into you apache configuration in /etc/apache2/sites-available/privacyidea.conf:

<Directory />
For Apache 2.4 you need to set this:
Require all granted
Options FollowSymLinks
AllowOverride None

SSLRequireSSL
AuthType Kerberos
AuthName "Kerberos Login"
KrbMethodNegotiate On
KrbMethodK5Passwd On
KrbAuthRealms YOUR-REALM
Krb5KeyTab /etc/apache2/http.keytab
KrbServiceName HTTP
KrbSaveCredentials On
<RequireAny>

Either we need a URL with no authentication or we need a valid user
<RequireAny>

Any of these URL do NOT need a basic authentication
Require expr %{REQUEST_URI} =~ m#^/validate#
Require expr %{REQUEST_URI} =~ m#^/ttype#

</RequireAny>
Require valid-user

</RequireAny>
</Directory>

logout_time

type: int

Set the timeout, after which a user in th WebUI will be logged out. The default timeout is 120 seconds.

Being a policy this time can be set based on clients, realms and users.

token_page_size

type: int

By default 15 tokens are displayed on one page in the token view. On big screens you might want to display more
tokens. Thus you can define in this policy how many tokens should be displayed.

130 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

user_page_size

type: int

By default 15 users are displayed on one page in the user view. On big screens you might want to display more users.
Thus you can define in this policy how many users should be displayed.

policy_template_url

type: str

Here you can define a URL from where the policies should be fetched. The default URL is a Github repository
[#defaulturl]_.

Note: When setting a template_url policy the modified URL will only get active after the user has logged out and in
again.

default_tokentype

type: str

You can define which is the default tokentype when enrolling a new token in the Web UI. This is the token, which will
be selected, when entering the enrollment dialog.

tokenwizard

type: bool

If this policy is set and the user has no token, then the user will only see an easy token wizard to enroll his first token.
If the user has enrolled his first token and he logs in to the web UI, he will see the normal view.

The user will enroll a token defined in default_tokentype.

Other sensible policies to combine are in User Policies the OTP length, the TOTP timestep and the HASH-lib.

You can add a prologue and epilog to the enrollment wizard in the greeting and after the token is enrolled and e.g. the
QR code is displayed.

Create the files

• static/customize/views/includes/token.enroll.pre.top.html

• static/customize/views/includes/token.enroll.pre.bottom.html

• static/customize/views/includes/token.enroll.post.top.html

• static/customize/views/includes/token.enroll.post.bottom.html

to display the contents in the first step (pre) or in the second step (post).

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

1.8. Policies 131

privacyIDEA Authentication System, Release 3.2.1

realm_dropdown

type: str

If this policy is activated the web UI will display a realm dropdown box. Of course this policy can not filter for users
or realms, since the user is not known at this moment.

The type of this action was changed to “string” in version 2.16. You can set a space separated list of realm names.
Only these realmnames are displayed in the dropdown box.

Note: The realm names in the policy are not checked, if they realy exist!

search_on_enter

type: bool

The searching in the user list is performed as live search. Each time a key is pressed, the new substring is searched in
the user store.

Sometimes this can be too time consuming. You can use this policy to change the bahaviour that the administrator
needs to press enter to trigger the search.

(Since privacyIDEA 2.17)

custom_baseline

type: str

The administrator can replace the file templates/baseline.html with another template. This way he can
change the links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/
mybase.html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specify
different baselines for different client IP addresses.

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

custom_menu

type: str

The administrator can replace the file templates/menu.html with another template. This way he can change the
links to e.g. internal documentation or ticketing systems. The new file could be called mytemplates/mymenu.
html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note: This policy is evaluated before login. So any realm or user setting will have no effect. But you can specify
different menus for different client IP addresses.

132 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

If you want to adapt the privacyIDEA look and feel even more, read Customization.

(Since privacyIDEA 2.21)

hide_buttons

type: bool

Buttons for actions that a user is not allowed to perform, are hidden instead of being disabled.

(Since privacyIDEA 3.0)

login_text

type: str

This way the text “Please sign in” on the login dialog can be changed. Since the policy can also depend on the IP
address of the client, you can also choose different login texts depending on from where a user tries to log in.

(Since privacyIDEA 3.0)

1.8.7 Gettoken policies

The scope gettoken defines the maximum number of OTP values that may be retrieved from an OTP token by an
administrator.

The user attribute may hold a list of administrators.

Technically the gettoken policies control the use of the gettoken_controller.

The following actions are available in the scope gettoken:

max_count_dpw

type: int

This is the maximum number of OTP values that are allowed to be retrieved from a DPW token.

Note: Issuing only one OTP value per day, this means that this is the number of days, this OTP list can be used.

max_count_hotp

type: int

This is the maximum number of OTP values that are allowed to be retrieved from an HOTP (HMAC) token.

Note: As hotp values only expire, when they are used, you can use this to create an OTP list, that can be used from
the first to the last OTP value.

1.8. Policies 133

privacyIDEA Authentication System, Release 3.2.1

max_count_totp

type: int

This is the maximum number of OTP balues that are allowed to be retrieved from a TOTP token.

Note: As the default TOTP token generates a new OTP value all 30 seconds, retrieving 100 OTP values will only give
you OTP values, that are usable for 50 minutes.

1.8.8 Register Policy

User registration

Starting with privacyIDEA 2.10 users are allowed to register with privacyIDEA. I.e. a user that does not exist in a
given realm and resolver can create a new account.

Note: Registering new users is only possible, if there is a writeable resolver and if the necessary policy in the scope
register is defined. For editable UserIdResolvers see UserIdResolvers.

If a register policy is defined, the login window of the Web UI gets a new link “Register”.

Fig. 55: Next to the login button is a new link ‘register’, so that new users are able to register.

A user who clicks the link to register a new account gets this registration dialog:

During registration the user is also enrolled Registration token. This registration code is sent to the user via a notifica-
tion email.

Note: Thus - using the right policies in scope webui and authentication - the user could login with the password he
set during registration an the registration code he received via email.

Policy settings

In the scope register several settings define the behaviour of the registration process.

134 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 56: Registration form

1.8. Policies 135

privacyIDEA Authentication System, Release 3.2.1

Fig. 57: Creating a new registration policy

136 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

realm

type: string

This is the realm, in which a new user will be registered. If this realm is not specified, the user will be registered in the
default realm.

resolver

type: string

This is the resolver, in which the new user will be registered. If this resolver is not specified, registration is not
possible!

Note: This resolver must be an editable resolver, otherwise the user can not be created in this resolver.

smtpconfig

type: string

This is the unique identifier of the SMTP server configuration. This SMTP server is used to send the notification email
with the registration code during the registration process.

Note: If there is no smtpconfig or set to a wrong identifier, the user will get no notification email.

requiredemail

type: string

This is a regular expression according to1.

Only email addresses matching this regular expression are allowed to register.

Example: If you want to authenticate the user only by the OTP value, no matter what OTP PIN he enters, a policy
might look like this:

action: requiredemail=/.*@mydomain\..*/

This will allow all email addresses from the domains mydomain.com, mydomain.net etc. . .

You can define as many policies as you wish to. The logic of the policies in the scopes is additive.

Starting with privacyIDEA 2.5 you can use policy templates to ease the setup.

1.8.9 Policy Templates

Policy templates are defined in a Github repository which can be changed using a WebUI policy policy_template_url.

The policy templates are json files, which can contain common settings, that can be used to start your own polcies.
When creating a new policy, you can select an existing policy template as a starting point.

1 https://docs.python.org/2/library/re.html

1.8. Policies 137

https://docs.python.org/2/library/re.html

privacyIDEA Authentication System, Release 3.2.1

Fig. 58: Policy Definition

You may also fork the github repository and commit pull request to improve the policy templates. Or you may fork
the github repositry and use your own policy template URL for your policy templates.

A policy templates looks like this:

{
"name": "template_name1",
"scope": "enrollment",
"action": {

"tokenlabel": "<u>@<r>/<s>",
"autoassignment": true

}
}

realms, resolver and clients are not used in the templates.

A template must be referenced in a special index.json file:

{
"template_name1": "description1",
"template_name2": "description2"

}

where the key is the name of the template file and the value is a description displayed in the WebUI.

Each policy can contain the following attributes:

policy name

A unique name of the policy. The name is the identifier of the policy. If you create a new policy with the
same name, the policy is overwritten.

Note: In the web UI and the API policies can only be created with the characters 0-9, a-z, A-Z, “_”, “-“,
” ” and “.”. On a library level or during migration scripts policies with other characters could be created.

scope

The scope of the policy as described above.

action

This is the important part of the policy. Each scope provides its own set of actions. An ac-
tion describes that something is allowed or that some behaviour is configured. A policy can con-
tain several actions. Actions can be of type boolean, string or integer. Boolean actions are
enabled by just adding this action - like scope=user:action=disable, which allows the

138 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

user to disable his own tokens. string and integer actions require an additional value - like
scope=authentication:action='otppin=userstore'.

user

This is the user, for whom this policy is valid. Depending on the scope the user is either an administrator
or a normal authenticating user.

If this field is left blank, this policy is valid for all users.

resolver

This policy will be valid for all users in this resolver.

If this field is left blank, this policy is valid for all resolvers.

Note: Starting with version 2.17 you can use the parameter check_all_resolvers. This is Check
all possible resolvers of a user to match the resolver in this policy in the Web UI.

Assume a user user@realm1 is contained in resolver1 and resolver2 in the realm realm1, where resolver1
is the resolver with the highest priority. If the user authenticates as user@realm1, only policies for re-
solver1 will match, since the user is identified as user.resolver1@realm1.

If you also want to match a policy with resolver=resolver2, you need to select Check all possible
resolvers in this policy. Thus this policy will match for all users, which are als contained in resolver2 as
a secondary resolver.

realm

This is the realm, for which this policy is valid.

If this field is left blank, this policy is valid for all realms.

client

This is the requesting client, for which this action is valid. I.e. you can define different policies if the user
access is allowed to manage his tokens from different IP addresses like the internal network or remotely
via the firewall.

You can enter several IP addresses or subnets divided by comma (like 10.2.0.0/16, 192.168.0.
1).

time

(added in privacyIDEA 2.12)

In the time field of a policy you can define a list of time ranges. A time range can consist of day of weeks
(dow) and of times in 24h format. Possible values are:

<dow>: <hh>-<hh>
<dow>: <hh:mm>-<hh:mm>
<dow>-<dow>: <hh:mm>-<hh:mm>

You may use any combination of these. Like:

Mon-Fri: 8-18

to define certain policies to be active throughout working hours.

1.8. Policies 139

privacyIDEA Authentication System, Release 3.2.1

Note: If the time of a policy does not match, the policy is not found. Thus you can get effects you did
not plan. So think at least twice before using time restricted policies.

priority

(added in privacyIDEA 2.23)

The priority field of policies contains a positive number and defaults to 1. In case of policy conflicts,
policies with a lower priority number take precedence.

It can be used to resolve policy conflicts. An example is the passthru policy: Assume there
are two passthru policies pol1 and pol2 that define different action values, e.g. pol1 defines
passthru=userstore and pol2 defines passthru=radius1. If multiple policies match for
an incoming authentication request, the priority value is used to determine the policy that should take
precedence: Assuming pol1 has a priority of 3 and pol2 has a priority of 2, privacyIDEA will honor
only the pol2 policy and authenticate the user against the RADIUS server radius1.

Policy conflicts can still occur if multiple policies with the same priority specify different values for the
same action.

additional conditions

(added in privacyIDEA 3.1)

Using conditions, you can specify more advanced rules that determine whether a policy is valid for a
request.

Conditions are described in

1.8.10 Policy conditions

Since privacyIDEA 3.1, policy conditions allow to define more advanced rules for policy matching, i.e. for determining
which policies are valid for a specific request.

Conditions can be added to a policy via the WebUI. In order for a policy to take effect during the processing of a
request, the request has to match not only the ordinary policy attributes (see Policies), but also all additionally defined
conditions that are currently active. If no active conditions are defined, only the ordinary policy attributes are taken
into account.

Each policy condition performs a comparison of two values. The left value is taken from the current request. The
comparison operator (called Comparator) and the right value are entered in the policy definition. Each condition
consists of five parts:

• Active determines if the condition is currently active.

• Section refers to an aspect of the incoming request on which the condition is applied. The available sections
are predefined, see Sections.

• The meaning of Key depends on the chosen Section. Typically, it determines the exact property of the
incoming request on which the condition is applied.

• Comparator defines the comparison to be performed. The available comparators are predefined, see Com-
parators.

• Value determines the value the property should be compared against.

140 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Sections

privacyIDEA 3.1 implements only one section, which is called userinfo.

userinfo

The section userinfo can be used to define conditions that are checked against attributes of the current user in the
request (the so-called handled user). The validity of a policy condition with section userinfo is determined as
follows:

• privacyIDEA retrieves the userinfo of the currently handled user. These are the user attributes as they are
determined by the respective resolver. This is configured via the attribute mappings of resolvers (see UserIdRe-
solvers).

• Then, it retrieves the userinfo attribute given by Key

• Finally, it uses the Comparator to compare the contents of the userinfo attribute with the given Value. The
result of the comparison determines if the request matches the condition or not.

Note: There are situations in which the currently handled user cannot be determined. If privacyIDEA encounters a
policy with userinfo conditions in such a situation, it throws an error and the current request is aborted.

Likewise, privacyIDEA raises an error if Key refers to an unknown userinfo attribute, or if the condition definition is
invalid due to some other reasons. More detailed information are then written to the logfile.

As an example for a correct and useful userinfo condition, let us assume that you have configured a realm ldaprealm
with a single LDAP resolver called ldapres. This resolver is configured to fetch users from a OpenLDAP server, with
the following attribute mapping:

{ "phone": "telephoneNumber",
"mobile": "mobile",
"email": "mailPrimaryAddress",
"groups": "memberOf",
"surname": "sn",
"givenname": "givenName" }

You can further define groups to be a multi-value attribute by setting the Multivalue Attributes option to
["groups"].

According to this mapping, users of ldaprealm will have userinfo entries phone, mobile, email, groups,
surname and givenname which are filled with the respective values from the LDAP directory.

You can now configure a policy that disables the WebUI login for all users in the LDAP group cn=Restricted
Login,cn=groups,dc=test,dc=intranet with an email address ending in @example.com:

• Scope: webui

• Action: login_mode=disable

• 1) additional condition (active):

– Section: userinfo

– Key: email

– Comparator: matches

– Value: .*@example.com

2) additional condition (active):

1.8. Policies 141

privacyIDEA Authentication System, Release 3.2.1

– Section: userinfo

– Key: groups

– Comparator: contains

– Value: cn=Restricted Login,cn=groups,dc=test,dc=intranet

The policy only takes effect if the user that is trying to log in has a matching email address and is a member of the
specified group. In other words, members of the group with an email address ending in @privacyidea.org will
still be allowed to log in.

Note: Keep in mind that changes in the LDAP directory may not be immediately visible to privacyIDEA due to
caching settings (see LDAP resolver).

If the userinfo of the user that is trying to log in does not contain attributes email or groups (due to a resolver
misconfiguration, for example), privacyIDEA throws an error and the request is aborted.

HTTP Request Header

The section HTTP Request header can be used to define conditions that are checked against the request header
key-value pairs.

The Key specifies the request header key. It is case-sensitive.

privacyIDEA uses the Comparator to check if the value of a header is equal or a substring of the required value.

Note: privacyIDEA raises an error if Key refers to an unknown request header. If the header in question is missing,
the policy can not get completely evaluated. Be aware that requests, that do not contain the header Key will always
fail! Thus, if you are using uncommon headers you should in addition restrict the policy e.g. to client IPs, to assure,
that a request from this certain IP address will always contain the header, that is to be checked.

Comparators

The following comparators can be used in definitions of policy conditions:

• equals evaluates to true if the left value is equal to the right value, according to Python semantics. !equals
evaluates to true if this is not the case.

• contains evaluates to true if the left value (a list) contains the right value as a member. !contains evaluates
to true if this is not the case.

• in evaluates to true if the left value is contained in the list of values given by the right value. The right value is
a comma-separated list of values. Individual values can be quoted using double-quotes. !in evaluates to true if
the left value is not found in the list given by the right value.

• matches evaluates to true if the left value completely matches the regular expression given by the right value.
!matches evaluates to true if this is not the case.

Error Handling

privacyIDEA’s error handling when checking policy conditions is quite strict, in order to prevent policy misconfigura-
tion from going unnoticed. If privacyIDEA encounters a policy condition that evaluates neither to true nor false, but
simply invalid due to a misconfiguration, privacyIDEA throws an error and the current request is aborted.

142 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

1.9 Event Handler

Added in version 2.12.

What is the difference between Policies and event handlers?

Policies are used to define the behaviour of the system. With policies you can change the way the system reacts.

With event handlers you do not change the way the system reacts. But on certain events you can trigger a new action
in addition to the behaviour defined in the policies.

These additional actions are also logged to the audit log. These actions are marked as EVENT in the audit log and you
can see, which event triggered these actions. Thus a single API call can cause several audit log entries: One for the
API call and more for the triggered actions.

1.9.1 Events

Each API call is an event and you can bind arbitrary actions to each event as you like.

Internally events are marked by a decorator “event” with an event identifier. At the moment not all events might be
tagged. Please drop us a note to tag all further API calls.

Fig. 59: An action is bound to the event token_init.

1.9.2 Pre and Post Handling

Added in Version 2.23.

With most event handlers you can decide if you want the action to be taken before the actual event or after the actual
event. I.e. if all conditions would trigger certain actions the action is either triggered before (pre) the API request is
processed or after (post) the request is processed.

Up to version 2.22 all actions where triggered after the request. In this case additional information from the response
is available. E.g. if a user successfully authenticated the event will know the serial number of the token, which the
user used to authenticate.

If the action is triggered before the API request is processed, the event can not know if the authentication request will
be successful or which serial number a token would have. However, triggering the action before the API request is
processed can have some interesting other advantages:

1.9. Event Handler 143

privacyIDEA Authentication System, Release 3.2.1

Example for Pre Handling

The administrator can define an event definition that would trigger on the event validate/check in case the the
authenticating user does not have any token assigned.

The pre event definition could call the Tokenhandler with the enroll action and enroll an email token with dy-
namic_email for this very user.

When the API request validate/check is now processed, the user actually now has an email token and can
authenticate via challenge response with this very email token without an administrator ever enrolling or assigning a
token for this user.

1.9.3 Handler Modules and Actions

The actions are defined in handler modules. So you bind a handler module and the action, defined in the handler
module, to the events.

The handler module can define several actions and each action in the handler module can require additional options.

Fig. 60: The event sendmail requires the option emailconfig.

1.9.4 Conditions

Added in version 2.14

An event handler module may also contain conditions. Only if all conditions are fullfilled, the action is triggered. Con-
ditions are defined in the class property conditions and checked in the method check_condition. The UserNotification
Event Handler defines such conditions.

144 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Basic conditions

The basic event handler module has the following conditions.

last_auth

This condition checks if the last authentication is older than the specified time delta. The timedelta is specified with
“h” (hours), “d” (days) or “y” (years). Specifying 180d would mean, that the action is triggered if the last successful
authentication witht he token was berformed more than 180 days ago.

This can be used to send notifications to users or administrators to inform them, that there is a token, that might be
orphaned.

logged_in_user

This condition checks if the logged in user is either an administrator or a normal user. This way the administrator can
bind actions to events triggered by normal users or e.g. by help desk users. If a help desk user enrolls a token for a
user, the user might get notified.

If a normal user enrolls some kind of token, the administrator might get notified.

otp_counter

The action is triggered, if the otp counter of a token has reached the given value. The value can either be an exact
match or greater (‘>100’) or less (‘<200’) then a specified limit.

The administrator can use this condition to e.g. automatically enroll a new paper token for the user or notify the user
that nearly all OTP values of a paper token have been spent.

realm

The condition realm matches the user realm. The action will only trigger, if the user in this event is located in the
given realm.

This way the administrator can bind certain actions to specific realms. E.g. some actions will only be triggered, if the
event happens for normal users, but not for users in admin- or helpdesk realms.

result_value

This condition checks the result of an event.

E.g. the result of the event validate_check can be a failed authentication. This can be the trigger to notify either the
token owner or the administrator.

serial

The action will only be triggered, if the serial number of the token in the event does match the regular expression.

This is a good idea to combine with other conditions. E.g. only tokens with a certain kind of serial number like Google
Authenticator will be deleted automatically.

tokenrealm

In contrast to the realm this is the realm of the token - the tokenrealm. The action is only triggerd, if the token within
the event has the given tokenrealm. This can be used in workflows, when e.g. hardware tokens which are not assigned
to a user are pushed into a kind of storage realm.

tokentype

The action is only triggered if the token in this event is of the given type. This way the administrator can design
workflows for enrolling and reenrolling tokens. E.g. the tokentype can be a registration token and the registration code
can be easily and automatically sent to the user.

token_locked

1.9. Event Handler 145

privacyIDEA Authentication System, Release 3.2.1

The action is only triggered, if the token in the event is locked, i.e. the maximum failcounter is reached. In such a case
the user can not use the token to authenticate anymore. So an action to notify the user or enroll a new token can be
triggered.

rollout_state

This is the rollout_state of a token. A token can be rolled out in several steps like the 2step HOTP/TOTP token. In this
case the attribute “rollout_state” of the token contains certain values like ‘clientwait’ or ‘enrolled’. This way actions
can be triggered, depending on the step during an enrollment process.

token_has_owner

The action is only triggered, if the token is or is not assigned to a user.

token_is_orphaned

The action is only triggered, if the user, to whom the token is assigned, does not exist anymore.

This can be used to trigger the deletion of the token, if the token owner was removed from the userstore.

token_validity_period

Checks if the token is in the current validity period or not. Can be set to True or False.

Note: token_validity_period==False will trigger an action if either the validitiy period is either over or
has not started, yet.

user_token_number

The action is only triggered, if the user in the event has the given number of tokens assigned.

This can be used to e.g. automatically enroll a token for the user if the user has no tokens left (token_number == 0) of
to notify the administrator if the user has to many tokens assigned.

tokeninfo

The tokeninfo condition can compare any arbitrary tokeninfo field against a fixed value. You can compare strings and
integers. Integers are converted automatically. Valid compares are:

myValue == 1000 myValue > 1000 myValue < 99 myTokenInfoField == EnrollmentState myTokenIn-
foField < ABC myTokenInfoField > abc

“myValue” and “myTokenInfoField” being any possible tokeninfo fields.

Starting with version 2.20 you can also compare dates in the isoformat like that:

myValue > 2017-10-12T10:00+0200 myValue < 2020-01-01T00:00+0000

In addition you can also use the tag {now} to compare to the curren time and you can add offsets to {now} in seconds,
minutes, hours or days:

myValue < {now} myValue > {now}+10d myValue < {now}-5h

Which would match if the tokeninfo myValue is a date, which is later than 10 days from now or it the tokeninfo
myValue is a date, which is 5 more than 5 hours in the past.

detail_error_message

This condition checks a regular expression against the detail section in the API response. The field
detail->error->message is evaluated.

Error messages can be manyfold. In case of authentication you could get error messages like:

“The user can not be found in any resolver in this realm!”

146 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

With token/init you could get:

“missing Authorization header”

Note: The field detail->error->message is only available in case of an internal
error, i.e. if the response status is ``False.

detail_message

This condition checks a regular expression against the detail section in the API response. The field
detail->message is evaluated.

Those messages can be manyfold like:

“wrong otp pin”

“wrong otp value”

“Only 2 failed authentications per 1:00:00”

Note: The field detail->message is available in case of status True, like an authentication request that was
handled successfully but failed.

1.9.5 Managing Events

Using the command pi-manage events you can list, delete, enable and disable events. You can also export the
complete event definitions to a file or import the event definitions from a file again. During import you can specify
if you want to remove all existing events or if you want to add the events from the file to the existing events in the
database.

Note: Events are identified by an id! Due to database restrictions the id is ignored during import. So importing an
event with the same name will create a second event with the same name but another id.

1.9.6 Available Handler Modules

User Notification Handler Module

The user notification handler module is used to send emails token owners or administrators in case of any event.

Possible Actions

sendmail

The sendmail action sends an email to the tokenowner user. The email is sent, if an administrator managed the users
token.

emailconfig

• required Option

• The email is sent via this SMTP server configuration.

1.9. Event Handler 147

privacyIDEA Authentication System, Release 3.2.1

subject

• optional

The subject line of the mail that is sent.

sendsms

The sendsms action sends an SMS to the tokenowner. The SMS is sent, if an administrator managed the users token.

smsconfig

• required Option

• The SMS Gateway configuration.

savefile

The savefile action saves a file to a spool directory. Each time the event handler is triggered a new file is saved.

In the pi.cfg file you can use the setting PI_NOTIFICATION_HANDLER_SPOOLDIRECTORY to configure a
spool directory, where the notification files will be written. The default file location is /var/lib/privacyidea/
notifications/. The directory needs to be writable for the user privacyidea.

filename

• required option

• The filename of the saved file. It can contain the tag {random} which will create a 16 characters long alpha
numeric string. Thus you could have a filename like notification-{random}.csv.

In addition you can use all tags that can be used in the body also in the filename (some of them might not make a lot
of sense!).

Note: Existing files are overwritten.

Body for all actions

All actions take the common option body:

body

• optional for sendsms and sendemail

• required for savefile

Here the administrator can specify the body of the notification, that is sent or saved. The body may contain the
following tags

• {admin} name of the logged in user.

• {realm} realm of the logged in user.

• {action} the action that the logged in user performed.

• {serial} the serial number of the token.

• {url} the URL of the privacyIDEA system.

148 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• {user} the given name of the token owner.

• {givenname} the given name of the token owner.

• {surname} the surname of the token owner.

• {username} the loginname of the token owner.

• {userrealm} the realm of the token owner.

• {tokentype} the type of the token.

• {registrationcode} the registration code in the detail response.

• {recipient_givenname} the given name of the recipient.

• {recipient_surname} the surname of the recipient.

• {googleurl_value} is the KEY URI for a google authenticator.

• {googleurl_img} is the data image source of the google authenticator QR code.

• {time} the current server time in the format HH:MM:SS.

• {date} the current server date in the format YYYY-MM-DD

• {client_ip} the client IP of the client, which issued the original request.

• {ua_browser} the user agent of the client, which issued the original request.

• {ua_string} the complete user agent string (including version number), which issued the original request.

• {pin} the PIN of the token when set with /token/setrandompin. You can remove the PIN from the
response using the response mangler.

Options for sendmail and sendsms

Both actions sendmail and sendsms take several common options.

subject

The subject can take the same tags as the body, except for the {googleurl_img}.

mimetype

You can choose if the email should be sent as plain text or HTML. If the email is sent as HTML, you can do the
following:

Your new token

Which will create a clickable link. Clicked on the smartphone, the token will be imported to the smartphone app.

You can also do this:

This will add the QR Code into the HTML email.

Warning: The KEY URI and the QR Code contain the secret OTP key in plain text. Everyone who receives this
data has a detailed copy of this token. Thus we very much recommend to never send these data in an unencrypted
email!

To

• required

1.9. Event Handler 149

privacyIDEA Authentication System, Release 3.2.1

This specifies to which type of user the notification should be sent. Possible recipient types are:

• token owner,

• logged in user,

• admin realm,

• internal admin,

• email address.

Depending on the recipient type you can enter additional information. The recipient type email takes a comma sepa-
rated list of email addresses.

Code

This is the event handler module for user notifications. It can be bound to each event and can perform the action:

• sendmail: Send an email to the user/token owner

• sendsms: We can also notify the user with an SMS.

The module is tested in tests/test_lib_events.py

class privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
Allowed token owner

ADMIN_REALM = 'admin realm'

EMAIL = 'email'

INTERNAL_ADMIN = 'internal admin'

LOGGED_IN_USER = 'logged_in_user'

TOKENOWNER = 'tokenowner'

class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This eventhandler notifies the user about actions on his tokens'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

150 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

identifier = 'UserNotification'

Token Handler Module

The token event handler module is used to perform actions on tokens in certain events.

This way you can define workflows to automatically modify tokens, delete or even create new tokens.

Possible Actions

set tokenrealm

Here you can set the token realms of the token.

E.g. You could use this action to automatically put all newly enrolled tokens into a special realm by attaching
this action to the event token_init.

delete

The token which was identified in the request will be deleted if all conditions are matched.

unassign

The token which was identified in the request will be unassign from the user if all conditions are matched.

disable

The token which was identified in the request will be disabled if all conditions are matched.

enable

The token which was identified in the request will be enabled if all conditions are matched.

enroll

If all conditions are matched a new token will be enrolled. This new token can be assigned to a user, which was
identified in the request.

The administrator can specify the tokentype and the realms of the new token. By default the generation of the token
will use the parameter genkey, to generate the otp key. (see Token endpoints).

The action enroll also can take the options dynamic_phone (in case of tokentype SMS) and dynamic_email (in
case of tokentype email). Then these tokens are created with a dynamic loadable phone number or email address, that
is read from the user store on each authentication request.

Finally the administrator can specify the option additional_params. This needs to be a dictionary with parameters,
that get passed to the init request. You can specify all parameters, that would be used in a /token/init request:

{“hashlib”: “sha256”, “type”: “totp”, “genkey”: 0, “otpkey”: “31323334”}

1.9. Event Handler 151

privacyIDEA Authentication System, Release 3.2.1

would create a TOTP token, that uses the SHA256 hashing algorithm instead of SHA1. genkey: 0 overrides the
default behaviour of generating an OTP secret. Instead the fixed OTP secret “31323334” (otpkey) is used.

set description

If all conditions are matched the description of the token identified in the request will be set.

You can use the tag {current_time} or {now} to set the current timestamp. In addition you can append an offset
to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days in the passt
or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s (seconds), m
(minutes), h (hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent.

set validity

If all conditions are matched the validity period of the token will be set.

There are different possibilities to set the start and the end of the validity period. The event definition can either contain
a fixed date and time or if can contain a time offset.

Fixed Time

A fixed time can be specified in the following formats.

Only date without time:

• 2016/12/23

• 23.12.2016

Date with time:

• 2016/12/23 9:30am

• 2016/12/23 11:20:pm

• 23.12.2016 9:30

• 23.12.2016 23:20

Starting with version 2.19 we recommend setting the fixed time in the ISO 8601 corresponding time format

• 2016-12-23T15:30+0600

Time Offset

You can also specify a time offset. In this case the validity period will be set such many days after the event occurred.
This is indicated by using a “+” and a specifier for days (d), hours (h) and minutes (m).

E.g. +30m will set to start the validity period in 30 minutes after the event occurred.

+30d could set the validity period to end 30 days after an event occurred.

Note: This way you could easily define a event definition, which will set newly enrolled tokens to be only valid for a
certain amount of days.

152 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

set countwindow

Here the count window of a token can be set. This requires an integer value.

set tokeninfo

Using the action set tokeninfo you can set any arbitrary tokeninfo attribute for the token. You need to specify
the key of the tokeninfo and the value.

In the value field you can use the tag {current_time} to set the current timestamp. In addition you can append
an offset to current_time or now like {now}-12d or {now}+10m. This would write a timestamp which is 12 days
in the passt or 10 minutes in the future. The plus or minus must follow without blank, allowed time identifiers are s
(seconds), m (minutes), h (hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser} and {ua_string} for information
on the user agent and {username} and {realm} for information on the user in the parameters.

Note: Some tokens have token specific attributes that are stored in the tokeninfo. The TOTP token type has a
timeWindow. The TOTP and the HOTP token store the hashlib in the tokeninfo, the SMS token stores the
phone number.

Note: You can use this to set the timeWindow of a TOTP token for Automatic initial synchronization.

set failcounter

Using the action set failcounter you can reset the fail counter by setting it to 0 or also “block” the token by
setting the fail counter to what ever value the “max_fail” is, e.g. 10. Only integer values are allowed.

set random pin

Sets a random PIN for the handled token. The PIN is then added to the response in detail->pin. This can be used
in the notification handler. Please take care, that probably the PIN needs to be removed from the response using the
response mangler handler after handling it with the notification handler.

Code

This is the event handler module for token actions. You can attach token actions like enable, disable, delete, unas-
sign,. . . of the

• current token

• all the user’s tokens

• all unassigned tokens

• all disabled tokens

• . . .

class privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
Allowed actions

1.9. Event Handler 153

privacyIDEA Authentication System, Release 3.2.1

DELETE = 'delete'

DELETE_TOKENINFO = 'delete tokeninfo'

DISABLE = 'disable'

ENABLE = 'enable'

INIT = 'enroll'

SET_COUNTWINDOW = 'set countwindow'

SET_DESCRIPTION = 'set description'

SET_FAILCOUNTER = 'set failcounter'

SET_RANDOM_PIN = 'set random pin'

SET_TOKENINFO = 'set tokeninfo'

SET_TOKENREALM = 'set tokenrealm'

SET_VALIDITY = 'set validity'

UNASSIGN = 'unassign'

class privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can trigger new actions on tokens.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'Token'

class privacyidea.lib.eventhandler.tokenhandler.VALIDITY
Allowed validity options

END = 'valid till'

START = 'valid from'

154 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Script Handler Module

The script event handler module is used to trigger external scripts in case of certain events.

This way you can even add external actions to your workflows. You could trigger a database dump, an external printing
device, a backup and much more.

Possible Actions

The actions of the script event handler are the scripts located in a certain script directory. The default script directory
is /etc/privacyidea/scripts.

You can change the location of the script directory and give the new directory in the parameter
PI_SCRIPT_HANDLER_DIRECTORY in your pi.cfg

file.

Possible Options

Options can be passed to the script. Your script has to take care of the parsing of these parameters.

logged_in_role

Add the role of the logged in user. This can be either admin or user. If there is no logged in user, none will be passed.

The script will be called with the parameter

–logged_in_role <role>

logged_in_user

Add the logged in user. If there is no logged in user, none will be passed.

The script will be called with the parameter

–logged_in_user <username>@<realm>

realm

Add --realm <realm> as script parameter. If no realm is given, none will be passed.

serial

Add --serial <serial number> as script parameter. If no serial number is given, none will be passed.

1.9. Event Handler 155

privacyIDEA Authentication System, Release 3.2.1

user

Add --serial <username>' as script parameter. If no username is given, none will be passed.

Note: A possible script you could call is the privacyidea-get-unused-tokens.

Counter Handler Module

The counter event handler module is used to count certain events. You can define arbitrary counter names and each
occurrence of an event will modify the counter in the counter table according to the selected action.

These counters can be used to graph time series of failed authentication, assigned tokens, user numbers or any other
data with any condition over time.

Possible Actions

increase_counter

This action increases the counter in the database table eventcounter. If the counter does not exists, it will be
created and increased.

decrease_counter

This action decreases the counter in the database table eventcounter. If the counter does not exists, it will be
created and decreased.

Note: This action will not decrease the counter beyond zero unless the option allow_negative_values is
enabled.

reset_counter

This action resets the counter in the database table eventcounter to zero.

Possible Options

counter_name

This is the name of the counter in the database. You can have as many counters in as many event handlers as you like.

allow_negative_values

Only available for the decrease_counter action. Allows the counter to become negative. If set to False
(default) decreasing stops at zero. .. note:: Since the option allow_negative_values is an attribute of
the counter event handler action (and not the counter itself in the database) it is possible to define multiple event

156 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

handler accessing the same counter. Thus if a negative counter is accessed by an event handler with the option
allow_negative_values set to true, the counter will be reset to zero

Federation Handler Module

The federation event handler can be used to configure relations between several privacyIDEA instances. Requests can
be forwarded to child privacyIDEA instances.

Note: The federation event handler can modify the original response. If the response was modified a new field
origin will be added to the detail section in the response. The origin will contain the URL of the privacyIDEA
server that finally handled the request.

Possible Actions

forward

A request (usually an authentication request validate_check) can be forwarded to another privacyIDEA instance. The
administrator can define privacyIDEA instances centrally at conifg -> privacyIDEA servers.

In addition to the privacyIDEA instance the action forward takes the following parameters:

client_ip The originial client IP will be passed to the child privacyIDEA server. Otherwise the child privacyIDEA
server will use the parent privacyIDEA server as client.

Note: You need to configure the allow override client in the child privacyIDEA server.

realm The forwarding request will change the realm to the specified realm . This might be necessary since the child
privacyIDEA server could have

different realms than the parent privacyIDEA server.

resolver The forwarding request will change the resolver to the specified resolver. This might be necessary since
the child privacyIDEA server could have different resolvers than the parent privacyIDEA server.

One simple possibility would be, that a user has a token in the parent privacyIDEA server and in the child privacyIDEA
server. Configuring a forward event handler on the parent with the condition result_value = False would
have the effect, that the user can either authenticate with the parent’s token or with the child’s token on the parent
privacyIDEA server.

Federation can be used, if privacyIDEA was introduced in a subdivision of a larger company. When privacyIDEA
should be enrolled to the complete company you can use federation. Instead of dropping the privacyIDEA instance
in the subdivision and installing on single central privacyIDEA, the subdivision can still go on using the original
privacyIDEA system (child) and the company will install a new top level privacyIDEA system (parent).

Using the federation handler you can setup many other, different scenarios we can not think of, yet.

Code

This is the event handler module for privacyIDEA federations. Requests can be forwarded to other privacyIDEA
servers.

1.9. Event Handler 157

privacyIDEA Authentication System, Release 3.2.1

class privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE
Allowed actions

FORWARD = 'forward'

class privacyidea.lib.eventhandler.federationhandler.FederationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

description = 'This event handler can forward the request to other privacyIDEA servers'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'Federation'

RequestMangler Handler Module

The RequestMangler is a special handler module, that can modify the request parameters of an HTTP request. This
way privacyIDEA can change the data that is processed within the request.

Usually this handler is used in the pre location. However there might be occasions when you want to modify param-
eters only before passing them to the next post handler. In this case you can also use the RequestMangler handler in
the post location.

Possible Actions

delete

This action simply deletes the given parameter from the request.

E.g. you could in certain cases delete the transaction_id from a /validate/check request. This way you
would render challenge response inactive.

set

This action is used to add or modify additional request parameters.

You can set a parameter with the value or substrings of another parameter.

This is why this action takes the additional options value, match_parameter and match_pattern. match_pattern always
needs to match the complete value of the match_parameter.

158 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

If you simply want to set a parameter to a fixed value you only need the options:

• parameter: as the name of the parameter you want to set and

• value: to set to a fixed value.

If you can to set a parameter based on the value of another parameter, you can use the regex notation () and the python
string formatting tags {0}, {1}.

Example 1

To set the realm based on the user parameter:

parameter: realm
match_parameter: user
match_pattern: .*@(.*)
value: {0}

A request like:

user=surname.givenname@example.com
realm=

with an empty realm will be modified to:

user=surname.givenname@example.com
realm=example.com

since, the pattern .*@(.*) will match the email address and extract the domain after the “@” sign. The python tag
“{0}” will be replaced with the matching domainname.

Example 2

To simply change the domain name in the very same parameter:

paramter: user
match_parameter: user
match_pattern: (.*)@example.com
value: {0}@newcompany.com

A request like:

user=surname.givenname@example.com

will be modified to:

user=surname.givenname@newcompany.com

Note: The match_pattern in the above example will not match “surname.givenname@example.company”, since it
always matches the complete value as mentioned above.

Code

This is the event handler module modifying request parameters.

class privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE
Allowed actions

1.9. Event Handler 159

mailto:surname.givenname@example.company

privacyIDEA Authentication System, Release 3.2.1

DELETE = 'delete'

SET = 'set'

class privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This event handler can modify the parameters in the request.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'RequestMangler'

ResponseMangler Handler Module

The ResponseMangler is a special handler module, that can modify the response of an HTTP request. This way
privacyIDEA can change the data sent back to the client, depending on certain conditions.

All actions take a JSON pointer, which looks like a path variable like /result/value.

Possible Actions

delete

This action simply deletes the given JSON pointer from the response.

Note: All keys underneath a node are deleted, to. So if the event handler deletes /detail, the entries /detail/
message and ‘‘/detail/error‘‘will also be deleted.

Example

You can use this to delete /detail/googleurl, /detail/oathurl and /detail/otpkey in a /token/
init event to hide the created QR code from the helpdesk admin. This way the QR code could be used internally,
but could be hidden from the administrator.

160 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

set

This action is used to add additional pointers to the JSON response or to modify existing entries. Existing entries are
overwritten.

This action takes the additional attributes type and value.

The value can be returned as a string, an integer or a boolean.

Code

This is the event handler module that can mangle the JSON response. We can add or delete key or even subtrees in the
JSON response of a request.

The key is identified by a JSON Pointer (see https://tools.ietf.org/html/rfc6901)

class privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE
Allowed actions

DELETE = 'delete'

SET = 'set'

class privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

allowed_positions
This returns the allowed positions of the event handler definition. The ResponseMangler can only be
located at the “post” position

Returns list of allowed positions

description = 'This event handler can mangle the JSON response.'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'ResponseMangler'

1.10 Periodic Tasks

Starting with version 2.23, privacyIDEA comes with the ability to define periodically recurring tasks in the Web UI.
The purpose of such tasks is to periodically execute certain processes automatically. The administrator defines which

1.10. Periodic Tasks 161

https://tools.ietf.org/html/rfc6901

privacyIDEA Authentication System, Release 3.2.1

tasks should be executed using task modules. Currently there are task modules for simple statistics and for handling
recorded events. Further task modules can be added easily.

As privacyIDEA is a web application, it can not actually execute the defined periodic tasks itself. For that, priva-
cyIDEA comes with a script privacyidea-cron which must be invoked by the system cron daemon. This can,
for example, be achieved by creating a file /etc/cron.d/privacyidea with the following contents (this is done
automatically by the Ubuntu package):

*/5 * * * * privacyidea privacyidea-cron run_scheduled -c

This tells the system cron daemon to invoke the privacyidea-cron script every five minutes. At each invocation,
the privacyidea-cron script determines which tasks should be executed and execute the scheduled tasks. The
-c option tells the script to be quiet and only print to stderr in case of an error (see The privacyidea-cron script).

Periodic tasks can be managed in the WebUI by navigating to Config->Periodic Tasks:

Fig. 61: Periodic task definitions

Every periodic task has the following attributes:

description A human-readable, unique identifier

active A boolean flag determining whether the periodic task should be run or not.

order A number (at least zero) that can be used to rearrange the order of periodic tasks. This is used by
privacyidea-cron to determine the running order of tasks if multiple periodic tasks are scheduled to be
run. Tasks with a lower number are run first.

interval The periodicity of the task. This uses crontab notation, e.g. */30 * * * * runs the task every 30 minutes.

Keep in mind that the entry in the system crontab determines the minimal resolution of periodic tasks: If you
specify a periodic task that should be run every two minutes, but the privacyidea-cron script is invoked
every five minutes only, the periodic task will actually be executed every five minutes!

nodes The names of the privacyIDEA nodes on which the periodic task should be executed. This is useful in a
redundant master-master setup, because database-related tasks should then only be run on one of the nodes
(because the replication will take care of propagating the database changes to the other node). The name of the
local node as well as the names of remote nodes are configured in The Config File.

taskmodule The task module determines the actual activity of the task. privacyIDEA comes with several task mod-
ules, see Task Modules.

options The options are a set of key-value pairs that configure the behavior of the task module. Each task module can
have it’s own allowed options.

162 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

1.10.1 Task Modules

privacyIDEA comes with the following task modules:

SimpleStats

The SimpleStats task module is a Periodic Tasks to collect some basic statistics from the token database and write
them to the time series database table MonitoringStats.

Options

The SimpleStats task module provides the following boolean options:

total_tokens

If activated, the total number of tokens in the token database will be monitored.

hardware_tokens

If activated, the total number of hardware tokens in the token database will be monitored.

software_tokens

If activated, the total number of software tokens in the token database will be monitored.

unassigned_hardware_tokens

If activated, the number of hardware tokens in the token database which are not assigned to a user will be
monitored.

assigned_tokens

If activated, the number of tokens in the token database which are assigned to users will be monitored.

user_with_token

If activated, the number of users which have at least one token assigned will be monitored.

Note: The statistics key, with which the time series is identified in the MonitoringStats table, is the same as the
option name.

Using a statistic with the same key in a different module, which writes to the MonitoringStats table, will corrupt
the data.

Note: For each of these basic statistic values the token database will be queried. To avoid excessive load on the
database, the SimpleStats task should not be executed too often.

EventCounter

The Event Counter task module can be used with the Periodic Tasks to create time series of certain events. An event
could be a failed authentication request. Using the Event Counter, privacyIDEA can create graphs that display the
development of failed authentication requests over time.

To do this, the Event Counter task module reads a counter value from the database table EventCounter and adds
this current value in a time series in the database table MonitoringStats. As the administrator can use the event

1.10. Periodic Tasks 163

privacyIDEA Authentication System, Release 3.2.1

handler Counter Handler Module to record any arbitrary event under any condition, this task module can be used
to graph any metrics in privacyIDEA, be it failed authentication requests per time unit, the number of token delete
requests or the number of PIN resets per month.

Options

The Event Counter task module provides the following options:

event_counter

This is the name of the event counter key, that was defined in a Counter Handler Module definition and
that is read from the database table EventCounter.

stats_key

This is the name of the statistics key that is written to the MonitoringStats database table. The event
counter key stores the current number of counted events, the stats_key takes the current number and
stores it with the timestamp as a time series.

reset_event_counter

This is a boolean value. If it is set to true (the checkbox is checked), then the event counter will be reset
to zero, after the task module has read the key.

Resetting the the event counter results in a time series of “events per time interval”. The time
intervall is specified by the time intervall in which the Event Counter task module is called. If
reset_event_counter is not checked, then the event handler will continue to increase the counter
value. Use this, if you want to create a time series, that displays the absolute number of events.

1.10.2 The privacyidea-cron script

The privacyidea-cron script is used to execute periodic tasks defined in the Web UI. The run_scheduled
command collects all active jobs that are scheduled to run on the current node and executes them. The order is
determined by their ordering values (tasks with low values are executed first). The -c option causes the script to
is useful if the script is executed via the system crontab, as it causes the script to only print to stderr in case of errors.

The list command can be used to get an overview of defined jobs, and the run_manually command can be used
to manually invoke tasks even though they are not scheduled to be run.

1.11 Audit

The systems provides a sophisticated audit log, that can be viewed in the WebUI.

privacyIDEA comes with a default SQL audit module (see Audit log).

Starting with version 3.2 privacyIDEA also provides a Logger Audit and a Container Audit which can be used to send
privacyIDEA audit log messages to services like splunk or logstash.

1.11.1 SQL Audit

Cleaning up entries

The sqlaudit module writes audit entries to an SQL database. For performance reasons the audit module does no
log rotation during the logging process.

164 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Fig. 62: Audit Log

1.11. Audit 165

privacyIDEA Authentication System, Release 3.2.1

But you can set up a cron job to clean up old audit entries. Since version 2.19 audit entries can be either cleaned up
based on the number of entries or based on on the age.

Cleaning based on the age takes precedence:

You can specify a highwatermark and a lowwatermark. To clean up the audit log table, you can call pi-manage at
command line:

pi-manage rotate_audit --highwatermark 20000 --lowwatermark 18000

This will, if there are more than 20.000 log entries, clean all old log entries, so that only 18000 log entries remain.

Cleaning based on the age:

You can specify the number of days, how old an audit entry may be at a max.

pi-manage rotate_audit –age 365

will delete all audit entries that are older than one year.

Cleaning based on the config file:

Using a config file you can define different retention times for the audit data. E.g. this way you can define, that audit
entries about token listings can be deleted after one month, while the audit information about token creation will only
deleted after ten years.

The config file is a YAML format and looks like this:

DELETE auth requests of nils after 10 days
- rotate: 10

user: nils
action: .*/validate/check.*

DELETE auth requests of friedrich after 7 days
- rotate: 7

user: friedrich
action: .*/validate/check.*

Delete nagios user test auth directly
- rotate: 0

user: nagiosuser
action: POST /validate/check.*

Delete token listing after one month
- rotate: 30

action: ^GET /token

Delete audit logs for token creating after 10 years
- rotate: 3650

action: POST /token/init

Delete everything else after 6 months
- rotate: 180

action: .*

This is a list of rules. privacyIDEA iterates over all audit entries. The first matching rule for an entry wins. If the rule
matches, the audit entry is deleted if the entry is older than the days specified in “rotate”.

If is a good idea to have a catch-all rule at the end.

Note: The keys “user”, “action”. . . correspond to the column names of the audit table. You can use any column name

166 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

here like “date”, “action”, “action_detail”, “success”, “serial”, “administrator”, “user”, “realm”. . . for a complete list
see the model definition. You may use Python regular expressions for matching.

You can the add a call like

pi-manage rotate_audit –config /etc/privacyidea/audit.yaml

in your crontab.

Access rights

You may also want to run the cron job with reduced rights. I.e. a user who has no read access to the original pi.cfg
file, since this job does not need read access to the SECRET or PEPPER in the pi.cfg file.

So you can simply specify a config file with only the content:

PI_AUDIT_SQL_URI = <your database uri>

Then you can call pi-manage like this:

PRIVACYIDEA_CONFIGFILE=/home/cornelius/src/privacyidea/audit.cfg \
pi-manage rotate_audit

This will read the configuration (only the database uri) from the config file audit.cfg.

Table size

Sometimes the entires to be written to the database may be longer than the column in the database. You can either
enlarge the columns in the database or you can set

PI_AUDIT_SQL_TRUNCATE = True

in pi.cfg. This will truncate each entry to the defined column length.

1.11.2 Logger Audit

The Logger Audit module can be used to write audit log information to the Python logging facility and thus write log
messages to a plain file, a syslog daemon, an email address or any destination that is supported by the Python logging
mechanism.

You can find more information about this in Advanced Logging.

To activate the Logger Audit module you need to configure the following settings in your pi.cfg file:

PI_AUDIT_MODULE = "privacyidea.lib.auditmodules.loggeraudit"
PI_AUDIT_SERVERNAME = "your choice"
PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

In contrast to the SQL Audit you need a PI_LOGCONFIG otherwise the Logger Audit will not work correctly.

In the logging.cfg you then need to define the audit logger:

[logger_audit]
handlers=audit
qualname=privacyidea.lib.auditmodules.loggeraudit
level=INFO

(continues on next page)

1.11. Audit 167

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

[handler_audit]
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=INFO
args=('/var/log/privacyidea/audit.log',)

Note, that the level always needs to be INFO. In this example the audit log will be written to the file /var/log/
privacyidea/audit.log.

Finally you need to extend the following settings with the defined audit logger and audit handler:

[handlers]
keys=file,audit

[loggers]
keys=root,privacyidea,audit

Note: The Logger Audit only allows to write audit information. It can not be used to read data. So if you are only
using the Audit Logger, you will not be able to view audit information in the privacyIDEA Web UI! To still be able to
read audit information, take a look at the Container Audit.

Note: The policies auth_max_success and auth_max_fail depend on reading the audit log. If you use a non readable
audit log like the Logger Audit these policies will not work.

1.11.3 Container Audit

The Container Audit module is a meta audit module, that can be used to write audit information to more than one audit
module.

It is configured in the pi.cfg like this:

PI_AUDIT_MODULE = 'privacyidea.lib.auditmodules.containeraudit'
PI_AUDIT_CONTAINER_WRITE = ['privacyidea.lib.auditmodules.sqlaudit','privacyidea.lib.
→˓auditmodules.loggeraudit']
PI_AUDIT_CONTAINER_READ = 'privacyidea.lib.auditmodules.sqlaudit'

The key PI_AUDIT_CONTAINER_WRITE contains a list of audit modules, to which the audit information should be
written. The listed audit modules need to be configured as mentioned in the corresponding audit module description.

The key PI_AUDIT_CONTAINER_READ contains one single audit module, that is capable of reading information.
In this case the SQL Audit module can be used. The Logger Audit module can not be used for reading!

Using the Container Audit module you can on the one hand send audit information to external services using the
Logger Audit but also keep the audit information visible within privacyIDEA using the SQL Audit module.

168 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

1.12 Client machines

privacyIDEA lets you define Machine Resolvers to connect to existing machine stores. The idea is for users to be
able to authenticate on those client machines. Not in all cases an online authentication request is possible, so that
authentication items can be passed to those client machines.

In addition you need to define, which application on the client machine the user should authenticate to. Different
application require different authentication items.

Therefore privacyIDEA can define application types. At the moment privacyIDEA knows the application luks,
offline and ssh. You can write your own application class, which is defined in Application Class.

You need to assign an application and a token to a client machine. Each application type can work with certain token
types and each application type can use additional parameters.

Note: Not all tokens work well with all applications!

1.12.1 SSH

Currently working token types: SSH

Parameters:

user (optional, default=root)

When the SSH token type is assigned to a client, the user specified in the user parameter can login with the private key
of the SSH token.

In the sshd_config file you need to configure the AuthorizedKeysCommand. Set it to:

privacyidea-authorizedkeys

This will fetch the SSH public keys for the requesting machine.

The command expects a configuration file /etc/privacyidea/authorizedkeyscommand which looks like this:

[Default]
url=https://localhost
admin=admin
password=test
nosslcheck=False

Note: To disable a SSH key for all servers, you simple can disable the SSH token in privacyIDEA.

Warning: In a productive environment you should not set nosslcheck to true, otherwise you are vulnerable to
man in the middle attacks.

1.12.2 LUKS

Currently working token types: Yubikey Challenge Response

Parameters:

1.12. Client machines 169

privacyIDEA Authentication System, Release 3.2.1

slot The slot to which the authentication information should be written

partition The encrypted partition (usually /dev/sda3 or /dev/sda5)

These authentication items need to be pulled on the client machine from the privacyIDEA server.

Thus, the following script need to be executed with root rights (able to write to LUKS) on the client machine:

privacyidea-luks-assign @secrets.txt --clearslot --name salt-minion

For more information please see the man page of this tool.

1.12.3 Offline

Currently working token types: HOTP.

Parameters:

user The local user, who should authenticate. (Only needed when calling machine/get_auth_items)

count The number of OTP values passed to the client.

The offline application also triggers when the client calls a /validate/check. If the user authenticates successfully with
the correct token (serial number) and this very token is attached to the machine with an offline application the response
to validate/check is enriched with a “auth_items” tree containing the salted SHA512 hashes of the next OTP values.

The client can cache these values to enable offline authentication. The caching is implemented in the privacyIDEA
PAM module.

The server increases the counter to the last offline cached OTP value, so that it will not be possible to authenticate with
those OTP values available offline on the client side.

1.13 Workflows and Tools

1.13.1 Import

Seed files that contain the secret keys of hardware tokens can be imported to the system via the menu Import.

The default import options are to import SafeNet XML file, OATH CSV files, Yubikey CSV files or PSKC files.

GPG Encryption

Starting with privacyIDEA 2.14 you can import GPG encrypted seed files. All files mentioned below can be encrypted
this way.

privacyIDEA needs its own GPG key. You may create one like this:

mkdir /etc/privacyidea/gpg
GNUPGHOME=/etc/privacyidea/gpg gpg --gen-key

Then make sure, that the directory /etc/privacyidea/gpg is chown 700 for the user privacyidea.

Now you can export the public key and hand it to your token vendor:

GNUPGHOME=/etc/privacyidea/gpg gpg -a --export <keyid>

170 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Now the token vendor can send the seed file GPG encrypted. You do not need to decrypt the file and store the decrypted
file on a network folder. Just import the GPG encrypted file to privacyIDEA!

Note: Using the key PI_GNUPG_HOME in pi.cfg you can change the default above mentioned GNUPGHOME
directory.

Note: privacyIDEA imports an ASCII armored file. The file needs to be encrypted like this:

gpg -e -a -r <keyid> import.csv

OATH CSV

This is a very simple CSV file to import HOTP, TOTP or OATH tokens. You can also convert your seed easily to this
file format, to import the tokens.

The file format looks like this:

<serial>, <seed>, <type>, <otp length>, <time step>

For OCRA tokens it looks like this:

<serial>, <seed>, OCRA, <ocra suite>

serial is the serial number of the token that will also be used to identify the token in the database. Importing the same
serial number twice will overwrite the token data.

seed is the secret key, that is used to calculate the OTP value. The seed is provided in a hexadecimal notation.
Depending on the length either the SHA1 or SHA256 hash algorithm is identified.

type is either HOTP, TOTP or OCRA.

otp length is the length of the OTP value generated by the token. This is usually 6 or 8.

time step is the time step of TOTP tokens. This is usually 30 or 60.

ocra suite is the ocra suite of the OCRA token according to1.

For TAN tokens it looks like this:

<serial>, <n/a>, TAN, <list of tans>

The list of tans is a whitespace separated list.

Import format version 2

A new import format allows to prepend a user, to whom the imported token should be assigned.

The file format needs to start with the first line

version: 2

and the first three colums will be the user:

<username>, <resolver>, <realm>, <serial>, <seed>, <type>, . . .

1 http://tools.ietf.org/html/rfc6287#section-6

1.13. Workflows and Tools 171

http://tools.ietf.org/html/rfc6287#section-6

privacyIDEA Authentication System, Release 3.2.1

Note: The import will bail out, if a specified user does not exist.

Yubikey CSV

Here you can import the CSV file that is written by the Yubikey personalization tool2. privacyIDEA can import all
Yubikey modes, either Yubico mode or HOTP mode.

Note: There is an annoying drawback of the personalization tool: If you a initializing several HOTP yubikeys it will
not write the serial number to the file.

PSKC

The Portable Symmetric Key Container is specified in3. OATH compliant token vendors provide the token seeds in a
PSKC file. privacyIDEA lets you import PSKC files. All necessary information (OTP length, Hash algorithm, token
type) are read from the file.

2 http://www.yubico.com/products/services-software/personalization-tools/use/
3 https://tools.ietf.org/html/rfc6030

172 Chapter 1. Table of Contents

http://www.yubico.com/products/services-software/personalization-tools/use/
https://tools.ietf.org/html/rfc6030

privacyIDEA Authentication System, Release 3.2.1

1.13.2 Token Enrollment Wizard

The enrollment wizard helps the user to enroll his first token. When enrolling the first token, we assume, that the user
is not very familiar with the privacyIDEA web UI. So the enrollment wizard only contains a very reduced API.

Necessary requirements for the enrollment wizard

• The enrollment wizard will only be displayed, if the user has no token assigned, yet. Thus the user must be able
to login to the web UI with his userstore password. This is the default behaviour or set the corresponding policy.

• Set a policy in scope webui and activate the policy action tokenwizard.

• The user will not be able to choose a token type. But the default token type will be enrolled.

You can see the token enrollment wizard in action here: https://www.youtube.com/watch?v=diAGbsiG8_A

Customization

There are two dialog windows in the wizard. You can configure the text in the wizard in your html templates defined
in these files:

Before the token is enrolled you can add your custom text in these two files static/customize/views/includes/token.enroll.pre.top.html
static/customize/views/includes/token.enroll.pre.bottom.html

When it is enrolled and the user needs to do something (e.g. scanning the qr-code), you can modify the text here:
static/customize/views/includes/token.enroll.post.top.html static/customize/views/includes/token.enroll.post.bottom.html

Note: You can change the directory static/customize to a URL that fits your needs the best by defining a variable
PI_CUSTOMIZATION in the file pi.cfg. This way you can put all modifications in one place apart from the original
code.

Example

Your privacyIDEA system is running in the URL sub path /pi. The files could be addressed via a path component
mydesign (in this case pi/mydesign). Thus the WebUI will look for the files in the URL path /pi/mydesign/
views/includes/.

So you set in pi.cfg:

PI_CUSTOMIZATION = “/mydesign”

Your customized files are located in /etc/privacyidea/customize/views/includes/. In the Apache
webserver you need to map /pi/mydesign to /etc/privacyidea/customize:

Alias /pi/mydesign /etc/privacyidea/customize

1.13.3 Tools

privacyIDEA comes with a list of command line tools, which also help to automate tasks.

1.13. Workflows and Tools 173

https://www.youtube.com/watch?v=diAGbsiG8_A

privacyIDEA Authentication System, Release 3.2.1

privacyidea-token-janitor

Starting with version 2.19 privacyIDEA comes with a token janitor script. This script can find orphaned tokens, unused
tokens or tokens of specific type, description or token info.

It can unassign, delete or disable those tokens and it can set additional tokeninfo or descriptions.

If you are unsure to directly delete orphaned tokens, because there might be a glimpse in the connection to your user
store, you could as well in a first step mark the orphaned tokens. A day later you could run the script again and delete
those tokens, which are (still) orphaned and marked.

privacyidea-get-unused-tokens

The script privacyidea-get-unused-tokens allows you to search for tokens, which were not used for au-
thentication for a while. These tokens can be listed, disabled, marked or deleted.

You can specify how old the last authentication of such a token has to be. You can use the tags h (hours), d (day) and
y (year). Sepcifying 180d will find tokens, that were not used for authentication for the last 180 days.

The command:

privacyidea-get-unused-tokens disable 180d

will disable those tokens.

This script can be well used with the Script Handler Module.

1.13.4 Two Step Enrollment

Starting with version 2.21 privacyIDEA allows to enroll smartphone based tokens in a 2step enrollment.

With the rise of the smartphones and the fact that every user has a smartphone, carries it with him all the time and
cares about it a lot, using the smartphone for authentication gets more and more attractive to IT departments.

Google came up with the Key URI1 to use a QR code to easily enroll a smartphone token, i.e. transport the OTP secret
from the server to the phone. However this bears some security issues as already pointed out2.

This is why privacyIDEA allows to generate the OTP secret from a server component and from a client component
(generated by the smartphone). This way the enrolled token is more tightly bound to this single smartphone and can
not be copied that easily anymore.

Workflow

In a two step enrollment process the user clicks in the Web UI to enroll a token. The server generates a QR code and
the user will scan this QR code with his smartphone app. The QR code contains the server component of the key and
the information, that a second component is needed.

The smartphone generates the second component and displays this to the user.

The user enters this second component into the privacyIDEA Web UI.

Both the smartphone and the server calculate the OTP secret from both components.

1 https://github.com/google/google-authenticator/wiki/Key-Uri-Format
2 https://netknights.it/en/the-problem-with-the-google-authenticator/

174 Chapter 1. Table of Contents

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://netknights.it/en/the-problem-with-the-google-authenticator/

privacyIDEA Authentication System, Release 3.2.1

Two Step policies

Two step enrollment is controlled by policies in the admin/user scope and in the enrollment scope.

Thus the administrator can allow or force a user (or other administrators) to do a two step enrollment. This way it is
possible to avoid the enrollment of insecure Google Authenticator QR codes in the complete installation. (hotp_2step
and totp_2step).

The default behaviour is to not allow a two step enrollment. Only if a corresponding admin or user policy is defined,
two step enrollment is possible.

Key generation

In addition the administrator can define an enrollment policy to specify necessary parameters for the key genera-
tion.

Two step enrollment is possible for HOTP and TOTP tokens. Thus the administrator can define token type
specific policies in the scope enrollment: hotp_2step_clientsize, totp_2step_clientsize,
hotp_2step_difficulty. . . see {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

privacyIDEA Authenticator

The privacyIDEA Authenticator3 that is available from the Google Play Store supports the two step enrollment.

Specification

The two step enrollment simply adds some parameters to the original Key URI.

2step_output

This is the resulting key size, which the smartphone should generate (in bytes).

2step_salt

This is the length of the client component that the smartphone should generate (in bytes).

2step_difficulty

This is the number of rounds for the PBKDF2 that the smartphone should use to generate the OTP secret.

The secret parameter of the Key URI contains the server component.

The smartphone app then generates the client component, which is 2step_salt random bytes. It is then displayed
in a human-readable format called base32check:

b32encode(sha1(client_component).digest()[0:4] + client_component).strip("=")

In other words, the first four bytes of the client component’s SHA-1 hash are concatenated with the actual client
component. The result is encoded using base32, whereas trailing padding characters are removed.

The second step of the enrollment process is realized as another request to the /token/init endpoint:

POST /token/init

serial=<token serial>
otpkey=<base32check(client_component)>
otpkeyformat=base32check

3 https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

1.13. Workflows and Tools 175

https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

privacyIDEA Authentication System, Release 3.2.1

Server and smartphone app then use PBKDF2 to generate the final secret (see4 for parameter names):

secret = PBKDF2(P=hexlify(<server component>),
S=<client component>,
c=<2step_difficulty>
dkLen=<2step_output>)

whereas hexlify(<server component>) denotes a hex-encoding (using lowercase letters) of the byte array
which comprises the server component.

Note: Please note that the two-step enrollment process is currently not designed to protect against malicious attackers.
Depending on the choice of iteration count and salt size, an attacker who knows the server component and an OTP
value may be able to obtain the client component with a brute-force approach. However, two-step enrollment is still
an improvement to the status quo, as a simple copy of the QR code does not immediately leak the OTP secret and
obtaining the OTP secret using brute-force is not trivial.

1.14 Job Queue

privacyIDEA workflows often entail some time-consuming tasks, such as sending mails or SMS or saving usage
statistics. Executing such tasks during the handling of API requests negatively affects performance. Starting with
version 3.0, privacyIDEA allows to delegate certain tasks to external worker processes by using a job queue.

As an example, assume that privacyIDEA receives an authentication request by a user with an email token (see EMail)
via HTTP. privacyIDEA will send a one-time password via E-Mail. In order to do so, it communicates with a SMTP
server. Normally, privacyIDEA handles all communication during the processing of the original authentication request,
which increases the response time for the HTTP request, especially if the SMTP server is at a remote location.

A job queue can help to reduce the response time as follows. Instead of communicating with the SMTP server during
request handling, privacyIDEA stores a so-called job in a job queue which says “Send an E-Mail to xyz@example.com
with content ‘. . . ’”. privacyIDEA does not wait for the E-Mail to be actually sent, but already sends an HTTP response.
An external worker process then retrieves the job from the queue and actually sends the corresponding E-Mail.

Using a job queue may improve the performance of your privacyIDEA server in case of a flaky connection to the
SMTP server. Authentication requests that send E-Mails are then handled faster (because the privacyIDEA server
does not actually communicate with the SMTP server), which means that the corresponding web server worker thread
can handle the next request faster.

privacyIDEA 3.0 implements a job queue based on huey which uses a Redis server to store jobs. As of version 3.0,
privacyIDEA allows to offload sending mails to the queue. Other jobs will be implemented in future versions.

1.14.1 Configuration

The job queue is disabled by default. In order to enable it, add the following configuration option to pi.cfg:

PI_JOB_QUEUE_CLASS = 'privacyidea.lib.queues.huey_queue.HueyQueue'

After a server restart, you will be able to instruct individual SMTP servers to send all mails via the job queue by
checking a corresponding box in the SMTP server configuration (see SMTP server configuration). This means that
you can have separate SMTP server configurations, some of which send mails via the job queue, some of which send
mails during the request processing.

4 https://www.ietf.org/rfc/rfc2898.txt

176 Chapter 1. Table of Contents

mailto:xyz@example.com
https://huey.readthedocs.io/en/latest/
https://redis.io/
https://www.ietf.org/rfc/rfc2898.txt

privacyIDEA Authentication System, Release 3.2.1

Note that you need to run a Redis server which is reachable for the privacyIDEA server. By default, huey assumes a
locally running Redis server. You can use a configuration option to provide a different URL (see here for information
on the URL format):

PI_JOB_QUEUE_URL = 'redis://somehost'

In addition to the privacyIDEA server, you will have to run a worker process which fetches jobs from the queue and
executes them. You can start it as follows:

privacyidea-queue-huey

By default, the worker process logs to privacyidea-queue.log in the current working directory. You can pass
a different logfile by using the -l option:

privacyidea-queue-huey -l /var/log/queue.log

As the script is heavily based on the huey consumer script, you can find information about additional options in the
huey documentation.

Note that a side-effect of the queue is that the privacyIDEA server will not throw or log errors if a mail could not be
sent. Hence, it is important to monitor the queue log file for errors.

1.15 Application Plugins

privacyIDEA comes with application plugins. These are plugins for applications like PAM, OTRS, Apache2, FreeRA-
DIUS, ownCloud or simpleSAMLphp which enable these application to authenticate users against privacyIDEA.

You may also write your own application plugin or connect your own application to privacyIDEA. This is quite simple
using a REST API Validate endpoints. In order to support more sophisticated token types like challenge-response or
out-of-band tokens, you should take a look at the various Authentication Modes.

1.15.1 Pluggable Authentication Module

The PAM module of privacyIDEA directly communicates with the privacyIDEA server via the API. The PAM module
also supports offline authentication. In this case you need to configure an offline machine application. (See Offline)

You can install the PAM module with a ready made Debian package for Ubuntu or just use the source code file. It is a
python module, that requires pam-python.

The configuration could look like this:

... pam_python.so /path/to/privacyidea_pam.py
url=https://localhost prompt=privacyIDEA_Authentication

The URL parameter defaults to https://localhost. You can also add the parameters realm= and debug.

If you want to disable certificate validation, which you should not do in a productive environment, you can use the
parameter nosslverify.

A new parameter cacerts= lets you define a CA Cert-Bundle file, that contains the trusted certificate authorities in
PEM format.

The default behaviour is to trigger an online authentication request. If the request was successful, the user is logged
in. If the request was done with a token defined for offline authentication, then in addition all offline information is
passed to the client and cached on the client so that the token can be used to authenticate without the privacyIDEA
server available.

1.15. Application Plugins 177

https://redis.io/
https://redis-py.readthedocs.io/en/latest/#redis.ConnectionPool.from_url
https://huey.readthedocs.io/en/latest/consumer.html#options-for-the-consumer

privacyIDEA Authentication System, Release 3.2.1

try_first_pass

Starting with version 2.8 privacyidea_pam supports try_first_pass. In this case the password that exists in the PAM
stack will be sent to privacyIDEA. If this password is successfully validated, than the user is logged in without addi-
tional requests. If the password is not validated by privacyIDEA, the user is asked for an additional OTP value.

Note: This can be used in conjunction with the passthru policy. In this case users with no tokens will be able to login
with only the password in the PAM stack.

Read more about how to use PAM to do openvpn.

1.15.2 Using pam_yubico

If you are using yubikey tokens you might also use pam_yubico. You can use Yubikey tokens for two more or
less distinct applications. The first is using privacyideas PAM module as described above. In this case privacyidea
handles the policies for user access and password validation. This works fine, when you only use privacyidea for token
validation.

The second mode is using the standard PAM module for yubikeys from Yubico pam_yubico to handle the token
validation. The upside ist that you can use the PAM module included with you distribution, but there are downsides as
well.

• You can’t set a token PIN in privacyidea, because pam_yubico tries to use the token PIN entered by the user
as a system password (which is likely to fail), i.e. the PIN will be stripped by pam_yubico and will not reach
the privacyIDEA system.

• Setting the policy which tokens are valid for which users is done either in ~/.yubico/authorized_keys
or in the file given by the authfile option in the PAM configuration. The api server will only validate the
token, but not check any kind of policy.

You can work around the restrictions by using a clever combination of tokentype yubikey and yubico as follows:

• enroll a yubikey token with yubikey_mass_enroll --mode YUBICO.

• do not set a token password.

• do not assign the token to a user.

• please make a note of yubikey.prefix (12 characters starting with vv).

Now the token can be used with pam_yubico, but will not allow any user access in privacyidea. If you want to use
the token with pam_yubico see the manual page for details. You’ll want something like the following in your PAM
config:

auth required pam_yubico.so id=<apiid> key=<API key> \
urllist=https://<privacyidea-server>/ttype/yubikey authfile=/etc/yubikeys/

→˓authorized_yubikeys

The file /etc/yubikeys/authorized_yubikeys contains a line for each user with the username and the
allowed tokens delimited by “:”, for example:

<username>:<serial number1>:<prefix1>:<prefix2>

. . . doc/configuration/tokenconfig, add yubikey.rst to describe how to configure Client ID/apiid and API key

Now create a second token representing the Yubikey, but this time use the Yubico Cloud mode. Go to Tokens ->
Enroll Token and select Yubico Cloud mode. Enter the 12 characters prefix you noted above and assign this token

178 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

to a user and possibly set a token PIN. It would be nice to have the the serial number of the UBCM token correspond
to the UBAM token, but this is right now not possible with the WebUI.

In the WebUI, test the UBAM token without a Token PIN, test the UBCM token with the stored Token PIN, and check
the token info afterwards. Check the yubikey token via /ttype/yubikey, for example with:

ykclient --debug --url https://<privacyidea>/ttype/yubikey --apikey "<API key>" "apiid
→˓" <otp>

There should be successful authentications (count_auth_success), but no failures.

1.15.3 FreeRADIUS

Starting with privacyIDEA 2.19, there are two ways to integrate FreeRADIUS:

• Using a Perl-based privacyIDEA plugin, which is available for FreeRADIUS 2.0.x and above. It supports
advanced use cases (such as challenge-response authentication or attribute mapping). Read more about it at
rlm_perl.

• Using the rlm_rest plugin provided by FreeRADIUS 3.0.x and above. However, this setup does not support
challenge-response or attribute mapping. Read more about it at rlm_rest.

With either setup, you can test the RADIUS setup using a command like this:

echo "User-Name=user, User-Password=password" | radclient -sx yourRadiusServer \
auth topsecret

Note: Do not forget to configure the clients.conf accordingly.

1.15.4 Microsoft NPS server

You can also use the Microsoft Network Protection Server with privacyIDEA. A full featured integration guide can be
found at the NetKnights webpage5.

1.15.5 simpleSAMLphp Plugin

You can install the plugin for simpleSAMLphp on Ubuntu 14.04 LTS (see SimpleSAMLphp) or on any other distribu-
tion using the source files from1.

Follow the simpleSAMLphp instructions to configure your authsources.php. A usual configuration will look like this:

'example-privacyidea' => array(
'privacyidea:privacyidea',

/*
* The name of the privacyidea server and the protocol

* A port can be added by a colon

* Required.

*/
'privacyideaserver' => 'https://your.server.com',

(continues on next page)

5 https://netknights.it/en/nps-2012-for-two-factor-authentication-with-privacyidea/
1 https://github.com/privacyidea/simplesamlphp-module-privacyidea

1.15. Application Plugins 179

https://netknights.it/en/nps-2012-for-two-factor-authentication-with-privacyidea/
https://github.com/privacyidea/simplesamlphp-module-privacyidea

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

/*
* Check if the hostname matches the name in the certificate

* Optional.

*/
'sslverifyhost' => False,

/*
* Check if the certificate is valid, signed by a trusted CA

* Optional.

*/
'sslverifypeer' => False,

/*
* The realm where the user is located in.

* Optional.

*/
'realm' => '',

/*
* This is the translation from privacyIDEA attribute names to

* SAML attribute names.

*/
'attributemap' => array('username' => 'samlLoginName',

'surname' => 'surName',
'givenname' => 'givenName',
'email' => 'emailAddress',
'phone' => 'telePhone',
'mobile' => 'mobilePhone',
),

),

1.15.6 TYPO3

You can install the privacyIDEA extension from the TYPO3 Extension Repository. The privacyIDEA extension is
easily configured.

privacyIDEA Server URL

This is the URL of your privacyIDEA installation. You do not need to add the path validate/check. Thus the URL for
a common installation would be https://yourServer/.

Check certificate

Whether the validity of the SSL certificate should be checked or not.

Warning: If the SSL certificate is not checked, the authentication request could be modified and the answer to
the request can be modified, easily granting access to an attacker.

Enable privacyIDEA for backend users

If checked, a user trying to authenticate at the backend, will need to authenticate against privacyIDEA.

Enable privacyIDEA for frontend users

If checked, a user trying to authenticate at the frontend, will need to authenticate against privacyIDEA.

180 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Pass to other authentication module

If the authentication at privacyIDEA fails, the credential the user entered will be verified against the next authentication
module.

This can come in handy, if you are setting up the system and if you want to avoid locking yourself out.

Anyway, in a productive environment you probably want to uncheck this feature.

1.15.7 OTRS

There are two plugins for OTRS. For OTRS version 4.0 and higher use privacyIDEA-4_0.pm.

This perl module needs to be installed to the directory Kernel/System/Auth.

On Ubuntu 14.04 LTS you can also install the module using the PPA repository and installing:

apt-get install privacyidea-otrs

To activate the OTP authentication you need to add the following to Kernel/Config.pm:

$Self->{'AuthModule'} = 'Kernel::System::Auth::privacyIDEA';
$Self->{'AuthModule::privacyIDEA::URL'} = \

"https://localhost/validate/check";
$Self->{'AuthModule::privacyIDEA::disableSSLCheck'} = "yes";

Note: As mentioned earlier you should only disable the checking of the SSL certificate if you are in a test environment.
For productive use you should never disable the SSL certificate checking.

Note: This plugin requires, that you also add the path validate/check to the URL.

1.15.8 Apache2

The Apache plugin uses mod_wsgi and redis to provide a basic authentication on Apache2 side and validating the
credentials against privacyIDEA.

On Ubuntu 14.04 LTS you can easily install the module from the PPA repository by issuing:

apt-get install privacyidea-apache-client

To activate the OTP authentication on a “Location” or “Directory” you need to configure Apache2 like this:

<Directory /var/www/html/secretdir>
AuthType Basic
AuthName "Protected Area"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/share/pyshared/privacyidea_apache.py
Require valid-user

</Directory>

1.15. Application Plugins 181

privacyIDEA Authentication System, Release 3.2.1

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the same
one time password with each reqeust. Thus the authentication module needs to cache the password as the successful
authentication. Redis is used for caching the password.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The cached
credentials are stored as pbkdf2+sha512 hash.

1.15.9 NGINX

The NGINX plugin uses the internal scripting language lua of the NGINX webserver and redis as caching backend
to provide basic authentication against privacyIDEA.

On Ubuntu 14.04 LTS or Debian Jessi 8 you can easyly install the module by installing the following packages:

nginx-extras lua-nginx-redis lua-cjson redis-server

You can retrieve the nginx plugin here:4

To activate the OTP authentication on a “Location” you need to include the lua script that basically verifies the
given credentials against the caching backend. New authentications will be sent to a different (internal) location via
subrequest which points to the privacyIDEA authentication backend (via proxy_pass).

For the basic configuration you need to include the following lines to your location block

location / { # additional plugin configuration goes here # access_by_lua_file ‘privacyidea.lua’;

} location /privacyidea-validate-check {

internal; proxy_pass https://privacyidea/validate/check;

}

You can customize the authentication plugin by setting some of the following variables in the secured location
block:

redis host:port
set $privacyidea_redis_host "127.0.0.1";
set $privacyidea_redis_post 6379;

how long are accepted authentication allowed to be cached
if expired, the user has to reauthenticate
set $privacyidea_ttl 900;

privacyIDEA realm. leave empty == default
set $privacyidea_realm 'somerealm'; # (optional)

pointer to the internal validation proxy pass
set $privacyidea_uri "/privacyidea-validate-check";

the http realm presented to the user
set $privacyidea_http_realm "Secure zone (use PIN + OTP)";

4 https://github.com/dhoffend/lua-nginx-privacyidea

182 Chapter 1. Table of Contents

https://privacyidea/validate/check
https://github.com/dhoffend/lua-nginx-privacyidea

privacyIDEA Authentication System, Release 3.2.1

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the same
one time password with each reqeust. Thus the authentication module needs to cache the password as the successful
authentication. Redis is used for caching the password similar to the Apache2 plugin.

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. The
cached credentials are stored as SHA1_HMAC hash. If you prefer a stronger hashing method feel free to
extend the given password_hash/verify functions using additional lua libraries (for example by using
lua-resty-string).

1.15.10 ownCloud

The ownCloud plugin is a ownCloud user backend. The directory user_privacyidea needs to be copied to your
owncloud apps directory.

Fig. 63: Activating the ownCloud plugin

You can then activate the privacyIDEA ownCloud plugin by checking Use privacyIDEA to authenticate the users. All
users now need to be known to privacyIDEA and need to authenticate using the second factor enrolled in privacyIDEA
- be it an OTP token, Google Authenticator or SMS/Smartphone.

Checking Also allow users to authenticate with their normal passwords. lets the user choose if he wants to authenticate
with the OTP token or with his original password from the original user backend.

Note: At the moment using a desktop client with a one time password is not supported.

ownCloud 9.1 and Nextcloud 10 come with a new two factor framework. The new privacyIDEA ownCloud App allows
you to add a second factor, that is centrally managed by privacyIDEA to the ownCloud or Nextcloud installation.

The ownCloud privacyIDEA App is available here7.

The App requires a subscription file to work for more than ten users. You can get the subscription file at
NetKnights8.

1.15.11 Django

You can add two factor authentication with privacyIDEA to Django using this Django plugin. See django.
7 https://apps.owncloud.com/content/show.php/privacyIDEA+ownCloud+App?content=174779
8 https://netknights.it/en/produkte/privacyidea-owncloud-app/

1.15. Application Plugins 183

https://apps.owncloud.com/content/show.php/privacyIDEA+ownCloud+App?content=174779
https://netknights.it/en/produkte/privacyidea-owncloud-app/

privacyIDEA Authentication System, Release 3.2.1

You can simple add PrivacyIDEA class to AUTHENTICATION_BACKENDS settings of Django.

1.15.12 OpenVPN

Read more about how to use OpenVPN with privacyidea at openvpn.

1.15.13 Windows

Credential Provider

The privacyIDEA Credential Provider adds two factor authentication to the Windows desktop or Terminal server. See
http://privacyidea-credential-provider.readthedocs.io

Provider Class

There is a dot Net provider class, which you can use to integrate privacyIDEA authentication into other products and
worflows. See https://github.com/sbidy/privacyIDEA_dotnetProvider

1.15.14 Further plugins

You can find further plugins for Dokuwiki, Wordpress, Contao and Django at3.

1.16 Code Documentation

The code roughly has three levels.

1.16.1 API level

The API level is used to access the system. For some calls you need to be authenticated as administrator, for some calls
you can be authenticated as normal user. These are the token and the audit endpoint. For calls to the validate
API you do not need to be authenticated at all.

At this level Authentication is performed. In the lower levels there is no authentication anymore.

The object g.logged_in_user is used to pass the authenticated user. The client gets a JSON Web Token to
authenticate every request.

API functions are decorated with the decorators admin_required and user_required to define access rules.

REST API

This is the REST API for privacyidea. It lets you create the system configuration, which is denoted in the system
endpoints.

Special system configuration is the configuration of

• the resolvers

• the realms
3 https://github.com/cornelinux?tab=repositories

184 Chapter 1. Table of Contents

http://privacyidea-credential-provider.readthedocs.io
https://github.com/sbidy/privacyIDEA_dotnetProvider
https://github.com/cornelinux?tab=repositories

privacyIDEA Authentication System, Release 3.2.1

• the defaultrealm

• the policies.

Resolvers are dynamic links to existing user sources. You can find users in LDAP directories, SQL databases, flat
files or SCIM services. A resolver translates a loginname to a user object in the user source and back again. It is also
responsible for fetching all additional needed information from the user source.

Realms are collections of resolvers that can be managed by administrators and where policies can be applied.

Defaultrealm is a special endpoint to define the default realm. The default realm is used if no user realm is specified. If
a user from realm1 tries to authenticate or is addressed, the notation user@realm1 is used. If the @realm1 is omitted,
the user is searched in the default realm.

Policies are rules how privacyidea behaves and which user and administrator is allowed to do what.

Start to read about authentication to the API at Authentication endpoints.

Now you can take a look at the several REST endpoints. This REST API is used to authenticate the users. A user
needs to authenticate when he wants to use the API for administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

Audit endpoint

GET /audit/
return a paginated list of audit entries.

Params can be passed as key-value-pairs.

Httpparam timelimit A timelimit, that limits the recent audit entries. This param gets overwritten
by a policy auditlog_age. Can be 1d, 1m, 1h.

Example request:

GET /audit?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

"serial": "....",
"missing_line": "..."

}

(continues on next page)

1.16. Code Documentation 185

mailto:user@realm1

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

]
},
"version": "privacyIDEA unknown"

}

GET /audit/(csvfile)
Download the audit entry as CSV file.

Params can be passed as key-value-pairs.

Example request:

GET /audit/audit.csv?realm=realm1 HTTP/1.1
Host: example.com
Accept: text/csv

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

"serial": "....",
"missing_line": "..."

}
]

},
"version": "privacyIDEA unknown"

}

Authentication endpoints

This REST API is used to authenticate the users. A user needs to authenticate when he wants to use the API for
administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

GET /auth/rights
This returns the rights of the logged in user.

Request Headers

• Authorization – The authorization token acquired by /auth request

186 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc7235#section-4.2

privacyIDEA Authentication System, Release 3.2.1

POST /auth
This call verifies the credentials of the user and issues an authentication token, that is used for the later API
calls. The authentication token has a validity, that is usually 1 hour.

JSON Parameters

• username – The username of the user who wants to authenticate to the API.

• password – The password/credentials of the user who wants to authenticate to the API.

• realm – The realm where the user will be searched.

Return A json response with an authentication token, that needs to be used in any further request.

Status Codes

• 200 OK – in case of success

• 401 Unauthorized – if authentication fails

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

username=admin
password=topsecret

Example Authentication Response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"token": "eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM"
}

},
"version": "privacyIDEA unknown"

}

Response for failed authentication:

HTTP/1.1 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 203

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"error": {
"code": -401,
"message": "missing Authorization header"

},

(continues on next page)

1.16. Code Documentation 187

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"status": false
},
"version": "privacyIDEA unknown",
"config": {

"logout_time": 30
}

}

Example Request:

Requests to privacyidea then should use this security token in the Authorization field in the header.

GET /users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM

Validate endpoints

This module contains the REST API for doing authentication. The methods are tested in the file
tests/test_api_validate.py

Authentication is either done by providing a username and a password or a serial number and a password.

Authentication workflow

Authentication workflow is like this:

In case of authenticating a user:

• privacyidea.lib.token.check_user_pass()

• privacyidea.lib.token.check_token_list()

• privacyidea.lib.tokenclass.TokenClass.authenticate()

• privacyidea.lib.tokenclass.TokenClass.check_pin()

• privacyidea.lib.tokenclass.TokenClass.check_otp()

In case if authenitcating a serial number:

• privacyidea.lib.token.check_serial_pass()

• privacyidea.lib.token.check_token_list()

• privacyidea.lib.tokenclass.TokenClass.authenticate()

• privacyidea.lib.tokenclass.TokenClass.check_pin()

• privacyidea.lib.tokenclass.TokenClass.check_otp()

POST /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

188 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• serial – The serial number of the token.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
"signature": "1939...146964",
"detail": {"transaction_ids": ["03921966357577766962"],

"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",
"version": "privacyIDEA unknown",
"result": {"status": true,

"value": 1},
"time": 1482223663.517212,
"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []},

"id": 1,
"jsonrpc": "2.0",
"result": {"status": true,

"value": 0},
"signature": "205530282...54508",
"time": 1484303812.346576,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,
"id": 1,
"jsonrpc": "2.0",
"result": {"error": {"code": 905,

"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},
"signature": "14468...081555",
"time": 1484303933.72481,
"version": "privacyIDEA 2.17"}

GET /validate/triggerchallenge
An administrator can call this endpoint if he has the right of triggerchallenge (scope: admin). He can
pass a user name and or a serial number. privacyIDEA will trigger challenges for all native challenges
response tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

1.16. Code Documentation 189

privacyIDEA Authentication System, Release 3.2.1

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• serial – The serial number of the token.

Return a json result with a “result” of the number of matching challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
"signature": "1939...146964",
"detail": {"transaction_ids": ["03921966357577766962"],

"messages": ["Enter the OTP from the SMS:"],
"threadid": 140422378276608},

"versionnumber": "unknown",
"version": "privacyIDEA unknown",
"result": {"status": true,

"value": 1},
"time": 1482223663.517212,
"id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
"threadid": 140031212377856,
"transaction_ids": []},

"id": 1,
"jsonrpc": "2.0",
"result": {"status": true,

"value": 0},
"signature": "205530282...54508",
"time": 1484303812.346576,
"version": "privacyIDEA 2.17",
"versionnumber": "2.17"}

Example response for a failed triggering of a challenge. In this case

the status will be false.

{"detail": null,
"id": 1,
"jsonrpc": "2.0",
"result": {"error": {"code": 905,

"message": "ERR905: The user can not be
found in any resolver in this realm!"},

"status": false},
"signature": "14468...081555",
"time": 1484303933.72481,
"version": "privacyIDEA 2.17"}

GET /validate/polltransaction/(transaction_id)

GET /validate/polltransaction
Given a mandatory transaction ID, check if any non-expired challenge for this transaction ID has been answered.
In this case, return true. If this is not the case, return false. This endpoint also returns false if no challenge with
the given transaction ID exists.

This is mostly useful for out-of-band tokens that should poll this endpoint to determine when to send an authen-
tication request to /validate/check.

190 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

JSON Parameters

• transaction_id – a transaction ID

POST /validate/offlinerefill
This endpoint allows to fetch new offline OTP values for a token, that is already offline. According to the
definition it will send the missing OTP values, so that the client will have as much otp values as defined.

Parameters

• serial – The serial number of the token, that should be refilled.

• refilltoken – The authorization token, that allows refilling.

• pass – the last password (maybe password+OTP) entered by the user

Return

POST /validate/radiuscheck

POST /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns
result->value: true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

• otponly – If set to 1, only the OTP value is verified. This is used in the management UI.
Only used with the parameter serial.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

1.16. Code Documentation 191

privacyIDEA Authentication System, Release 3.2.1

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

Example response for this first part of a challenge response authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"serial": "PIEM0000AB00",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEM0000AB00",

"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},

{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}

]
},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

GET /validate/radiuscheck

GET /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenti-
cate. The PIN and OTP value is sent in the parameter pass. In case of successful authentication it returns

192 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

result->value: true.

In case of a challenge response authentication a parameter exception=1 can be passed. This would result in
a HTTP 500 Server Error response if an error occurred during sending of SMS or Email.

In case /validate/radiuscheck is requested, the responses are modified as follows: A successful au-
thentication returns an empty HTTP 204 response. An unsuccessful authentication returns an empty HTTP 400
response. Error responses are the same responses as for the /validate/check endpoint.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

• otponly – If set to 1, only the OTP value is verified. This is used in the management UI.
Only used with the parameter serial.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

Return a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

Example response for this first part of a challenge response authentication:

1.16. Code Documentation 193

privacyIDEA Authentication System, Release 3.2.1

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"serial": "PIEM0000AB00",
"type": "email",
"transaction_id": "12345678901234567890",
"multi_challenge: [{"serial": "PIEM0000AB00",

"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
email"},

{"serial": "PISM12345678",
"transaction_id": "12345678901234567890",
"message": "Please enter otp from your
SMS"}

]
},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

In this example two challenges are triggered, one with an email and one with an SMS. The application and thus
the user has to decide, which one to use. They can use either.

Note: All challenge response tokens have the same transaction_id in this case.

POST /validate/samlcheck
Authenticate the user and return the SAML user information.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

Return a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,

(continues on next page)

194 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {

"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": "/data/file/home/koelbel",
"resolver": "themis",
"surname": "Kölbel",
"givenname": "Cornelius",
"email": null},

"auth": true}
},
"version": "privacyIDEA unknown"

}

The response in value->attributes can contain additional attributes (like “myOwn”) which you can define in the
LDAP resolver in the attribute mapping.

GET /validate/samlcheck
Authenticate the user and return the SAML user information.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

Return a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"attributes": {

"username": "koelbel",
"realm": "themis",
"mobile": null,
"phone": null,
"myOwn": "/data/file/home/koelbel",
"resolver": "themis",
"surname": "Kölbel",
"givenname": "Cornelius",

(continues on next page)

1.16. Code Documentation 195

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"email": null},
"auth": true}

},
"version": "privacyIDEA unknown"

}

The response in value->attributes can contain additional attributes (like “myOwn”) which you can define in the
LDAP resolver in the attribute mapping.

System endpoints

This is the REST API for system calls to create and read system configuration.

The code of this module is tested in tests/test_api_system.py

GET /system/names/caconnector
Return a list of defined CA connectors. Each item of the list is a dictionary with the CA connector information,
including the name and defined templates, but excluding the CA connector data. This endpoint requires the
enrollCERTIFICATE right.

GET /system/names/radius
Return the list of identifiers of all defined RADIUS servers. This endpoint requires the enrollRADIUS right.

GET /system/documentation
returns an restructured text document, that describes the complete configuration.

POST /system/setDefault
define default settings for tokens. These default settings are used when new tokens are generated. The default
settings will not affect already enrolled tokens.

JSON Parameters

• DefaultMaxFailCount – Default value for the maximum allowed authentication fail-
ures

• DefaultSyncWindow – Default value for the synchronization window

• DefaultCountWindow – Default value for the counter window

• DefaultOtpLen – Default value for the OTP value length – usually 6 or 8

• DefaultResetFailCount – Default value, if the FailCounter should be reset on suc-
cessful authentication [True|False]

Return a json result with a boolean “result”: true

POST /system/setConfig
set a configuration key or a set of configuration entries

parameter are generic keyname=value pairs.

remark In case of key-value pairs the type information could be provided by an additional parameter with
same keyname with the postfix “.type”. Value could then be ‘password’ to trigger the storing of the value
in an encrypted form

JSON Parameters

• key – configuration entry name

• value – configuration value

196 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• type – type of the value: int or string/text or password. password will trigger to store the
encrypted value

• description – additional information for this config entry

or

JSON Parameters

• pairs (key-value) – pair of &keyname=value pairs

Return a json result with a boolean “result”: true

Example request 1:

POST /system/setConfig
key=splitAtSign
value=true

Host: example.com
Accept: application/json

Example request 2:

POST /system/setConfig
BINDDN=myName
BINDPW=mySecretPassword
BINDPW.type=password

Host: example.com
Accept: application/json

GET /system/gpgkeys
Returns the GPG keys in the config directory specified by PI_GNUPG_HOME.

Return A json list of the public GPG keys

GET /system/random
This endpoint can be used to retrieve random keys from privacyIDEA. In certain cases the client might need
random data to initialize tokens on the client side. E.g. the command line client when initializing the yubikey
or the WebUI when creating Client API keys for the yubikey.

In this case, privacyIDEA can create the random data/keys.

Query Parameters

• len – The length of a symmetric key (byte)

• encode – The type of encoding. Can be “hex” or “b64”.

Return key material

POST /system/hsm
Set the password for the security module

GET /system/hsm
Get the status of the security module.

GET /system/(key)

GET /system/
This endpoint either returns all config entries or only the value of the one config key.

1.16. Code Documentation 197

privacyIDEA Authentication System, Release 3.2.1

This endpoint can be called by the administrator but also by the normal user, so that the normal user gets
necessary information about the system config

Parameters

• key – The key to return.

Return A json response or a single value, when queried with a key.

Rtype json or scalar

POST /system/test/(tokentype)
The call /system/test/email tests the configuration of the email token.

DELETE /system/(key)
delete a configuration key

JSON Parameters

• key – configuration key name

Returns a json result with the deleted value

Resolver endpoints

The code of this module is tested in tests/test_api_system.py

POST /resolver/test
Send the complete parameters of a resolver to the privacyIDEA server to test, if these settings will result in a
successful connection. If you are testing existing resolvers, you can send the “__CENSORED__” password.
privacyIDEA will use the already stored password from the database.

Return a json result with True, if the given values can create a working resolver and a description.

GET /resolver/(resolver)

GET /resolver/
returns a json list of the specified resolvers. The passwords of resolvers (e.g. Bind PW of the LDAP resolver or
password of the SQL resolver) will be returned as “__CENSORED__”. You can run a POST request to update
the data and privacyIDEA will ignore the “__CENSORED__” password or you can even run a testresolver.

Parameters

• resolver (str) – the name of the resolver

• type (str) – Only return resolvers of type (like passwdresolver..)

• editable (str) – Set to “1” if only editable resolvers should be returned.

Return a json result with the configuration of resolvers

POST /resolver/(resolver)
This creates a new resolver or updates an existing one. A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (str) – the name of the resolver.

• type – the type of the resolver. Valid types are passwdresolver,

198 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

ldapresolver, sqlresolver, scimresolver :type type: str :return: a json result with the value being the database id
(>0)

Additional parameters depend on the resolver type.

LDAP:

• LDAPURI

• LDAPBASE

• BINDDN

• BINDPW

• TIMEOUT

• SIZELIMIT

• LOGINNAMEATTRIBUTE

• LDAPSEARCHFILTER

• LDAPFILTER

• USERINFO

• NOREFERRALS - True|False

• EDITABLE - True|False

SQL:

• Database

• Driver

• Server

• Port

• User

• Password

• Table

• Map

Passwd

• Filename

DELETE /resolver/(resolver)
This function deletes an existing resolver. A resolver can not be deleted, if it is contained in a realm

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

Realm endpoints

The realm endpoints are used to define realms. A realm groups together many users. Administrators can manage the
tokens of the users in such a realm. Policies and tokens can be assigned to realms.

1.16. Code Documentation 199

privacyIDEA Authentication System, Release 3.2.1

A realm consists of several resolvers. Thus you can create a realm and gather users from LDAP and flat file source
into one realm or you can pick resolvers that collect users from different points from your vast LDAP directory and
group these users into a realm.

You will only be able to see and use user object, that are contained in a realm.

The code of this module is tested in tests/test_api_system.py

GET /realm/superuser
This call returns the list of all superuser realms as they are defined in pi.cfg. See The Config File for more
information about this.

Return a json result with a list of realms

Example request:

GET /superuser HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": ["superuser",

"realm2"]
}

},
"version": "privacyIDEA unknown"

}

GET /realm/
This call returns the list of all defined realms. It takes no arguments.

Return a json result with a list of realms

Example request:

GET / HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {
"realm1_with_resolver": {

(continues on next page)

200 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"default": true,
"resolver": [

{
"name": "reso1_with_realm",
"type": "passwdresolver"

}
]

}
}

},
"version": "privacyIDEA unknown"

}

POST /realm/(realm)
This call creates a new realm or reconfigures a realm. The realm contains a list of resolvers.

In the result it returns a list of added resolvers and a list of resolvers, that could not be added.

Parameters

• realm – The unique name of the realm

• resolvers (string or list) – A comma separated list of unique resolver names or
a list object

• priority – Additional parameters priority.<resolvername> define the priority of the re-
solvers within this realm.

Return a json result with a list of Realms

Example request:

To create a new realm “newrealm”, that consists of the resolvers “reso1_with_realm” and “reso2_with_realm”
call:

POST /realm/newrealm HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

resolvers=reso1_with_realm, reso2_with_realm
priority.reso1_with_realm=1
priority.reso2_with_realm=2

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"added": ["reso1_with_realm", "reso2_with_realm"],
"failed": []

}

(continues on next page)

1.16. Code Documentation 201

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

}
"version": "privacyIDEA unknown"

}

DELETE /realm/(realm)
This call deletes the given realm.

Parameters

• realm – The name of the realm to delete

Return a json result with value=1 if deleting the realm was successful

Example request:

DELETE /realm/realm_to_delete HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

Default Realm endpoints

These endpoints are used to define the default realm, retrieve it and delete it.

DELETE /defaultrealm
This call deletes the default realm.

Return a json result with either 1 (success) or 0 (fail)

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

GET /defaultrealm
This call returns the default realm

202 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Return a json description of the default realm with the resolvers

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"defrealm": {
"default": true,
"resolver": [
{
"name": "defresolver",
"type": "passwdresolver"

}
]

}
}

},
"version": "privacyIDEA unknown"

}

POST /defaultrealm/(realm)
This call sets the default realm.

Parameters

• realm – the name of the realm, that should be the default realm

Return a json result with either 1 (success) or 0 (fail)

Token endpoints

The token API can be accessed via /token.

You need to authenticate to gain access to these token functions. If you are authenticated as administrator, you can
manage all tokens. If you are authenticated as normal user, you can only manage your own tokens. Some API calls
are only allowed to be accessed by adminitrators.

To see how to authenticate read Authentication endpoints.

POST /token/setrandompin/(serial)

POST /token/setrandompin
Set the OTP PIN for a specific token to a random value.

The token is identified by the unique serial number.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

Return In “value” returns the number of PINs set. The detail-section contains the key “pin” with
the set PIN.

Rtype json object

POST /token/description/(serial)

1.16. Code Documentation 203

privacyIDEA Authentication System, Release 3.2.1

POST /token/description
This endpoint can be used by the user or by the admin to set the description of a token.

JSON Parameters

• description (basestring) – The description for the token

Parameters

• serial –

Return

GET /token/challenges/(serial)

GET /token/challenges/
This endpoint returns the active challenges in the database or returns the challenges for a single token by its
serial number

Query Parameters

• serial – The optional serial number of the token for which the challenges should be
returned

• sortby – sort the output by column

• sortdir – asc/desc

• page – request a certain page

• pagesize – limit the number of returned tokens

• transaction_id – only returns challenges for this transaction_id. This is useful when
working with push or tiqr tokens.

Return json

POST /token/unassign
Unssign a token from a user. You can either provide “serial” as an argument to unassign this very token or you
can provide user and realm, to unassign all tokens of a user.

Return In case of success it returns the number of unassigned tokens in “value”.

Rtype JSON object

POST /token/copyuser
Copy the token user from one token to the other.

JSON Parameters

• from (basestring) – the serial number of the token, from where you want to copy the
pin.

• to (basestring) – the serial number of the token, from where you want to copy the pin.

Return returns value=True in case of success

Rtype bool

POST /token/disable/(serial)

POST /token/disable
Disable a single token or all the tokens of a user either by providing the serial number of the single token or a
username and realm.

Disabled tokens can not be used to authenticate but can be enabled again.

JSON Parameters

204 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• serial (basestring) – the serial number of the single token to disable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of disabled tokens in “value”.

Rtype json object

POST /token/copypin
Copy the token PIN from one token to the other.

JSON Parameters

• from (basestring) – the serial number of the token, from where you want to copy the
pin.

• to (basestring) – the serial number of the token, from where you want to copy the pin.

Return returns value=True in case of success

Rtype bool

POST /token/assign
Assign a token to a user.

JSON Parameters

• serial – The token, which should be assigned to a user

• user – The username of the user

• realm – The realm of the user

Return In case of success it returns “value”: True.

Rtype json object

POST /token/revoke/(serial)

POST /token/revoke
Revoke a single token or all the tokens of a user. A revoked token will usually be locked. A locked token can
not be used anymore. For certain token types additional actions might occur when revoking a token.

JSON Parameters

• serial (basestring) – the serial number of the single token to revoke

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of revoked tokens in “value”.

Rtype JSON object

POST /token/enable/(serial)

POST /token/enable
Enable a single token or all the tokens of a user.

JSON Parameters

• serial (basestring) – the serial number of the single token to enable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

1.16. Code Documentation 205

privacyIDEA Authentication System, Release 3.2.1

Return In case of success it returns the number of enabled tokens in “value”.

Rtype json object

POST /token/resync/(serial)

POST /token/resync
Resync the OTP token by providing two consecutive OTP values.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• otp1 (basestring) – First OTP value

• otp2 (basestring) – Second OTP value

Return In case of success it returns “value”=True

Rtype json object

POST /token/setpin/(serial)

POST /token/setpin
Set the the user pin or the SO PIN of the specific token. Usually these are smartcard or token specific PINs. E.g.
the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• userpin (basestring) – The user PIN of a smartcard

• sopin (basestring) – The SO PIN of a smartcard

• otppin (basestring) – The OTP PIN of a token

Return In “value” returns the number of PINs set.

Rtype json object

POST /token/reset/(serial)

POST /token/reset
Reset the failcounter of a single token or of all tokens of a user.

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns “value”=True

Rtype json object

POST /token/init
create a new token.

JSON Parameters

• otpkey – required: the secret key of the token

• genkey – set to =1, if key should be generated. We either need otpkey or genkey

• keysize – the size (byte) of the key. Either 20 or 32. Default is 20

206 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• serial – the serial number/identifier of the token

• description – A description for the token

• pin – the pin of the token. “OTP PIN”

• user – the login user name. This user gets the token assigned

• realm – the realm of the user.

• type – the type of the token

• tokenrealm – additional realms, the token should be put into

• otplen – length of the OTP value

• hashlib – used hashlib sha1, sha256 or sha512

• validity_period_start – The beginning of the validity period

• validity_period_end – The end of the validity period

• 2stepinit – set to =1 in conjunction with genkey=1 if you want a 2 step initialization
process. Additional policies have to be set see Two Step Enrollment.

• otpkeyformat – used to supply the OTP key in alternate formats, currently hex or
base32check (see Two Step Enrollment)

Return a json result with a boolean “result”: true

Depending on the token type there can be additional parameters. In the tokenclass you can see additional
parameters in the method update when looking for getParam functions.

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"googleurl": {
"description": "URL for google Authenticator",
"img": "<img width=250 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/
→˓ToAAADsUlEQVR4nO2czY3bMBCF34QCfKSALcClyB2kpCAlpQOxlBQQgDwaoPBy4I+p9W4OSRaWF28OgizxgylgMJw/
→˓0oi/k/
→˓DlL0FApEiRIkWKFCnyeKRVmdrjNAFh3srTMuSS2qjLg2cr8pDkQpKMgF3SBITz1QA4YolVfQA4kiT35CNmK/
→˓JQZLM8aQaWH+3pEkEgTZlhBojksgGAAS7/83+K/ORkOF/
→˓NLtismiCfYXbOd+AxZivygCTXdCLCDJRLfTbhTo4wW5FHIJtyeAJIAJb4AobLBIP/
→˓ZQRAwMcyakxIPtd3ivw4EqObXJzody9t1EKS63N9p8iPI4sO3QTwGSSbA1Q0x+cWunWRDolsUjSnxvau6VB0xMIMrp4EPAnAkWsjpEMiu+ysD1mUZomuKk1/
→˓i6WtedIhkXupS1MEsMRmaVafh7dVfXwGV0D+kMj3yXDOsIsngXQiV59R0tZIE7jC0b4VA3WE2Yo8CtkTPy7b8sPA8HWbWML6dCKAqxG4GgADw+weOVuRRyTHuGztbk+PwdqQPIzTWibyDbJWVdOJQDLj9xkod4yOCK2gbzZvVpyip/
→˓xOkR9B4maCbnF8c53vHGuuLVaTHRLZpBgYgweAVP0hLPElA+mFtVrvf3W/
→˓aTM+brYij0j23o8JthAweNc1J5cCmSFNYDCAS5wfOVuRRyT7QpVL9F6XLN/
→˓zjhG4ZSAHj1trmcgmLcfoWoq6/
→˓B4LZLeqBxmVpxb5WobYfl8vaxfU7DSA4mdLh0S+TW5W2xXTiaWZ0WbALqiXmi5KU/
→˓n5tN8p8r+TzaqUH936MKNW6/2uIkvZIZF/IEleDfAZZnYi1zSB/
→˓DmVpa2YJZtVLxP5JmnfWCutty5qwNcFrWSsV2xGxs3+03+K/
→˓Cxk74WtTWflDr652L0XtoZuylOLvJNb9H7XPzQ0DOX9RTokcpAhAzRYpN4LO5TsI1rQLx0SOci4z7VcSuvQZgxWX1gfbfBX1ctEvhLupbZSe5bNQK0Jv/
→˓dTe9U6RL6WtoIBqDs33NA7Xdey3SYzrWUi99L8IfJW4cC4pYNjg+Ow/
→˓+O5vlPkx5OpnSsUzler2cbS29g8pmBmWH6elGMU+UqaFwS0NBBa9O45Rmhr26Mof0jkTt440MNlC9aOGQqzA8McaQs34xJfsv3rf4r8XOTduR+lezHN5fyh0sdY76qz/
→˓cDZijwwGcxqs0c9gNFx5w9t7e18hNmKPBRZ7NDtXKF6V1qp2e9qtZ7DkOf6TpEiRYoUKVKkyPfkNyq7YXtdjZCIAAAAAElFTkSuQmCC
→˓"/>",

"value": "otpauth://hotp/mylabel?
→˓secret=GEZDGNBVGY3TQOJQGEZDGNBVGY3TQOJQ&counter=0"

(continues on next page)

1.16. Code Documentation 207

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

},
"oathurl": {
"description": "URL for OATH token",
"img": "<img width=250 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/
→˓ToAAADfElEQVR4nO2cTYrjMBCFX40EvZRvkKPIN5gz9c3so/
→˓QBBqxlwObNQpIlp2cYaBI6zrxamDjyhywo6leyEV+T+ccXQUCkSJEiRYoUKfL5SCviy7+zmZWBAbARmwGpPjXeZU6RL0ZGkuQCAMkMCCTmqlJ8HwAb4UiSPJJfn1Pki5Fpty8AED/
→˓MEBeAU/JoA52pOuk6Rd6f9H/
→˓60xBWbwCMyG7Mg0j3mlPky5OOiB9v5AQACCQnONr4yDlFnpisdigQQAIM4WpE2oyAWy0umyfCku1QX5A81zpFPo5EHybDEXH566U+FUlyOtc6RT6OzHao2RfOgwMQVqBYJADz5WrFVN1jTpGvRRY7FLmCExwR8y3JKbAm84HkFFawieyQyCpFJRagaMniikqRK4C9KpSVa3GULxN5lGZp8n3kinrr2H5xCmsZlQ6JPEiLqbPzKh5sRefL4uJILq4MyJeJPEjzZb2jQnFopQmSH3FZw2SHRB6lC3bQeatDiI2wghOAaoykQyKb7L2OzQPpjZjNEUgDDNiMSAMAOFpchjvNKfK1yGqHlkNetofYxclVs5RzNfkykZ/
→˓J4rc+So+++S2zy1ofDVezMXmURtoZ1ynyEeRuh1xXSiwJPtCFRyUygupDIm+l5fa9Q+Na0rT8yCG3lw6JPEqtMZaCUNfmyPWhBajtMx46Iedap8jHkV2/
→˓DK0cDWBXqapczY0ptxd5kFZjLEqzlJi6C4WyHYJjHZAOieyk2aGsSNyjoF2l0Jsg9TpE/
→˓oVMHpgvK8wupRZkIwDMQy0S5QMfbVfsOdcp8v5kF1M3N9ZaGrX/sbf2g+yQyFtpPdW2/
→˓75pTtGX5tWCcnuRt9L1OtguLcFve9DazmrpkMheOn3Ju4aA4tX6gVopiurbi7yV3Lc3IJ+vh0VuHoBbAWyeSH41hF+fzzKea50iH012QdE8OPJ92MzG9HY4NJRDpqt9+9uKfEayffeDU/
→˓J7z3UzG8PVSlqfPMrlm99W5FOSsUY8Noarmdkb+T7UTSF7Wv8kbyvyqcguL+u23k/
→˓7cDvdmm9Vpxb5LzLbobErObbc/
→˓lFzijw3eZtvcR4WAtjKx2Lmn1djztBAWN5ZPX3X24p8RrI719HcWNnsEVoz1vWPyJeJ7KXYoTln7A4Wcz6/
→˓eQL7xxxyRr95IlwNskMiezF941ykSJEiRYoU+Z+TvwF49nApsKFZZAAAAABJRU5ErkJggg==
→˓"/>",

"value": "oathtoken:///addToken?name=mylabel&lockdown=true&
→˓key=3132333435363738393031323334353637383930"

},
"otpkey": {
"description": "OTP seed",
"img": "<img width=200 src="data:image/png;base64,

→˓iVBORw0KGgoAAAANSUhEUgAAAUoAAAFKAQAAAABTUiuoAAAB70lEQVR4nO2aTY6jQAyFPw9IWYI0B+ijwNHhKH0DWLZU6PXCVYSOZkF6xM/
→˓CXkQkfIsnWRU/22ViZ4x/9pIQaKCBBhpooEeilqPGrAWzdjGYy8/
→˓94QICfQftJEkTAIsBlYBKkqSf6DECAn0HnfMRkj4fnjfrATOrzxEQ6I6oX74bYGJuzxIQ6H9kqySqSjCfISDQX6CNpKE8mX18lT9GpXMEBLofHc3M7WA/
→˓19B9PgQsbgnPEBDonrCXyZMB/HMaFZOnu6DWz2aMZqaBZ79Vw9gu0W/
→˓dBsU7qm4CL16aKq9geonhcq2BlqR4jirRSYImoaF8eO8c2boeXR38YnRavIwJkNFUsg1xudZAy5ywreSFyqcabgxr8lE7XECgu8JPjpj/
→˓Ao2AJtXAYoIEYzsVi3i51kBz3Rq8O658RFhKVn4Rdesu6MYTemZoEm468kh+TejlWgNdjXoeMGVjOJXXnVJk6zboa1uFb7Wm1csTZ+tu6HN3TKcEYwvZIlLJ+sMFBPoO+twdjz7GXQy8Mf6Kqe7t0HV37FaDSp630R7Rb90WtR6ytxiaFPute6Gvu2OY6wRzC92EtguUy7UGWvqtzWgX8DtPZZ8cnvAuKNs7aH4v7ZnBPH6PWcZd0DInLPHjqSTvSAGBBhpooIEG+gb6DeDWV0l+Ofz2AAAAAElFTkSuQmCC
→˓"/>",

"value": "seed://3132333435363738393031323334353637383930"
},
"serial": "OATH00096020"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

2 Step Enrollment

Some tokens might need a 2 step initialization process like a smartphone app. This way you can create a shared
secret from a part generated by the privacyIDEA server and from a second part generated by the smartphone
app/client.

The first API call would be

POST /token/init

2stepinit=1

The response would contain the otpkey generated by the server and the serial number of the token. At this
point, the token is deactivated and marked as being in an enrollment state. The client would also generated a

208 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

component of the key and send his component to the privacyIDEA server:

The second API call would be

POST /token/init

serial=<serial from the previous response>
otpkey=<key part generated by the client>

Each tokenclass can define its own way to generate the secret key by overwriting the method
generate_symmetric_key. The Base Tokenclass contains an extremely simple way by concatenating
the two parts. See generate_symmetric_key()

POST /token/set/(serial)

POST /token/set
This API is only to be used by the admin! This can be used to set token specific attributes like

• description

• count_window

• sync_window

• count_auth_max

• count_auth_success_max

• hashlib,

• max_failcount

• validity_period_start

• validity_period_end

The token is identified by the unique serial number or by the token owner. In the later case all tokens of the
owner will be modified.

The validity period needs to be provided in the format YYYY-MM-DDThh:mm+oooo

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The username of the token owner

• realm (basestring) – The realm name of the token owner

Return returns the number of attributes set in “value”

Rtype json object

GET /token/
Display the list of tokens. Using different parameters you can choose, which tokens you want to get and also in
which format you want to get the information (outform).

Query Parameters

• serial – Display the token data of this single token. You can do a not strict matching by
specifying a serial like “OATH”.

• type – Display only token of type. You ca do a non strict matching by specifying a token-
type like “otp”, to file hotp and totp tokens.

• user – display tokens of this user

1.16. Code Documentation 209

privacyIDEA Authentication System, Release 3.2.1

• tokenrealm – takes a realm, only the tokens in this realm will be displayed

• description (basestring) – Display token with this kind of description

• sortby – sort the output by column

• sortdir – asc/desc

• page – request a certain page

• assigned – Only return assigned (True) or not assigned (False) tokens

• pagesize – limit the number of returned tokens

• user_fields – additional user fields from the userid resolver of the owner (user)

• outform – if set to “csv”, than the token list will be given in CSV

Return a json result with the data being a list of token dictionaries:

{ "data": [{ <token1> }, { <token2> }]}

Rtype json

GET /token/getserial/(otp)
Get the serial number for a given OTP value. If the administrator has a token, he does not know to whom it
belongs, he can type in the OTP value and gets the serial number of the token, that generates this very OTP
value.

Query Parameters

• otp – The given OTP value

• type – Limit the search to this token type

• unassigned – If set=1, only search in unassigned tokens

• assigned – If set=1, only search in assigned tokens

• count – if set=1, only return the number of tokens, that will be searched

• serial – This can be a substring of serial numbers to search in.

• window – The number of OTP look ahead (default=10)

Return The serial number of the token found

POST /token/realm/(serial)
Set the realms of a token. The token is identified by the unique serial number

You can call the function like this: POST /token/realm?serial=<serial>&realms=<something> POST /to-
ken/realm/<serial>?realms=<hash>

JSON Parameters

• serial (basestring) – the serial number of the single token to reset

• realms (basestring) – The realms the token should be assigned to. Comma separated

Return returns value=True in case of success

Rtype bool

POST /token/info/(serial)/
key Add a specific tokeninfo entry to a token. Already existing entries with the same key are overwritten.

Parameters

210 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• serial – the serial number/identifier of the token

• key – token info key that should be set

Query Parameters

• value – token info value that should be set

Return returns value=True in case the token info could be set

Rtype bool

DELETE /token/info/(serial)/
key Delete a specific tokeninfo entry of a token.

Parameters

• serial – the serial number/identifier of the token

• key – token info key that should be deleted

Return returns value=True in case a matching token was found, which does not necessarily mean

that the matching token had a tokeninfo value set in the first place. :rtype: bool

POST /token/load/(filename)
The call imports the given file containing token definitions. The file can be an OATH CSV file, an aladdin XML
file or a Yubikey CSV file exported from the yubikey initialization tool.

The function is called as a POST request with the file upload.

JSON Parameters

• filename – The name of the token file, that is imported

• type – The file type. Can be “aladdin-xml”, “oathcsv” or “yubikeycsv”.

• tokenrealms – comma separated list of tokens.

• psk – Pre Shared Key, when importing PSKC

Return The number of the imported tokens

Rtype int

POST /token/lost/(serial)
Mark the specified token as lost and create a new temporary token. This new token gets the new serial number
“lost<old-serial>” and a certain validity period and the PIN of the lost token.

This method can be called by either the admin or the user on his own tokens.

You can call the function like this: POST /token/lost/serial

JSON Parameters

• serial (basestring) – the serial number of the lost token.

Return returns value=dictionary in case of success

Rtype bool

DELETE /token/(serial)
Delete a token by its serial number.

JSON Parameters

• serial – The serial number of a single token.

1.16. Code Documentation 211

privacyIDEA Authentication System, Release 3.2.1

Return In case of success it return the number of deleted tokens in “value”

Rtype json object

User endpoints

The user endpoints is a subset of the system endpoint.

GET /user/
list the users in a realm

A normal user can call this endpoint and will get information about his own account.

Parameters

• realm – a realm that contains several resolvers. Only show users from this realm

• resolver – a distinct resolvername

• <searchexpr> – a search expression, that depends on the ResolverClass

Return json result with “result”: true and the userlist in “value”.

Example request:

GET /user?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"description": "Cornelius K\u00f6lbel,,+49 151 2960 1417,+49 561 3166797,

→˓cornelius.koelbel@netknights.it",
"email": "cornelius.koelbel@netknights.it",
"givenname": "Cornelius",
"mobile": "+49 151 2960 1417",
"phone": "+49 561 3166797",
"surname": "K\u00f6lbel",
"userid": "1009",
"username": "cornelius",
"resolver": "name-of-resolver"

}
]

},
"version": "privacyIDEA unknown"

}

POST /user/

POST /user
Create a new user in the given resolver.

212 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Example request:

POST /user
user=new_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

PUT /user/

PUT /user
Edit a user in the user store. The resolver must have the flag editable, so that the user can be deleted. Only
administrators are allowed to edit users.

Example request:

PUT /user
user=existing_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

Note: Also a user can call this function to e.g. change his password. But in this case the parameter “user” and
“resolver” get overwritten by the values of the authenticated user, even if he specifies another username.

DELETE /user/(resolvername)/
username Delete a User in the user store. The resolver must have the flag editable, so that the user can be
deleted. Only administrators are allowed to delete users.

Delete a user object in a user store by calling

Example request:

DELETE /user/<resolvername>/<username>
Host: example.com
Accept: application/json

The code of this module is tested in tests/test_api_system.py

1.16. Code Documentation 213

privacyIDEA Authentication System, Release 3.2.1

Policy endpoints

The policy endpoints are a subset of the system endpoint.

You can read more about policies at Policies.

GET /policy/check
This function checks, if the given parameters would match a defined policy or not.

Query Parameters

• user – the name of the user

• realm – the realm of the user or the realm the administrator want to do administrative tasks
on.

• resolver – the resolver of a user

• scope – the scope of the policy

• action – the action that is done - if applicable

• client (IP_Address) – the client, from which this request would be issued

Return a json result with the keys allowed and policy in the value key

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

GET /policy/check?user=admin&realm=r1&client=172.16.1.1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "172.16.0.0/16",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

(continues on next page)

214 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

},
"version": "privacyIDEA unknown"

}

GET /policy/defs/(scope)

GET /policy/defs
This is a helper function that returns the POSSIBLE policy definitions, that can be used to define your policies.

If the given scope is “conditions”, this returns a dictionary with the following keys:

• "sections", containing a dictionary mapping each condition section name to a dictionary with the
following keys:

– "description", a human-readable description of the section

• "comparators", containing a dictionary mapping each comparator to a dictionary with the following keys:

– "description", a human-readable description of the comparator

Query Parameters

• scope – if given, the function will only return policy definitions for the given scope.

Return The policy definitions of the allowed scope with the actions and action types. The top level
key is the scope.

Rtype dict

GET /policy/export/(export)

GET /policy/(name)

GET /policy/
this function is used to retrieve the policies that you defined. It can also be used to export the policy to a file.

Query Parameters

• name – will only return the policy with the given name

• export – The filename needs to be specified as the third part of the URL like policy.cfg.
It will then be exported to this file.

• realm – will return all policies in the given realm

• scope – will only return the policies within the given scope

• active – Set to true or false if you only want to display active or inactive policies.

Return a json result with the configuration of the specified policies

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

1.16. Code Documentation 215

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.2.1

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "1.1.1.1",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

POST /policy/disable/(name)
Disable a given policy by its name.

JSON Parameters

• name – The name of the policy

Return ID in the database

POST /policy/enable/(name)
Enable a given policy by its name.

JSON Parameters

• name – Name of the policy

Return ID in the database

POST /policy/import/(filename)
This function is used to import policies from a file.

JSON Parameters

• filename – The name of the file in the request

Form Parameters

• file – The uploaded file contents

Return A json response with the number of imported policies.

Status Codes

216 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

POST /policy/import/backup-policy.cfg HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 2

},
"version": "privacyIDEA unknown"

}

POST /policy/(name)
Creates a new policy that defines access or behaviour of different actions in privacyIDEA

JSON Parameters

• name (basestring) – name of the policy

• scope – the scope of the policy like “admin”, “system”, “authentication” or “selfservice”

• adminrealm – Realm of the administrator. (only for admin scope)

• action – which action may be executed

• realm – For which realm this policy is valid

• resolver – This policy is valid for this resolver

• user – The policy is valid for these users. string with wild cards or list of strings

• time – on which time does this policy hold

• client (IP address with subnet) – for which requesting client this should be

• active – bool, whether this policy is active or not

• check_all_resolvers – bool, whether all all resolvers in which the user exists should
be checked with this policy.

• conditions – a (possibly empty) list of conditions of the policy. Each condition
is encoded as a list with 5 elements: [section (string), key (string),
comparator (string), value (string), active (boolean)] Hence,
the conditions parameter expects a list of lists. When privacyIDEA checks if a defined
policy should take effect, all conditions of the policy must be fulfilled for the policy to
match. Note that the order of conditions is not guaranteed to be preserved.

Return a json result with success or error

Status Codes

• 200 OK – Policy created or modified.

1.16. Code Documentation 217

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

privacyIDEA Authentication System, Release 3.2.1

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

POST /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

scope=admin
realm=realm1
action=enroll, disable

The policy POST request can also take the parameter of conditions. This is a list of conditions sets: [[“userinfo”,
“memberOf”, “equals”, “groupA”, “true”], [. . .]] With the entries being the section, the key, the
comparator, the value and active. For more on conditions see Policy conditions.

Example response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"setPolicy pol1": 1

}
},
"version": "privacyIDEA unknown"

}

DELETE /policy/(name)
This deletes the policy of the given name.

JSON Parameters

• name – the policy with the given name

Return a json result about the delete success. In case of success value > 0

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

DELETE /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

218 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Authentication System, Release 3.2.1

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

Event endpoints

This endpoint is used to create, modify, list and delete Event Handling Configuration. Event handling configuration is
stored in the database table “eventhandling”

The code of this module is tested in tests/test_api_events.py

GET /event/(eventid)

GET /event/
returns a json list of the event handling configuration

Or

returns a list of available events when calling as /event/available

Or

the available handler modules when calling as /event/handlermodules

POST /event
This creates a new event handling definition

Parameters

• name – A describing name of the event.bool

• id – (optional) when updating an existing event you need to specify the id

• event – A comma seperated list of events

• handlermodule – A handlermodule

• action – The action to perform

• ordering – An integer number

• position – “pre” or “post”

• conditions – Conditions, when the event will trigger

• options. – A list of possible options.

GET /event/conditions/(handlermodule)
Return the list of conditions a handlermodule provides.

Parameters

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

1.16. Code Documentation 219

privacyIDEA Authentication System, Release 3.2.1

GET /event/positions/(handlermodule)
Return the list of positions a handlermodule provides.

Parameters

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

GET /event/actions/(handlermodule)
Return the list of actions a handlermodule provides.

Parameters

• handlermodule – Identifier of the handler module like “UserNotification”

Return list oft actions

POST /event/disable/(eventid)
Disable a given policy by its name.

JSON Parameters

• name – The name of the policy

Return ID in the database

POST /event/enable/(eventid)
Enable a given event by its id.

JSON Parameters

• eventid – ID of the event

Return ID in the database

DELETE /event/(eid)
this function deletes an existing event handling configuration

Parameters

• eid – The id of the event handling configuration

Return json with success or fail

This endpoint is used to create, modify, list and delete Machine Resolvers. Machine Resolvers fetch machine infor-
mation from remote machine stores like a hosts file or an Active Directory.

The code of this module is tested in tests/test_api_machineresolver.py

Machine Resolver endpoints

POST /machineresolver/test
This function tests, if the given parameter will create a working machine resolver. The Machine Resolver Class
itself verifies the functionality. This can also be network connectivity to a Machine Store.

Return a json result with bool

GET /machineresolver/
returns a json list of all machine resolver.

Parameters

• type – Only return resolvers of type (like “hosts”. . .)

220 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

POST /machineresolver/(resolver)
This creates a new machine resolver or updates an existing one. A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (basestring) – the name of the resolver.

• type (string) – the type of the resolver. Valid types are. . . “hosts”

Return a json result with the value being the database id (>0)

Additional parameters depend on the resolver type.

hosts:

• filename

DELETE /machineresolver/(resolver)
this function deletes an existing machine resolver

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

GET /machineresolver/(resolver)
This function retrieves the definition of a single machine resolver.

Parameters

• resolver – the name of the resolver

Return a json result with the configuration of a specified resolver

This REST API is used to list machines from Machine Resolvers.

The code is tested in tests/test_api_machines

Machine endpoints

POST /machine/tokenoption
This sets a Machine Token option or deletes it, if the value is empty.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return

GET /machine/authitem/(application)

1.16. Code Documentation 221

privacyIDEA Authentication System, Release 3.2.1

GET /machine/authitem
This fetches the authentication items for a given application and the given client machine.

Parameters

• challenge (basestring) – A challenge for which the authentication item is calcu-
lated. In case of the Yubikey this can be a challenge that produces a response. The authen-
tication item is the combination of the challenge and the response.

• hostname (basestring) – The hostname of the machine

Return dictionary with lists of authentication items

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": { "ssh": [{ "username": "....",

"sshkey": "...."
}

],
"luks": [{ "slot": ".....",

"challenge": "...",
"response": "...",
"partition": "..."

]
}

},
"version": "privacyIDEA unknown"

}

POST /machine/token
Attach an existing token to a machine with a certain application.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return json result with “result”: true and the machine list in “value”.

Example request:

POST /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
(continues on next page)

222 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"machienid": "12313098",
"resolver": "machineresolver1",
"serial": "tok123",
"application": "luks" }

GET /machine/token
Return a list of MachineTokens either for a given machine or for a given token.

Parameters

• serial – Return the MachineTokens for a the given Token

• hostname – Identify the machine by the hostname

• machineid – Identify the machine by the machine ID and the resolver name

• resolver – Identify the machine by the machine ID and the resolver name

Return

GET /machine/
List all machines that can be found in the machine resolvers.

Parameters

• hostname – only show machines, that match this hostname as substring

• ip – only show machines, that exactly match this IP address

• id – filter for substring matching ids

• resolver – filter for substring matching resolvers

• any – filter for a substring either matching in “hostname”, “ip” or “id”

Return json result with “result”: true and the machine list in “value”.

Example request:

GET /hostname?hostname=on HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"id": "908asljdas90ad0",
"hostname": ["flavon.example.com", "test.example.com"],
"ip": "1.2.3.4",
"resolver_name": "machineresolver1"

},
{
"id": "1908209x48x2183",

(continues on next page)

1.16. Code Documentation 223

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"hostname": ["london.example.com"],
"ip": "2.4.5.6",
"resolver_name": "machineresolver1"

}
]

},
"version": "privacyIDEA unknown"

}

DELETE /machine/token/(serial)/
machineid/resolver/application Detach a token from a machine with a certain application.

Parameters

• machineid – identify the machine by the machine ID and the resolver name

• resolver – identify the machine by the machine ID and the resolver name

• serial – identify the token by the serial number

• application – the name of the application like “luks” or “ssh”.

Return json result with “result”: true and the machine list in “value”.

Example request:

DELETE /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
"resolver": "machineresolver1",
"application": "luks" }

privacyIDEA Server endpoints

This endpoint is used to create, update, list and delete privacyIDEA server definitions. privacyIDEA server definitions
can be used for Remote-Tokens and for Federation-Events.

The code of this module is tested in tests/test_api_privacyideaserver.py

POST /privacyideaserver/test_request
Test the privacyIDEA definition :return:

GET /privacyideaserver/
This call gets the list of privacyIDEA server definitions

POST /privacyideaserver/(identifier)
This call creates or updates a privacyIDEA Server definition

Parameters

• identifier – The unique name of the privacyIDEA server definition

• url – The URL of the privacyIDEA server

• tls – Set this to 0, if tls should not be checked

• description – A description for the definition

224 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

DELETE /privacyideaserver/(identifier)
This call deletes the specified privacyIDEA server configuration

Parameters

• identifier – The unique name of the privacyIDEA server definition

CA Connector endpoints

This is the REST API for managing CA connector definitions. The CA connectors are written to the database table
“caconnector”.

The code is tested in tests/test_api_caconnector.py.

GET /caconnector/(name)

GET /caconnector/
returns a json list of the available CA connectors

POST /caconnector/(name)
Create a new CA connector

DELETE /caconnector/(name)
Delete a specific CA connector

Recover endpoints

This module provides the REST API for th password recovery for a user managed in privacyIDEA.

The methods are also tested in the file tests/test_api_register.py

POST /recover/reset
reset the password with a given recovery code. The recovery code was sent by get_recover_code and is bound
to a certain user.

JSON Parameters

• recoverycode – The recoverycode sent the the user

• password – The new password of the user

Return a json result with a boolean “result”: true

POST /recover
This method requests a recover code for a user. The recover code it sent via email to the user.

Query Parameters

• user – username of the user

• realm – realm of the user

• email – email of the user

Return JSON with value=True or value=False

Register endpoints

This module contains the REST API for registering as a new user. This endpoint can be used without any authentica-
tion, since a new user can register.

1.16. Code Documentation 225

privacyIDEA Authentication System, Release 3.2.1

The methods are tested in the file tests/test_api_register.py

GET /register
This endpoint returns the information if registration is allowed or not. This is used by the UI to either display
the registration button or not.

Return JSON with value=True or value=False

POST /register
Register a new user in the realm/userresolver. To do so, the user resolver must be writeable like an SQLResolver.

Registering a user in fact creates a new user and also creates the first token for the user. The following values
are needed to register the user:

• username (mandatory)

• givenname (mandatory)

• surname (mandatory)

• email address (mandatory)

• password (mandatory)

• mobile phone (optional)

• telephone (optional)

The user receives a registration token via email to be able to login with his self chosen password and the
registration token.

JSON Parameters

• username – The login name of the new user. Check if it already exists

• givenname – The givenname of the new user

• surname – The surname of the new user

• email – The email address of the new user

• password – The password of the new user. This is the resolver password of the new user.

• mobile – The mobile phone number

• phone – The phone number (land line) of the new user

Return a json result with a boolean “result”: true

Monitoring endpoints

This endpoint is used fetch monitoring/statistics data

The code of this module is tested in tests/test_api_monitoring.py

GET /monitoring/(stats_key)

GET /monitoring/
return a list of all available statistics keys in the database if no stats_key is specified.

If a stats_key is specified it returns the data of this key. The parameters “start” and “end” can be used to specify
a time window, from which the statistics data should be fetched.

GET /monitoring/(stats_key)/last
Get the last value of the stats key

226 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

DELETE /monitoring/(stats_key)
Delete the statistics data of a certain stats_key.

You can specify the start date and the end date when to delete the monitoring data. You should specify the dates
including the timezone. Otherwise your client could send its local time and the server would interpret it as its
own local time which would result in deleting unexpected entries.

You can specify the dates like 2010-12-31 22:00+0200

Periodic Task endpoints

These endpoints are used to create, modify and delete periodic tasks.

This module is tested in tests/test_api_periodictask.py

GET /periodictask/taskmodules/
Return a list of task module identifiers.

GET /periodictask/nodes/
Return a list of available nodes

GET /periodictask/
Return a list of objects of defined periodic tasks.

POST /periodictask/
Create or replace an existing periodic task definition.

Parameters

• id – ID of an existing periodic task definition that should be updated

• name – Name of the periodic task

• active – true if the periodic task should be active

• interval – Interval at which the periodic task should run (in cron syntax)

• nodes – Comma-separated list of nodes on which the periodic task should run

• taskmodule – Task module name of the task

• ordering – Ordering of the task, must be a number >= 0.

• options – A dictionary (possibly JSON) of periodic task options, mapping unicodes to
unicodes

Return ID of the periodic task

GET /periodictask/options/(taskmodule)
Return the available options for the given taskmodule.

Parameters

• taskmodule – Identifier of the task module

Return a dictionary mapping option keys to description dictionaries

POST /periodictask/disable/(ptaskid)
Disable a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

1.16. Code Documentation 227

privacyIDEA Authentication System, Release 3.2.1

POST /periodictask/enable/(ptaskid)
Enable a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

GET /periodictask/(ptaskid)
Return the dictionary describing a periodic task.

Parameters

• ptaskid – ID of the periodic task

DELETE /periodictask/(ptaskid)
Delete a certain periodic task.

Parameters

• ptaskid – ID of the periodic task

Return ID of the periodic task

This endpoint is used to get the information from the server, which application types are known and which options
these applications provide.

Applications are used to attach tokens to machines.

The code of this module is tested in tests/test_api_applications.py

Application endpoints

GET /application/
returns a json list of the available applications

Tokentype endpoints

This API endpoint is a generic endpoint that can be used by any token type.

The tokentype needs to implement a classmethod api_endpoint and can then be called by /ttype/<tokentype>. This
way, each tokentype can create its own API without the need to change the core API.

The TiQR Token uses this API to implement its special functionalities. See TiQR Token.

POST /ttype/(ttype)
This is a special token function. Each token type can define an additional API call, that does not need authenti-
cation on the REST API level.

Return Token Type dependent

GET /ttype/(ttype)
This is a special token function. Each token type can define an additional API call, that does not need authenti-
cation on the REST API level.

Return Token Type dependent

228 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

SMTP server endpoints

This endpoint is used to create, update, list and delete SMTP server definitions. SMTP server definitions can be used
for several purposes like EMail-Token, SMS Token with SMTP gateway, notification like PIN handler and registration.

The code of this module is tested in tests/test_api_smtpserver.py

POST /smtpserver/send_test_email
Test the email configuration :return:

GET /smtpserver/
This call gets the list of SMTP server definitions

POST /smtpserver/(identifier)
This call creates or updates an SMTP server definition.

Parameters

• identifier – The unique name of the SMTP server definition

• server – The FQDN or IP of the mail server

• port – The port of the mail server

• username – The mail username for authentication at the SMTP server

• password – The password for authentication at the SMTP server

• tls – If the server should do TLS

• description – A description for the definition

DELETE /smtpserver/(identifier)
This call deletes the specified SMTP server configuration

Parameters

• identifier – The unique name of the SMTP server definition

SMS Gateway endpoints

This endpoint is used to create, modify, list and delete SMS gateway definitions. These gateway definitions are written
to the database table “smsgateway” and “smsgatewayoption”.

The code of this module is tested in tests/test_api_smsgateway.py

GET /smsgateway/(gwid)

GET /smsgateway/
returns a json list of the gateway definitions

Or

returns a list of available sms providers with their configuration /smsgateway/providers

POST /smsgateway
This creates a new SMS gateway definition or updates an existing one.

JSON Parameters

• name – The unique identifier of the SMS gateway definition

• module – The providermodule name

• description – An optional description of the definition

1.16. Code Documentation 229

privacyIDEA Authentication System, Release 3.2.1

• options.* – Additional options for the provider module (module specific)

DELETE /smsgateway/option/(gwid)/
option this function deletes an option of a gateway definition

Parameters

• gwid – The id of the sms gateway definition

Return json with success or fail

DELETE /smsgateway/(identifier)
this function deletes an existing smsgateway definition

Parameters

• identifier – The name of the sms gateway definition

Return json with success or fail

RADIUS server endpoints

This endpoint is used to create, update, list and delete RADIUS server definitions. RADIUS server definitions can be
used for several purposes like RADIUS-Token or RADIUS-passthru policies.

The code of this module is tested in tests/test_api_radiusserver.py

POST /radiusserver/test_request
Test the RADIUS definition :return:

GET /radiusserver/
This call gets the list of RADIUS server definitions

POST /radiusserver/(identifier)
This call creates or updates a RADIUS server definition.

Parameters

• identifier – The unique name of the RADIUS server definition

• server – The FQDN or IP of the RADIUS server

• port – The port of the RADIUS server

• secret – The RADIUS secret of the RADIUS server

• description – A description for the definition

DELETE /radiusserver/(identifier)
This call deletes the specified RADIUS server configuration

Parameters

• identifier – The unique name of the RADIUS server definition

Subscriptions endpoints

This is the controller API for client component subscriptions like ownCloud plugin or RADIUS Credential Provider.

GET /subscriptions/(application)

GET /subscriptions/
Return the subscription object as JSON.

230 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

POST /subscriptions/
Upload a new subscription file

DELETE /subscriptions/(application)
Delete an existing subscription

1.16.2 LIB level

At the LIB level all library functions are defined. There is no authentication on this level. Also there is no
flask/Web/request code on this level.

Request information and the logged_in_user need to be passed to the functions as parameters, if they are needed.

If possible, policies are checked with policy decorators.

library functions

Based on the database models, which are tested in tests/test_db_model.py, there are different modules.

resolver.py contains functions to simply deal with resolver definitions. On this level users and realms are not know,
yet.

realm.py contains functions to deal with realm. Realms are a list of several resolvers. So prior to bother the realm.py,
the resolver.py should be understood and working. On this level, users are not known, yet.

user.py contains functions to deal with users. A user object is an entity in a realm. And of course the user object itself
can be found in a resolver. But you need to have working resolver.py and realm.py to be able to work with user.py

For further details see the following modules:

Users

There are the library functions for user functions. It depends on the lib.resolver and lib.realm.

There are and must be no dependencies to the token functions (lib.token) or to webservices!

This code is tested in tests/test_lib_user.py

class privacyidea.lib.user.User(login=”, realm=”, resolver=”)

The user has the attributes login, realm and resolver.

Usually a user can be found via “login@realm”.

A user object with an empty login and realm should not exist, whereas a user object could have an empty
resolver.

check_password(password)
The password of the user is checked against the user source

Parameters password – The clear text password

Returns the username of the authenticated user. If unsuccessful, returns None

Return type string/None

delete()
This deletes the user in the user store. I.e. the user in the SQL database or the LDAP gets deleted.

Returns True in case of success

1.16. Code Documentation 231

mailto:login@realm

privacyIDEA Authentication System, Release 3.2.1

exist()
Check if the user object exists in the user store :return: True or False

get_ordererd_resolvers()
returns a list of resolvernames ordered by priority. The resolver with the lowest priority is the first. If
resolvers have the same priority, they are ordered alphabetically.

Returns list or resolvernames

get_search_fields()
Return the valid search fields of a user. The search fields are defined in the UserIdResolver class.

Returns searchFields with name (key) and type (value)

Return type dict

get_user_identifiers()
This returns the UserId information from the resolver object and the resolvertype and the resolvername
(former: getUserId) (former: getUserResolverId) :return: The userid, the resolver type and the resolver
name

like (1000, “passwdresolver”, “resolver1”)

Return type tuple

get_user_phone(phone_type=’phone’, index=None)
Returns the phone number or a list of phone numbers of a user.

Parameters

• phone_type (string) – The type of the phone, i.e. either mobile or phone (land line)

• index – The index of the selected phone number of list of the phones of the user. If the
index is given, this phone number as string is returned. If the index is omitted, all phone
numbers are returned.

Returns list with phone numbers of this user object

get_user_realms()
Returns a list of the realms, a user belongs to. Usually this will only be one realm. But if the user object
has no realm but only a resolver, than all realms, containing this resolver are returned. This function is
used for the policy module

Returns realms of the user

Return type list

info
return the detailed information for the user

Returns a dict with all the userinformation

Return type dict

is_empty()

login = ''

realm = ''

resolver = ''

update_user_info(attributes, password=None)
This updates the given attributes of a user. The attributes can be “username”, “surname”, “givenname”,
“email”, “mobile”, “phone”, “password”

232 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Parameters

• attributes (dict) – A dictionary of the attributes to be updated

• password – The password of the user

Returns True in case of success

privacyidea.lib.user.create_user(resolvername, attributes, password=None)
This creates a new user in the given resolver. The resolver must be editable to do so.

The attributes is a dictionary containing the keys “username”, “email”, “phone”, “mobile”, “surname”, “given-
name”, “password”.

We return the UID and not the user object, since the user could be located in several realms!

Parameters

• resolvername (basestring) – The name of the resolver, in which the user should be
created

• attributes (dict) – Attributes of the user

• password – The password of the user

Returns The uid of the user object

privacyidea.lib.user.get_user_from_param(param, optionalOrRequired=True)
Find the parameters user, realm and resolver and create a user object from these parameters.

An exception is raised, if a user in a realm is found in more than one resolvers.

Parameters param (dict) – The dictionary of request parameters

Returns User as found in the parameters

Return type User object

privacyidea.lib.user.get_user_list(param=None, user=None)

privacyidea.lib.user.get_username(userid, resolvername)
Determine the username for a given id and a resolvername.

Parameters

• userid (string) – The id of the user in a resolver

• resolvername – The name of the resolver

Returns the username or “” if it does not exist

Return type string

privacyidea.lib.user.log_used_user(user, other_text=”)
This creates a log message combined of a user and another text. The user information is only added, if user.login
!= user.used_login

Parameters

• user (User object) – A user to log

• other_text – Some additional text

Returns str

privacyidea.lib.user.split_user(username)
Split the username of the form user@realm into the username and the realm splitting mye-
mail@emailprovider.com@realm is also possible and will return (myemail@emailprovider.com, realm).

1.16. Code Documentation 233

mailto:user@realm
mailto:myemail@emailprovider
mailto:myemail@emailprovider
mailto:myemail@emailprovider.com

privacyIDEA Authentication System, Release 3.2.1

If for a user@domain the “domain” does not exist as realm, the name is not split, since it might be the
user@domain in the default realm

We can also split realmuser to (user, realm)

Parameters username (string) – the username to split

Returns username and realm

Return type tuple

Token Class

The following token types are known to privacyIDEA. All are inherited from the base tokenclass describe below.

4 Eyes Token

class privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass(db_token)
The FourEyes token can be used to implement the Two Man Rule. The FourEyes token defines how many tokens
of which realms are required like: * 2 tokens of RealmA * 1 token of RealmB

Then users (the owners of those tokens) need to login by everyone entering their OTP PIN and OTP value.
It does not matter, in which order they enter the values. All their PINs and OTPs are concatenated into one
password field but need to be separated by the splitting sign.

The FourEyes token again splits the password value and tries to authenticate each of the these passwords in the
realms using the function check_realm_pass.

The FourEyes token itself does not provide an OTP PIN.

The token is initialized using additional parameters at token/init:

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=4eyes
user=cornelius
realm=realm1
4eyes=realm1:2,realm2:1
separator=%20

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

static convert_realms(realms)
This function converts the realms as given by the API parameter to a dictionary.

234 Chapter 1. Table of Contents

mailto:user@domain
mailto:user@domain

privacyIDEA Authentication System, Release 3.2.1

realm1:2,realm2:1 -> {“realm1”:2, “realm2”:1}

Parameters realms (basestring) – a serialized list of realms

Returns dict of realms

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
return the token type prefix

static get_class_type()
return the class type identifier

static realms_dict_to_string(realms)
This function converts the realms - if it is a dictionary - to a string.

{“realm1”: {“selected”: True,

“count”: 1 },

“realm2”: {“selected”: True, “count”: 2} -> realm1:1,realm2:2

Parameters realms (dict) – the realms as they are passed from the WebUI

Returns realms

Return type basestring

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Certificate Token

class privacyidea.lib.tokens.certificatetoken.CertificateTokenClass(aToken)
Token to implement an X509 certificate. The certificate can be enrolled by sending a CSR to the server or the
keypair is created by the server. If the server creates the keypair, the user can download a PKCS12 file. The
OTP PIN is used as passphrase for the PKCS12 file.

privacyIDEA is capable of working with different CA connectors.

Valid parameters are request or certificate, both PEM encoded. If you pass a request you also need to pass the
ca that should be used to sign the request. Passing a certificate just uploads the certificate to a new token object.

A certificate token can be created by an administrative task with the token/init api like this:

Example Initialization Request:

1.16. Code Documentation 235

privacyIDEA Authentication System, Release 3.2.1

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
request=<PEM encoded request>
ca=<name of the ca connector>

Example Initialization Request, key generation on servers side

In this case the certificate is created on behalf of another user.

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
generate=1
ca=<name of the ca connector>

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"certificate": "...PEM..."
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

get_as_dict()
This returns the token data as a dictionary. It is used to display the token list at /token/list.

The certificate token can add the PKCS12 file if it exists

Returns The token data as dict

Return type dict

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

236 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Return type dict or scalar

static get_class_prefix()

static get_class_type()

get_init_detail(params=None, user=None)
At the end of the initialization we return the certificate and the PKCS12 file, if the private key exists.

hKeyRequired = False

revoke()
This revokes the token. We need to determine the CA, which issues the certificate, contact the connector
and revoke the certificate

Some token types may revoke a token without locking it.

set_pin(pin, encrypt=False)
set the PIN of a token. The PIN of the certificate token is stored encrypted. It is used as passphrase for the
PKCS12 file.

Parameters

• pin (basestring) – the pin to be set for the token

• encrypt (bool) – If set to True, the pin is stored encrypted and can be retrieved from
the database again

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

using_pin = False

Daplug Token

class privacyidea.lib.tokens.daplugtoken.DaplugTokenClass(a_token)
daplug token class implementation

check_otp(anOtpVal, counter=None, window=None, options=None)
checkOtp - validate the token otp against a given otpvalue

Parameters

• anOtpVal (string, format: efekeiebekeh) – the otpvalue to be verified

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

check_otp_exist(otp, window=10)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

1.16. Code Documentation 237

privacyIDEA Authentication System, Release 3.2.1

Returns counter or -1 if otp does not exist

Return type int

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()

static get_class_type()

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

WARNING: the dict that is returned contains a sequence number as key. This it NOT the otp
counter!

Parameters

• count (int) – how many otp values should be returned

• epoch_start – Not used in HOTP

• epoch_end – Not used in HOTP

• curTime – Not used in HOTP

• timestamp – not used in HOTP

• counter_index – whether the counter should be used as index

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None)
return the next otp value

Parameters curTime – Not Used in HOTP

Returns next otp value and PIN if possible

Return type tuple

resync(otp1, otp2, options=None)
resync the token based on two otp values - external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

238 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

split_pin_pass(passw, user=None, options=None)
Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the OTP value. The splitting can be dependent of
certain policies. The policies may depend on the user.

Each token type may define its own way to slit the PIN and the OTP value.

Parameters

• passw – the password to split

• user (User object) – The user/owner of the token

• options (dict) – can be used be the token types.

Returns tuple of pin and otp value

Returns tuple of (split status, pin, otp value)

Return type tuple

Email Token

class privacyidea.lib.tokens.emailtoken.EmailTokenClass(aToken)
Implementation of the EMail Token Class, that sends OTP values via SMTP. (Similar to SMSTokenClass)

EMAIL_ADDRESS_KEY = 'email'

check_otp(anOtpVal, counter=None, window=None, options=None)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data You can pass exception=1 to raise an ex-
ception, if the SMS could not be sent. Otherwise the message is contained in the response.

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

static get_class_info(key=None, ret=’all’)
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

1.16. Code Documentation 239

privacyIDEA Authentication System, Release 3.2.1

:rtype : s.o.

static get_class_prefix()

static get_class_type()
return the generic token class identifier

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the HOTP-Token

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

classmethod test_config(params=None)
This method is used to test the token config. Some tokens require some special token configuration like
the SMS-Token or the Email-Token. To test this configuration, this classmethod is used.

It takes token specific parameters and returns a tuple of a boolean and a result description.

Parameters params (dict) – token specific parameters

Returns success, description

Return type tuple

update(param, reset_failcount=True)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

HOTP Token

class privacyidea.lib.tokens.hotptoken.HotpTokenClass(db_token)
hotp token class implementation

check_otp(anOtpVal, counter=None, window=None, options=None)
check if the given OTP value is valid for this token.

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

check_otp_exist(otp, window=10, symetric=False, inc_counter=True)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

240 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

Returns counter or -1 if otp does not exist

Return type int

generate_symmetric_key(server_component, client_component, options=None)
Generate a composite key from a server and client component using a PBKDF2-based scheme.

Parameters

• server_component (hex string) – The component usually generated by priva-
cyIDEA

• client_component (hex string) – The component usually generated by the client
(e.g. smartphone)

• options –

Returns the new generated key as hex string

Return type str

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

static get_class_type()
return the token type shortname

Returns ‘hotp’

Return type string

classmethod get_default_settings(params, logged_in_user=None, policy_object=None,
client_ip=None)

This method returns a dictionary with default settings for token enrollment. These default settings are
defined in SCOPE.USER or SCOPE.ADMIN and are hotp_hashlib, hotp_otplen. If these are set, the user
or admin will only be able to enroll tokens with these values.

The returned dictionary is added to the parameters of the API call. :param params: The call parameters
:type params: dict :param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

Parameters

• policy_object (PolicyClass) – The policy_object

• client_ip (basestring) – The client IP address

Returns default parameters

1.16. Code Documentation 241

privacyIDEA Authentication System, Release 3.2.1

get_init_detail(params=None, user=None)
to complete the token initialization some additional details should be returned, which are displayed at the
end of the token initialization. This is the e.g. the enrollment URL for a Google Authenticator.

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None,
counter_index=False)

return a dictionary of multiple future OTP values of the HOTP/HMAC token

WARNING: the dict that is returned contains a sequence number as key. This it NOT the otp
counter!

Parameters

• count (int) – how many otp values should be returned

• epoch_start – Not used in HOTP

• epoch_end – Not used in HOTP

• curTime – Not used in HOTP

• timestamp – not used in HOTP

• counter_index – whether the counter should be used as index

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None)
return the next otp value

Parameters curTime – Not Used in HOTP

Returns next otp value and PIN if possible

Return type tuple

static get_setting_type(key)

static get_sync_timeout()
get the token sync timeout value

Returns timeout value in seconds

Return type int

hashlib

is_previous_otp(otp, window=10)
Check if the OTP values was previously used.

Parameters

• otp –

• window –

Returns

resync(otp1, otp2, options=None)
resync the token based on two otp values

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

242 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Returns counter or -1 if otp does not exist

Return type int

update(param, reset_failcount=True)
process the initialization parameters

Do we really always need an otpkey? the otpKey is handled in the parent class :param param: dict of
initialization parameters :type param: dict

Returns nothing

mOTP Token

class privacyidea.lib.tokens.motptoken.MotpTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (str) – the to be verified otpvalue

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : dict or string

static get_class_prefix()

static get_class_type()

get_init_detail(params=None, user=None)
to complete the token normalisation, the response of the initialization should be build by the token specific
method, the getInitDetails

update(param, reset_failcount=True)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

1.16. Code Documentation 243

privacyIDEA Authentication System, Release 3.2.1

OCRA Token

The OCRA token is the base OCRA functionality. Usually it is created by importing a CSV or PSKC file.

This code is tested in tests/test_lib_tokens_tiqr.

Implementation

class privacyidea.lib.tokens.ocratoken.OcraTokenClass(db_token)
The OCRA Token Implementation

check_otp(otpval, counter=None, window=None, options=None)
This function is invoked by TokenClass.check_challenge_response and checks if the given
password matches the expected response for the given challenge.

Parameters

• otpval – the password (pin + otp)

• counter – ignored

• window – ignored

• options – dictionary that must contain “challenge”

Returns >=0 if the challenge matches, -1 otherwise

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: OCRA :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: ocra :rtype: basestring

244 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

This function is not decorated with @challenge_response_allowed

as the OCRA token is always a challenge response token!

Parameters

• passw – The PIN of the token.

• options – dictionary of additional request parameters

Returns returns true or false

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

verify_response(passw=None, challenge=None)
This method verifies if the passw is the valid OCRA response to the challenge. In case of success we
return a value > 0

Parameters passw (string) – the password (pin+otp)

Returns return otp_counter. If -1, challenge does not match

Return type int

Paper Token

class privacyidea.lib.tokens.papertoken.PaperTokenClass(db_token)
The Paper Token allows to print out the next e.g. 100 OTP values. This sheet of paper can be used to authenticate
and strike out the used OTP values.

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: PPR

1.16. Code Documentation 245

privacyIDEA Authentication System, Release 3.2.1

static get_class_type()
return the token type shortname

Returns ‘paper’

Return type string

update(param, reset_failcount=True)
process the initialization parameters

Do we really always need an otpkey? the otpKey is handled in the parent class :param param: dict of
initialization parameters :type param: dict

Returns nothing

PasswordToken

class privacyidea.lib.tokens.passwordtoken.PasswordTokenClass(aToken)
This Token does use a fixed Password as the OTP value. In addition, the OTP PIN can be used with this token.
This Token can be used for a scenario like losttoken

class SecretPassword(secObj)

check_password(password)
Parameters password (str) –
Returns result of password check: 0 if success, -1 if failed
Return type int

get_password()

check_otp(anOtpVal, counter=None, window=None, options=None)
This checks the static password

Parameters anOtpVal – This contains the “OTP” value, which is the static

password :return: result of password check, 0 in case of success, -1 if fail :rtype: int

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()

static get_class_type()

set_otplen(otplen=0)
sets the OTP length to the length of the password

Parameters otplen (int) – This is ignored in this class

Result None

246 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Push Token

class privacyidea.lib.tokens.pushtoken.PushTokenClass(db_token)
The PUSH token uses the firebase service to send challenges to the users smartphone. The user confirms on the
smartphone, signes the challenge and sends it back to privacyIDEA.

The enrollment occurs in two enrollment steps:

Step 1

The device is enrolled using a QR code, that looks like this:

otpauth://pipush/PIPU0006EF85?url=https://yourprivacyideaserver/enroll/this/token&ttl=120

Step 2

In the QR code is a URL, where the smartphone sends the remaining data for the enrollment.

POST https://yourprivacyideaserver/ttype/push enrollment_credential=<some credential> serial=<token
serial> fbtoken=<firebase token> pubkey=<public key>

For more information see: https://github.com/privacyidea/privacyidea/issues/1342 https://github.com/
privacyidea/privacyidea/wiki/concept%3A-PushToken

classmethod api_endpoint(request, g)
This provides a function which is called by the API endpoint /ttype/push which is defined in api/ttype.py

The method returns return “json”, {}

This endpoint is used for the 2nd enrollment step of the smartphone. Parameters sent:

• serial

• fbtoken

• pubkey

This endpoint is also used, if the smartphone sends the signed response to the challenge during authenti-
cation Parameters sent:

• serial

• nonce (which is the challenge)

• signature (which is the signed nonce)

Parameters

• request – The Flask request

• g – The Flask global object g

Returns dictionary

authenticate(passw, user=None, options=None)
High level interface which covers the check_pin and check_otp This is the method that verifies single shot
authentication. The challenge is send to the smartphone app and privacyIDEA waits for the response to
arrive.

Parameters

1.16. Code Documentation 247

https://yourprivacyideaserver/ttype/push
https://github.com/privacyidea/privacyidea/issues/1342
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken
https://github.com/privacyidea/privacyidea/wiki/concept%3A-PushToken

privacyIDEA Authentication System, Release 3.2.1

• passw (string) – the password which could be pin+otp value

• user (User object) – The authenticating user

• options (dict) – dictionary of additional request parameters

Returns

returns tuple of 1. true or false for the pin match, 2. the otpcounter (int) and the 3. reply
(dict) that will be added as

additional information in the JSON response of /validate/check.

Return type tuple

check_challenge_response(user=None, passw=None, options=None)
This function checks, if the challenge for the given transaction_id was marked as answered correctly. For
this we check the otp_status of the challenge with the transaction_id in the database.

We do not care about the password

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret=’all’)
returns all or a subtree of the token definition

Parameters

• key (str) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : s.o.

static get_class_prefix()

248 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

static get_class_type()
return the generic token class identifier

get_init_detail(params=None, user=None)
This returns the init details during enrollment.

In the 1st step the QR Code is returned.

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the base class

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

mode = ['authenticate', 'challenge', 'outofband']

update(param, reset_failcount=True)
process the initialization parameters

We need to distinguish the first authentication step and the second authentication step.

1. step: parameter type contained. parameter genkey contained.

2. step: parameter serial contained parameter fbtoken contained parameter pubkey contained

Parameters param (dict) – dict of initialization parameters

Returns nothing

Questionnaire Token

class privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass(db_token)
This is a Questionnaire Token. The token stores a list of questions and answers in the tokeninfo database table.
The answers are encrypted. During authentication a random answer is selected and presented as challenge. The
user has to remember and pass the right answer.

check_answer(given_answer, challenge_object)
Check if the given answer is the answer to the sent question. The question for this challenge response was
stored in the challenge_object.

Then we get the answer from the tokeninfo.

Parameters

• given_answer – The answer given by the user

• challenge_object – The challenge object as stored in the database

Returns in case of success: 1

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching question for the given passw and also verifies if the answer is
correct.

It then returns the the otp_counter = 1

Parameters

1.16. Code Documentation 249

privacyIDEA Authentication System, Release 3.2.1

• user (User object) – the requesting user

• passw (string) – the password - in fact it is the answer to the question

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

The challenge is a randomly selected question of the available questions for this token.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

classmethod get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: QUST :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: qust :rtype: basestring

static get_setting_type(key)
The setting type of questions is public, so that the user can also read the questions.

Parameters key – The key of the setting

Returns “public” string

is_challenge_request(passw, user=None, options=None)
The questionnaire token is always a challenge response token. The challenge is triggered by providing the
PIN as the password.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

250 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

RADIUS Token

class privacyidea.lib.tokens.radiustoken.RadiusTokenClass(db_token)

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

This is only called after it is verified, that the upper level is no challenge-request or challenge-response

The “options” are read-only in this method. They are not modified here. authenticate is the last method in
the loop check_token_list.

communication with RADIUS server: yes, if is no previous “radius_result” If there is a “radius” re-
sult in the options, we do not query the radius server

modification of options: options can be modified if we query the radius server. However, this is not
important since authenticate is the last call.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching question for the given passw and also verifies if the answer is
correct.

It then returns the the otp_counter = 1

Parameters

• user (User object) – the requesting user

• passw (string) – the password - in fact it is the answer to the question

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_otp(otpval, counter=None, window=None, options=None)
Originally check_otp returns an OTP counter. I.e. in a failed attempt we return -1. In case of success we
return 1 :param otpval: :param counter: :param window: :param options: :return:

1.16. Code Documentation 251

privacyIDEA Authentication System, Release 3.2.1

check_pin_local
lookup if pin should be checked locally or on radius host

Returns bool

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

This method is called after is_challenge_request has verified, that a challenge needs to be created.

communication with RADIUS server: no modification of options: no

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()

static get_class_type()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge. It depends on the way, the pin is checked -
either locally or remotely. In addition, the RADIUS token has to be configured to allow challenge response.

communication with RADIUS server: yes modification of options: The communication with the RADIUS
server can

change the options, radius_state, radius_result, radius_message

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

is_challenge_response(passw, user=None, options=None)
This method checks, if this is a request, that is the response to a previously sent challenge. But we do not
query the RADIUS server.

This is the first method in the loop check_token_list.

252 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

communication with RADIUS server: no modification of options: The “radius_result” key is set to None

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

split_pin_pass(passw, user=None, options=None)
Split the PIN and the OTP value. Only if it is locally checked and not remotely.

update(param)
second phase of the init process - updates parameters

Parameters param – the request parameters

Returns

• nothing -

Registration Code Token

class privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass(aToken)
Token to implement a registration code. It can be used to create a registration code or a “TAN” which can be
used once by a user to authenticate somewhere. After this registration code is used, the token is automatically
deleted.

The idea is to provide a workflow, where the user can get a registration code by e.g. postal mail and then use
this code as the initial first factor to authenticate to the UI to enroll real tokens.

A registration code can be created by an administrative task with the token/init api like this:

Example Authentication Request:

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=registration
user=cornelius
realm=realm1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"registrationcode": "12345808124095097608"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
(continues on next page)

1.16. Code Documentation 253

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"value": true
},
"version": "privacyIDEA unknown"

}

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()

static get_class_type()

get_init_detail(params=None, user=None)
At the end of the initialization we return the registration code.

inc_count_auth_success()
Increase the counter, that counts successful authentications In case of successful authentication the token
does needs to be deleted.

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Remote Token

class privacyidea.lib.tokens.remotetoken.RemoteTokenClass(db_token)
The Remote token forwards an authentication request to another privacyIDEA server. The request can be for-
warded to a user on the other server or to a serial number on the other server. The PIN can be checked on the
local privacyIDEA server or on the remote server.

Using the Remote token you can assign one physical token to many different users.

authenticate(passw, user=None, options=None)
do the authentication on base of password / otp and user and options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_otp(otpval, counter=None, window=None, options=None)
run the http request against the remote host

Parameters

254 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

check_pin_local
lookup if pin should be checked locally or on remote host

Returns bool

static get_class_info(key=None, ret=’all’)

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()
return the token type prefix

static get_class_type()
return the class type identifier

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge. It depends on the way, the pin is checked
- either locally or remote

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

update(param)
second phase of the init process - updates parameters

Parameters param – the request parameters

Returns

• nothing -

SMS Token

class privacyidea.lib.tokens.smstoken.SmsTokenClass(db_token)
The SMS token sends an SMS containing an OTP via some kind of gateway. The gateways can be an SMTP or
HTTP gateway or the special sipgate protocol. The Gateways are defined in the SMSProvider Modules.

1.16. Code Documentation 255

privacyIDEA Authentication System, Release 3.2.1

The SMS token is a challenge response token. I.e. the first request needs to contain the correct OTP PIN. If the
OTP PIN is correct, the sending of the SMS is triggered. The second authentication must either contain the OTP
PIN and the OTP value or the transaction_id and the OTP value.

Example 1st Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"transaction_id": "xyz"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

After this, the SMS is triggered. When the SMS is received the second part of authentication looks like this:

Example 2nd Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
transaction_id=xyz
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

256 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

check_otp(anOtpVal, counter=None, window=None, options=None)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(transactionid=None, options=None)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data You can pass exception=1 to raise an ex-
ception, if the SMS could not be sent. Otherwise the message is contained in the response.

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

static get_class_info(key=None, ret=’all’)
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : s.o.

static get_class_prefix()

static get_class_type()
return the generic token class identifier

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge

We need to define the function again, to get rid of the is_challenge_request-decorator of the HOTP-Token

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

update(param, reset_failcount=True)
process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

1.16. Code Documentation 257

privacyIDEA Authentication System, Release 3.2.1

SPass Token

class privacyidea.lib.tokens.spasstoken.SpassTokenClass(db_token)
This is a simple pass token. It does have no OTP component. The OTP checking will always succeed. Of
course, an OTP PIN can be used.

authenticate(passw, user=None, options=None)
in case of a wrong passw, we return a bad matching pin, so the result will be an invalid token

check_otp(otpval, counter=None, window=None, options=None)
As we have no otp value we always return true. (counter == 0)

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

static get_class_prefix()

static get_class_type()

static is_challenge_request(passw, user, options=None)
The spass token does not support challenge response :param passw: :param user: :param options: :return:

static is_challenge_response(passw, user, options=None, challenges=None)

update(param)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

SSHKey Token

class privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass(db_token)
The SSHKeyTokenClass provides a TokenClass that stores the public SSH key and can give the public SSH key
via the getotp function. This can be used to manage SSH keys and retrieve the public ssh key to import it to
authorized keys files.

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dictionary

static get_class_prefix()

258 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

static get_class_type()

get_sshkey()
returns the public SSH key

Returns SSH pub key

Return type string

mode = ['authenticate']

update(param)
The key holds the public ssh key and this is required

The key probably is of the form “ssh-rsa BASE64 comment”

using_pin = False

TiQR Token

The TiQR token is a special App based token, which allows easy login and which is based on OCRA.

It generates an enrollment QR code, which contains a link with the more detailed enrollment information.

For a description of the TiQR protocol see

• https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf

• https://github.com/SURFnet/tiqr/wiki/Protocol-documentation.

• https://tiqr.org

The TiQR token is based on the OCRA algorithm. It lets you authenticate with your smartphone by scanning a QR
code.

The TiQR token is enrolled via /token/init, but it requires no otpkey, since the otpkey is generated on the smartphone
and pushed to the privacyIDEA server in a seconds step.

Enrollment

1. Start enrollment with /token/init

2. Scan the QR code in the details of the JSON result. The QR code contains a link to /ttype/tiqr?action=metadata

3. The TiQR Smartphone App will fetch this link and get more information

4. The TiQR Smartphone App will push the otpkey to a link /ttype/tiqr?action=enrollment and the token will be
ready for use.

Authentication

An application that wants to use the TiQR token with privacyIDEA has to use the token in challenge response.

1. Call /validate/check?user=<user>&pass=<pin> with the PIN of the TiQR token

2. The details of the JSON response contain a QR code, that needs to be shown to the user. In addition the
application needs to save the transaction_id in the response.

3. The user scans the QR code.

1.16. Code Documentation 259

https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf
https://github.com/SURFnet/tiqr/wiki/Protocol-documentation
https://tiqr.org

privacyIDEA Authentication System, Release 3.2.1

4. The TiQR App communicates with privacyIDEA via the API /ttype/tiqr. In this step the response of the App to
the challenge is verified. The successful authentication is stored in the Challenge DB table. (No need for the
application to take any action)

5. Now, the application needs to poll /validate/polltransaction?
transaction_id=<transaction_id> to check the transaction status. If the endpoint returns
false, the challenge has not been answered yet.

6. Once /validate/polltransaction returns true, the application needs to finalize the authentication with
a request /validate/check?user=<user>&transaction_id=<transaction_id>&pass=.
The pass can be empty. If value=true is returned, the user authenticated successfully with the TiQR token.

This code is tested in tests/test_lib_tokens_tiqr.

Implementation

class privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass(db_token)
The TiQR Token implementation.

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/<tokentype> which is defined in
api/ttype.py See Tokentype endpoints.

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

check_challenge_response(user=None, passw=None, options=None)
This function checks, if the challenge for the given transaction_id was marked as answered correctly. For
this we check the otp_status of the challenge with the transaction_id in the database.

We do not care about the password

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transaction_id”

Returns return otp_counter. If -1, challenge does not match

Return type int

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

260 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: TiQR :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: tiqr :rtype: basestring

get_init_detail(params=None, user=None)
At the end of the initialization we return the URL for the TiQR App.

mode = ['authenticate', 'challenge', 'outofband']

update(param)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

TOTP Token

class privacyidea.lib.tokens.totptoken.TotpTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter – the counter state, that should be verified. For TOTP

this is the unix system time (seconds) divided by 30/60 :type counter: int :param window: the counter
+window (sec), which should be checked :type window: int :param options: the dict, which could contain
token specific info :type options: dict :return: the counter or -1 :rtype: int

check_otp_exist(otp, window=None, options=None, symetric=True, inc_counter=True)
checks if the given OTP value is/are values of this very token at all. This is used to autoassign and to
determine the serial number of a token. In fact it is a check_otp with an enhanced window.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter in seconds!!!

Returns counter or -1 if otp does not exist

1.16. Code Documentation 261

privacyIDEA Authentication System, Release 3.2.1

Return type int

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: TOTP

static get_class_type()
return the token type shortname

Returns ‘totp’

Return type string

classmethod get_default_settings(params, logged_in_user=None, policy_object=None,
client_ip=None)

This method returns a dictionary with default settings for token enrollment. These default settings are
defined in SCOPE.USER or SCOPE.ADMIN and are totp_hashlib, totp_timestep and totp_otplen. If these
are set, the user or admin will only be able to enroll tokens with these values.

The returned dictionary is added to the parameters of the API call. :param params: The call parameters
:type params: dict :param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

Parameters

• policy_object (PolicyClass) – The policy_object

• client_ip (basestring) – The client IP address

Returns default parameters

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

Parameters

• count (int) – how many otp values should be returned

• epoch_start – not implemented

• epoch_end – not implemented

• curTime (datetime) – Simulate the servertime

• timestamp (epoch time) – Simulate the servertime

Returns tuple of status: boolean, error: text and the OTP dictionary

262 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

get_otp(current_time=None, do_truncation=True, time_seconds=None, challenge=None)
get the next OTP value

Parameters current_time – the current time, for which the OTP value

should be calculated for. :type current_time: datetime object :param time_seconds: the current time, for
which the OTP value should be calculated for (date +%s) :type: time_seconds: int, unix system time
seconds :return: next otp value, and PIN, if possible :rtype: tuple

static get_setting_type(key)

hashlib

resync(otp1, otp2, options=None)
resync the token based on two otp values external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

resyncDiffLimit = 1

timeshift

timestep

timewindow

update(param, reset_failcount=True)
This is called during initialization of the token to add additional attributes to the token object.

Parameters param (dict) – dict of initialization parameters

Returns nothing

U2F Token

U2F is the “Universal 2nd Factor” specified by the FIDO Alliance. The register and authentication process is described
here:

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

But you do not need to be aware of this. privacyIDEA wraps all FIDO specific communication, which should make it
easier for you, to integrate the U2F tokens managed by privacyIDEA into your application.

U2F Tokens can be either

• registered by administrators for users or

• registered by the users themselves.

Enrollment

The enrollment/registering can be completely performed within privacyIDEA.

But if you want to enroll the U2F token via the REST API you need to do it in two steps:

1.16. Code Documentation 263

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

privacyIDEA Authentication System, Release 3.2.1

1. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=u2f

This step returns a serial number.

2. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=u2f
serial=U2F1234578
clientdata=<clientdata>
regdata=<regdata>

clientdata and regdata are the values returned by the U2F device.

You need to call the javascript function

u2f.register([registerRequest], [], function(u2fData) {});

and the responseHandler needs to send the clientdata and regdata back to privacyIDEA (2. step).

Authentication

The U2F token is a challenge response token. I.e. you need to trigger a challenge e.g. by sending the OTP
PIN/Password for this token.

Get the challenge

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=tokenpin

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"attributes": {
"hideResponseInput": true,
"img": ...imageUrl...

(continues on next page)

264 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

(continued from previous page)

"u2fSignRequest": {
"challenge": "...",
"appId": "...",
"keyHandle": "...",
"version": "U2F_V2"

}
},

"message": "Please confirm with your U2F token (Yubico U2F EE ...)"
"transaction_id": "02235076952647019161"

},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": false,

},
"version": "privacyIDEA unknown"

}

Send the Response

The application now needs to call the javascript function u2f.sign with the u2fSignRequest from the response.

var signRequests = [error.detail.attributes.u2fSignRequest]; u2f.sign(signRequests, function(u2fResult)
{});

The response handler function needs to call the /validate/check API again with the signatureData and clientData
returned by the U2F device in the u2fResult:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=
transaction_id=<transaction_id>
signaturedata=signatureData
clientdata=clientData

Implementation

class privacyidea.lib.tokens.u2ftoken.U2fTokenClass(db_token)
The U2F Token implementation.

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/u2f

The u2f token can return the facet list at this URL.

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

1.16. Code Documentation 265

privacyIDEA Authentication System, Release 3.2.1

check_otp(otpval, counter=None, window=None, options=None)
This checks the response of a previous challenge. :param otpval: N/A :param counter: The authentication
counter :param window: N/A :param options: contains “clientdata”, “signaturedata” and

“transaction_id”

Returns A value > 0 in case of success

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

static get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: U2F :rtype: basestring

static get_class_type()
Returns the internal token type identifier :return: u2f :rtype: basestring

get_init_detail(params=None, user=None)
At the end of the initialization we ask the user to press the button

is_challenge_request(passw, user=None, options=None)
check, if the request would start a challenge In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

This function is not decorated with @challenge_response_allowed

as the U2F token is always a challenge response token!

Parameters

• passw – The PIN of the token.

• options – dictionary of additional request parameters

266 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Returns returns true or false

update(param, reset_failcount=True)
This method is called during the initialization process.

Parameters param (dict) – parameters from the token init

Returns None

Vasco Token

Yubico Token

class privacyidea.lib.tokens.yubicotoken.YubicoTokenClass(db_token)

check_otp(anOtpVal, counter=None, window=None, options=None)
Here we contact the Yubico Cloud server to validate the OtpVal.

static get_class_info(key=None, ret=’all’)

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

static get_class_prefix()

static get_class_type()

update(param)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

Yubikey Token

class privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass(db_token)
The Yubikey Token in the Yubico AES mode

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/yubikey which is defined in api/ttype.py

The endpoint /ttype/yubikey is used for the Yubico validate request according to https://developers.yubico.
com/yubikey-val/Validation_Protocol_V2.0.html

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

Required query parameters

1.16. Code Documentation 267

https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html
https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html

privacyIDEA Authentication System, Release 3.2.1

Query id The id of the client to identify the correct shared secret

Query otp The OTP from the yubikey in the yubikey mode

Query nonce 16-40 bytes of random data

Optional parameters h, timestamp, sl, timeout are not supported at the moment.

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state. It is not used by the Yubikey because the current
counter value is sent encrypted inside the OTP value

• window (int) – the counter +window, which is not used in the Yubikey because the
current counter value is sent encrypted inside the OTP, allowing a simple comparison
between the encrypted counter value and the stored counter value

• options (dict) – the dict, which could contain token specific info

Returns the counter state or an error code (< 0):

-1 if the OTP is old (counter < stored counter) -2 if the private_uid sent in the OTP is wrong (different
from the one stored with the token) -3 if the CRC verification fails :rtype: int

check_otp_exist(otp, window=None)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

static check_yubikey_pass(passw)
if the Token has set a PIN the user must also enter the PIN for authentication!

This checks the output of a yubikey in AES mode without providing the serial number. The first 12 (of
44) or 16 of 48) characters are the tokenid, which is stored in the tokeninfo yubikey.tokenid or the prefix
yubikey.prefix.

Parameters passw (string) – The password that consist of the static yubikey prefix and the
otp

Returns True/False and the User-Object of the token owner

Return type dict

static get_class_info(key=None, ret=’all’)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type s.o.

static get_class_prefix()

static get_class_type()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge.

268 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

update(param, reset_failcount=True)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

class privacyidea.lib.tokenclass.TokenClass(db_token)

add_init_details(key, value)
(was addInfo) Adds information to a volatile internal dict

add_tokeninfo(key, value, value_type=None)
Add a key and a value to the DB tokeninfo :param key: :param value: :return:

add_user(user, report=None)
Set the user attributes (uid, resolvername, resolvertype) of a token.

Parameters

• user – a User() object, consisting of loginname and realm

• report – tbdf.

Returns None

classmethod api_endpoint(request, g)
This provides a function to be plugged into the API endpoint /ttype/<tokentype> which is defined in
api/ttype.py

The method should return return “json”, {}

or return “text”, “OK”

Parameters

• request – The Flask request

• g – The Flask global object g

Returns Flask Response or text

authenticate(passw, user=None, options=None)
High level interface which covers the check_pin and check_otp This is the method that verifies single shot
authentication like they are done with push button tokens.

It is a high level interface to support other tokens as well, which do not have a pin and otp separation - they
could overwrite this method

If the authentication succeeds an OTP counter needs to be increased, i.e. the OTP value that was used for
this authentication is invalidated!

Parameters

1.16. Code Documentation 269

privacyIDEA Authentication System, Release 3.2.1

• passw (string) – the password which could be pin+otp value

• user (User object) – The authenticating user

• options (dict) – dictionary of additional request parameters

Returns

returns tuple of 1. true or false for the pin match, 2. the otpcounter (int) and the 3. reply
(dict) that will be added as

additional information in the JSON response of /validate/check.

Return type tuple

static challenge_janitor()
Just clean up all challenges, for which the expiration has expired.

Returns None

check_all(message_list)
Perform all checks on the token. Returns False if the token is either: * auth counter exceeded * not active
* fail counter exceeded * validity period exceeded

This is used in the function token.check_token_list

Parameters message_list – A list of messages

Returns False, if any of the checks fail

check_auth_counter()
This function checks the count_auth and the count_auth_success. If the counters are less or equal than the
maximum allowed counters it returns True. Otherwise False.

Returns success if the counter is less than max

Return type bool

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching challenge for the given passw and also verifies if the response
is correct.

It then returns the new otp_counter of the token.

In case of success the otp_counter will be >= 0.

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transactionid”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_failcount()
Checks if the failcounter is exceeded. It returns True, if the failcounter is less than maxfail :return: True or
False

check_last_auth_newer(last_auth)
Check if the last successful authentication with the token is newer than the specified time delta which is
passed as 10h, 7d or 1y.

270 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

It returns True, if the last authentication with this token is newer* than the specified delta.

Parameters last_auth (basestring) – 10h, 7d or 1y

Returns bool

check_otp(otpval, counter=None, window=None, options=None)
This checks the OTP value, AFTER the upper level did the checkPIN

In the base class we do not know, how to calculate the OTP value. So we return -1. In case of success, we
should return >=0, the counter

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

check_otp_exist(otp, window=None)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp – the OTP value

• window (int) – The look ahead window

Returns True or a value > 0 in case of success

check_pin(pin, user=None, options=None)
Check the PIN of the given Password. Usually this is only dependent on the token itself, but the user object
can cause certain policies.

Each token could implement its own PIN checking behaviour.

Parameters

• pin (string) – the PIN (static password component), that is to be checked.

• user (User object) – for certain PIN policies (e.g. checking against the user store)
this is the user, whose password would be checked. But at the moment we are checking
against the userstore in the decorator “auth_otppin”.

• options – the optional request parameters

Returns If the PIN is correct, return True

Return type bool

check_reset_failcount()
Checks if we should reset the failcounter due to the FAILCOUNTER_CLEAR_TIMEOUT

Returns True, if the failcounter was resetted

check_validity_period()
This checks if the datetime.datetime.now() is within the validity period of the token.

Returns success

1.16. Code Documentation 271

privacyIDEA Authentication System, Release 3.2.1

Return type bool

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

static decode_otpkey(otpkey, otpkeyformat)
Decode the otp key which is given in a specific format.

Supported formats:

• hex, in which the otpkey is returned verbatim

• base32check, which is specified in decode_base32check

In case the OTP key is malformed or if the format is unknown, a ParameterError is raised.

Parameters

• otpkey – OTP key passed by the user

• otpkeyformat – “hex” or “base32check”

Returns hex-encoded otpkey

del_tokeninfo(key=None)

delete_token()
delete the database token

enable(enable=True)

generate_symmetric_key(server_component, client_component, options=None)
This method generates a symmetric key, from a server component and a client component. This key
generation could be based on HMAC, KDF or even Diffie-Hellman.

The basic key-generation is simply replacing the last n byte of the server component with bytes of the
client component.

Parameters

• server_component (str) – The component usually generated by privacyIDEA. This
is a hex string

• client_component (str) – The component usually generated by the client (e.g.
smartphone). This is a hex string.

• options –

Returns the new generated key as hex string

Return type str

272 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

get_as_dict()
This returns the token data as a dictionary. It is used to display the token list at /token/list.

Returns The token data as dict

Return type dict

static get_class_info(key=None, ret=’all’)

static get_class_prefix()

static get_class_type()

get_count_auth()
Return the number of all authentication tries

get_count_auth_max()
Return the number of maximum allowed authentications

get_count_auth_success()
Return the number of successful authentications

get_count_auth_success_max()
Return the maximum allowed successful authentications

get_count_window()

classmethod get_default_settings(params, logged_in_user=None, policy_object=None,
client_ip=None)

This method returns a dictionary with default settings for token enrollment. These default settings depend
on the token type and the defined policies.

The returned dictionary is added to the parameters of the API call. :param params: The call parameters
:type params: dict :param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

Parameters policy_object (PolicyClass) – The policy_object

Returns default parameters

get_failcount()

static get_hashlib(hLibStr)
Returns a hashlib function for a given string :param hLibStr: the hashlib :type hLibStr: string :return: the
hashlib :rtype: function

static get_import_csv(l)
Read the list from a csv file and return a dictionary, that can be used to do a token_init.

Parameters l (list) – The list of the line of a csv file

Returns A dictionary of init params

get_init_detail(params=None, user=None)
to complete the token initialization, the response of the initialisation should be build by this token specific
method. This method is called from api/token after the token is enrolled

get_init_detail returns additional information after an admin/init like the QR code of an HOTP/TOTP
token. Can be anything else.

Parameters

• params (dict) – The request params during token creation token/init

• user (User object) – the user, token owner

1.16. Code Documentation 273

privacyIDEA Authentication System, Release 3.2.1

Returns additional descriptions

Return type dict

get_init_details()
return the status of the token rollout

Returns return the status dict.

Return type dict

get_max_failcount()

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
This returns a dictionary of multiple future OTP values of a token.

Parameters

• count – how many otp values should be returned

• epoch_start – time based tokens: start when

• epoch_end – time based tokens: stop when

• curTime (datetime object) – current time for TOTP token (for selftest)

• timestamp (int) – unix time, current time for TOTP token (for selftest)

Returns True/False, error text, OTP dictionary

Return type Tuple

get_otp(current_time=”)
The default token does not support getting the otp value will return a tuple of four values a negative value
is a failure.

Returns something like: (1, pin, otpval, combined)

get_otp_count()

get_otp_count_window()

get_otplen()

get_pin_hash_seed()

get_realms()
Return a list of realms the token is assigned to :return: realms :rtype:l list

get_serial()

static get_setting_type(key)
This function returns the type of the token specific config/setting. This way a tokenclass can define settings,
that can be “public” or a “password”. If this setting is written to the database, the type of the setting is set
automatically in set_privacyidea_config

The key name needs to start with the token type.

Parameters key – The token specific setting key

Returns A string like “public”

get_sync_window()

get_tokeninfo(key=None, default=None)
return the complete token info or a single key of the tokeninfo. When returning the complete token info
dictionary encrypted entries are not decrypted. If you want to receive a decrypted value, you need to call
it directly with the key.

274 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Parameters

• key (string) – the key to return

• default (string) – the default value, if the key does not exist

Returns the value for the key

Return type int or string

get_tokentype()

get_type()

get_user_displayname()
Returns a tuple of a user identifier like user@realm and the displayname of “givenname surname”.

Returns tuple

get_user_id()

get_validity_period_end()
returns the end of validity period (if set) if not set, “” is returned. :return: the end of the validity period
:rtype: string

get_validity_period_start()
returns the start of validity period (if set) if not set, “” is returned. :return: the start of the validity period
:rtype: string

hKeyRequired = False

inc_count_auth()
Increase the counter, that counts authentications - successful and unsuccessful

inc_count_auth_success()
Increase the counter, that counts successful authentications Also increase the auth counter

inc_failcount()

inc_otp_counter(counter=None, increment=1, reset=True)
Increase the otp counter and store the token in the database

Before increasing the token.count the token.count can be set using the parameter counter.

Parameters

• counter (int) – if given, the token counter is first set to counter and then increased by
increment

• increment (int) – increase the counter by this amount

• reset (bool) – reset the failcounter if set to True

Returns the new counter value

is_active()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge.

The default behaviour to trigger a challenge is, if the passw parameter only contains the correct token
pin and the request contains a data or a challenge key i.e. if the options parameter contains a key
data or challenge.

Each token type can decide on its own under which condition a challenge is triggered by overwriting this
method.

1.16. Code Documentation 275

mailto:user@realm

privacyIDEA Authentication System, Release 3.2.1

please note: in case of pin policy == 2 (no pin is required) the check_pin would always return true!
Thus each request containing a data or challenge would trigger a challenge!

The Challenge workflow is like this.

When an authentication request is issued, first it is checked if this is a request which will create a new
challenge (is_challenge_request) or if this is a response to an existing challenge (is_challenge_response).
In these two cases during request processing the following functions are called.

is_challenge_request or is_challenge_response

|

V V

create_challenge check_challenge

|

V V

challenge_janitor challenge_janitor

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

is_challenge_response(passw, user=None, options=None)
This method checks, if this is a request, that is the response to a previously sent challenge.

The default behaviour to check if this is the response to a previous challenge is simply by checking if
the request contains a parameter state or transactionid i.e. checking if the options parameter
contains a key state or transactionid.

This method does not try to verify the response itself! It only determines, if this is a response for a
challenge or not. The response is verified in check_challenge_response.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

is_fit_for_challenge(messages, options=None)
This method is called if a cryptographically matching response to a challenge was found. This method
may implement final checks, if there is anything that should deny the success of the authentication with
the response to the challenge.

The options dictionary can also contain the transaction_id, so even the challenge table for this token can
be used for checking.

Parameters

• options (dict) –

276 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• messages (list) – This is a list of messages. This method can append new information
to this message list.

Returns True or False

is_locked()
Check if the token is in a locked state A locked token can not be modified

Returns True, if the token is locked.

is_orphaned()
Return True if the token is orphaned.

An orphaned token means, that it has a user assigned, but the user does not exist in the user store (anymore)
:return: True / False

classmethod is_outofband()

is_pin_change(password=False)
Returns true if the pin of the token needs to be changed. :param password: Whether the password needs to
be changed. :type password: bool

Returns True or False

is_previous_otp(otp, window=10)
checks if a given OTP value is a previous OTP value, that lies in the past or has a lower counter.

This is used in case of a failed authentication to return the information, that this OTP values was used
previously and is invalid.

Parameters

• otp (basestring) – The OTP value.

• window (int) – A counter window, how far we should look into the past.

Returns bool

is_revoked()
Check if the token is in the revoked state

Returns True, if the token is revoked

mode = ['authenticate', 'challenge']

reset()
Reset the failcounter

resync(otp1, otp2, options=None)

revoke()
This revokes the token. By default it 1. sets the revoked-field 2. set the locked field 3. disables the token.

Some token types may revoke a token without locking it.

save()
Save the database token

set_count_auth(count)
Sets the counter for the occurred login attepms as key “count_auth” in token info :param count: a number
:type count: int

set_count_auth_max(count)
Sets the counter for the maximum allowed login attempts as key “count_auth_max” in token info :param
count: a number :type count: int

1.16. Code Documentation 277

privacyIDEA Authentication System, Release 3.2.1

set_count_auth_success(count)
Sets the counter for the occurred successful logins as key “count_auth_success” in token info :param count:
a number :type count: int

set_count_auth_success_max(count)
Sets the counter for the maximum allowed successful logins as key “count_auth_success_max” in token
info :param count: a number :type count: int

set_count_window(countWindow)

set_defaults()
Set the default values on the database level

set_description(description)
Set the description on the database level

Parameters description (string) – description of the token

set_failcount(failcount)
Set the failcounter in the database

set_hashlib(hashlib)

set_init_details(details)

set_maxfail(maxFail)

set_next_pin_change(diff=None, password=False)
Sets the timestamp for the next_pin_change. Provide a difference like 90d (90 days).

Either provider the :param diff: The time delta. :type diff: basestring :param password: Do no set
next_pin_change but next_password_change :return: None

set_otp_count(otpCount)

set_otpkey(otpKey)

set_otplen(otplen)

set_pin(pin, encrypt=False)
set the PIN of a token. Usually the pin is stored in a hashed way. :param pin: the pin to be set for the token
:type pin: basestring :param encrypt: If set to True, the pin is stored encrypted and

can be retrieved from the database again

set_pin_hash_seed(pinhash, seed)

set_realms(realms, add=False)
Set the list of the realms of a token. :param realms: realms the token should be assigned to :type realms:
list :param add: if the realms should be added and not replaced :type add: boolean

set_so_pin(soPin)

set_sync_window(syncWindow)

set_tokeninfo(info)
Set the tokeninfo field in the DB. Old values will be deleted. :param info: dictionary with key and value
:type info: dict :return:

set_type(tokentype)
Set the tokentype in this object and also in the underlying database-Token-object.

Parameters tokentype (string) – The type of the token like HOTP or TOTP

278 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

set_user_pin(userPin)

set_validity_period_end(end_date)
sets the end date of the validity period for a token :param end_date: the end date in the format YYYY-
MM-DDTHH:MM+OOOO

if the format is wrong, the method will throw an exception

set_validity_period_start(start_date)
sets the start date of the validity period for a token :param start_date: the start date in the format YYYY-
MM-DDTHH:MM+OOOO

if the format is wrong, the method will throw an exception

split_pin_pass(passw, user=None, options=None)
Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the OTP value. The splitting can be dependent of
certain policies. The policies may depend on the user.

Each token type may define its own way to slit the PIN and the OTP value.

Parameters

• passw – the password to split

• user (User object) – The user/owner of the token

• options (dict) – can be used be the token types.

Returns tuple of pin and otp value

Returns tuple of (split status, pin, otp value)

Return type tuple

status_validation_fail()
callback to enable a status change, if auth failed

status_validation_success()
callback to enable a status change, if auth succeeds

static test_config(params=None)
This method is used to test the token config. Some tokens require some special token configuration like
the SMS-Token or the Email-Token. To test this configuration, this classmethod is used.

It takes token specific parameters and returns a tuple of a boolean and a result description.

Parameters params (dict) – token specific parameters

Returns success, description

Return type tuple

update(param, reset_failcount=True)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

1.16. Code Documentation 279

privacyIDEA Authentication System, Release 3.2.1

user
return the user (owner) of a token If the token has no owner assigned, we return None

Returns The owner of the token

Return type User object or None

using_pin = True

Token Functions

This module contains all top level token functions. It depends on the models, lib.user and lib.tokenclass (which depends
on the tokenclass implementations like lib.tokens.hotptoken)

This is the middleware/glue between the HTTP API and the database

privacyidea.lib.token.add_tokeninfo(serial, info, value=None, value_type=None, user=None)
Sets a token info field in the database. The info is a dict for each token of key/value pairs.

Parameters

• serial (basestring) – The serial number of the token

• info – The key of the info in the dict

• value – The value of the info

• value_type – The type of the value. If set to “password” the value

is stored encrypted :type value_type: basestring :param user: The owner of the tokens, that should be modified
:type user: User object :return: the number of modified tokens :rtype: int

privacyidea.lib.token.assign_token(serial, user, pin=None, encrypt_pin=False,
err_message=None)

Assign token to a user. If the PIN is given, the PIN is reset.

Parameters

• serial (basestring) – The serial number of the token

• user (User object) – The user, to whom the token should be assigned.

• pin (basestring) – The PIN for the newly assigned token.

• encrypt_pin (bool) – Whether the PIN should be stored in an encrypted way

• err_message (basestring) – The error message, that is displayed in case the token
is already assigned

privacyidea.lib.token.check_otp(serial, otpval)
This function checks the OTP for a given serial number :param serial: :param otpval: :return:

privacyidea.lib.token.check_realm_pass(realm, passw, options=None)
This function checks, if the given passw matches any token in the given realm. This can be used for the 4-eyes
token. Only tokens that are assigned are tested.

It returns the res True/False and a reply_dict, which contains the serial number of the matching token.

Parameters

• realm – The realm of the user

• passw – The password containing PIN+OTP

• options (dict) – Additional options that are passed to the tokens

280 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Returns tuple of bool and dict

privacyidea.lib.token.check_serial(serial)
This checks, if the given serial number can be used for a new token. it returns a tuple (result, new_serial) result
being True if the serial does not exist, yet. new_serial is a suggestion for a new serial number, that does not
exist, yet.

Parameters serial – Seral number that is to be checked, if it can be used for

a new token. :type serial: string :result: bool and serial number :rtype: tuple

privacyidea.lib.token.check_serial_pass(serial, passw, options=None)
This function checks the otp for a given serial

If the OTP matches, True is returned and the otp counter is increased.

The function tries to determine the user (token owner), to derive possible additional policies from the user.

Parameters

• serial (basestring) – The serial number of the token

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

Return type tuple

privacyidea.lib.token.check_token_list(tokenobject_list, passw, user=None, options=None,
allow_reset_all_tokens=False)

this takes a list of token objects and tries to find the matching token for the given passw. It also tests, * if the
token is active or * the max fail count is reached, * if the validity period is ok. . .

This function is called by check_serial_pass, check_user_pass and check_yubikey_pass.

Parameters

• tokenobject_list – list of identified tokens

• passw – the provided passw (mostly pin+otp)

• user – the identified use - as class object

• options – additional parameters, which are passed to the token

• allow_reset_all_tokens – If set to True, the policy reset_all_user_tokens is evalu-
ated to reset all user tokens accordingly. Note: This parameter is used in the decorator.

Returns tuple of success and optional response

Return type (bool, dict)

privacyidea.lib.token.check_user_pass(user, passw, options=None)
This function checks the otp for a given user. It is called by the API /validate/check

If the OTP matches, True is returned and the otp counter is increased.

Parameters

• user (User object) – The user who is trying to authenticate

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

1.16. Code Documentation 281

privacyIDEA Authentication System, Release 3.2.1

Return type tuple

privacyidea.lib.token.copy_token_pin(serial_from, serial_to)
This function copies the token PIN from one token to the other token. This can be used for workflows like lost
token.

In fact the PinHash and the PinSeed are transferred

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.copy_token_realms(serial_from, serial_to)
Copy the realms of one token to the other token

Parameters

• serial_from – The token to copy from

• serial_to – The token to copy to

Returns None

privacyidea.lib.token.copy_token_user(serial_from, serial_to)
This function copies the user from one token to the other token. In fact the user_id, resolver and resolver type
are transferred.

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.create_challenges_from_tokens(token_list, reply_dict, op-
tions=None)

Get a list of active tokens and create challenges for these tokens. The reply_dict is modified accordingly. The
transaction_id and the messages are added to the reply_dict.

Parameters

• token_list – The list of the token objects, that can do challenge response

• reply_dict – The dictionary that is passed to the API response

• options – Additional options. Passed from the upper layer

Returns None

privacyidea.lib.token.create_tokenclass_object(db_token)
(was createTokenClassObject) create a token class object from a given type If a tokenclass for this type does not
exist, the function returns None.

Parameters db_token (database token object) – the database referenced token

Returns instance of the token class object

Return type tokenclass object

282 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

privacyidea.lib.token.delete_tokeninfo(serial, key, user=None)
Delete a specific token info field in the database.

Parameters

• serial (basestring) – The serial number of the token

• key – The key of the info in the dict

• value – The value of the info

• user (User object) – The owner of the tokens, that should be modified

Returns the number of tokens matching the serial and user. This number also includes tokens that
did not have

the token info key set in the first place! :rtype: int

privacyidea.lib.token.enable_token(serial, enable=True, user=None)
Enable or disable a token, or all tokens of a single user. This can be checked with is_token_active.

Enabling an already active token will return 0.

Parameters

• serial (basestring) – The serial number of the token

• enable (bool) – False is the token should be disabled

• user (User object) – all tokens of the user will be enabled or disabled

Returns Number of tokens that were enabled/disabled

Return type

privacyidea.lib.token.gen_serial(tokentype=None, prefix=None)
generate a serial for a given tokentype

Parameters

• tokentype (str) – the token type prefix is done by a lookup on the tokens

• prefix (str) – A prefix to the serial number

Returns serial number

Return type str

privacyidea.lib.token.get_dynamic_policy_definitions(scope=None)
This returns the dynamic policy definitions that come with the new loaded token classes.

Parameters scope – an optional scope parameter. Only return the policies of

this scope. :return: The policy definition for the token or only for the scope.

privacyidea.lib.token.get_multi_otp(serial, count=0, epoch_start=0, epoch_end=0, cur-
Time=None, timestamp=None)

This function returns a list of OTP values for the given Token. Please note, that the tokentype needs to support
this function.

Parameters

• serial (basestring) – the serial number of the token

• count – number of the next otp values (to be used with event or time based tokens)

• epoch_start – unix time start date (used with time based tokens)

• epoch_end – unix time end date (used with time based tokens)

1.16. Code Documentation 283

privacyIDEA Authentication System, Release 3.2.1

• curTime (datetime) – Simulate the servertime

• timestamp (int) – Simulate the servertime (unix time in seconds)

Returns dictionary of otp values

Return type dictionary

privacyidea.lib.token.get_num_tokens_in_realm(realm, active=True)
This returns the number of tokens in one realm. :param realm: The name of the realm :type realm: basestring
:param active: If only active tokens should be taken into account :type active: bool :return: The number of
tokens in the realm :rtype: int

privacyidea.lib.token.get_one_token(*args, **kwargs)
Fetch exactly one token according to the given filter arguments, which are passed to get_tokens. Raise
ResourceNotFoundError if no token was found. Raise ParameterError if more than one token was
found.

privacyidea.lib.token.get_otp(serial, current_time=None)
This function returns the current OTP value for a given Token. The tokentype needs to support this function. if
the token does not support getting the OTP value, a -2 is returned. If the token could not be found, ResourceNot-
FoundError is raised.

Parameters

• serial – serial number of the token

• current_time (datetime) – a fake servertime for testing of TOTP token

Returns tuple with (result, pin, otpval, passw)

Return type tuple

privacyidea.lib.token.get_realms_of_token(serial, only_first_realm=False)
This function returns a list of the realms of a token

Parameters

• serial (basestring) – the exact serial number of the token

• only_first_realm (bool) – Wheather we should only return the first realm

Returns list of the realm names

Return type list

privacyidea.lib.token.get_serial_by_otp(token_list, otp=”, window=10)
Returns the serial for a given OTP value The tokenobject_list would be created by get_tokens()

Parameters

• token_list (list of token objects) – the list of token objects to be investigated

• otp – the otp value, that needs to be found

• window (int) – the window of search

Returns the serial for a given OTP value and the user

Return type basestring

privacyidea.lib.token.get_token_by_otp(token_list, otp=”, window=10)
search the token in the token_list, that creates the given OTP value. The tokenobject_list would be created by
get_tokens()

Parameters

284 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• token_list (list of token objects) – the list of token objects to be investigated

• otp (basestring) – the otp value, that needs to be found

• window (int) – the window of search

Returns The token, that creates this OTP value

Return type Tokenobject

privacyidea.lib.token.get_token_owner(serial)
returns the user object, to which the token is assigned. the token is identified and retrieved by it’s serial number

If the token has no owner, None is returned

Wildcards in the serial number are ignored. This raises ResourceNotFoundError if the token could not be
found.

Parameters serial (basestring) – serial number of the token

Returns The owner of the token

Return type User object or None

privacyidea.lib.token.get_token_type(serial)
Returns the tokentype of a given serial number. If the token does not exist or can not be deterimined, an empty
string is returned.

Parameters serial (string) – the serial number of the to be searched token

Returns tokentype

Return type string

privacyidea.lib.token.get_tokenclass_info(tokentype, section=None)
return the config definition of a dynamic token

Parameters

• tokentype (basestring) – the tokentype of the token like “totp” or “hotp”

• section (basestring) – subsection of the token definition - optional

Returns dict - if nothing found an empty dict

Return type dict

privacyidea.lib.token.get_tokens(tokentype=None, realm=None, assigned=None, user=None,
serial=None, serial_wildcard=None, active=None, re-
solver=None, rollout_state=None, count=False, re-
voked=None, locked=None, tokeninfo=None, max-
fail=None)

(was getTokensOfType) This function returns a list of token objects of a * given type, * of a realm * or tokens
with assignment or not * for a certain serial number or * for a User

E.g. thus you can get all assigned tokens of type totp.

Parameters

• tokentype (basestring) – The type of the token. If None, all tokens are returned.

• realm (basestring) – get tokens of a realm. If None, all tokens are returned.

• assigned (bool) – Get either assigned (True) or unassigned (False) tokens. If None get
all tokens.

• user (User Object) – Filter for the Owner of the token

1.16. Code Documentation 285

privacyIDEA Authentication System, Release 3.2.1

• serial (basestring) – The exact serial number of a token

• serial_wildcard (basestring) – A wildcard to match token serials

• active (bool) – Whether only active (True) or inactive (False) tokens should be returned

• resolver (basestring) – filter for the given resolver name

• rollout_state – returns a list of the tokens in the certain rollout state. Some tokens are
not enrolled in a single step but in multiple steps. These tokens are then identified by the
DB-column rollout_state.

• count (bool) – If set to True, only the number of the result and not the list is returned.

• revoked (bool) – Only search for revoked tokens or only for not revoked tokens

• locked (bool) – Only search for locked tokens or only for not locked tokens

• tokeninfo (dict) – Return tokens with the given tokeninfo. The tokeninfo is a key/value
dictionary

• maxfail – If only tokens should be returned, which failcounter reached maxfail

Returns A list of tokenclasses (lib.tokenclass).

Return type list

privacyidea.lib.token.get_tokens_from_serial_or_user(serial, user, **kwargs)
Fetch tokens, either by (exact) serial, or all tokens of a single user. In case a serial number is given, check that
exactly one token is returned and raise a ResourceNotFoundError if that is not the case. In case a user is given,
the result can also be empty. :param serial: exact serial number or None :param user: a user object or None
:param kwargs: additional argumens to get_tokens :return: a (possibly empty) list of tokens

privacyidea.lib.token.get_tokens_in_resolver(resolver)
Return a list of the token ojects, that contain this very resolver

Parameters resolver (basestring) – The resolver, the tokens should be in

Returns list of tokens with this resolver

Return type list of token objects

privacyidea.lib.token.get_tokens_paginate(tokentype=None, realm=None, assigned=None,
user=None, serial=None, active=None,
resolver=None, rollout_state=None,
sortby=<sqlalchemy.orm.attributes.InstrumentedAttribute
object>, sortdir=’asc’, psize=15, page=1,
description=None, userid=None, al-
lowed_realms=None)

This function is used to retrieve a token list, that can be displayed in the Web UI. It supports pagination. Each
retrieved page will also contain a “next” and a “prev”, indicating the next or previous page. If either does not
exist, it is None.

Parameters

• tokentype –

• realm –

• assigned (bool) – Returns assigned (True) or not assigned (False) tokens

• user (User object) – The user, whose token should be displayed

• serial – a pattern for matching the serial

• active –

286 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• resolver (basestring) – A resolver name, which may contain “*” for filtering.

• userid (basestring) – A userid, which may contain “*” for filtering.

• rollout_state –

• sortby (A Token column or a string.) – Sort by a certain Token DB field. The
default is Token.serial. If a string like “serial” is provided, we try to convert it to the DB
column.

• sortdir (basestring) – Can be “asc” (default) or “desc”

• psize (int) – The size of the page

• page (int) – The number of the page to view. Starts with 1 ;-)

• allowed_realms (list) – A list of realms, that the admin is allowed to see

Returns dict with tokens, prev, next and count

Return type dict

privacyidea.lib.token.get_tokens_paginated_generator(tokentype=None, realm=None,
assigned=None, user=None,
serial_wildcard=None, ac-
tive=None, resolver=None,
rollout_state=None, re-
voked=None, locked=None, to-
keninfo=None, maxfail=None,
psize=1000)

Fetch chunks of psize tokens that match the filter criteria from the database and generate lists of token objects.
See get_tokens for information on the arguments.

Note that individual lists may contain less than psize elements if a token entry has an invalid type.

Parameters psize – Maximum size of chunks that are fetched from the database

Returns This is a generator that generates non-empty lists of token objects.

privacyidea.lib.token.import_token(serial, token_dict, default_hashlib=None, token-
realms=None)

This function is used during the import of a PSKC file.

Parameters

• serial – The serial number of the token

• token_dict – A dictionary describing the token like: {“type”: . . . ,

”description”: . . . , “otpkey”: . . . , “counter: . . . , “timeShift”: . . . }

• default_hashlib –

Returns the token object

privacyidea.lib.token.init_token(param, user=None, tokenrealms=None, tokenkind=None)
create a new token or update an existing token

Parameters

• param (dict) – initialization parameters like: serial (optional) type (optionl, default=hotp)
otpkey

• user (User Object) – the token owner

• tokenrealms (list) – the realms, to which the token should belong

1.16. Code Documentation 287

privacyIDEA Authentication System, Release 3.2.1

• tokenkind – The kind of the token, can be “software”, “hardware” or “virtual”

Returns token object or None

Return type TokenClass object

privacyidea.lib.token.is_token_active(serial)
Return True if the token is active, otherwise false Raise ResourceError if the token could not be found.

Parameters serial (basestring) – The serial number of the token

Returns True or False

Return type bool

privacyidea.lib.token.is_token_owner(serial, user)
Check if the given user is the owner of the token with the given serial number :param serial: The serial number
of the token :type serial: str :param user: The user that needs to be checked :type user: User object :return:
Return True or False :rtype: bool

privacyidea.lib.token.lost_token(serial, new_serial=None, password=None, validity=10, con-
tents=’8’, pw_len=16, options=None)

This is the workflow to handle a lost token. The token <serial> is lost and will be disabled. A new token of type
password token will be created and assigned to the user. The PIN of the lost token will be copied to the new
token. The new token will have a certain validity period.

Parameters

• serial – Token serial number

• new_serial – new serial number

• password – new password

• validity (int) – Number of days, the new token should be valid

• contents – The contents of the generated password. “C”: upper case

characters, “c”: lower case characters, “n”: digits and “s”: special characters, “8”: base58 :type contents:
A string like “Ccn” :param pw_len: The length of the generated password :type pw_len: int :param options:
optional values for the decorator passed from the upper API level :type options: dict

Returns result dictionary

privacyidea.lib.token.remove_token(serial=None, user=None)
remove the token that matches the serial number or all tokens of the given user and also remove the realm
associations and all its challenges

Parameters

• user (User object) – The user, who’s tokens should be deleted.

• serial (basestring) – The serial number of the token to delete (exact)

Returns The number of deleted token

Return type int

privacyidea.lib.token.reset_token(serial, user=None)
Reset the failcounter of a single token, or of all tokens of one user. :param serial: serial number (exact) :param
user: :return: The number of tokens, that were resetted :rtype: int

privacyidea.lib.token.resync_token(serial, otp1, otp2, options=None, user=None)
Resyncronize the token of the given serial number and user by searching the otp1 and otp2 in the future otp
values.

Parameters

288 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• serial (basestring) – token serial number (exact)

• otp1 (basestring) – first OTP value

• otp2 (basestring) – second OTP value, directly after the first

• options (dict) – additional options like the servertime for TOTP token

Returns

privacyidea.lib.token.revoke_token(serial, user=None)
Revoke a token, or all tokens of a single user.

Parameters

• serial (basestring) – The serial number of the token (exact)

• enable (bool) – False is the token should be disabled

• user (User object) – all tokens of the user will be enabled or disabled

Returns Number of tokens that were enabled/disabled

Return type

privacyidea.lib.token.set_count_auth(serial, count, user=None, max=False, success=False)
The auth counters are stored in the token info database field. There are different counters, that can be set

count_auth -> max=False, success=False count_auth_max -> max=True, success=False
count_auth_success -> max=False, success=True count_auth_success_max -> max=True, suc-
cess=True

Parameters

• count (int) – The counter value

• user (User object) – The user owner of the tokens tokens to modify

• serial (basestring) – The serial number of the one token to modifiy (exact)

• max – True, if either count_auth_max or count_auth_success_max are

to be modified :type max: bool :param success: True, if either count_auth_success or count_auth_success_max
are to be modified :type success: bool :return: number of modified tokens :rtype: int

privacyidea.lib.token.set_count_window(serial, countwindow=10, user=None)
The count window is used during authentication to find the matching OTP value. This sets the count window
per token.

Parameters

• serial (basestring) – The serial number of the token (exact)

• countwindow (int) – the size of the window

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_defaults(serial)
Set the default values for the token with the given serial number (exact) :param serial: token serial :type serial:
basestring :return: None

privacyidea.lib.token.set_description(serial, description, user=None)
Set the description of a token

1.16. Code Documentation 289

privacyIDEA Authentication System, Release 3.2.1

Parameters

• serial (basestring) – The serial number of the token (exact)

• description (str) – The description for the token

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_failcounter(serial, counter, user=None)
Set the fail counter of a token.

Parameters

• serial – The serial number of the token (exact)

• counter – THe counter to which the fail counter should be set

• user – An optional user

Returns Number of tokens, where the fail counter was set.

privacyidea.lib.token.set_hashlib(serial, hashlib=’sha1’, user=None)
Set the hashlib in the tokeninfo. Can be something like sha1, sha256. . .

Parameters

• serial (basestring) – The serial number of the token (exact)

• hashlib (basestring) – The hashlib of the token

• user (User object) – The User, for who’s token the hashlib should be set

Returns the number of token infos set

Return type int

privacyidea.lib.token.set_max_failcount(serial, maxfail, user=None)
Set the maximum fail counts of tokens. This is the maximum number a failed authentication is allowed.

Parameters

• serial (basestring) – The serial number of the token (exact)

• maxfail (int) – The maximum allowed failed authentications

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_otplen(serial, otplen=6, user=None)
Set the otp length of the token defined by serial or for all tokens of the user. The OTP length is usually 6 or 8.

Parameters

• serial (basestring) – The serial number of the token (exact)

• otplen (int) – The length of the OTP value

• user (User object) – The owner of the tokens

Returns number of modified tokens

Return type int

290 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

privacyidea.lib.token.set_pin(serial, pin, user=None, encrypt_pin=False)
Set the token PIN of the token. This is the static part that can be used to authenticate.

Parameters

• pin (basestring) – The pin of the token

• user – If the user is specified, the pins for all tokens of this

user will be set :type user: User object :param serial: If the serial is specified, the PIN for this very token will
be set. (exact) :return: The number of PINs set (usually 1) :rtype: int

privacyidea.lib.token.set_pin_so(serial, so_pin, user=None)
Set the SO PIN of a smartcard. The SO Pin can be used to reset the PIN of a smartcard. The SO PIN is stored
in the database, so that it could be used for automatic processes for User PIN resetting.

Parameters

• serial (basestring) – The serial number of the token (exact)

• so_pin (basestring) – The Security Officer PIN

Returns The number of SO PINs set. (usually 1)

Return type int

privacyidea.lib.token.set_pin_user(serial, user_pin, user=None)
This sets the user pin of a token. This just stores the information of the user pin for (e.g. an eTokenNG,
Smartcard) in the database

Parameters

• serial (basestring) – The serial number of the token (exact)

• user_pin (basestring) – The user PIN

Returns The number of PINs set (usually 1)

Return type int

privacyidea.lib.token.set_realms(serial, realms=None, add=False)
Set all realms of a token. This sets the realms new. I.e. it does not add realms. So realms that are not contained
in the list will not be assigned to the token anymore.

If the token could not be found, a ResourceNotFoundError is raised.

Thus, setting realms=[] clears all realms assignments.

Parameters

• serial (basestring) – the serial number of the token (exact)

• realms (list) – A list of realm names

• add (bool) – if the realms should be added and not replaced

privacyidea.lib.token.set_sync_window(serial, syncwindow=1000, user=None)
The sync window is the window that is used during resync of a token. Such many OTP values are calculated
ahead, to find the matching otp value and counter.

Parameters

• serial (basestring) – The serial number of the token (exact)

• syncwindow (int) – The size of the sync window

• user (User object) – The owner of the tokens, which should be modified

1.16. Code Documentation 291

privacyIDEA Authentication System, Release 3.2.1

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_validity_period_end(serial, user, end)
Set the validity period for the given token.

Parameters

• serial – serial number (exact)

• user –

• end (basestring) – Timestamp in the format DD/MM/YY HH:MM

privacyidea.lib.token.set_validity_period_start(serial, user, start)
Set the validity period for the given token.

Parameters

• serial – serial number (exact)

• user –

• start (basestring) – Timestamp in the format DD/MM/YY HH:MM

privacyidea.lib.token.token_exist(serial)
returns true if the token with the exact given serial number exists

Parameters serial – the serial number of the token

privacyidea.lib.token.unassign_token(serial, user=None)
unassign the user from the token, or all tokens of a user

Parameters

• serial – The serial number of the token to unassign (exact). Can be None

• user – A user whose tokens should be unassigned

Returns number of unassigned tokens

Application Class

privacyidea.lib.applications.MachineApplicationBase
alias of privacyidea.lib.applications.base.MachineApplication

Policy Module

Base function to handle the policy entries in the database. This module only depends on the db/models.py

The functions of this module are tested in tests/test_lib_policy.py

A policy has the attributes

• name

• scope

• action

• realm

• resolver

292 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• user

• client

• active

name is the unique identifier of a policy. scope is the area, where this policy is meant for. This can be values like
admin, selfservice, authentication. . . scope takes only one value.

active is bool and indicates, whether a policy is active or not.

action, realm, resolver, user and client can take a comma separated list of values.

realm and resolver

If these are empty ‘*’, this policy matches each requested realm.

user

If the user is empty or ‘*’, this policy matches each user. You can exclude users from matching this policy, by
prepending a ‘-‘ or a ‘!’. *, -admin will match for all users except the admin.

You can also use regular expressions to match the user like customer_.* to match any user, starting with customer_.

Note: Regular expression will only work for exact machtes. user1234 will not match user1 but only user1. . .

client

The client is identified by its IP address. A policy can contain a list of IP addresses or subnets. You can exclude clients
from subnets by prepending the client with a ‘-‘ or a ‘!’. 172.16.0.0/24, -172.16.0.17 will match each
client in the subnet except the 172.16.0.17.

time

You can specify a time in which the policy should be active. Time formats are

<dow>-<dow>:<hh>:<mm>-<hh>:<mm>, . . . <dow>:<hh>:<mm>-<hh>:<mm> <dow>:<hh>-<hh>

and any combination of it. “dow” being day of week Mon, Tue, Wed, Thu, Fri, Sat, Sun.

class privacyidea.lib.policy.ACTION
This is the list of usual actions.

ADDRESOLVERINRESPONSE = 'add_resolver_in_response'

ADDUSER = 'adduser'

ADDUSERINRESPONSE = 'add_user_in_response'

APIKEY = 'api_key_required'

APPIMAGEURL = 'appimageurl'

ASSIGN = 'assign'

AUDIT = 'auditlog'

1.16. Code Documentation 293

privacyIDEA Authentication System, Release 3.2.1

AUDIT_AGE = 'auditlog_age'

AUDIT_DOWNLOAD = 'auditlog_download'

AUTHITEMS = 'fetch_authentication_items'

AUTHMAXFAIL = 'auth_max_fail'

AUTHMAXSUCCESS = 'auth_max_success'

AUTH_CACHE = 'auth_cache'

AUTOASSIGN = 'autoassignment'

CACONNECTORDELETE = 'caconnectordelete'

CACONNECTORREAD = 'caconnectorread'

CACONNECTORWRITE = 'caconnectorwrite'

CHALLENGERESPONSE = 'challenge_response'

CHALLENGETEXT = 'challenge_text'

CHALLENGETEXT_FOOTER = 'challenge_text_footer'

CHALLENGETEXT_HEADER = 'challenge_text_header'

CHANGE_PIN_EVERY = 'change_pin_every'

CHANGE_PIN_FIRST_USE = 'change_pin_on_first_use'

CLIENTTYPE = 'clienttype'

CONFIGDOCUMENTATION = 'system_documentation'

COPYTOKENPIN = 'copytokenpin'

COPYTOKENUSER = 'copytokenuser'

CUSTOM_BASELINE = 'custom_baseline'

CUSTOM_MENU = 'custom_menu'

DEFAULT_TOKENTYPE = 'default_tokentype'

DELETE = 'delete'

DELETEUSER = 'deleteuser'

DIALOG_NO_TOKEN = 'dialog_no_token'

DISABLE = 'disable'

EMAILCONFIG = 'smtpconfig'

ENABLE = 'enable'

ENCRYPTPIN = 'encrypt_pin'

ENROLLPIN = 'enrollpin'

EVENTHANDLINGREAD = 'eventhandling_read'

EVENTHANDLINGWRITE = 'eventhandling_write'

FORCE_APP_PIN = 'force_app_pin'

GETCHALLENGES = 'getchallenges'

GETRANDOM = 'getrandom'

294 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

GETSERIAL = 'getserial'

HIDE_BUTTONS = 'hide_buttons'

HIDE_WELCOME = 'hide_welcome_info'

IMPORT = 'importtokens'

LASTAUTH = 'last_auth'

LOGINMODE = 'login_mode'

LOGIN_TEXT = 'login_text'

LOGOUTTIME = 'logout_time'

LOSTTOKEN = 'losttoken'

LOSTTOKENPWCONTENTS = 'losttoken_PW_contents'

LOSTTOKENPWLEN = 'losttoken_PW_length'

LOSTTOKENVALID = 'losttoken_valid'

MACHINELIST = 'machinelist'

MACHINERESOLVERDELETE = 'mresolverdelete'

MACHINERESOLVERREAD = 'mresolverread'

MACHINERESOLVERWRITE = 'mresolverwrite'

MACHINETOKENS = 'manage_machine_tokens'

MANAGESUBSCRIPTION = 'managesubscription'

MANGLE = 'mangle'

MAXACTIVETOKENUSER = 'max_active_token_per_user'

MAXTOKENREALM = 'max_token_per_realm'

MAXTOKENUSER = 'max_token_per_user'

NODETAILFAIL = 'no_detail_on_fail'

NODETAILSUCCESS = 'no_detail_on_success'

OTPPIN = 'otppin'

OTPPINCONTENTS = 'otp_pin_contents'

OTPPINMAXLEN = 'otp_pin_maxlength'

OTPPINMINLEN = 'otp_pin_minlength'

OTPPINRANDOM = 'otp_pin_random'

OTPPINSETRANDOM = 'otp_pin_set_random'

PASSNOTOKEN = 'passOnNoToken'

PASSNOUSER = 'passOnNoUser'

PASSTHRU = 'passthru'

PASSTHRU_ASSIGN = 'passthru_assign'

PASSWORDRESET = 'password_reset'

PERIODICTASKREAD = 'periodictask_read'

1.16. Code Documentation 295

privacyIDEA Authentication System, Release 3.2.1

PERIODICTASKWRITE = 'periodictask_write'

PINHANDLING = 'pinhandling'

POLICYDELETE = 'policydelete'

POLICYREAD = 'policyread'

POLICYTEMPLATEURL = 'policy_template_url'

POLICYWRITE = 'policywrite'

PRIVACYIDEASERVERREAD = 'privacyideaserver_read'

PRIVACYIDEASERVERWRITE = 'privacyideaserver_write'

RADIUSSERVERREAD = 'radiusserver_read'

RADIUSSERVERWRITE = 'radiusserver_write'

REALM = 'realm'

REALMDROPDOWN = 'realm_dropdown'

REGISTERBODY = 'registration_body'

REMOTE_USER = 'remote_user'

REQUIREDEMAIL = 'requiredemail'

RESET = 'reset'

RESETALLTOKENS = 'reset_all_user_tokens'

RESOLVER = 'resolver'

RESOLVERDELETE = 'resolverdelete'

RESOLVERREAD = 'resolverread'

RESOLVERWRITE = 'resolverwrite'

RESYNC = 'resync'

REVOKE = 'revoke'

SEARCH_ON_ENTER = 'search_on_enter'

SERIAL = 'serial'

SET = 'set'

SETDESCRIPTION = 'setdescription'

SETHSM = 'set_hsm_password'

SETPIN = 'setpin'

SETRANDOMPIN = 'setrandompin'

SETREALM = 'setrealm'

SETTOKENINFO = 'settokeninfo'

SHOW_SEED = 'show_seed'

SMSGATEWAYREAD = 'smsgateway_read'

SMSGATEWAYWRITE = 'smsgateway_write'

SMTPSERVERREAD = 'smtpserver_read'

296 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

SMTPSERVERWRITE = 'smtpserver_write'

STATISTICSDELETE = 'statistics_delete'

STATISTICSREAD = 'statistics_read'

SYSTEMDELETE = 'configdelete'

SYSTEMREAD = 'configread'

SYSTEMWRITE = 'configwrite'

TIMEOUT_ACTION = 'timeout_action'

TOKENINFO = 'tokeninfo'

TOKENISSUER = 'tokenissuer'

TOKENLABEL = 'tokenlabel'

TOKENLIST = 'tokenlist'

TOKENPAGESIZE = 'token_page_size'

TOKENREALMS = 'tokenrealms'

TOKENTYPE = 'tokentype'

TOKENWIZARD = 'tokenwizard'

TOKENWIZARD2ND = 'tokenwizard_2nd_token'

TRIGGERCHALLENGE = 'triggerchallenge'

UNASSIGN = 'unassign'

UPDATEUSER = 'updateuser'

USERDETAILS = 'user_details'

USERLIST = 'userlist'

USERPAGESIZE = 'user_page_size'

class privacyidea.lib.policy.ACTIONVALUE
This is a list of usual action values for e.g. policy action-values like otppin.

DISABLE = 'disable'

NONE = 'none'

TOKENPIN = 'tokenpin'

USERSTORE = 'userstore'

class privacyidea.lib.policy.AUTOASSIGNVALUE
This is the possible values for autoassign

NONE = 'any_pin'

USERSTORE = 'userstore'

class privacyidea.lib.policy.CONDITION_SECTION
This is a list of available sections for conditions of policies

HTTP_REQUEST_HEADER = 'HTTP Request header'

USERINFO = 'userinfo'

1.16. Code Documentation 297

privacyIDEA Authentication System, Release 3.2.1

class privacyidea.lib.policy.GROUP
These are the allowed policy action groups. The policies will be grouped in the UI.

ENROLLMENT = 'enrollment'

GENERAL = 'general'

MACHINE = 'machine'

PIN = 'pin'

SYSTEM = 'system'

TOKEN = 'token'

TOOLS = 'tools'

USER = 'user'

class privacyidea.lib.policy.LOGINMODE
This is the list of possible values for the login mode.

DISABLE = 'disable'

PRIVACYIDEA = 'privacyIDEA'

USERSTORE = 'userstore'

class privacyidea.lib.policy.MAIN_MENU
These are the allowed top level menu items. These are used to toggle the visibility of the menu items depending
on the rights of the user

AUDIT = 'audit'

COMPONENTS = 'components'

CONFIG = 'config'

MACHINES = 'machines'

TOKENS = 'tokens'

USERS = 'users'

class privacyidea.lib.policy.Match(g, **kwargs)
This class provides a high-level API for policy matching. It should not be instantiated directly. Instead, code
should use one of the provided classmethods to construct a Match object. See the respective classmethods for
details.

A Match object encapsulates a policy matching operation, i.e. a call to PolicyClass.match_policies.
In order to retrieve the matching policies, one should use one of policies(), action_values() and
any(). By default, these functions write the matched policies to the audit log. This behavior can be explicitly
disabled.

Every classmethod expects a so-called “context object” as its first argument. The context object implements the
following attributes:

• audit_object: an Audit object which is used to write the used policies to the audit log. In case
False is passed for write_to_audit_log, the audit object may be None.

• policy_object: a PolicyClass object that is used to retrieve the matching policies.

• client_ip: the IP of the current client, as a string

• logged_in_user: a dictionary with keys “username”, “realm”, “role” that describes the
currently logged-in (managing) user

298 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

In our case, this context object is usually the flask.g object.

classmethod action_only(g, scope, action)
Match active policies solely based on a scope and an action, which may also be None. The client IP is
matched implicitly. :param g: context object :param scope: the policy scope. SCOPE.ADMIN cannot be
passed, admin must be used instead. :param action: the policy action, or None :rtype: Match

action_values(unique, allow_white_space_in_action=False, write_to_audit_log=True)
Return a dictionary of action values extracted from the matching policies. The dictionary maps each action
value to a list of policies which define this action value. :param unique: If True, return only the prioritized
action value.

See PolicyClass.get_action_values for details.

Parameters

• allow_white_space_in_action – If True, allow whitespace in action values. See
PolicyClass.get_action_values for details.

• write_to_audit_log – If True, augment the audit log with the names of all policies
whose action values are returned

Return type dict

classmethod admin(g, action, realm)
Match admin policies with an action and, optionally, a realm. Assumes that the currently logged-in user
is an admin, and throws an error otherwise. Policies will be matched against the admin’s username and
adminrealm, and optionally also the provided user realm. The client IP is matched implicitly. :param g:
context object :param action: the policy action :param realm: the user realm against which policies should
be matched. Can be None. :type realm: str or None :rtype: Match

classmethod admin_or_user(g, action, realm)
Depending on the role of the currently logged-in user, match either scope=ADMIN or scope=USER poli-
cies. If the currently logged-in user is an admin, match policies against the username, adminrealm and the
given user realm. If the currently logged-in user is a user, match policies against the username and the
given realm. The client IP is matched implicitly. :param g: context object :param action: the policy action
:param realm: the given realm :rtype: Match

any(write_to_audit_log=True)
Return True if at least one policy matches. :param write_to_audit_log: If True, write the list of matching
policies to the audit log :return: True or False

policies(write_to_audit_log=True)
Return a list of policies. The list is sorted by priority, which means that prioritized policies appear first.
:param write_to_audit_log: If True, write the list of matching policies to the audit log :return: a list of
policy dictionaries :rtype: list

classmethod realm(g, scope, action, realm)
Match active policies with a scope, an action and a user realm. The client IP is matched implicitly. :param
g: context object :param scope: the policy scope. SCOPE.ADMIN cannot be passed, admin must be used
instead. :param action: the policy action :param realm: the realm to match :rtype: Match

classmethod user(g, scope, action, user_object)
Match active policies with a scope, an action and a user object (which may be None). The client IP is
matched implicitly. :param g: context object :param scope: the policy scope. SCOPE.ADMIN cannot be
passed, admin must be used instead. :param action: the policy action :param user_object: the user object
to match. Might also be None, which means that the policy

attributes user, realm and resolver are ignored.

1.16. Code Documentation 299

privacyIDEA Authentication System, Release 3.2.1

Return type Match

exception privacyidea.lib.policy.MatchingError(description=’server error!’, id=903)

class privacyidea.lib.policy.PolicyClass
A policy object can be used to query the current set of policies. The policy object itself does not store any
policies. Instead, every query uses get_config_object to retrieve the request-local config object which
contains the current set of policies.

Hence, reloading the request-local config object also reloads the set of policies.

static check_for_conflicts(policies, action)
Given a (not necessarily sorted) list of policy dictionaries and an action name, check that there are no
action value conflicts.

This raises a PolicyError if there are multiple policies with the highest priority which define different
values for action.

Otherwise, the function just returns nothing.

Parameters

• policies – list of dictionaries

• action – string

static extract_action_values(policies, action, unique=False, al-
low_white_space_in_action=False)

Given an action, extract all values the given policies specify for that action. :param policies: a list of policy
dictionaries :type policies: list :param action: a policy action :type action: action :param unique: if True,
only consider the policy with the highest priority

and check for policy conflicts (in this case, raise a PolicyError).

Parameters allow_white_space_in_action – Some policies like emailtext would al-
low entering text with whitespaces. These whitespaces must not be used to separate action
values!

Returns a dictionary mapping action values to lists of matching policies.

filter_policies_by_conditions(policies, user_object=None, request_headers=None)
Given a list of policy dictionaries and a current user object (if any), return a list of all policies whose
conditions match the given user object. Raises a PolicyError if a condition references an unknown section.
:param policies: a list of policy dictionaries :param user_object: a User object, or None if there is no
current user :param request_headers: The HTTP headers :type request_headers: Request object :return:
generates a list of policy dictionaries

get_action_values(action, scope=’authorization’, realm=None, resolver=None, user=None,
client=None, unique=False, allow_white_space_in_action=False, admin-
realm=None, user_object=None, audit_data=None)

Get the defined action values for a certain action like scope: authorization action: tokentype

would return a dictionary of {tokentype: policyname}

scope: authorization action: serial

would return a dictionary of {serial: policyname}

All parameters not described below are covered in the documentation of match_policies.

Parameters

300 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• unique – if set, the function will only consider the policy with the highest priority and
check for policy conflicts.

• allow_white_space_in_action (bool) – Some policies like emailtext would al-
low entering text with whitespaces. These whitespaces must not be used to separate action
values!

• audit_data – This is a dictionary, that can take audit_data in the g object. If set, this
dictionary will be filled with the list of triggered policynames in the key “policies”. This
can be useful for policies like ACTION.OTPPIN - where it is clear, that the found policy
will be used. It could make less sense with an action like ACTION.LASTAUTH - where
the value of the action needs to be evaluated in a more special case.

Return type dict

list_policies(name=None, scope=None, realm=None, active=None, resolver=None, user=None,
client=None, action=None, adminrealm=None, sort_by_priority=True)

Return the policies, filtered by the given values.

The following rule holds for all filter arguments:

If None is passed as a value, policies are not filtered according to the argument at all. As an example, if
realm=None is passed, policies are matched regardless of their realm attribute. If any value is passed
(even the empty string), policies are filtered according to the given value. As an example, if realm='' is
passed, only policies that have a matching (or empty) realm attribute are returned.

The only exception is the client parameter, which does not accept the empty string, and throws a
ParameterError if the empty string is passed.

Parameters

• name – The name of the policy

• scope – The scope of the policy

• realm – The realm in the policy

• active – One of None, True, False: All policies, only active or only inactive policies

• resolver – Only policies with this resolver

• user (basestring) – Only policies with this user

• client –

• action – Only policies, that contain this very action.

• adminrealm – This is the realm of the admin. This is only evaluated in the scope admin.

• sort_by_priority – If true, sort the resulting list by priority, ascending

by their policy numbers. :type sort_by_priority: bool :return: list of policies :rtype: list of dicts

match_policies(name=None, scope=None, realm=None, active=None, resolver=None,
user=None, user_object=None, client=None, action=None, adminrealm=None,
time=None, sort_by_priority=True, audit_data=None, request_headers=None)

Return all policies matching the given context. Optionally, write the matching policies to the audit log.

In order to retrieve policies matching the current user, callers can either pass a user(name), resolver and
realm, or pass a user object from which login name, resolver and realm will be read. In case of conflicting
parameters, a ParameterError will be raised.

This function takes all parameters taken by list_policies, plus some additional parameters.

Parameters

1.16. Code Documentation 301

privacyIDEA Authentication System, Release 3.2.1

• name – see list_policies

• scope – see list_policies

• realm – see list_policies

• active – see list_policies

• resolver – see list_policies

• user – see list_policies

• client – see list_policies

• action – see list_policies

• adminrealm – see list_policies

• sort_by_priority –

• user_object (User or None) – the currently active user, or None

• time (datetime or None) – return only policies that are valid at the specified time.
Defaults to the current time.

• audit_data – A dictionary with audit data collected during a request. This

method will add found policies to the dictionary. :type audit_data: dict or None :param request_headers:
A dict with HTTP headers :return: a list of policy dictionaries

policies
Shorthand to retrieve the set of policies of the request-local config object

ui_get_enroll_tokentypes(client, logged_in_user)
Return a dictionary of the allowed tokentypes for the logged in user. This used for the token enrollment
UI.

It looks like this:

{“hotp”: “HOTP: event based One Time Passwords”, “totp”: “TOTP: time based One Time
Passwords”, “spass”: “SPass: Simple Pass token. Static passwords”, “motp”: “mOTP: clas-
sical mobile One Time Passwords”, “sshkey”: “SSH Public Key: The public SSH key”,
“yubikey”: “Yubikey AES mode: One Time Passwords with Yubikey”, “remote”: “Remote
Token: Forward authentication request to another server”, “yubico”: “Yubikey Cloud mode:
Forward authentication request to YubiCloud”, “radius”: “RADIUS: Forward authentication
request to a RADIUS server”, “email”: “EMail: Send a One Time Passwort to the users
email address”, “sms”: “SMS: Send a One Time Password to the users mobile phone”, “cer-
tificate”: “Certificate: Enroll an x509 Certificate Token.”}

Parameters

• client (basestring) – Client IP address

• logged_in_user (dict) – The Dict of the logged in user

Returns list of token types, the user may enroll

ui_get_main_menus(logged_in_user, client=None)
Get the list of allowed main menus derived from the policies for the given user - admin or normal user. It
fetches all policies for this user and compiles a list of allowed menus to display or hide in the UI.

Parameters

• logged_in_user – The logged in user, a dictionary with keys “username”, “realm”
and “role”.

302 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• client – The IP address of the client

Returns A list of MENUs to be displayed

ui_get_rights(scope, realm, username, client=None)
Get the rights derived from the policies for the given realm and user. Works for admins and normal users.
It fetches all policies for this user and compiles a maximum list of allowed rights, that can be used to hide
certain UI elements.

Parameters

• scope – Can be SCOPE.ADMIN or SCOPE.USER

• realm – Is either user users realm or the adminrealm

• username – The loginname of the user

• client – The HTTP client IP

Returns A list of actions

class privacyidea.lib.policy.REMOTE_USER
The list of possible values for the remote_user policy.

ACTIVE = 'allowed'

DISABLE = 'disable'

class privacyidea.lib.policy.SCOPE
This is the list of the allowed scopes that can be used in policy definitions.

ADMIN = 'admin'

AUDIT = 'audit'

AUTH = 'authentication'

AUTHZ = 'authorization'

ENROLL = 'enrollment'

GETTOKEN = 'gettoken'

REGISTER = 'register'

USER = 'user'

WEBUI = 'webui'

class privacyidea.lib.policy.TIMEOUT_ACTION
This is a list of actions values for idle users

LOCKSCREEN = 'lockscreen'

LOGOUT = 'logout'

privacyidea.lib.policy.delete_all_policies()

privacyidea.lib.policy.delete_policy(name)
Function to delete one named policy. Raise ResourceNotFoundError if there is no such policy.

Parameters name – the name of the policy to be deleted

Returns the ID of the deleted policy

Return type int

privacyidea.lib.policy.enable_policy(name, enable=True)
Enable or disable the policy with the given name :param name: :return: ID of the policy

1.16. Code Documentation 303

privacyIDEA Authentication System, Release 3.2.1

privacyidea.lib.policy.export_policies(policies)
This function takes a policy list and creates an export file from it

Parameters policies (list of policy dictionaries) – a policy definition

Returns the contents of the file

Return type string

privacyidea.lib.policy.get_action_values_from_options(scope, action, options)
This function is used in the library level to fetch policy action values from a given option dictionary.

The matched policies are not written to the audit log.

Returns A scalar, string or None

privacyidea.lib.policy.get_policy_condition_comparators()

Returns a dictionary mapping comparators to dictionaries with the following keys: *
"description", a human-readable description of the comparator

privacyidea.lib.policy.get_policy_condition_sections()

Returns a dictionary mapping condition sections to dictionaries with the following keys: *
"description", a human-readable description of the section

privacyidea.lib.policy.get_static_policy_definitions(scope=None)
These are the static hard coded policy definitions. They can be enhanced by token based policy definitions, that
can be found in lib.token.get_dynamic_policy_definitions.

Parameters scope (basestring) – Optional the scope of the policies

Returns allowed scopes with allowed actions, the type of action and a

description. :rtype: dict

privacyidea.lib.policy.import_policies(file_contents)
This function imports policies from a file. The file has a config_object format, i.e. the text file has a header

[<policy_name>] key = value

and key value pairs.

Parameters file_contents (basestring) – The contents of the file

Returns number of imported policies

Return type int

privacyidea.lib.policy.set_policy(name=None, scope=None, action=None, realm=None,
resolver=None, user=None, time=None, client=None,
active=True, adminrealm=None, priority=None,
check_all_resolvers=False, conditions=None)

Function to set a policy. If the policy with this name already exists, it updates the policy. It expects a dict of with
the following keys: :param name: The name of the policy :param scope: The scope of the policy. Something
like “admin” or “authentication” :param action: A scope specific action or a comma separated list of actions
:type active: basestring :param realm: A realm, for which this policy is valid :param resolver: A resolver, for
which this policy is valid :param user: A username or a list of usernames :param time: N/A if type() :param
client: A client IP with optionally a subnet like 172.16.0.0/16 :param active: If the policy is active or not :type
active: bool :param priority: the priority of the policy (smaller values having higher priority) :type priority: int
:param check_all_resolvers: If all the resolvers of a user should be

checked with this policy

304 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Parameters conditions – A list of 5-tuples (section, key, comparator, value, active) of policy
conditions

Returns The database ID od the the policy

Return type int

Job Queue

The following queue classes are known to privacyIDEA

Huey Queue Class

class privacyidea.lib.queues.huey_queue.HueyQueue(options)

enqueue(name, args, kwargs)
Schedule an invocation of a job on the external job queue.

Parameters

• name – Unique job name

• args – Tuple of positional arguments

• kwargs – Dictionary of keyword arguments

Returns None

huey

jobs

register_job(name, func)
Add a job to the internal registry.

Parameters

• name – Unique job name

• func – Function that should be executed by an external job queue

privacyidea.lib.queue.JOB_COLLECTOR = <privacyidea.lib.queue.JobCollector object>
A singleton is fine here, because it is only used at import time and once when a new app is created. Afterwards,
the object is unused.

class privacyidea.lib.queue.JobCollector
For most third-party job queue modules, the jobs are discovered by tracking all functions decorated with a @job
decorator. However, in order to invoke the decorator, one usually needs to provide the queue configuration (e.g.
the redis server) already. In privacyIDEA, we cannot do that, because the app config is not known yet – it will be
known when create_app is called! Thus, we cannot directly use the @job decorator, but need a job collector
that collects jobs in privacyIDEA code and registers them with the job queue module when create_app has
been called.

jobs

register_app(app)
Create an instance of a BaseQueue subclass according to the app config’s PI_JOB_QUEUE_CLASS
option and store it in the job_queue config. Register all collected jobs with this application. This
instance is shared between threads! This function should only be called once per process.

1.16. Code Documentation 305

privacyIDEA Authentication System, Release 3.2.1

Parameters app – privacyIDEA app

register_job(name, func, args, kwargs)
Register a job with the collector.

Parameters

• name – unique name of the job

• func – function of the job

• args – arguments passed to the job queue’s register_job method

• kwargs – keyword arguments passed to the job queue’s register_job method

privacyidea.lib.queue.get_job_queue()
Get the job queue registered with the current app. If no job queue is configured, raise a ServerError.

privacyidea.lib.queue.has_job_queue()
Return a boolean describing whether the current app has an app queue configured.

privacyidea.lib.queue.job(name, *args, **kwargs)
Decorator to mark a job to be collected by the job collector. All arguments are passed to register_job.

privacyidea.lib.queue.register_app(app)
Register the app app with the global job collector, if a PI_JOB_QUEUE_CLASS is non-empty. Do nothing
otherwise.

privacyidea.lib.queue.wrap_job(name, result)
Wrap a job and return a function that can be used like the original function. The returned function will always
return result. This assumes that a queue is configured! Otherwise, calling the resulting function will fail with
a ServerError.

Returns a function

Base class

class privacyidea.lib.queues.base.BaseQueue(options)
A queue object represents an external job queue and is configured with a dictionary of options. It allows to
register jobs, which are Python functions that may be executed outside of the request lifecycle. Every job is
identified by a unique job name. It then allows to delegate (or “enqueue”) an invocation of a job (which is
identified by its job name) to the external job queue. Currently, the queue only supports fire-and-forget jobs, i.e.
jobs without any return value.

enqueue(name, args, kwargs)
Schedule an invocation of a job on the external job queue.

Parameters

• name – Unique job name

• args – Tuple of positional arguments

• kwargs – Dictionary of keyword arguments

Returns None

register_job(name, func)
Add a job to the internal registry.

Parameters

• name – Unique job name

306 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• func – Function that should be executed by an external job queue

API Policies

Pre Policies

These are the policy decorators as PRE conditions for the API calls. I.e. these conditions are executed before the
wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also components from
flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.prepolicy.allowed_audit_realm(request=None, action=None)
This decorator function takes the request and adds additional parameters to the request according to the policy
for the SCOPE.ADMIN or ACTION.AUDIT :param request: :param action: :return: True

privacyidea.api.lib.prepolicy.api_key_required(request=None, action=None)
This is a decorator for check_user_pass and check_serial_pass. It checks, if a policy scope=auth, ac-
tion=apikeyrequired is set. If so, the validate request will only performed, if a JWT token is passed with
role=validate.

privacyidea.api.lib.prepolicy.auditlog_age(request=None, action=None)
This pre condition checks for the policy auditlog_age and set the “timelimit” parameter of the audit search API.

Check ACTION.AUDIT_AGE

The decorator can wrap GET /audit/

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.check_admin_tokenlist(request=None, action=None)
Depending on the policy scope=admin, action=tokenlist, the allowed_realms parameter is set to define, the token
of which realms and administrator is allowed to see.

Sets the allowed_realms None: means the admin has no restrictions []: the admin can not see any realms
[“realm1”, “realm2”. . .]: the admin can see these realms

Parameters request –

Returns

privacyidea.api.lib.prepolicy.check_anonymous_user(request=None, action=None)
This decorator function takes the request and verifies the given action for the SCOPE USER without an authen-
ticated user but the user from the parameters.

This is used with password_reset

Parameters

• request –

• action –

Returns True otherwise raises an Exception

1.16. Code Documentation 307

privacyIDEA Authentication System, Release 3.2.1

privacyidea.api.lib.prepolicy.check_base_action(request=None, action=None, anony-
mous=False)

This decorator function takes the request and verifies the given action for the SCOPE ADMIN or USER. :param
request: :param action: :param anonymous: If set to True, the user data is taken from the request

parameters.

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_external(request=None, action=’init’)
This decorator is a hook to an external check function, that is called before the token/init or token/assign API.

Parameters

• request (flask Request object) – The REST request

• action (basestring) – This is either “init” or “assign”

Returns either True or an Exception is raised

privacyidea.api.lib.prepolicy.check_max_token_realm(request=None, action=None)
Pre Policy This checks the maximum token per realm. Check ACTION.MAXTOKENREALM

This decorator can wrap: /token/init (with a realm and user) /token/assign /token/tokenrealms

Parameters

• req (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_max_token_user(request=None, action=None)
Pre Policy This checks the maximum token per user policy. Check ACTION.MAXTOKENUSER Check AC-
TION.MAXACTIVETOKENUSER

This decorator can wrap: /token/init (with a realm and user) /token/assign

Parameters

• req –

• action –

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_otp_pin(request=None, action=None)
This policy function checks if the OTP PIN that is about to be set follows the OTP PIN policies AC-
TION.OTPPINMAXLEN, ACTION.OTPPINMINLEN and ACTION.OTPPINCONTENTS and token-type-
specific PIN policy actions in the SCOPE.USER or SCOPE.ADMIN. It is used to decorate the API functions.

The pin is investigated in the params as “otppin” or “pin”

In case the given OTP PIN does not match the requirements an exception is raised.

privacyidea.api.lib.prepolicy.check_token_init(request=None, action=None)
This decorator function takes the request and verifies if the requested tokentype is allowed to be enrolled in the
SCOPE ADMIN or the SCOPE USER. :param request: :param action: :return: True or an Exception is raised

privacyidea.api.lib.prepolicy.check_token_upload(request=None, action=None)
This decorator function takes the request and verifies the given action for scope ADMIN :param req: :param
filename: :return:

308 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

privacyidea.api.lib.prepolicy.encrypt_pin(request=None, action=None)
This policy function is to be used as a decorator for several API functions. E.g. token/assign, token/setpin, to-
ken/init If the policy is set to define the PIN to be encrypted, the request.all_data is modified like this: encryptpin
= True

It uses the policy SCOPE.ENROLL, ACTION.ENCRYPTPIN

privacyidea.api.lib.prepolicy.enroll_pin(request=None, action=None)
This policy function is used as decorator for init token. It checks, if the user or the admin is allowed to set a
token PIN during enrollment. If not, it deleted the PIN from the request.

privacyidea.api.lib.prepolicy.init_random_pin(request=None, action=None)
This policy function is to be used as a decorator in the API init function If the policy is set accordingly it adds a
random PIN to the request.all_data like.

It uses the policy SCOPE.ENROLL, ACTION.OTPPINRANDOM to set a random OTP PIN during Token
enrollment

privacyidea.api.lib.prepolicy.init_token_defaults(request=None, action=None)
This policy function is used as a decorator for the API init function. Depending on policy settings it can add
token specific default values like totp_hashlib, hotp_hashlib, totp_otplen. . .

privacyidea.api.lib.prepolicy.init_tokenlabel(request=None, action=None)
This policy function is to be used as a decorator in the API init function. It adds the tokenlabel definition to the
params like this: params : { “tokenlabel”: “<u>@<r>” }

In addtion it adds the tokenissuer to the params like this: params : { “tokenissuer”: “privacyIDEA instance” }

It also checks if the force_app_pin policy is set and adds the corresponding value to params.

It uses the policy SCOPE.ENROLL, ACTION.TOKENLABEL and ACTION.TOKENISSUER to set the token-
label and tokenissuer of Smartphone tokens during enrollment and this fill the details of the response.

privacyidea.api.lib.prepolicy.is_remote_user_allowed(req)
Checks if the REMOTE_USER server variable is allowed to be used.

Note: This is not used as a decorator!

Parameters req – The flask request, containing the remote user and the client IP

Returns a bool value

privacyidea.api.lib.prepolicy.mangle(request=None, action=None)
This pre condition checks if either of the parameters pass, user or realm in a validate/check request should be
rewritten based on an authentication policy with action “mangle”. See mangle for an example.

Check ACTION.MANGLE

This decorator should wrap /validate/check

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

1.16. Code Documentation 309

privacyIDEA Authentication System, Release 3.2.1

privacyidea.api.lib.prepolicy.mock_fail(req, action)
This is a mock function as an example for check_external. This function creates a problem situation and the
token/init or token/assign will show this exception accordingly.

privacyidea.api.lib.prepolicy.mock_success(req, action)
This is a mock function as an example for check_external. This function returns success and the API call will
go on unmodified.

privacyidea.api.lib.prepolicy.papertoken_count(request=None, action=None)
This is a token specific wrapper for paper token for the endpoint /token/init. According to the policy
scope=SCOPE.ENROLL, action=PAPERACTION.PAPER_COUNT it sets the parameter papertoken_count to
enroll a paper token with such many OTP values.

Parameters

• request –

• action –

Returns

class privacyidea.api.lib.prepolicy.prepolicy(function, request, action=None)
This is the decorator wrapper to call a specific function before an API call. The prepolicy decorator is to be used
in the API calls. A prepolicy decorator then will modify the request data or raise an exception

privacyidea.api.lib.prepolicy.pushtoken_add_config(request, action)
This is a token specific wrapper for push token for the endpoint /token/init According to the policy
scope=SCOPE.ENROLL, action=SSL_VERIFY or action=FIREBASE_CONFIG the parameters are added to
the enrollment step. :param request: :param action: :return:

privacyidea.api.lib.prepolicy.pushtoken_disable_wait(request, action)
This is used for the /auth endpoint and sets the PUSH_ACTION.WAIT parameter to False.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.pushtoken_wait(request, action)
This is a auth specific wrapper to decorate /validate/check According to the policy scope=SCOPE.AUTH, ac-
tion=push_wait

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.realmadmin(request=None, action=None)
This decorator adds the first REALM to the parameters if the administrator, calling this API is a realm admin.
This way, if the admin calls e.g. GET /user without realm parameter, he will not see all users, but only users in
one of his realms.

TODO: If a realm admin is allowed to see more than one realm, this is not handled at the moment. We need
to change the underlying library functions!

Parameters

• request – The HTTP reqeust

310 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• action – The action like ACTION.USERLIST

privacyidea.api.lib.prepolicy.required_email(request=None, action=None)
This precondition checks if the “email” parameter matches the regular expression in the policy scope=register,
action=requiredemail. See requiredemail.

Check ACTION.REQUIREDEMAIL

This decorator should wrap POST /register

Parameters

• request – The Request Object

• action – An optional Action

Returns Modifies the request parameters or raises an Exception

privacyidea.api.lib.prepolicy.save_client_application_type(request, action)
This decorator is used to write the client IP and the HTTP user agent (clienttype) to the database.

In fact this is not a policy decorator, as it checks no policy. In fact, we could however one day define this as a
policy, too. :param req: :return:

privacyidea.api.lib.prepolicy.set_random_pin(request=None, action=None)
This policy function is to be used as a decorator in the API setrandompin function If the policy is set accordingly
it adds a random PIN to the request.all_data like.

It uses the policy ACTION.OTPPINSETRANDOM in SCOPE.ADMIN or SCOPE.USER to set a random OTP
PIN

privacyidea.api.lib.prepolicy.set_realm(request=None, action=None)
Pre Policy This pre condition gets the current realm and verifies if the realm should be rewritten due to the
policy definition. I takes the realm from the request and - if a policy matches - replaces this realm with the realm
defined in the policy

Check ACTION.SETREALM

This decorator should wrap /validate/check

Parameters

• request (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

privacyidea.api.lib.prepolicy.sms_identifiers(request=None, action=None)
This is a token specific wrapper for sms tokens to be used with the endpoint /token/init. According to the policy
scope=SCOPE.ADMIN or scope=SCOPE.USER action=SMSACTION.GATEWAYS the sms.identifier is only
allowed to be set to the listed gateways.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.tantoken_count(request=None, action=None)
This is a token specific wrapper for tan token for the endpoint /token/init. According to the policy

1.16. Code Documentation 311

privacyIDEA Authentication System, Release 3.2.1

scope=SCOPE.ENROLL, action=TANACTION.TANTOKEN_COUNT it sets the parameter tantoken_count to
enroll a tan token with such many OTP values.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.twostep_enrollment_activation(request=None,
action=None)

This policy function enables the two-step enrollment process according to the configured policies. It is used to
decorate the /token/init endpoint.

If a <type>_2step policy matches, the 2stepinit parameter is handled according to the policy. If no
policy matches, the 2stepinit parameter is removed from the request data.

privacyidea.api.lib.prepolicy.twostep_enrollment_parameters(request=None,
action=None)

If the 2stepinit parameter is set to true, this policy function reads additional configuration from policies and
adds it to request.all_data, that is:

• {type}_2step_serversize is written to 2step_serversize

• {type}_2step_clientsize is written to ‘‘2step_clientsize‘

• {type}_2step_difficulty is written to 2step_difficulty

If no policy matches, the value passed by the user is kept.

This policy function is used to decorate the /token/init endpoint.

privacyidea.api.lib.prepolicy.u2ftoken_allowed(request, action)

This is a token specific wrapper for u2f token for the endpoint /token/init. According to the policy
scope=SCOPE.ENROLL, action=U2FACTION.REQ it checks, if the assertion certificate is an allowed
U2F token type.

If the token, which is enrolled contains a non allowed attestation certificate, we bail out.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.prepolicy.u2ftoken_verify_cert(request, action)
This is a token specific wrapper for u2f token for the endpoint /token/init According to the policy
scope=SCOPE.ENROLL, action=U2FACTION.NO_VERIFY_CERT it can add a parameter to the enrollment
parameters to not verify the attestation certificate. The default is to verify the cert. :param request: :param
action: :return:

Post Policies

These are the policy decorators as POST conditions for the API calls. I.e. these conditions are executed after the
wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also components from
flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

312 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.postpolicy.add_user_detail_to_response(request, response)
This policy decorated is used in the AUTHZ scope. If the boolean value add_user_in_response is set, the details
will contain a dictionary “user” with all user details.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.autoassign(request, response)
This decorator decorates the function /validate/check. Depending on ACTION.AUTOASSIGN it checks if the
user has no token and if the given OTP-value matches a token in the users realm, that is not yet assigned to any
user.

If a token can be found, it assigns the token to the user also taking into account ACTION.MAXTOKENUSER
and ACTION.MAXTOKENREALM. :return:

privacyidea.api.lib.postpolicy.check_serial(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call has a serial number that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

privacyidea.api.lib.postpolicy.check_tokeninfo(request, response)
This policy function is used as a decorator for the validate API. It checks after a successful authentication if the
token has a matching tokeninfo field. If it does not match, authorization is denied. Then a PolicyException is
raised.

Parameters response (Response object) – The response of the decorated function

Returns A new modified response

privacyidea.api.lib.postpolicy.check_tokentype(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call is of a type that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

privacyidea.api.lib.postpolicy.construct_radius_response(request, response)
This decorator implements the /validate/radiuscheck endpoint. In case this URL was requested, a successful
authentication results in an empty response with a HTTP 204 status code. An unsuccessful authentication
results in an empty response with a HTTP 400 status code. :return:

privacyidea.api.lib.postpolicy.get_webui_settings(request, response)
This decorator is used in the /auth API to add configuration information like the logout_time or the pol-
icy_template_url to the response. :param request: flask request object :param response: flask response object
:return: the response

privacyidea.api.lib.postpolicy.mangle_challenge_response(request, response)
This policy decorator is used in the AUTH scope to decorate the /validate/check endpoint. It can modify the
contents of the response “detail”->”message” to allow a better readability for a challenge response text.

1.16. Code Documentation 313

privacyIDEA Authentication System, Release 3.2.1

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.no_detail_on_fail(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_fail is set, the details
will be stripped if the authentication request failed.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.no_detail_on_success(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_success is set, the details
will be stripped if the authentication request was successful.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.offline_info(request, response)
This decorator is used with the function /validate/check. It is not triggered by an ordinary policy but by a
MachineToken definition. If for the given Client and Token an offline application is defined, the response is
enhanced with the offline information - the hashes of the OTP.

class privacyidea.api.lib.postpolicy.postpolicy(function, request=None)
Decorator that allows one to call a specific function after the decorated function. The postpolicy decorator is to
be used in the API calls.

class privacyidea.api.lib.postpolicy.postrequest(function, request=None)
Decorator that is supposed to be used with after_request.

privacyidea.api.lib.postpolicy.save_pin_change(request, response, serial=None)
This policy function checks if the next_pin_change date should be stored in the tokeninfo table.

1. Check scope:enrollment and ACTION.CHANGE_PIN_FIRST_USE. This action is used, when the admin-
istrator enrolls a token or sets a PIN

2. Check scope:enrollment and ACTION.CHANGE_PIN_EVERY is used, if the user changes the PIN.

This function decorates /token/init and /token/setpin. The parameter “pin” and “otppin” is investigated.

Parameters

• request –

• action –

Returns

privacyidea.api.lib.postpolicy.sign_response(request, response)
This decorator is used to sign the response. It adds the nonce from the request, if it exist and adds the nonce and
the signature to the response.

314 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Note: This only works for JSON responses. So if we fail to decode the JSON, we just pass on.

The usual way to use it is, to wrap the after_request, so that we can also sign errors.

@postrequest(sign_response, request=request) def after_request(response):

Parameters

• request – The Request object

• response – The Response object

Policy Decorators

These are the policy decorator functions for internal (lib) policy decorators. policy decorators for the API (pre/post)
are defined in api/lib/policy

The functions of this module are tested in tests/test_lib_policy_decorator.py

privacyidea.lib.policydecorators.auth_cache(wrapped_function, user_object, passw, op-
tions=None)

Decorate lib.token:check_user_pass. Verify, if the authentication can be found in the auth_cache.

Parameters

• wrapped_function – usually “check_user_pass”

• user_object – User who tries to authenticate

• passw – The PIN and OTP

• options – Dict containing values for “g” and “clientip”.

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_lastauth(wrapped_function, user_or_serial,
passw, options=None)

This decorator checks the policy settings of ACTION.LASTAUTH If the last authentication stored in tokeninfo
last_auth_success of a token is exceeded, the authentication is denied.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})
OR token.check_serial_pass with the arguments (user, passw, options={})

Parameters

• wrapped_function – either check_user_pass or check_serial_pass

• user_or_serial – either the User user_or_serial or a serial

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_otppin(wrapped_function, *args, **kwds)
Decorator to decorate the tokenclass.check_pin function. Depending on the ACTION.OTPPIN it * either simply
accepts an empty pin * checks the pin against the userstore * or passes the request to the wrapped_function

Parameters wrapped_function – In this case the wrapped function should be

tokenclass.check_ping :param *args: args[1] is the pin :param **kwds: kwds[“options”] contains the flask g
:return: True or False

1.16. Code Documentation 315

privacyIDEA Authentication System, Release 3.2.1

privacyidea.lib.policydecorators.auth_user_does_not_exist(wrapped_function,
user_object, passw,
options=None)

This decorator checks, if the user does exist at all. If the user does exist, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_has_no_token(wrapped_function,
user_object, passw,
options=None)

This decorator checks if the user has a token at all. If the user has a token, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_passthru(wrapped_function, user_object,
passw, options=None)

This decorator checks the policy settings of ACTION.PASSTHRU. If the authentication against the userstore is
not successful, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_timelimit(wrapped_function, user_object,
passw, options=None)

This decorator checks the policy settings of ACTION.AUTHMAXSUCCESS, ACTION.AUTHMAXFAIL If
the authentication was successful, it checks, if the number of allowed successful authentications is exceeded
(AUTHMAXSUCCESS).

If the AUTHMAXFAIL is exceed it denies even a successful authentication.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

316 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.challenge_response_allowed(func)
This decorator is used to wrap tokenclass.is_challenge_request. It checks, if a challenge response authentication
is allowed for this token type. To allow this, the policy

scope:authentication, action:challenge_response must be set.

If the tokentype is not allowed for challenge_response, this decorator returns false.

See challenge_response.

Parameters func – wrapped function

privacyidea.lib.policydecorators.config_lost_token(wrapped_function, *args,
**kwds)

Decorator to decorate the lib.token.lost_token function. Depending on ACTION.LOSTTOKENVALID, AC-
TION.LOSTTOKENPWCONTENTS, ACTION.LOSTTOKENPWLEN it sets the check_otp parameter, to sig-
nal how the lostToken should be generated.

Parameters

• wrapped_function – Usually the function lost_token()

• args – argument “serial” as the old serial number

• kwds – keyword arguments like “validity”, “contents”, “pw_len”

kwds[“options”] contains the flask g

Returns calls the original function with the modified “validity”,

“contents” and “pw_len” argument

class privacyidea.lib.policydecorators.libpolicy(decorator_function)
This is the decorator wrapper to call a specific function before a library call in contrast to prepolicy and postpol-
icy, which are to be called in API Calls.

The decorator expects a named parameter “options”. In this options dict it will look for the flask global “g”.

privacyidea.lib.policydecorators.login_mode(wrapped_function, *args, **kwds)
Decorator to decorate the lib.auth.check_webui_user function. Depending on ACTION.LOGINMODE it sets
the check_otp parameter, to signal that the authentication should be performed against privacyIDEA.

Parameters

• wrapped_function – Usually the function check_webui_user

• args – arguments user_obj and password

• kwds – keyword arguments like options and !check_otp!

kwds[“options”] contains the flask g :return: calls the original function with the modified “check_otp” argument

privacyidea.lib.policydecorators.reset_all_user_tokens(wrapped_function, *args,
**kwds)

Resets all tokens if the corresponding policy is set.

Parameters

1.16. Code Documentation 317

privacyIDEA Authentication System, Release 3.2.1

• token – The successful token, the tokenowner is used to find policies.

• tokenobject_list – The list of all the tokens of the user

• options – options dictionary containing g.

Returns None

Event Handler

The following event handlers are known to privacyIDEA

Event Handler Base Class

class privacyidea.lib.eventhandler.base.BaseEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a list of available actions, that are provided by this event handler. :return: dictionary
of actions.

allowed_positions
This returns the allowed positions of the event handler definition. This can be “post” or “pre” or both.
:return: list of allowed positions

check_condition(options)
Check if all conditions are met and if the action should be executed. The the conditions are met, we return
“True” :return: True

conditions
The UserNotification can filter for conditions like * type of logged in user and * successful or failed
value.success

allowed types are str, multi, text, regexp

Returns dict

description = 'This is the base class of an EventHandler with no functionality'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g and request and the handler_def
configuration

Returns

events
This method returns a list allowed events, that this event handler can be bound to and which it can handle
with the corresponding actions.

An eventhandler may return an asterisk [“*”] indicating, that it can be used in all events. :return: list of
events

318 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

identifier = 'BaseEventHandler'

User Notification Event Handler

class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

actions
This method returns a dictionary of allowed actions and possible options in this handler module.

Returns dict with actions

allowed_positions
This returns the allowed positions of the event handler definition. :return: list of allowed positions

description = 'This eventhandler notifies the user about actions on his tokens'

do(action, options=None)
This method executes the defined action in the given event.

Parameters

• action –

• options (dict) – Contains the flask parameters g, request, response and the han-
dler_def configuration

Returns

identifier = 'UserNotification'

class privacyidea.lib.event.EventConfiguration
This class is supposed to contain the event handling configuration during the Request. The currently defined
events are fetched from the request-local config object.

events
Shortcut for retrieving the currently defined event handlers from the request-local config object.

get_event(eventid)
Return the reduced list with the given eventid. This list should only have one element.

Parameters eventid (int or None) – id of the event

Returns list with one element

get_handled_events(eventname, position=’post’)
Return a list of the event handling definitions for the given eventname and the given position.

Parameters

• eventname – The name of the event

• position – the position of the event definition

Returns

privacyidea.lib.event.delete_event(event_id)
Delete the event configuration with this given ID. :param event_id: The database ID of the event. :type event_id:
int :return:

1.16. Code Documentation 319

privacyIDEA Authentication System, Release 3.2.1

privacyidea.lib.event.enable_event(event_id, enable=True)
Enable or disable the and event :param event_id: ID of the event :return:

class privacyidea.lib.event.event(eventname, request, g)
This is the event decorator that calls the event handler in the handler module. This event decorator can be used
at any API call

privacyidea.lib.event.get_handler_object(handlername)
Return an event handler object based on the Name of the event handler class

Parameters handlername – The identifier of the Handler Class

Returns

privacyidea.lib.event.set_event(name, event, handlermodule, action, conditions=None,
ordering=0, options=None, id=None, active=True, posi-
tion=’post’)

Set an event handling configuration. This writes an entry to the database eventhandler.

Parameters

• name – The name of the event definition

• event (basestring) – The name of the event to react on. Can be a single event or a
comma separated list.

• handlermodule (basestring) – The identifier of the event handler module. This is
an identifier string like “UserNotification”

• action (basestring) – The action to perform. This is an action defined by the handler
module

• conditions (dict) – A condition. Only if this condition is met, the action is performed.

• ordering (integer) – An optional ordering of the event definitions.

• options (dict) – Additional options, that are needed as parameters for the action

• id (int) – The DB id of the event. If the id is given, the event is updated. Otherwise a new
entry is generated.

• position (basestring) – The position of the event handler being “post” or “pre”

Returns The id of the event.

SMS Provider

The following SMS providers are know to privacyIDEA

HTTP SMS Provider

class privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider(db_smsprovider_object=None,
smsgate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

320 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

submit_message(phone, message)
send a message to a phone via an http sms gateway

Parameters

• phone – the phone number

• message – the message to submit to the phone

Returns

Sipgate SMS Provider

class privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider(db_smsprovider_object=None,
sms-
gate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

submit_message(phone, message)
Sends the SMS. It should return a bool indicating if the SMS was sent successfully.

In case of SMS send fail, an Exception should be raised. :return: Success :rtype: bool

SMTP SMS Provider

class privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider(db_smsprovider_object=None,
smsgate-
way=None)

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values.

Returns dict

submit_message(phone, message)
Submits the message for phone to the email gateway.

Returns true in case of success

In case of a failure an exception is raised

SMSProvider is the base class for submitting SMS. It provides 3 different imlementations:

• HTTP: submitting SMS via an HTTP gateway of an SMS provider

• SMTP: submitting SMS via an SMTP gateway of an SMS provider

• Sipgate: submitting SMS via Sipgate service

1.16. Code Documentation 321

privacyIDEA Authentication System, Release 3.2.1

Base Class

class privacyidea.lib.smsprovider.SMSProvider.ISMSProvider(db_smsprovider_object=None,
smsgateway=None)

the SMS Provider Interface - BaseClass

check_configuration()
This method checks the sanity of the configuration of this provider. If there is a configuration error, than
an exception is raised. :return:

load_config(config_dict)
Load the configuration dictionary

Parameters config_dict (dict) – The conifugration of the SMS provider

Returns None

classmethod parameters()
Return a dictionary, that describes the parameters and options for the SMS provider. Parameters are re-
quired keys to values with defined keys, while options can be any combination.

Each option is the key to another dict, that describes this option, if it is required, a description and which
values it can take. The values are optional.

Additional options can not be named in advance. E.g. some provider specific HTTP parameters of HTTP
gateways are options. The HTTP parameter for the SMS text could be “text” at one provider and “sms” at
another one.

The options can be fixed values or also take the tags {otp}, {user}, {phone}.

Returns dict

submit_message(phone, message)
Sends the SMS. It should return a bool indicating if the SMS was sent successfully.

In case of SMS send fail, an Exception should be raised. :return: Success :rtype: bool

UserIdResolvers

The useridresolver is responsible for getting userids for loginnames and vice versa.

This base module contains the base class UserIdResolver.UserIdResolver and also the community class PasswdIdRe-
solver.IdResolver, that is inherited from the base class.

Base class

class privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

add_user(attributes=None)
Add a new user in the useridresolver. This is only possible, if the UserIdResolver supports this and if we
have write access to the user store.

Parameters

• username (basestring) – The login name of the user

• attributes – Attributes according to the attribute mapping

Returns The new UID of the user. The UserIdResolver needs to

322 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

determine the way how to create the UID.

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

Parameters

• uid (string or int) – The uid in the resolver

• password (string) – the password to check. Usually in cleartext

Returns True or False

Return type bool

close()
Hook to close down the resolver after one request

delete_user(uid)
Delete a user from the useridresolver. The user is referenced by the user id. :param uid: The uid of the
user object, that should be deleted. :type uid: basestring :return: Returns True in case of success :rtype:
bool

editable
Return true, if the Instance! of this resolver is configured editable. :return:

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

static getResolverClassType()
provide the resolver type for registration

static getResolverDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
get resolver specific information :return: the resolver identifier string - empty string if not exist

static getResolverType()
getResolverType - return the type of the resolver

Returns returns the string ‘ldapresolver’

Return type string

getUserId(loginName)
The loginname is resolved to a user_id. Depending on the resolver type the user_id can be an ID (like in
/etc/passwd) or a string (like the DN in LDAP)

It needs to return an emptry string, if the user does not exist.

Parameters loginName (sting) – The login name of the user

Returns The ID of the user

Return type str

1.16. Code Documentation 323

privacyIDEA Authentication System, Release 3.2.1

getUserInfo(userid)
This function returns all user information for a given user object identified by UserID. :param userid: ID
of the user in the resolver :type userid: int or string :return: dictionary, if no object is found, the dictionary
is empty :rtype: dict

getUserList(searchDict=None)
This function finds the user objects, that have the term ‘value’ in the user object field ‘key’

Parameters searchDict (dict) – dict with key values of user attributes - the key may be
something like ‘loginname’ or ‘email’ the value is a regular expression.

Returns list of dictionaries (each dictionary contains a user object) or an empty string if no
object is found.

Return type list of dicts

getUsername(userid)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: string

has_multiple_loginnames
Return if this resolver has multiple loginname attributes :return: bool

loadConfig(config)
Load the configuration from the dict into the Resolver object. If attributes are missing, need to set default
values. If required attributes are missing, this should raise an Exception.

Parameters config (dict) – The configuration values of the resolver

classmethod testconnection(param)
This function lets you test if the parameters can be used to create a working resolver. The implementation
should try to connect to the user store and verify if users can be retrieved. In case of success it should
return a text like “Resolver config seems OK. 123 Users found.”

Parameters param (dict) – The parameters that should be saved as the resolver

Returns returns True in case of success and a descriptive text

Return type tuple

update_user(uid, attributes=None)
Update an existing user. This function is also used to update the password. Since the attribute mapping
know, which field contains the password, this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not modified.

Parameters

• uid (basestring) – The uid of the user object in the resolver.

• attributes (dict) – Attributes to be updated.

Returns True in case of success

PasswdResolver

class privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

324 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

We do not support shadow passwords. so the seconds column of the passwd file needs to contain the
crypted password

If the password is a unicode object, it is encoded according to ENCODING first.

Parameters

• uid (int) – The uid of the user

• password (sting) – The password in cleartext

Returns True or False

Return type bool

checkUserId(line, pattern)
Check if a userid matches a pattern. A pattern can be “=1000”, “>=1000”, “<2000” or “between
1000,2000”.

Parameters

• line (dict) – the dictionary of a user

• pattern (string) – match pattern with <, <=. . .

Returns True or False

Return type bool

checkUserName(line, pattern)
check for user name

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
return the resolver identifier string, which in fact is filename, where it points to.

getSearchFields(searchDict=None)
show, which search fields this userIdResolver supports

TODO: implementation is not completed

Parameters searchDict (dict) – fields, which can be queried

Returns dict of all searchFields

Return type dict

getUserId(LoginName)
search the user id from the login name

Parameters LoginName – the login of the user (as unicode)

Returns the userId

Return type str

getUserInfo(userId, no_passwd=False)
get some info about the user as we only have the loginId, we have to traverse the dict for the value

Parameters

• userId – the to be searched user

1.16. Code Documentation 325

privacyIDEA Authentication System, Release 3.2.1

• no_passwd – retrun no password

Returns dict of user info

getUserList(searchDict=None)
get a list of all users matching the search criteria of the searchdict

Parameters searchDict – dict of search expressions

getUsername(userId)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: str

loadConfig(configDict)
The UserIdResolver could be configured from the pylons app config - here this could be the passwd file ,
whether it is /etc/passwd or /etc/shadow

loadFile()
Loads the data of the file initially. if the self.fileName is empty, it loads /etc/passwd. Empty lines are
ignored.

static setup(config=None, cache_dir=None)
this setup hook is triggered, when the server starts to serve the first request

Parameters config (the privacyidea config dict) – the privacyidea config

LDAPResolver

class privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

add_user(attributes=None)
Add a new user to the LDAP directory. The user can only be created in the LDAP using a DN. So we have
to construct the DN out of the given attributes.

attributes are these “username”, “surname”, “givenname”, “email”, “mobile”, “phone”, “password”

Parameters attributes (dict) – Attributes according to the attribute mapping

Returns The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

checkPass(uid, password)
This function checks the password for a given uid. - returns true in case of success - false if password does
not match

static create_connection(authtype=None, server=None, user=None, password=None,
auto_bind=False, client_strategy=’SYNC’, check_names=True,
auto_referrals=False, receive_timeout=5, start_tls=False)

Create a connection to the LDAP server.

Parameters

• authtype –

• server –

• user –

• password –

• auto_bind –

326 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• client_strategy –

• check_names –

• auto_referrals –

• receive_timeout – At the moment we do not use this, since receive_timeout is not
supported by ldap3 < 2.

Returns

classmethod create_serverpool(urilist, timeout, get_info=None, tls_context=None,
rounds=2, exhaust=30, pool_cls=<class
’ldap3.core.pooling.ServerPool’>)

This create the serverpool for the ldap3 connection. The URI from the LDAP resolver can contain a comma
separated list of LDAP servers. These are split and then added to the pool.

See https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

Parameters

• urilist (basestring) – The list of LDAP URIs, comma separated

• timeout (float) – The connection timeout

• get_info – The get_info type passed to the ldap3.Sever constructor. default:
ldap3.SCHEMA, should be ldap3.NONE in case of a bind.

• tls_context – A ldap3.tls object, which defines if certificate verification should be
performed

• rounds – The number of rounds we should cycle through the server pool before giving
up

• exhaust – The seconds, for how long a non-reachable server should be removed from
the serverpool

• pool_cls – ldap3.ServerPool subclass that should be instantiated

Returns Server Pool

Return type serverpool_cls

delete_user(uid)
Delete a user from the LDAP Directory.

The user is referenced by the user id. :param uid: The uid of the user object, that should be deleted. :type
uid: basestring :return: Returns True in case of success :rtype: bool

editable
Return true, if the instance of the resolver is configured editable :return:

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
Returns the resolver Id This should be an Identifier of the resolver, preferable the type and the name of the
resolver.

Returns the id of the resolver

Return type str

1.16. Code Documentation 327

https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

privacyIDEA Authentication System, Release 3.2.1

getUserId(LoginName)
resolve the loginname to the userid.

Parameters LoginName (str) – The login name from the credentials

Returns UserId as found for the LoginName

Return type str

getUserInfo(userId)
This function returns all user info for a given userid/object.

Parameters userId (string) – The userid of the object

Returns A dictionary with the keys defined in self.userinfo

Return type dict

getUserList(searchDict=None)

Parameters searchDict (dict) – A dictionary with search parameters

Returns list of users, where each user is a dictionary

getUsername(user_id)
Returns the username/loginname for a given user_id :param user_id: The user_id in this resolver :type
user_id: string :return: username :rtype: string

get_persistent_serverpool(get_info=None)
Return a process-level instance of LockingServerPool for the current LDAP resolver configuration.
Retrieve it from the app-local store. If such an instance does not exist yet, create one. :param get_info:
one of ldap3.SCHEMA, ldap3.NONE, ldap3.ALL :return: a LockingServerPool instance

get_serverpool_instance(get_info=None)
Return a ServerPool instance that should be used. If SERVERPOOL_PERSISTENT is enabled, invoke
get_persistent_serverpool to retrieve a per-process server pool instance. If it is not enabled,
invoke create_serverpool to retrieve a per-request server pool instance. :param get_info: one of
ldap3.SCHEMA, ldap3.NONE, ldap3.ALL :return: a ServerPool/LockingServerPool instance

has_multiple_loginnames
Return if this resolver has multiple loginname attributes :return: bool

loadConfig(config)
Load the config from conf.

Parameters config (dict) – The configuration from the Config Table

‘#ldap_uri’: ‘LDAPURI’, ‘#ldap_basedn’: ‘LDAPBASE’, ‘#ldap_binddn’: ‘BINDDN’,
‘#ldap_password’: ‘BINDPW’, ‘#ldap_timeout’: ‘TIMEOUT’, ‘#ldap_sizelimit’: ‘SIZELIMIT’,
‘#ldap_loginattr’: ‘LOGINNAMEATTRIBUTE’, ‘#ldap_searchfilter’: ‘LDAPSEARCHFILTER’,
‘#ldap_mapping’: ‘USERINFO’, ‘#ldap_uidtype’: ‘UIDTYPE’, ‘#ldap_noreferrals’ : ‘NOREFER-
RALS’, ‘#ldap_editable’ : ‘EDITABLE’, ‘#ldap_certificate’: ‘CACERTIFICATE’,

static split_uri(uri)
Splits LDAP URIs like: * ldap://server * ldaps://server * ldap[s]://server:1234 * server :param uri: The
LDAP URI :return: Returns a tuple of Servername, Port and SSL(bool)

classmethod testconnection(param)
This function lets you test the to be saved LDAP connection.

Parameters param (dict) – A dictionary with all necessary parameter to test the connection.

Returns Tuple of success and a description

Return type (bool, string)

328 Chapter 1. Table of Contents

ldap://server

privacyIDEA Authentication System, Release 3.2.1

Parameters are: BINDDN, BINDPW, LDAPURI, TIMEOUT, LDAPBASE, LOGINNAMEAT-
TRIBUTE, LDAPSEARCHFILTER, USERINFO, SIZELIMIT, NOREFERRALS, CACERTIFI-
CATE, AUTHTYPE, TLS_VERIFY, TLS_VERSION, TLS_CA_FILE, SERVERPOOL_ROUNDS,
SERVERPOOL_SKIP

update_user(uid, attributes=None)
Update an existing user. This function is also used to update the password. Since the attribute mapping
know, which field contains the password, this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not modified.

Parameters

• uid (basestring) – The uid of the user object in the resolver.

• attributes (dict) – Attributes to be updated.

Returns True in case of success

Audit log

Base class

class privacyidea.lib.auditmodules.base.Audit(config=None)

add_policy(policyname)
This method adds a triggered policyname to the list of triggered policies. :param policyname: A string or
a list of strings as policynames :return:

add_to_log(param, add_with_comma=False)
Add to existing log entry :param param: :param add_with_comma: If set to true, new values will be
appended comma separated :return:

audit_entry_to_dict(audit_entry)
If the search_query returns an iterator with elements that are not a dictionary, the audit module needs to
provide this function, to convert the audit entry to a dictionary.

csv_generator(param=None, user=None, timelimit=None)
A generator that can be used to stream the audit log

Parameters param –

Returns

finalize_log()
This method is called to finalize the audit_data. I.e. sign the data and write it to the database. It should
hash the data and do a hash chain and sign the data

get_audit_id()

get_count(search_dict, timedelta=None, success=None)
Returns the number of found log entries. E.g. used for checking the timelimit.

Parameters param – List of filter parameters

Returns number of found entries

get_total(param, AND=True, display_error=True, timelimit=None)
This method returns the total number of audit entries in the audit store

initialize()

1.16. Code Documentation 329

privacyIDEA Authentication System, Release 3.2.1

initialize_log(param)
This method initialized the log state. The fact, that the log state was initialized, also needs to be logged.
Therefor the same params are passed as i the log method.

is_readable = False

log(param)
This method is used to log the data. During a request this method can be called several times to fill the
internal audit_data dictionary.

Add new log details in param to the internal log data self.audit_data.

Parameters param (dict) – Log data that is to be added

Returns None

log_token_num(count)
Log the number of the tokens. Can be passed like log_token_num(get_tokens(count=True))

Parameters count (int) – Number of tokens

Returns

read_keys(pub, priv)
Set the private and public key for the audit class. This is achieved by passing the entries.

#priv = config.get(“privacyideaAudit.key.private”) #pub = config.get(“privacyideaAudit.key.public”)

Parameters

• pub (string with filename) – Public key, used for verifying the signature

• priv (string with filename) – Private key, used to sign the audit entry

Returns None

search(search_dict, page_size=15, page=1, sortorder=’asc’, timelimit=None)
This function is used to search audit events.

param: Search parameters can be passed.

return: A pagination object

This function is deprecated.

search_query(search_dict, page_size=15, page=1, sortorder=’asc’, sortname=’number’, time-
limit=None)

This function returns the audit log as an iterator on the result

SQL Audit module

class privacyidea.lib.auditmodules.sqlaudit.Audit(config=None)
This is the SQLAudit module, which writes the audit entries to an SQL database table. It requires the configu-
ration parameters in pi.cfg: * PI_AUDIT_KEY_PUBLIC * PI_AUDIT_KEY_PRIVATE

If you want to host the SQL Audit database in another DB than the token DB, you can use: *
PI_AUDIT_SQL_URI

It also takes the optional parameters: * PI_AUDIT_POOL_SIZE * PI_AUDIT_POOL_RECYCLE *
PI_AUDIT_SQL_TRUNCATE * PI_AUDIT_NO_SIGN

You can use PI_AUDIT_NO_SIGN = True to avoid signing of the audit log.

If PI_CHECK_OLD_SIGNATURES = True old style signatures (text-book RSA) will be checked as well, oth-
erwise they will be marked as ‘FAIL’.

330 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

audit_entry_to_dict(audit_entry)
If the search_query returns an iterator with elements that are not a dictionary, the audit module needs to
provide this function, to convert the audit entry to a dictionary.

clear()
Deletes all entries in the database table. This is only used for test cases! :return:

csv_generator(param=None, user=None, timelimit=None)
Returns the audit log as csv file. :param timelimit: Limit the number of dumped entries by time :type
timelimit: datetime.timedelta :param param: The request parameters :type param: dict :param user: The
user, who issued the request :return: None. It yields results as a generator

finalize_log()
This method is used to log the data. It should hash the data and do a hash chain and sign the data

get_count(search_dict, timedelta=None, success=None)
Returns the number of found log entries. E.g. used for checking the timelimit.

Parameters param – List of filter parameters

Returns number of found entries

get_total(param, AND=True, display_error=True, timelimit=None)
This method returns the total number of audit entries in the audit store

search(search_dict, page_size=15, page=1, sortorder=’asc’, timelimit=None)
This function returns the audit log as a Pagination object.

Parameters timelimit (timedelta) – Only audit entries newer than this timedelta will be
searched

search_query(search_dict, page_size=15, page=1, sortorder=’asc’, sortname=’number’, time-
limit=None)

This function returns the audit log as an iterator on the result

Parameters timelimit (timedelta) – Only audit entries newer than this timedelta will be
searched

Monitoring

Base class

class privacyidea.lib.monitoringmodules.base.Monitoring(config=None)

add_value(stats_key, stats_value, timestamp, reset_values=False)
This method adds a measurement point to the statistics key “stats_key”. If reset_values is set to True, all
old values of this stats_key are deleted.

Parameters

• stats_key – Identifier of the stats

• stats_value – measured value

• timestamp (timezone aware datetime) – the timestamp of the measurement

• reset_values – boolean to indicate the reset

Returns None

1.16. Code Documentation 331

privacyIDEA Authentication System, Release 3.2.1

delete(stats_key, start_timestamp, end_timestamp)
Delete all entries of the stats_key for the given time frame. The start_timestamp and end_timestamp are
also deleted.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – beginning of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns number of deleted entries

get_keys()
Return a list of the available statistic keys.

Returns list of identifiers

get_last_value(stats_key)
returns the last value of the given stats_key in time. :param stats_key: The identifier of the stats :return: a
string value.

get_values(stats_key, start_timestamp=None, end_timestamp=None)
Return a list of tuples of (timestamp, value) for the requested stats_key.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – start of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns

SQL Statistics module

class privacyidea.lib.monitoringmodules.sqlstats.Monitoring(config=None)

add_value(stats_key, stats_value, timestamp, reset_values=False)
This method adds a measurement point to the statistics key “stats_key”. If reset_values is set to True, all
old values of this stats_key are deleted.

Parameters

• stats_key – Identifier of the stats

• stats_value – measured value

• timestamp (timezone aware datetime) – the timestamp of the measurement

• reset_values – boolean to indicate the reset

Returns None

delete(stats_key, start_timestamp, end_timestamp)
Delete all entries of the stats_key for the given time frame. The start_timestamp and end_timestamp are
also deleted.

Parameters

• stats_key – Identifier of the stats

332 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

• start_timestamp (timezone aware datetime) – beginning of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns number of deleted entries

get_keys()
Return a list of all stored keys. :return:

get_last_value(stats_key)
returns the last value of the given stats_key in time. :param stats_key: The identifier of the stats :return: a
string value.

get_values(stats_key, start_timestamp=None, end_timestamp=None, date_strings=False)
Return a list of tuples of (timestamp, value) for the requested stats_key.

Parameters

• stats_key – Identifier of the stats

• start_timestamp (timezone aware datetime) – start of the time frame

• end_timestamp (timezone aware datetime) – end of the time frame

Returns

Machine Resolvers

Machine Resolvers are used to find machines in directories like LDAP, Active Directory, puppet, salt, or the /etc/hosts
file.

Machines can then be used to assign applications and tokens to those machines.

Base class

class privacyidea.lib.machines.base.BaseMachineResolver(name, config=None)

static get_config_description()
Returns a description what config values are expected and allowed.

Returns dict

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return a list of all machine objects in this resolver

Parameters substring – If set to true, it will also match search_hostnames,

1.16. Code Documentation 333

privacyIDEA Authentication System, Release 3.2.1

that only are a subnet of the machines hostname. :type substring: bool :param any: a substring that matches
EITHER hostname, machineid or ip :type any: basestring :return: list of machine objects

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

Returns None

static testconnection(params)
This method can test if the passed parameters would create a working machine resolver.

Parameters params –

Returns tupple of success and description

Return type (bool, string)

Hosts Machine Resolver

class privacyidea.lib.machines.hosts.HostsMachineResolver(name, config=None)

classmethod get_config_description()
Returns a description what config values are expected and allowed.

Returns dict

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return matching machines.

Parameters

• machine_id – can be matched as substring

• hostname – can be matched as substring

• ip – can not be matched as substring

• substring (bool) – Whether the filtering should be a substring matching

• any (basestring) – a substring that matches EITHER hostname, machineid or ip

Returns list of Machine Objects

334 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

Returns None

static testconnection(params)
Test if the given filename exists.

Parameters params –

Returns

PinHandler

This module provides the PIN Handling base class. In case of enrolling a token, a PIN Handling class can be used to
send the PIN via Email, call an external program or print a letter.

This module is not tested explicitly. It is tested in conjunction with the policy decorator init_random_pin in
tests/test_api_lib_policy.py

Base class

class privacyidea.lib.pinhandling.base.PinHandler(options=None)
A PinHandler Class is responsible for handling the OTP PIN during enrollment.

It receives the necessary data like

• the PIN

• the serial number of the token

• the username

• all other user data:

– given name, surname

– email address

– telephone

– mobile (if the module would deliver via SMS)

• the administrator name (who enrolled the token)

send(pin, serial, user, tokentype=None, logged_in_user=None, userdata=None, options=None)

Parameters

• pin – The PIN in cleartext

• user (user object) – the owner of the token

• tokentype (basestring) – the type of the token

• logged_in_user (dict) – The logged in user, who enrolled the token

• userdata (dict) – Handler-specific user data like email, mobile. . .

• options (dict) – Handler-specific additional options

Returns True in case of success

1.16. Code Documentation 335

privacyIDEA Authentication System, Release 3.2.1

Return type bool

1.16.3 DB level

On the DB level you can simply modify all objects.

The database model

class privacyidea.models.Admin(**kwargs)
The administrators for managing the system. To manage the administrators use the command pi-manage.

In addition certain realms can be defined to be administrative realms.

Parameters

• username (basestring) – The username of the admin

• password (basestring) – The password of the admin (stored using PBKDF2, salt and
pepper)

• email (basestring) – The email address of the admin (not used at the moment)

class privacyidea.models.Audit(action=”, success=0, serial=”, token_type=”, user=”,
realm=”, resolver=”, administrator=”, action_detail=”,
info=”, privacyidea_server=”, client=”, loglevel=’default’,
clearance_level=’default’, policies=”)

This class stores the Audit entries

class privacyidea.models.AuthCache(username, realm, resolver, authentication,
first_auth=None, last_auth=None)

class privacyidea.models.CAConnector(name, catype)
The table “caconnector” contains the names and types of the defined CA connectors. Each connector has a
different configuration, that is stored in the table “caconnectorconfig”.

class privacyidea.models.CAConnectorConfig(caconnector_id=None, Key=None,
Value=None, caconnector=None, Type=”,
Description=”)

Each CAConnector can have multiple configuration entries. Each CA Connector type can have different required
config values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set
to “password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.Challenge(serial, transaction_id=None, challenge=u”, data=u”, ses-
sion=u”, validitytime=120)

Table for handling of the generic challenges.

get(timestamp=False)
return a dictionary of all vars in the challenge class

Parameters timestamp (bool) – if true, the timestamp will given in a readable format 2014-
11-29 21:56:43.057293

Returns dict of vars

get_otp_status()
This returns how many OTPs were already received for this challenge. and if a valid OTP was received.

Returns tuple of count and True/False

Return type tuple

336 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

is_valid()
Returns true, if the expiration time has not passed, yet. :return: True if valid :rtype: bool

set_data(data)
set the internal data of the challenge :param data: unicode data :type data: string, length 512

class privacyidea.models.ClientApplication(**kwargs)
This table stores the clients, which sent an authentication request to privacyIDEA. This table is filled automati-
cally by authentication requests.

class privacyidea.models.Config(Key, Value, Type=u”, Description=u”)
The config table holds all the system configuration in key value pairs.

Additional configuration for realms, resolvers and machine resolvers is stored in specific tables.

class privacyidea.models.EventCounter(name, value=0, node=”)
This table stores counters of the event handler “Counter”.

Note that an event counter name does not correspond to just one, but rather several table rows, because we store
event counters for each privacyIDEA node separately. This is intended to improve the performance of replicated
setups, because each privacyIDEA node then only writes to its own “private” table row. This way, we avoid
locking issues that would occur if all nodes write to the same table row.

decrease()
Decrease the value of a counter. :return:

increase()
Increase the value of a counter :return:

class privacyidea.models.EventHandler(name, event, handlermodule, action, condition=”, or-
dering=0, options=None, id=None, conditions=None,
active=True, position=’post’)

This model holds the list of defined events and actions to this events. A handler module can be bound to an
event with the corresponding condition and action.

get()
Return the serialized eventhandler object including the options

Returns complete dict

Rytpe dict

class privacyidea.models.EventHandlerCondition(eventhandler_id, Key, Value, compara-
tor=’equal’)

Each EventHandler entry can have additional conditions according to the handler module

class privacyidea.models.EventHandlerOption(eventhandler_id, Key, Value, Type=”, De-
scription=”)

Each EventHandler entry can have additional options according to the handler module.

class privacyidea.models.MachineResolver(name, rtype)
This model holds the definition to the machinestore. Machines could be located in flat files, LDAP directory or
in puppet services or other. . .

The usual MachineResolver just holds a name and a type and a reference to its config

class privacyidea.models.MachineResolverConfig(resolver_id=None, Key=None,
Value=None, resolver=None, Type=”,
Description=”)

Each Machine Resolver can have multiple configuration entries. The config entries are referenced by the id of
the machine resolver

1.16. Code Documentation 337

privacyIDEA Authentication System, Release 3.2.1

class privacyidea.models.MachineToken(machineresolver_id=None, machineresolver=None,
machine_id=None, token_id=None, serial=None,
application=None)

The MachineToken assigns a Token and an application type to a machine. The Machine is represented as the
tuple of machineresolver.id and the machine_id. The machine_id is defined by the machineresolver.

This can be an n:m mapping.

class privacyidea.models.MachineTokenOptions(machinetoken_id, key, value)
This class holds an Option for the token assigned to a certain client machine. Each Token-Clientmachine-
Combination can have several options.

class privacyidea.models.MethodsMixin
This class mixes in some common Class table functions like delete and save

class privacyidea.models.MonitoringStats(timestamp, key, value)
This is the table that stores measured, arbitrary statistic points in time.

This could be used to store time series but also to store current values, by simply fetching the last value from
the database.

class privacyidea.models.PasswordReset(recoverycode, username, realm, resolver=”,
email=None, timestamp=None, expiration=None,
expiration_seconds=3600)

Table for handling password resets. This table stores the recoverycodes sent to a given user

The application should save the HASH of the recovery code. Just like the password for the Admins the appli-
action shall salt and pepper the hash of the recoverycode. A database admin will not be able to inject a rogue
recovery code.

A user can get several recoverycodes. A recovery code has a validity period

Optional: The email to which the recoverycode was sent, can be stored.

class privacyidea.models.PeriodicTask(name, active, interval, node_list, taskmodule, order-
ing, options=None, id=None)

This class stores tasks that should be run periodically.

aware_last_update
Return self.last_update with attached UTC tzinfo

get()
Return the serialized periodic task object including the options and last runs. The last runs are returned as
timezone-aware UTC datetimes.

Returns complete dict

save()
If the entry has an ID set, update the entry. If not, create one. Set last_update to the current time.
:return: the entry ID

set_last_run(node, timestamp)
Store the information that the last run of the periodic job occurred on node at timestamp. :param node:
Node name as a string :param timestamp: Timestamp as UTC datetime (without timezone information)
:return:

class privacyidea.models.PeriodicTaskLastRun(periodictask_id, node, timestamp)
Each PeriodicTask entry stores, for each node, the timestamp of the last successful run.

aware_timestamp
Return self.timestamp with attached UTC tzinfo

338 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

save()
Create or update a PeriodicTaskLastRun entry, depending on the value of self.id. :return: the entry id

class privacyidea.models.PeriodicTaskOption(periodictask_id, key, value)
Each PeriodicTask entry can have additional options according to the task module.

save()
Create or update a PeriodicTaskOption entry, depending on the value of self.id :return: the entry ID

class privacyidea.models.Policy(name, active=True, scope=”, action=”, realm=”, admin-
realm=”, resolver=”, user=”, client=”, time=”, priority=1,
check_all_resolvers=False, conditions=None)

The policy table contains policy definitions which control the behaviour during

• enrollment

• authentication

• authorization

• administration

• user actions

get(key=None)
Either returns the complete policy entry or a single value :param key: return the value for this key :type
key: string :return: complete dict or single value :rytpe: dict or value

get_conditions_tuples()

Returns a list of 5-tuples (section, key, comparator, value, active).

set_conditions(conditions)
Replace the list of conditions of this policy with a new list of conditions, i.e. a list of 5-tuples (section,
key, comparator, value, active).

class privacyidea.models.PolicyCondition(**kwargs)

as_tuple()

Returns the condition as a tuple (section, key, comparator, value, active)

class privacyidea.models.PrivacyIDEAServer(**kwargs)
This table can store remote privacyIDEA server definitions

class privacyidea.models.RADIUSServer(**kwargs)
This table can store configurations of RADIUS servers. https://github.com/privacyidea/privacyidea/issues/321

It saves * a unique name * a description * an IP address a * a Port * a secret * timeout in seconds (default 5) *
retries (default 3)

These RADIUS server definition can be used in RADIUS tokens or in a radius passthru policy.

save()
If a RADIUS server with a given name is save, then the existing RADIUS server is updated.

class privacyidea.models.Realm(realm)
The realm table contains the defined realms. User Resolvers can be grouped to realms. This very table contains
just contains the names of the realms. The linking to resolvers is stored in the table “resolverrealm”.

class privacyidea.models.Resolver(name, rtype)
The table “resolver” contains the names and types of the defined User Resolvers. As each Resolver can have
different required config values the configuration of the resolvers is stored in the table “resolverconfig”.

1.16. Code Documentation 339

https://github.com/privacyidea/privacyidea/issues/321

privacyIDEA Authentication System, Release 3.2.1

class privacyidea.models.ResolverConfig(resolver_id=None, Key=None, Value=None, re-
solver=None, Type=”, Description=”)

Each Resolver can have multiple configuration entries. Each Resolver type can have different required config
values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set to
“password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.ResolverRealm(resolver_id=None, realm_id=None, re-
solver_name=None, realm_name=None, prior-
ity=None)

This table stores which Resolver is located in which realm This is a N:M relation

class privacyidea.models.SMSGateway(identifier, providermodule, description=None, op-
tions=None)

This table stores the SMS Gateway definitions. See https://github.com/privacyidea/privacyidea/wiki/concept:
-Delivery-Gateway

It saves the * unique name * a description * the SMS provider module

All options and parameters are saved in other tables.

as_dict()
Return the object as a dictionary

Returns complete dict

Rytpe dict

delete()
When deleting an SMS Gateway we also delete all the options. :return:

option_dict
Return all connected options as a dictionary

Returns dict

class privacyidea.models.SMSGatewayOption(gateway_id, Key, Value, Type=None)
This table stores the options and parameters for an SMS Gateway definition.

class privacyidea.models.SMTPServer(**kwargs)
This table can store configurations for SMTP servers. Each entry represents an SMTP server. EMail Token, SMS
SMTP Gateways or Notifications like PIN handlers are supposed to use a reference to to a server definition. Each
Machine Resolver can have multiple configuration entries. The config entries are referenced by the id of the
machine resolver

get()

Returns the configuration as a dictionary

class privacyidea.models.Subscription(**kwargs)
This table stores the imported subscription files.

get()
Return the database object as dict :return:

class privacyidea.models.TimestampMethodsMixin
This class mixes in the table functions including update of the timestamp

class privacyidea.models.Token(serial, tokentype=u”, isactive=True, otplen=6, otpkey=u”,
userid=None, resolver=None, realm=None, **kwargs)

The table “token” contains the basic token data like

• serial number

340 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway
https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway

privacyIDEA Authentication System, Release 3.2.1

• assigned user

• secret key. . .

while the table “tokeninfo” contains additional information that is specific to the tokentype.

del_info(key=None)
Deletes tokeninfo for a given token. If the key is omitted, all Tokeninfo is deleted.

Parameters key – searches for the given key to delete the entry

Returns

get(key=None, fallback=None, save=False)
simulate the dict behaviour to make challenge processing easier, as this will have to deal as well with ‘dict
only challenges’

Parameters

• key – the attribute name - in case of key is not provided, a dict of all class attributes are
returned

• fallback – if the attribute is not found, the fallback is returned

• save – in case of all attributes and save==True, the timestamp is converted to a string
representation

get_hashed_pin(pin)
calculate a hash from a pin Fix for working with MS SQL servers MS SQL servers sometimes return a
‘<space>’ when the column is empty: ‘’

Parameters pin (str) – the pin to hash

Returns hashed pin with current pin_seed

Return type str

get_info()

Returns The token info as dictionary

get_realms()
return a list of the assigned realms :return: realms :rtype: list

get_user_pin()
return the userPin :rtype : the PIN as a secretObject

set_hashed_pin(pin)
Set the pin of the token in hashed format

Parameters pin (str) – the pin to hash

Returns the hashed pin

Return type str

set_info(info)
Set the additional token info for this token

Entries that end with “.type” are used as type for the keys. I.e. two entries sshkey=”XYZ” and
sshkey.type=”password” will store the key sshkey as type “password”.

Parameters info (dict) – The key-values to set for this token

set_pin(pin, hashed=True)
set the OTP pin in a hashed way

1.16. Code Documentation 341

privacyIDEA Authentication System, Release 3.2.1

set_realms(realms, add=False)
Set the list of the realms. This is done by filling the tokenrealm table. :param realms: realms :type realms:
list :param add: If set, the realms are added. I.e. old realms are not

deleted

set_so_pin(soPin)
For smartcards this sets the security officer pin of the token

:rtype : None

update_otpkey(otpkey)
in case of a new hOtpKey we have to do some more things

update_type(typ)
in case the previous has been different type we must reset the counters But be aware, ray, this could also
be upper and lower case mixing. . .

class privacyidea.models.TokenInfo(token_id, Key, Value, Type=None, Description=None)
The table “tokeninfo” is used to store additional, long information that is specific to the tokentype. E.g. the
tokentype “TOTP” has additional entries in the tokeninfo table for “timeStep” and “timeWindow”, which are
stored in the column “Key” and “Value”.

The tokeninfo is reference by the foreign key to the “token” table.

class privacyidea.models.TokenOwner(token_id=None, serial=None, user_id=None, re-
solver=None, realm_id=None, realmname=None)

This tables stores the owner of a token. A token can be assigned to several users.

class privacyidea.models.TokenRealm(realm_id=0, token_id=0, realmname=None)
This table stores to which realms a token is assigned. A token is in the realm of the user it is assigned to. But a
token can also be put into many additional realms.

save()
We only save this, if it does not exist, yet.

class privacyidea.models.UserCache(username, used_login, resolver, user_id, timestamp)

privacyidea.models.cleanup_challenges()
Delete all challenges, that have expired.

Returns None

privacyidea.models.get_machineresolver_id(resolvername)
Return the database ID of the machine resolver :param resolvername: :return:

privacyidea.models.get_machinetoken_id(machine_id, resolver_name, serial, application)
Returns the ID in the machinetoken table

Parameters

• machine_id (basestring) – The resolverdependent machine_id

• resolver_name (basestring) – The name of the resolver

• serial (basestring) – the serial number of the token

• application (basestring) – The application type

Returns The ID of the machinetoken entry

Return type int

342 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

privacyidea.models.get_token_id(serial)
Return the database token ID for a given serial number :param serial: :return: token ID :rtpye: int

privacyidea.models.save_config_timestamp(invalidate_config=True)
Save the current timestamp to the database, and optionally invalidate the current request-local config object.
:param invalidate_config: defaults to True

1.17 Frequently Asked Questions

1.17.1 Customization

There are several different ways to customize the UI of privacyIDEA.

Templates

You can change the HTML templates of the web UI as follows. You can create a copy of the orignial templates, modify
them and use rewrite rules of your webserver to call your new, modified templates.

This way updates will not affect your modifications.

All HTML views are contained in:

static/components/<component>/views/<view>.html

You can find them on GitHub <https://github.com/privacyidea/privacyidea/tree/master/privacyidea/static> or at the
according location in your installation.

Follow these basic steps:

1. Create a new location, where you will keep your modifications safe from updates. You should create a directory
like /etc/privacyidea/customization/ and put your modified views in there.

2. Activate the rewrite rules in your web server. E.g. in the Apache configuration you can add entries like:

RewriteEngine On
RewriteRule "/static/components/login/views/login.html" \

"/etc/privacyidea/customization/mylogin.html"

and apply all required changes to the file mylogin.html.

Note: In this case you need to create a RewriteRule for each file, you want to modify.

3. Now activate mod_rewrite and reload apache2.

Warning: Of course - if there are functional enhancements or bug fixes in the original templates - your template
will also not be affected by these.

Translating templates

The translation in privacyIDEA is very flexible (see Setup translation). But if you change the templates the normal
translation with PO files can get a bit tricky.

1.17. Frequently Asked Questions 343

privacyIDEA Authentication System, Release 3.2.1

Starting with privacyIDEA 3.0.1 you can use the scope variable browserLanguage in your custom templates.

You can print the browser language like this {{ browserLanguage }}.

And you can display text in different languages in divs like this:

<div ng-show="browserLanguage === 'de'">
Das ist ein deutscher Text.

</div>
<div ng-show="browserLanguage === 'en'">

This is an English text.
</div>

Themes

You can adapt the style and colors by changing CSS. There are at least two ways to do this.

Providing your own stylesheet in the config file

You can create your own CSS file to adapt the look and feel of the Web UI. The default CSS is the bootstrap CSS
theme. Using PI_CSS in pi.cfg you can specify the URL of your own CSS file. The default CSS file url is
/static/contrib/css/bootstrap-theme.css. The file in the file system is located at privacyidea/static/contrib/css. You
might add a directory privacyidea/static/custom/css/ and add your CSS file there.

Use web server rewrite modules

Again you can also use the Apache rewrite module to replace the original css file:

RewriteEngine On
RewriteRule "/static/contrib/css/bootstrap-theme.css" \

"/etc/privacyidea/customization/my.css"

A good stating point might be the themes at http://bootswatch.com.

Note: If you add your own CSS file, the file bootstrap-theme.css will not be loaded anymore. So you might start with
a copy of the original file.

Use web server substitute module

You can also use the substitute module of the Apache webserver. It is not clear how much performance impact you
get, since this module can scan and replace any text that is delivered by the web server.

If you for example want to replace the title of the webpages, you could do it like this:

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
Substitute "s/>privacyidea Authentication System</>My own 2FA system</ni"

</Location>

344 Chapter 1. Table of Contents

http://bootswatch.com

privacyIDEA Authentication System, Release 3.2.1

Logo

The default logo is located at privacyidea/static/css/privacyIDEA1.png. If you want to use your own
logo, you can put youf file “mylogo.png” just in the same folder and set

PI_LOGO = “mylogo.png”

in the pi.cfg config file.

Page title

You can configure the page title by setting PI_PAGE_TITLE in the pi.cfg file.

Menu

The administrator can adapt the menu of the web UI using policies or of course web server rewrite rules. The original
menu is located in static/templates/menu.html.

Note that policies are also dependent on the client IP, this way different clients could see different menus.

Read more about it at the web UI policies at the custom_menu.

Headers and Footers

The administrator can change the header and footer of each page. We call this the baseline of the web UI. The original
baseline is contained in static/templates/baseline.html. You can use a web UI policy to change this
baseline or - of course - could use the web server rewrite module.

Read more about changing it via the web UI policies at custom_baseline.

Tokenwizard

You can add additional HTML elements above and underneath the enrollment wizard pages. Read the Token Enroll-
ment Wizard and tokenwizard to learn more about those code snippets.

Token customization

Some tokens allow a special customization.

The paper token allows you to add CSS for styling the printed output and add additional headers and footers. Read
more about it at the paper token Customization.

1.17.2 How can I create users in the privacyIDEA Web UI?

So you installed privacyIDEA and want to enroll tokens to the users and are wondering how to create users.

privacyIDEA can read users from different existing sources like LDAP, SQL, flat files and SCIM.

You very much likely already have an application (like your VPN or a Web Application. . .) for which you want to
increase the logon security. Then this application already knows users. Either in an LDAP or in an SQL database.
Most web applications keep their users in a (My)SQL database. And you also need to create users in this very user
database for the user to be able to use this application.

Please read the sections UserIdResolvers and Userview for more details.

1.17. Frequently Asked Questions 345

privacyIDEA Authentication System, Release 3.2.1

But you also can define and editable SQL resolver. I.e. you can edit and create new users in an SQL user store.

If you do not have an existing SQL database with users, you can simple create a new database with one table for the
users and according rows.

1.17.3 So what’s the thing with all the admins?

privacyIDEA comes with its own admins, who are stored in a database table Admin in its own database (The database
model). You can use the tool pi-manage to manage those admins from the command line as the system’s root user.
(see Installation)

These admin users can logon to the WebUI using the admin’s user name and the specified password. These admins
are used to get a simple quick start.

Then you can define realms (see Realms), that should be administrative realms. I.e. each user in this realm will have
administrative rights in the WebUI.

Note: You need to configure these realms within privacyIDEA. Only after these realms exist, you can raise their
rights to an administrative role.

Note: Use this carefully. Imagine you defined a resolver to a specific group in your Active Directory to be the prica-
cyIDEA admins. Then the Active Directory domain admins can simply add users to be administrator in privacyIDEA.

You define the administrative realms in the config file pi.cfg, which is usually located at /etc/privacyidea/
pi.cfg:

SUPERUSER_REALM = ["adminrealm1", "super", "boss"]

In this case all the users in the realms “adminrealm1”, “super” and “boss” will have administrative rights in the WebUI,
when they login with this realm.

As for all other users, you can use the login_mode to define, if these administrators should login to the WebUI with
their userstore password or with an OTP token.

1.17.4 What are possible rollout strategies?

There are different ways to enroll tokens to a big number of users. Here are some selected high level ideas, you can
do with privacyIDEA.

Autoenrollment

Using the autoassignment policy you can distribute physical tokens to the users. The users just start using the tokens.

Registration Code

If your users are physically not available and spread around the world, you can send a registration code to the users
by postal mail. The registration code is a special token type which can be used by the user to authenticate with 2FA.
If used once, the registration token get deleted and can not be used anymore. While logged in, the user can enroll a
token on his own.

346 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Automatic initial synchronization

Hardware TOTP tokens may get out of sync due to clock shift. HOTP tokens may get out of sync due to unused
keypresses. To cope with this you can activate autosync.

But if you are importing hardware tokens, the clock in the TOTP token may already be out of sync and you do not
want the user to authenticate twice, where the first authentication fails.

In this case you can use the following workflow.

In the TOTP token settings you can set the timeWindow to a very high value. Note that this timeWindow are the
seconds that privacyIDEA will search for the valid OTP value before and after the current time. E.g. you can set this
to 86400. This way you allow the clock in the TOTP token to have drifted for a maximum of one day.

As you do not want such a big window for all authentications, you can automatically reset the timeWindow. You
can achieve this by creating an event definition:

• event: validate_check

• handler: token

• condition: * tokentype=TOTP * count_auth_success=1

• action=set tokeninfo * key=*timeWindow* * value=*180*

This way with the first successful authentication of a TOTP token the timeWindow of the TOTP token is set to 180
seconds.

1.17.5 How can I translate to my language?

The web UI can be translated into different languages. The system determines the preferred language of you browser
and displays the web UI accordingly.

At the moment “en” and “de” are available.

1.17.6 What are possible migration strategies?

You are already running an OTP system like RSA SecurID, SafeNet or Vasco (alphabetical order) but you would like
to migrate to privacyIDEA.

There are different migration strategies using the RADIUS token or the RADIUS passthru policy.

RADIUS token migration strategy

Configure your application like your VPN to authenticate against the privacyIDEA RADIUS server and not against
the old deprecated RADIUS server.

Now, you can enroll a RADIUS token for each user, who is supposed to login to this application. Configure the
RADIUS token for each user so that the RADIUS request is forwarded to the old RADIUS server.

Now you can start to enroll tokens for the users within privacyIDEA. After enrolling a new token in privacyIDEA you
can delete the RADIUS token for this user.

When all RADIUS tokens are deleted, you can switch off the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

1.17. Frequently Asked Questions 347

privacyIDEA Authentication System, Release 3.2.1

RADIUS PASSTHRU policy migration strategy

Configure your application like your VPN to authenticate against the privacyIDEA RADIUS server and not against
the old deprecated RADIUS server.

Starting with privacyIDEA 2.11 the passthru policy was enhanced. You can define a system wide RADIUS server.
Then you can create a authentication policy with the passthru action pointing to this RADIUS server. This means that
- as long as a user trying to authenticate - has not token assigned, all authentication request with this very username
and the password are forwarded to this RADIUS server.

As soon as you enroll a new token for this user in privacyIDEA the user will authenticate with this very token within
privacyIDEA an his authentication request will not be forwarded anymore.

As soon as all users have a new token within privacyIDEA, you can switch of the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

1.17.7 Setup translation

The translation is performed using grunt. To setup the translation environment do:

npm update -g npm
install grunt cli in system
sudo npm install -g grunt-cli

install grunt in project directory
npm install grunt --save-dev
Install grunt gettext plugin
npm install grunt-angular-gettext --save-dev

This will create a subdirectory node_modules.

To simply run the German translation do:

make translate

If you want to add a new language like Spanish do:

cd po
msginit -l es
cd ..
grunt nggettext_extract
msgmerge po/es.po po/template.pot > po/tmp.po; mv po/tmp.po po/es.po

Now you can start translating with your preferred tool:

poedit po/es.po

Finally you can add the translation to the javascript translation file privacyidea/static/components/
translation/translations.js:

grunt nggettext_compile

Note: Please ask to add this translation to the Make directive translation or issue a pull request.

348 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

1.17.8 How can I setup HA (High Availability) with privacyIDEA?

privacyIDEA does not track any state internally. All information is kept in the database. Thus you can configure
several privacyIDEA instances against one DBMS1 and have the DBMS do the high availability.

Note: The passwords and OTP key material in the database is encrypted using the encKey. Thus it is possible to put
the database onto a DBMS that is controlled by another database administrator in another department.

HA setups

When running HA you need to assure to configure the pi.cfg file on all privacyIDEA instances accordingly. You might
need to adapt the SQLALCHEMY_DATABASE_URI accordingly.

Be sure to set the same SECRET_KEY and PI_PEPPER on all instances.

Then you need to provide the same encryption key (file encKey) and the same audit signing keys on all instances.

Using one central DBMS

If you already have a high available, redundant DBMS - like MariaDB Galera Cluster - which might even be ad-
dressable via one cluster IP address the configuration is fairly simple. In such a case you can configure the same
SQLALCHEMY_DATABASE_URI on all instances.

1 Database management system

1.17. Frequently Asked Questions 349

privacyIDEA Authentication System, Release 3.2.1

Using MySQL master-master-replication

If you have no DBMS or might want to use a dedicated database server for privacyIDEA, you can setup one MySQL
server per privacyIDEA instance and configure the MySQL servers to run in a master-master-replication.

Note: The master-master-replication only works with two MySQL servers.

There are some good howtos out there like2.

1.17.9 MySQL database connect string

You can use the python package MySQL-python or PyMySQL.

PyMySQL is a pure python implementation. MySQL-python is a wrapper for a C implementation. I.e. when in-
stalling MySQL-python your python virtualenv, you also need to install packages like python-dev and libmysqlclient-
dev.

Depending on whether you are using MySQL-python or PyMySQL you need to specify different connect strings in
SQLALCHEMY_DATABASE_URI.

MySQL-python

connect string: mysql://u:p@host/db
2 https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication.

350 Chapter 1. Table of Contents

https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication

privacyIDEA Authentication System, Release 3.2.1

Installation

Install a package libmysqlclient-dev from your distribution. The name may vary depending on which distritubtion you
are running:

pip install MySQL-python

PyMySQL

connect string: pymysql://u:p@host/db

Installation

Install in your virtualenv:

pip install pymysql-sa
pip install PyMySQL

1.17.10 Are there shortcuts to use the Web UI?

I do not like using the mouse. Are there hotkeys or shortcuts to use the Web UI?

With version 2.6 we started to add hotkeys to certain functions. You can use ‘?’ to get a list of the available hotkeys in
the current window.

E.g. you can use alt-e to go to the Enroll Token Dialog and alt-r to actually enroll the token.

For any further ideas about shortcuts/hotkeys please drop us a note at github or the google group.

1.17.11 How to copy a resolver definition?

Creating a user resolver can be a time consuming task. Especially an LDAP resolver needs many parameters to be
entered. Sometimes you need to create a second resolver, that looks rather the same like the first resolver. So copying
or duplicating this resolver would be great.

You can create a similar second resolver by editing the exiting resolver and entering a new resolver name. This will
save this modified resolver definition under this new name. Thus you have a resolver with the old name and another
one with the new name.

1.17.12 Cryptographic considerations of privacyIDEA

Encryption keys

The encryption key is a set of 3 256bit AES keys. Usually this key is located in a 96 byte long file “enckey” specified
by PI_ENCFILE in The Config File. The encryption key can be encrypted with a password.

The three encryption keys are used to encrypt

• data like the OTP seeds and secret keys stored in the Token table,

• password of resolvers to connect to LDAP/AD or SQL (stored in the ResolverConfig table)

• and optional additional values.

1.17. Frequently Asked Questions 351

privacyIDEA Authentication System, Release 3.2.1

OTP seeds and passwords are needed in clear text to calculate OTP values or to connect to user stores. So these values
need to be stored in a decryptable way.

Token Hash Algorithms

OTP values according to HOTP and TOTP can be calculated using SHA1, SHA2-256 and SHA2-512.

PIN Hashing

Token PINs are managed by privacyIDEA as the first of the two factors. Each token has its own token PIN. The token
PIN is hashed with a seed with SHA2-256 and stored in the Token database table.

This PIN hashing is performed in lib.crypto:hash.

Administrator Passwords

privacyIDEA can manage internal administrators using The pi-manage Script. Internal administrators are stored in the
database table Admin.

The password is stored using a PBKDF with SHA512 with 10023 rounds. The hash is salted and peppered. While the
salt is stored in the Admin table created randomly for each admin password the pepper is unique for one privacyIDEA
installation and stored in the pi.cfg file.

This way a database administrator is not able to inject rogue password hashes.

The admin password hashing is performed in lib.crypto:hash_with_pepper.

Audit Signing

The audit log is digitally signed. (see Audit and The Config File).

The audit log can be handled by different modules. privacyIDEA comes with an SQL Audit Module.

For signing the audit log the SQL Audit Module uses the RSA keys specified with the values
PI_AUDIT_KEY_PUBLIC and PI_AUDIT_KEY_PRIVATE in The Config File.

By default the installer generates 2048bit RSA keys.

The audit signing is performed in lib.crypto:Sign.sign using SHA2-256 as hash function.

1.17.13 Policies

How to disable policies?

I create an evil admin policy and locked myself out. How can I disable a policy?

You can use the pi-manage command line tool to list, enable and disable policies. See

pi-manage policy -h

352 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

How do policies work anyway?

Policies are just a set of definitions. These definitions are ment to modify the way privacyIDEA reacts on requests.
Different policies have different scopes where they act.

admin policies define, what an administrator is allowed to do. These policies influence endpoints like /token,
/realm and all other endpoints, which are used to configure the system. (see Admin policies)

user policies define, how the system reacts if a user is managing his own tokens. (see User Policies)

authentication and authorization policies influence the /validate/ endpoint (Validate endpoints).

The Authentication policies define if an authentication request would be successful at all. So it defines how to really
check the authentication request. E.g. this is done by defining if the user has to add a specific OTP PIN or his LDAP
password (see otppin).

The Authorization policies decide, if a user, who would authentication successfully is allowed to issue this request.
I.e. a user may present the right credentials, but he is not allowed to login from a specific IP address or with a not
secure token type (see tokentype).

How is this technically achieved?

At the beginning of a request the complete policy set is read from the database into a policy object, which is a singleton
of PolicyClass (see Policy Module).

The logical part is performed by policy decorators. The decorators modify the behaviour of the above mentioned
endpoints.

Each policy has its own decorator. The decorator can be used on different functions, methods, endpoints. The decora-
tors are implemented in api/lib/prepolicy.py and api/lib/postpolicy.py.

PrePolicy decorators are executed at the beginning of a request, PostPolicy decoratros at the end of the request.

A policy decorator uses one of the methods get_action_value or get_policies.

get_policies is used to determine boolean actions like passonnotoken_policy.

get_action_value is used to get the defined value of non-boolean policies like otppin.

All policies can depend on IP address, user and time. So these values are taken into account by the decorator when
determining the defined policy.

Note: Each decorator represents one policy and defines its own logic i.e. checking filtering for IP address and fetching
the necessary policy sets from the policy object.

1.17.14 Performance considerations

You can test performace using the apache bench from the apache utils. Creating a simple pass token for a user, eases
the performance testing.

Then you can run

ab -l -n 200 -c 8 -s 30 ‘https://localhost/validate/check?user=yourUser&pass=yourPassword’

The performance depends on several aspects like the connection speed to your database and the connection speed to
your user stores.

1.17. Frequently Asked Questions 353

https://localhost/validate/check?user=yourUser&pass=yourPassword

privacyIDEA Authentication System, Release 3.2.1

Processes

You should run several processes and threads. You might start with the number of processes equal to the number of
your CPU cores. But you should evaluate, which is the best number of processes to get the highest performance.

Config caching

Starting with privacyIDEA 2.15 privacyIDEA uses a Cache per instance and process to cache system configuration,
resolver, realm and policies.

As the configuration might have been changed in the database by another process or another instance, privacyIDEA
compares a cache timestamp with the timestamp in the database. Thus at the beginning of the request privacyIDEA
reads the timestamp from the database.

You can configure how often the timestamp should be read using the pi.cfg variable PI_CHECK_RELOAD_CONFIG.
You can set this to seconds. If you use this config value to set values higher than 0, you will improve your perfor-
mance. But: other processes or instances will learn later about configuration changes which might lead to unexpected
behaviour.

Logging

Choose a logging level like WARNING or ERROR. Setting the logging level to INFO or DEBUG will produce much
log output and lead to a decrease in performance.

Response

You can strip the authentication response, to get a slight increase in performace, using the policy
no_details_on_success.

Clean configuration

Remove unused resolvers and policies. Have a realm with several resolvers is a bit slower than one realm with one
resolver. Finding the user in the first resolver is faster than in the last resolver. Although e.g. the LDAP resolver
utilizes caching.

Also see What happens in the tokenview?.

1.17.15 What happens in the tokenview?

A question which comes up often is why you can not view hundrets of tokens in the tokenview. Well - you are doing -
you are just paging through the list ;-)

Ok, here it what happens in the tokenview.

The tokenview fetches a slice of the tokens from the token database. So, if you configure the tokenview to display 15
tokens, only 15 tokens will be fetched using the LIMIT and OFFSET mechanisms of SQL.

But what really influences the performance is the user resolver part. privacyIDEA does not store username, givenname
or surname of the token owner. The token table only contains a “pointer” to the user object in the userstore. This
pointer consists of the userresolver ID and the user ID in this resolver. This is usefull, since the username or the
surname of the user may change. At least in Germany the givenname only changes in very rare cases.

This means that privacyIDEA needs to contact the userstore, to resolve the user ID to a username and a surname,
givenname. Now you know that you will create 100 LDAP requests, if you choose to display 100 tokens on one page.

354 Chapter 1. Table of Contents

privacyIDEA Authentication System, Release 3.2.1

Although we are doing some LDAP caching, this will not help with new pages.

We very much recommend using the search capabilities of the tokenview.

1.17.16 How to mitigate brute force and lock tokens

For each failed authentication attempt privacyIDEA will increase a fail counter of a token. If the maximum allowed
fail counter is reached, authentication with this token is not possible anymore. The token get a timestamp mark, when
the maximum fail counter was reached. Starting with version 2.20 the administrator can define a timeout in minutes.
If this timestamp is more than these specified minutes ago, an authentication attempt with a correct PIN will reset the
fail counter. See Automatically clearing Failcounter.

The failcounter avoids brute force attacks which guess passwords or OTP values. Choose a failcounter clearing time-
out, which is not too long. Otherwise brute force would also lock the token of the user forever.

Another possibility to mitigate brute force is to define an authorization policy with the action
auth_max_fail. This will check, if there are too many failed authentication requests during the specified time
period. If there are, even a successful authentication will fail. This technique uses the audit log, to search for failed
authentication requests. See auth_max_fail.

If you are missing any information or descriptions file an issue at github (which would be the preferred way), drop a
note to info(@)privacyidea.org or go to the Community Forum.

This will help us a lot to improve documentation to your needs.

Thanks a lot!

1.17. Frequently Asked Questions 355

https://github.com/privacyidea/privacyidea/issues
https://community.privacyidea.org

privacyIDEA Authentication System, Release 3.2.1

356 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

357

privacyIDEA Authentication System, Release 3.2.1

358 Chapter 2. Indices and tables

HTTP Routing Table

/application
GET /application/, 228

/audit
GET /audit/, 185
GET /audit/(csvfile), 186

/auth
GET /auth/rights, 186
POST /auth, 186

/caconnector
GET /caconnector/, 225
GET /caconnector/(name), 225
POST /caconnector/(name), 225
DELETE /caconnector/(name), 225

/defaultrealm
GET /defaultrealm, 202
POST /defaultrealm/(realm), 203
DELETE /defaultrealm, 202

/event
GET /event/, 219
GET /event/(eventid), 219
GET /event/actions/(handlermodule), 220
GET /event/conditions/(handlermodule),

219
GET /event/positions/(handlermodule),

219
POST /event, 219
POST /event/disable/(eventid), 220
POST /event/enable/(eventid), 220
DELETE /event/(eid), 220

/machine
GET /machine/, 223
GET /machine/authitem, 221
GET /machine/authitem/(application), 221

GET /machine/token, 223
POST /machine/token, 222
POST /machine/tokenoption, 221
DELETE /machine/token/(serial)/(machineid)/(resolver)/(application),

224

/machineresolver
GET /machineresolver/, 220
GET /machineresolver/(resolver), 221
POST /machineresolver/(resolver), 220
POST /machineresolver/test, 220
DELETE /machineresolver/(resolver), 221

/monitoring
GET /monitoring/, 226
GET /monitoring/(stats_key), 226
GET /monitoring/(stats_key)/last, 226
DELETE /monitoring/(stats_key), 226

/periodictask
GET /periodictask/, 227
GET /periodictask/(ptaskid), 228
GET /periodictask/nodes/, 227
GET /periodictask/options/(taskmodule),

227
GET /periodictask/taskmodules/, 227
POST /periodictask/, 227
POST /periodictask/disable/(ptaskid),

227
POST /periodictask/enable/(ptaskid), 227
DELETE /periodictask/(ptaskid), 228

/policy
GET /policy/, 215
GET /policy/(name), 215
GET /policy/check, 214
GET /policy/defs, 215
GET /policy/defs/(scope), 215
GET /policy/export/(export), 215

359

privacyIDEA Authentication System, Release 3.2.1

POST /policy/(name), 217
POST /policy/disable/(name), 216
POST /policy/enable/(name), 216
POST /policy/import/(filename), 216
DELETE /policy/(name), 218

/privacyideaserver
GET /privacyideaserver/, 224
POST /privacyideaserver/(identifier),

224
POST /privacyideaserver/test_request,

224
DELETE /privacyideaserver/(identifier),

224

/radiusserver
GET /radiusserver/, 230
POST /radiusserver/(identifier), 230
POST /radiusserver/test_request, 230
DELETE /radiusserver/(identifier), 230

/realm
GET /realm/, 200
GET /realm/superuser, 200
POST /realm/(realm), 201
DELETE /realm/(realm), 202

/recover
POST /recover, 225
POST /recover/reset, 225

/register
GET /register, 226
POST /register, 226

/resolver
GET /resolver/, 198
GET /resolver/(resolver), 198
POST /resolver/(resolver), 198
POST /resolver/test, 198
DELETE /resolver/(resolver), 199

/smsgateway
GET /smsgateway/, 229
GET /smsgateway/(gwid), 229
POST /smsgateway, 229
DELETE /smsgateway/(identifier), 230
DELETE /smsgateway/option/(gwid)/(option),

230

/smtpserver
GET /smtpserver/, 229
POST /smtpserver/(identifier), 229

POST /smtpserver/send_test_email, 229
DELETE /smtpserver/(identifier), 229

/subscriptions
GET /subscriptions/, 230
GET /subscriptions/(application), 230
POST /subscriptions/, 230
DELETE /subscriptions/(application), 231

/system
GET /system/, 197
GET /system/(key), 197
GET /system/documentation, 196
GET /system/gpgkeys, 197
GET /system/hsm, 197
GET /system/names/caconnector, 196
GET /system/names/radius, 196
GET /system/random, 197
POST /system/hsm, 197
POST /system/setConfig, 196
POST /system/setDefault, 196
POST /system/test/(tokentype), 198
DELETE /system/(key), 198

/token
GET /token/, 209

/token/(serial)
DELETE /token/(serial), 211

/token/assign
POST /token/assign, 205

/token/challenges
GET /token/challenges/, 204
GET /token/challenges/(serial), 204

/token/copypin
POST /token/copypin, 205

/token/copyuser
POST /token/copyuser, 204

/token/description
POST /token/description, 203
POST /token/description/(serial), 203

/token/disable
POST /token/disable, 204
POST /token/disable/(serial), 204

/token/enable
POST /token/enable, 205

360 HTTP Routing Table

privacyIDEA Authentication System, Release 3.2.1

POST /token/enable/(serial), 205

/token/getserial
GET /token/getserial/(otp), 210

/token/info
POST /token/info/(serial)/(key), 210
DELETE /token/info/(serial)/(key), 211

/token/init
POST /token/init, 206

/token/load
POST /token/load/(filename), 211

/token/lost
POST /token/lost/(serial), 211

/token/realm
POST /token/realm/(serial), 210

/token/reset
POST /token/reset, 206
POST /token/reset/(serial), 206

/token/resync
POST /token/resync, 206
POST /token/resync/(serial), 206

/token/revoke
POST /token/revoke, 205
POST /token/revoke/(serial), 205

/token/set
POST /token/set, 209
POST /token/set/(serial), 209

/token/setpin
POST /token/setpin, 206
POST /token/setpin/(serial), 206

/token/setrandompin
POST /token/setrandompin, 203
POST /token/setrandompin/(serial), 203

/token/unassign
POST /token/unassign, 204

/ttype
GET /ttype/(ttype), 228
POST /ttype/(ttype), 228

/user
GET /user/, 212
POST /user, 212
POST /user/, 212
PUT /user, 213
PUT /user/, 213
DELETE /user/(resolvername)/(username),

213

/validate
GET /validate/check, 192
GET /validate/polltransaction, 190
GET /validate/polltransaction/(transaction_id),

190
GET /validate/radiuscheck, 192
GET /validate/samlcheck, 195
GET /validate/triggerchallenge, 189
POST /validate/check, 191
POST /validate/offlinerefill, 191
POST /validate/radiuscheck, 191
POST /validate/samlcheck, 194
POST /validate/triggerchallenge, 188

HTTP Routing Table 361

privacyIDEA Authentication System, Release 3.2.1

362 HTTP Routing Table

Python Module Index

p
privacyidea.api, 184
privacyidea.api.application, 228
privacyidea.api.auth, 186
privacyidea.api.caconnector, 225
privacyidea.api.event, 219
privacyidea.api.lib.postpolicy, 312
privacyidea.api.lib.prepolicy, 307
privacyidea.api.machine, 221
privacyidea.api.machineresolver, 220
privacyidea.api.monitoring, 226
privacyidea.api.periodictask, 227
privacyidea.api.policy, 213
privacyidea.api.privacyideaserver, 224
privacyidea.api.radiusserver, 230
privacyidea.api.realm, 199
privacyidea.api.recover, 225
privacyidea.api.register, 225
privacyidea.api.resolver, 198
privacyidea.api.smsgateway, 229
privacyidea.api.smtpserver, 229
privacyidea.api.subscriptions, 230
privacyidea.api.system, 196
privacyidea.api.token, 203
privacyidea.api.ttype, 228
privacyidea.api.user, 212
privacyidea.api.validate, 188
privacyidea.lib, 231
privacyidea.lib.auditmodules, 329
privacyidea.lib.event, 319
privacyidea.lib.eventhandler.federationhandler,

157
privacyidea.lib.eventhandler.requestmangler,

159
privacyidea.lib.eventhandler.responsemangler,

161
privacyidea.lib.eventhandler.tokenhandler,

153
privacyidea.lib.eventhandler.usernotification,

150
privacyidea.lib.machines, 333
privacyidea.lib.monitoringmodules, 331
privacyidea.lib.pinhandling.base, 335
privacyidea.lib.policy, 292
privacyidea.lib.policydecorators, 315
privacyidea.lib.queue, 305
privacyidea.lib.resolvers, 322
privacyidea.lib.smsprovider, 321
privacyidea.lib.token, 280
privacyidea.lib.tokens.ocratoken, 244
privacyidea.lib.tokens.tiqrtoken, 259
privacyidea.lib.tokens.u2ftoken, 263
privacyidea.lib.user, 231
privacyidea.models, 336

363

privacyIDEA Authentication System, Release 3.2.1

364 Python Module Index

Index

Symbols
2step, 174
4 Eyes, 50

A
ACTION (class in privacyidea.lib.policy), 293
action_only() (privacyidea.lib.policy.Match class

method), 299
ACTION_TYPE (class in priva-

cyidea.lib.eventhandler.federationhandler),
157

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.requestmangler),
159

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.responsemangler),
161

ACTION_TYPE (class in priva-
cyidea.lib.eventhandler.tokenhandler), 153

action_values() (privacyidea.lib.policy.Match
method), 299

Actions, 144
actions (privacyidea.lib.eventhandler.base.BaseEventHandler

attribute), 318
actions (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

attribute), 158
actions (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

attribute), 160
actions (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

attribute), 161
actions (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

attribute), 154
actions (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

attribute), 150, 319
ACTIONVALUE (class in privacyidea.lib.policy), 297
ACTIVE (privacyidea.lib.policy.REMOTE_USER at-

tribute), 303
Active Directory, 32, 33
Add User, 97, 106

add_init_details() (priva-
cyidea.lib.tokenclass.TokenClass method),
269

add_policy() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

add_to_log() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

add_tokeninfo() (in module privacyidea.lib.token),
280

add_tokeninfo() (priva-
cyidea.lib.tokenclass.TokenClass method),
269

add_user() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 326

add_user() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 322

add_user() (privacyidea.lib.tokenclass.TokenClass
method), 269

add_user_detail_to_response() (in module
privacyidea.api.lib.postpolicy), 313

add_value() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 331

add_value() (priva-
cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 332

ADDRESOLVERINRESPONSE (priva-
cyidea.lib.policy.ACTION attribute), 293

ADDUSER (privacyidea.lib.policy.ACTION attribute),
293

ADDUSERINRESPONSE (priva-
cyidea.lib.policy.ACTION attribute), 293

Admin (class in privacyidea.models), 336
ADMIN (privacyidea.lib.policy.SCOPE attribute), 303
admin accounts, 346
admin policies, 100
admin realm, 100
admin() (privacyidea.lib.policy.Match class method),

365

privacyIDEA Authentication System, Release 3.2.1

299
admin_or_user() (privacyidea.lib.policy.Match

class method), 299
ADMIN_REALM (priva-

cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
attribute), 150

allowed_audit_realm() (in module priva-
cyidea.api.lib.prepolicy), 307

allowed_positions (priva-
cyidea.lib.eventhandler.base.BaseEventHandler
attribute), 318

allowed_positions (priva-
cyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
attribute), 160

allowed_positions (priva-
cyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
attribute), 161

allowed_positions (priva-
cyidea.lib.eventhandler.tokenhandler.TokenEventHandler
attribute), 154

allowed_positions (priva-
cyidea.lib.eventhandler.usernotification.UserNotificationEventHandler
attribute), 150, 319

any() (privacyidea.lib.policy.Match method), 299
API, 184
api_endpoint() (priva-

cyidea.lib.tokenclass.TokenClass class
method), 269

api_endpoint() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
class method), 247

api_endpoint() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
class method), 260

api_endpoint() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
class method), 265

api_endpoint() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
class method), 267

api_key_required() (in module priva-
cyidea.api.lib.prepolicy), 307

APIKEY (privacyidea.lib.policy.ACTION attribute), 293
APPIMAGEURL (privacyidea.lib.policy.ACTION at-

tribute), 293
appliance, 87
Application Plugins, 177
as_dict() (privacyidea.models.SMSGateway

method), 340
as_tuple() (privacyidea.models.PolicyCondition

method), 339
ASSIGN (privacyidea.lib.policy.ACTION attribute), 293
assign_token() (in module privacyidea.lib.token),

280

Audit, 164
Audit (class in privacyidea.lib.auditmodules.base), 329
Audit (class in privacyidea.lib.auditmodules.sqlaudit),

330
Audit (class in privacyidea.models), 336
AUDIT (privacyidea.lib.policy.ACTION attribute), 293
AUDIT (privacyidea.lib.policy.MAIN_MENU attribute),

298
AUDIT (privacyidea.lib.policy.SCOPE attribute), 303
Audit Log Rotate, 164
audit modules, 329
AUDIT_AGE (privacyidea.lib.policy.ACTION attribute),

293
AUDIT_DOWNLOAD (privacyidea.lib.policy.ACTION at-

tribute), 294
audit_entry_to_dict() (priva-

cyidea.lib.auditmodules.base.Audit method),
329

audit_entry_to_dict() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 330

auditlog_age() (in module priva-
cyidea.api.lib.prepolicy), 307

AUTH (privacyidea.lib.policy.SCOPE attribute), 303
AUTH_CACHE (privacyidea.lib.policy.ACTION at-

tribute), 294
auth_cache() (in module priva-

cyidea.lib.policydecorators), 315
auth_lastauth() (in module priva-

cyidea.lib.policydecorators), 315
auth_otppin() (in module priva-

cyidea.lib.policydecorators), 315
auth_user_does_not_exist() (in module priva-

cyidea.lib.policydecorators), 315
auth_user_has_no_token() (in module priva-

cyidea.lib.policydecorators), 316
auth_user_passthru() (in module priva-

cyidea.lib.policydecorators), 316
auth_user_timelimit() (in module priva-

cyidea.lib.policydecorators), 316
AuthCache, 119
AuthCache (class in privacyidea.models), 336
authenticate() (priva-

cyidea.lib.tokenclass.TokenClass method),
269

authenticate() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
method), 234

authenticate() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 247

authenticate() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 251

366 Index

privacyIDEA Authentication System, Release 3.2.1

authenticate() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 254

authenticate() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 258

authenticating client, 44
Authentication Cache, 119
authentication policies, 114
AUTHITEMS (privacyidea.lib.policy.ACTION attribute),

294
AUTHMAXFAIL (privacyidea.lib.policy.ACTION at-

tribute), 294
AUTHMAXSUCCESS (privacyidea.lib.policy.ACTION at-

tribute), 294
authorization policies, 120
AUTHZ (privacyidea.lib.policy.SCOPE attribute), 303
AUTOASSIGN (privacyidea.lib.policy.ACTION at-

tribute), 294
autoassign() (in module priva-

cyidea.api.lib.postpolicy), 313
autoassignment, 125
AUTOASSIGNVALUE (class in privacyidea.lib.policy),

297
autoresync, 43
autosync, 43
aware_last_update (priva-

cyidea.models.PeriodicTask attribute), 338
aware_timestamp (priva-

cyidea.models.PeriodicTaskLastRun attribute),
338

B
Backup, 23, 87
BaseEventHandler (class in priva-

cyidea.lib.eventhandler.base), 318
BaseMachineResolver (class in priva-

cyidea.lib.machines.base), 333
BaseQueue (class in privacyidea.lib.queues.base), 306
brute force, 355

C
CA, 51, 78
caching, 39
CAConnector (class in privacyidea.models), 336
CAConnectorConfig (class in privacyidea.models),

336
CACONNECTORDELETE (priva-

cyidea.lib.policy.ACTION attribute), 294
CACONNECTORREAD (privacyidea.lib.policy.ACTION

attribute), 294
caconnectors, 78
CACONNECTORWRITE (privacyidea.lib.policy.ACTION

attribute), 294

CentOS, 11
Certificate Authority, 78
Certificate Templates, 81
certificate token, 78
certificates, 51
CertificateTokenClass (class in priva-

cyidea.lib.tokens.certificatetoken), 235
Challenge (class in privacyidea.models), 336
Challenge Text Policy, 120
challenge_janitor() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 270

challenge_response_allowed() (in module pri-
vacyidea.lib.policydecorators), 317

CHALLENGERESPONSE (priva-
cyidea.lib.policy.ACTION attribute), 294

CHALLENGETEXT (privacyidea.lib.policy.ACTION at-
tribute), 294

CHALLENGETEXT_FOOTER (priva-
cyidea.lib.policy.ACTION attribute), 294

CHALLENGETEXT_HEADER (priva-
cyidea.lib.policy.ACTION attribute), 294

Change PIN, 126
Change User Password, 97
CHANGE_PIN_EVERY (privacyidea.lib.policy.ACTION

attribute), 294
CHANGE_PIN_FIRST_USE (priva-

cyidea.lib.policy.ACTION attribute), 294
check_admin_tokenlist() (in module priva-

cyidea.api.lib.prepolicy), 307
check_all() (privacyidea.lib.tokenclass.TokenClass

method), 270
check_anonymous_user() (in module priva-

cyidea.api.lib.prepolicy), 307
check_answer() (priva-

cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 249

check_auth_counter() (priva-
cyidea.lib.tokenclass.TokenClass method),
270

check_base_action() (in module priva-
cyidea.api.lib.prepolicy), 307

check_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
270

check_challenge_response() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 248

check_challenge_response() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 249

check_challenge_response() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 251

Index 367

privacyIDEA Authentication System, Release 3.2.1

check_challenge_response() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 260

check_condition() (priva-
cyidea.lib.eventhandler.base.BaseEventHandler
method), 318

check_configuration() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
method), 322

check_external() (in module priva-
cyidea.api.lib.prepolicy), 308

check_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
270

check_for_conflicts() (priva-
cyidea.lib.policy.PolicyClass static method),
300

check_last_auth_newer() (priva-
cyidea.lib.tokenclass.TokenClass method),
270

check_max_token_realm() (in module priva-
cyidea.api.lib.prepolicy), 308

check_max_token_user() (in module priva-
cyidea.api.lib.prepolicy), 308

check_otp() (in module privacyidea.lib.token), 280
check_otp() (privacyidea.lib.tokenclass.TokenClass

method), 271
check_otp() (priva-

cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 237

check_otp() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 239

check_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 240

check_otp() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
method), 243

check_otp() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 244

check_otp() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 246

check_otp() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 251

check_otp() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 254

check_otp() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 256

check_otp() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 258

check_otp() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 261

check_otp() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 265

check_otp() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
method), 267

check_otp() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 268

check_otp_exist() (priva-
cyidea.lib.tokenclass.TokenClass method),
271

check_otp_exist() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 237

check_otp_exist() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 240

check_otp_exist() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 261

check_otp_exist() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 268

check_otp_pin() (in module priva-
cyidea.api.lib.prepolicy), 308

check_password() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword
method), 246

check_password() (privacyidea.lib.user.User
method), 231

check_pin() (privacyidea.lib.tokenclass.TokenClass
method), 271

check_pin_local (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
attribute), 251

check_pin_local (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
attribute), 255

check_realm_pass() (in module priva-
cyidea.lib.token), 280

check_reset_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
271

check_serial() (in module priva-
cyidea.api.lib.postpolicy), 313

check_serial() (in module privacyidea.lib.token),
281

368 Index

privacyIDEA Authentication System, Release 3.2.1

check_serial_pass() (in module priva-
cyidea.lib.token), 281

check_token_init() (in module priva-
cyidea.api.lib.prepolicy), 308

check_token_list() (in module priva-
cyidea.lib.token), 281

check_token_upload() (in module priva-
cyidea.api.lib.prepolicy), 308

check_tokeninfo() (in module priva-
cyidea.api.lib.postpolicy), 313

check_tokentype() (in module priva-
cyidea.api.lib.postpolicy), 313

check_user_pass() (in module priva-
cyidea.lib.token), 281

check_validity_period() (priva-
cyidea.lib.tokenclass.TokenClass method),
271

check_yubikey_pass() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 268

checkPass() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 326

checkPass() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 324

checkPass() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 323

checkUserId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

checkUserName() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

cleanup_challenges() (in module priva-
cyidea.models), 342

clear() (privacyidea.lib.auditmodules.sqlaudit.Audit
method), 331

Clickatel, 73
client, 44
client certificates, 51
client machines, 169
client policies, 110
ClientApplication (class in privacyidea.models),

337
CLIENTTYPE (privacyidea.lib.policy.ACTION at-

tribute), 294
close() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 323
Components, 90
COMPONENTS (privacyidea.lib.policy.MAIN_MENU at-

tribute), 298
CONDITION_SECTION (class in priva-

cyidea.lib.policy), 297
conditions, 144
conditions (privacyidea.lib.eventhandler.base.BaseEventHandler

attribute), 318
Config (class in privacyidea.models), 337
CONFIG (privacyidea.lib.policy.MAIN_MENU attribute),

298
config file, 17
config_lost_token() (in module priva-

cyidea.lib.policydecorators), 317
CONFIGDOCUMENTATION (priva-

cyidea.lib.policy.ACTION attribute), 294
configuration, 32
construct_radius_response() (in module pri-

vacyidea.api.lib.postpolicy), 313
Contao, 184
convert_realms() (priva-

cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 234

copy_token_pin() (in module priva-
cyidea.lib.token), 282

copy_token_realms() (in module priva-
cyidea.lib.token), 282

copy_token_user() (in module priva-
cyidea.lib.token), 282

COPYTOKENPIN (privacyidea.lib.policy.ACTION
attribute), 294

COPYTOKENUSER (privacyidea.lib.policy.ACTION at-
tribute), 294

count window, 92
Counter Handler, 156
create_challenge() (priva-

cyidea.lib.tokenclass.TokenClass method),
272

create_challenge() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 239

create_challenge() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 244

create_challenge() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 248

create_challenge() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 250

create_challenge() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 252

create_challenge() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 257

create_challenge() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass

Index 369

privacyIDEA Authentication System, Release 3.2.1

method), 260
create_challenge() (priva-

cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 266

create_challenges_from_tokens() (in mod-
ule privacyidea.lib.token), 282

create_connection() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 326

create_serverpool() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 327

create_tokenclass_object() (in module priva-
cyidea.lib.token), 282

create_user() (in module privacyidea.lib.user), 233
Creating Users, 345
Crypto considerations, 351
CSR, 51
CSS, 344
csv_generator() (priva-

cyidea.lib.auditmodules.base.Audit method),
329

csv_generator() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 331

CUSTOM_BASELINE (privacyidea.lib.policy.ACTION
attribute), 294

CUSTOM_MENU (privacyidea.lib.policy.ACTION at-
tribute), 294

customize, 343, 344
Customize baseline, 132
customize footer, 132
Customize menu, 132

D
DaplugTokenClass (class in priva-

cyidea.lib.tokens.daplugtoken), 237
database, 336
DB2, 36
debug, 17
Debugging, 20
decode_otpkey() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 272

decrease() (privacyidea.models.EventCounter
method), 337

default realm, 39
Default tokentype, 131
DEFAULT_TOKENTYPE (priva-

cyidea.lib.policy.ACTION attribute), 294
del_info() (privacyidea.models.Token method), 341
del_tokeninfo() (priva-

cyidea.lib.tokenclass.TokenClass method),
272

DELETE (privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE
attribute), 159

DELETE (privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE
attribute), 161

DELETE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 153

DELETE (privacyidea.lib.policy.ACTION attribute), 294
Delete User, 106
delete() (privacyidea.lib.monitoringmodules.base.Monitoring

method), 331
delete() (privacyidea.lib.monitoringmodules.sqlstats.Monitoring

method), 332
delete() (privacyidea.lib.user.User method), 231
delete() (privacyidea.models.SMSGateway method),

340
delete_all_policies() (in module priva-

cyidea.lib.policy), 303
delete_event() (in module privacyidea.lib.event),

319
delete_policy() (in module privacyidea.lib.policy),

303
delete_token() (priva-

cyidea.lib.tokenclass.TokenClass method),
272

DELETE_TOKENINFO (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

delete_tokeninfo() (in module priva-
cyidea.lib.token), 282

delete_user() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 327

delete_user() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 323

DELETEUSER (privacyidea.lib.policy.ACTION at-
tribute), 294

description (priva-
cyidea.lib.eventhandler.base.BaseEventHandler
attribute), 318

description (priva-
cyidea.lib.eventhandler.federationhandler.FederationEventHandler
attribute), 158

description (priva-
cyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler
attribute), 160

description (priva-
cyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler
attribute), 161

description (priva-
cyidea.lib.eventhandler.tokenhandler.TokenEventHandler
attribute), 154

description (priva-
cyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

370 Index

privacyIDEA Authentication System, Release 3.2.1

attribute), 150, 319
DIALOG_NO_TOKEN (privacyidea.lib.policy.ACTION

attribute), 294
DISABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE

attribute), 154
DISABLE (privacyidea.lib.policy.ACTION attribute),

294
DISABLE (privacyidea.lib.policy.ACTIONVALUE

attribute), 297
DISABLE (privacyidea.lib.policy.LOGINMODE at-

tribute), 298
DISABLE (privacyidea.lib.policy.REMOTE_USER at-

tribute), 303
Django, 183, 184
do() (privacyidea.lib.eventhandler.base.BaseEventHandler

method), 318
do() (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

method), 158
do() (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

method), 160
do() (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

method), 161
do() (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

method), 154
do() (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

method), 150, 319
Dokuwiki, 184

E
Edit User, 97, 106, 113
Edit Users, 97
editable (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

attribute), 327
editable (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

attribute), 323
Editable Resolver, 97
EMAIL (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE

attribute), 150
EMail policy, 117
Email policy, 117
Email subject, 117
Email text, 117
EMail token, 53
Email Token, 70
EMAIL_ADDRESS_KEY (priva-

cyidea.lib.tokens.emailtoken.EmailTokenClass
attribute), 239

EMAILCONFIG (privacyidea.lib.policy.ACTION at-
tribute), 294

EmailTokenClass (class in priva-
cyidea.lib.tokens.emailtoken), 239

ENABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

ENABLE (privacyidea.lib.policy.ACTION attribute), 294

enable() (privacyidea.lib.tokenclass.TokenClass
method), 272

enable_event() (in module privacyidea.lib.event),
319

enable_policy() (in module privacyidea.lib.policy),
303

enable_token() (in module privacyidea.lib.token),
283

encrypt_pin() (in module priva-
cyidea.api.lib.prepolicy), 308

Encrypted Seed File, 170
ENCRYPTPIN (privacyidea.lib.policy.ACTION at-

tribute), 294
END (privacyidea.lib.eventhandler.tokenhandler.VALIDITY

attribute), 154
enqueue() (privacyidea.lib.queues.base.BaseQueue

method), 306
enqueue() (privacyidea.lib.queues.huey_queue.HueyQueue

method), 305
ENROLL (privacyidea.lib.policy.SCOPE attribute), 303
enroll token, 95
enroll_pin() (in module priva-

cyidea.api.lib.prepolicy), 309
ENROLLMENT (privacyidea.lib.policy.GROUP attribute),

298
enrollment policies, 124
Enrollment Wizard, 173
ENROLLPIN (privacyidea.lib.policy.ACTION attribute),

294
event (class in privacyidea.lib.event), 320
Event Handler, 143, 144, 318, 319
EventConfiguration (class in priva-

cyidea.lib.event), 319
EventCounter (class in privacyidea.models), 337
EventHandler (class in privacyidea.models), 337
EventHandlerCondition (class in priva-

cyidea.models), 337
EventHandlerOption (class in privacyidea.models),

337
EVENTHANDLINGREAD (priva-

cyidea.lib.policy.ACTION attribute), 294
EVENTHANDLINGWRITE (priva-

cyidea.lib.policy.ACTION attribute), 294
events, 143
events (privacyidea.lib.event.EventConfiguration at-

tribute), 319
events (privacyidea.lib.eventhandler.base.BaseEventHandler

attribute), 318
exist() (privacyidea.lib.user.User method), 231
Expired Users, 36
export_policies() (in module priva-

cyidea.lib.policy), 303
external hook, 17
extract_action_values() (priva-

Index 371

privacyIDEA Authentication System, Release 3.2.1

cyidea.lib.policy.PolicyClass static method),
300

F
fail counter, 355
failcount, 92
FAQ, 343
Federation Handler, 157
FederationEventHandler (class in priva-

cyidea.lib.eventhandler.federationhandler),
158

FIDO, 67
filter_policies_by_conditions() (priva-

cyidea.lib.policy.PolicyClass method), 300
finalize_log() (priva-

cyidea.lib.auditmodules.base.Audit method),
329

finalize_log() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 331

Firebase service, 59, 119
flatfile resolver, 33
FORCE_APP_PIN (privacyidea.lib.policy.ACTION at-

tribute), 294
FORWARD (privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE

attribute), 158
Four Eyes, 50
FourEyesTokenClass (class in priva-

cyidea.lib.tokens.foureyestoken), 234
FreeIPA, 33
FreeRADIUS, 177

G
gen_serial() (in module privacyidea.lib.token), 283
GENERAL (privacyidea.lib.policy.GROUP attribute), 298
generate_symmetric_key() (priva-

cyidea.lib.tokenclass.TokenClass method),
272

generate_symmetric_key() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 241

Get Serial (Determine Serial by OTP), 92
get() (privacyidea.models.Challenge method), 336
get() (privacyidea.models.EventHandler method), 337
get() (privacyidea.models.PeriodicTask method), 338
get() (privacyidea.models.Policy method), 339
get() (privacyidea.models.SMTPServer method), 340
get() (privacyidea.models.Subscription method), 340
get() (privacyidea.models.Token method), 341
get_action_values() (priva-

cyidea.lib.policy.PolicyClass method), 300
get_action_values_from_options() (in mod-

ule privacyidea.lib.policy), 304

get_as_dict() (priva-
cyidea.lib.tokenclass.TokenClass method),
272

get_as_dict() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 236

get_audit_id() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

get_class_info() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 273

get_class_info() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 236

get_class_info() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 238

get_class_info() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 239

get_class_info() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 235

get_class_info() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 241

get_class_info() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 243

get_class_info() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 244

get_class_info() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 245

get_class_info() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 246

get_class_info() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 248

get_class_info() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
class method), 250

get_class_info() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 252

get_class_info() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 254

get_class_info() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 255

372 Index

privacyIDEA Authentication System, Release 3.2.1

get_class_info() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 257

get_class_info() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 258

get_class_info() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 258

get_class_info() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 261

get_class_info() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 262

get_class_info() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 266

get_class_info() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 267

get_class_info() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 268

get_class_prefix() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 273

get_class_prefix() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 237

get_class_prefix() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 238

get_class_prefix() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 240

get_class_prefix() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 235

get_class_prefix() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 241

get_class_prefix() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 243

get_class_prefix() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 244

get_class_prefix() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 245

get_class_prefix() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 246

get_class_prefix() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 248

get_class_prefix() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 250

get_class_prefix() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 252

get_class_prefix() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 254

get_class_prefix() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 255

get_class_prefix() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 257

get_class_prefix() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 258

get_class_prefix() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 258

get_class_prefix() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 261

get_class_prefix() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 262

get_class_prefix() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 266

get_class_prefix() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 267

get_class_prefix() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 268

get_class_type() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 273

get_class_type() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
static method), 237

get_class_type() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
static method), 238

get_class_type() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
static method), 240

get_class_type() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 235

Index 373

privacyIDEA Authentication System, Release 3.2.1

get_class_type() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 241

get_class_type() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
static method), 243

get_class_type() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 244

get_class_type() (priva-
cyidea.lib.tokens.papertoken.PaperTokenClass
static method), 245

get_class_type() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
static method), 246

get_class_type() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
static method), 248

get_class_type() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 250

get_class_type() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
static method), 252

get_class_type() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
static method), 254

get_class_type() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
static method), 255

get_class_type() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
static method), 257

get_class_type() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 258

get_class_type() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
static method), 258

get_class_type() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
static method), 261

get_class_type() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 262

get_class_type() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
static method), 266

get_class_type() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
static method), 267

get_class_type() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
static method), 268

get_conditions_tuples() (priva-
cyidea.models.Policy method), 339

get_config_description() (priva-
cyidea.lib.machines.base.BaseMachineResolver
static method), 333

get_config_description() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
class method), 334

get_count() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

get_count() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 331

get_count_auth() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_count_auth_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_default_settings() (priva-
cyidea.lib.tokenclass.TokenClass class
method), 273

get_default_settings() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
class method), 241

get_default_settings() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
class method), 262

get_dynamic_policy_definitions() (in mod-
ule privacyidea.lib.token), 283

get_event() (priva-
cyidea.lib.event.EventConfiguration method),
319

get_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
273

get_handled_events() (priva-
cyidea.lib.event.EventConfiguration method),
319

get_handler_object() (in module priva-
cyidea.lib.event), 320

get_hashed_pin() (privacyidea.models.Token
method), 341

get_hashlib() (priva-

374 Index

privacyIDEA Authentication System, Release 3.2.1

cyidea.lib.tokenclass.TokenClass static
method), 273

get_import_csv() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 273

get_import_csv() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
static method), 245

get_import_csv() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 262

get_info() (privacyidea.models.Token method), 341
get_init_detail() (priva-

cyidea.lib.tokenclass.TokenClass method),
273

get_init_detail() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 237

get_init_detail() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 241

get_init_detail() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
method), 243

get_init_detail() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 249

get_init_detail() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 254

get_init_detail() (priva-
cyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 261

get_init_detail() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 266

get_init_details() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_job_queue() (in module privacyidea.lib.queue),
306

get_keys() (privacyidea.lib.monitoringmodules.base.Monitoring
method), 332

get_keys() (privacyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 333

get_last_value() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 332

get_last_value() (priva-
cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 333

get_machine_id() (priva-
cyidea.lib.machines.base.BaseMachineResolver
method), 333

get_machine_id() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 334

get_machineresolver_id() (in module priva-
cyidea.models), 342

get_machines() (priva-
cyidea.lib.machines.base.BaseMachineResolver
method), 333

get_machines() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 334

get_machinetoken_id() (in module priva-
cyidea.models), 342

get_max_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_multi_otp() (in module privacyidea.lib.token),
283

get_multi_otp() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_multi_otp() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 238

get_multi_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 242

get_multi_otp() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 262

get_num_tokens_in_realm() (in module priva-
cyidea.lib.token), 284

get_one_token() (in module privacyidea.lib.token),
284

get_ordererd_resolvers() (priva-
cyidea.lib.user.User method), 232

get_otp() (in module privacyidea.lib.token), 284
get_otp() (privacyidea.lib.tokenclass.TokenClass

method), 274
get_otp() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 238
get_otp() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 242
get_otp() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 262
get_otp_count() (priva-

cyidea.lib.tokenclass.TokenClass method),
274

get_otp_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_otp_status() (privacyidea.models.Challenge
method), 336

get_otplen() (privacyidea.lib.tokenclass.TokenClass

Index 375

privacyIDEA Authentication System, Release 3.2.1

method), 274
get_password() (priva-

cyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword
method), 246

get_persistent_serverpool() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

get_pin_hash_seed() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_policy_condition_comparators() (in
module privacyidea.lib.policy), 304

get_policy_condition_sections() (in mod-
ule privacyidea.lib.policy), 304

get_realms() (privacyidea.lib.tokenclass.TokenClass
method), 274

get_realms() (privacyidea.models.Token method),
341

get_realms_of_token() (in module priva-
cyidea.lib.token), 284

get_search_fields() (privacyidea.lib.user.User
method), 232

get_serial() (privacyidea.lib.tokenclass.TokenClass
method), 274

get_serial_by_otp() (in module priva-
cyidea.lib.token), 284

get_serverpool_instance() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

get_setting_type() (priva-
cyidea.lib.tokenclass.TokenClass static
method), 274

get_setting_type() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 242

get_setting_type() (priva-
cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
static method), 250

get_setting_type() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
static method), 263

get_sshkey() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
method), 259

get_static_policy_definitions() (in mod-
ule privacyidea.lib.policy), 304

get_sync_timeout() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
static method), 242

get_sync_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_token_by_otp() (in module priva-
cyidea.lib.token), 284

get_token_id() (in module privacyidea.models),
342

get_token_owner() (in module priva-
cyidea.lib.token), 285

get_token_type() (in module priva-
cyidea.lib.token), 285

get_tokenclass_info() (in module priva-
cyidea.lib.token), 285

get_tokeninfo() (priva-
cyidea.lib.tokenclass.TokenClass method),
274

get_tokens() (in module privacyidea.lib.token), 285
get_tokens_from_serial_or_user() (in mod-

ule privacyidea.lib.token), 286
get_tokens_in_resolver() (in module priva-

cyidea.lib.token), 286
get_tokens_paginate() (in module priva-

cyidea.lib.token), 286
get_tokens_paginated_generator() (in mod-

ule privacyidea.lib.token), 287
get_tokentype() (priva-

cyidea.lib.tokenclass.TokenClass method),
275

get_total() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

get_total() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 331

get_type() (privacyidea.lib.tokenclass.TokenClass
method), 275

get_user_displayname() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

get_user_from_param() (in module priva-
cyidea.lib.user), 233

get_user_id() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

get_user_identifiers() (priva-
cyidea.lib.user.User method), 232

get_user_list() (in module privacyidea.lib.user),
233

get_user_phone() (privacyidea.lib.user.User
method), 232

get_user_pin() (privacyidea.models.Token
method), 341

get_user_realms() (privacyidea.lib.user.User
method), 232

get_username() (in module privacyidea.lib.user),
233

get_validity_period_end() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

376 Index

privacyIDEA Authentication System, Release 3.2.1

get_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

get_values() (priva-
cyidea.lib.monitoringmodules.base.Monitoring
method), 332

get_values() (priva-
cyidea.lib.monitoringmodules.sqlstats.Monitoring
method), 333

get_webui_settings() (in module priva-
cyidea.api.lib.postpolicy), 313

getchallenges, 105
GETCHALLENGES (privacyidea.lib.policy.ACTION at-

tribute), 294
getrandom, 105
GETRANDOM (privacyidea.lib.policy.ACTION attribute),

294
getResolverClassDescriptor() (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 327

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
class method), 325

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 323

getResolverClassType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
static method), 323

getResolverDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
static method), 323

getResolverId() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 327

getResolverId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

getResolverId() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 323

getResolverType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
static method), 323

getSearchFields() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

getserial, 105
GETSERIAL (privacyidea.lib.policy.ACTION attribute),

294
GETTOKEN (privacyidea.lib.policy.SCOPE attribute),

303
gettoken policies, 133
getUserId() (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 327

getUserId() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

getUserId() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 323

getUserInfo() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

getUserInfo() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 325

getUserInfo() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 323

getUserList() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

getUserList() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 326

getUserList() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 324

getUsername() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

getUsername() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 326

getUsername() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 324

GPG encryption, 170
GROUP (class in privacyidea.lib.policy), 297

H
HA, 349
Handler Modules, 144, 147, 151, 155–158, 160
Hardware Security Module, 24
Hardware Tokens, 46
has_job_queue() (in module privacyidea.lib.queue),

306
has_multiple_loginnames (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
attribute), 328

has_multiple_loginnames (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
attribute), 324

hashlib (privacyidea.lib.tokens.hotptoken.HotpTokenClass
attribute), 242

Index 377

privacyIDEA Authentication System, Release 3.2.1

hashlib (privacyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 263

help desk, 100
HIDE_BUTTONS (privacyidea.lib.policy.ACTION

attribute), 295
HIDE_WELCOME (privacyidea.lib.policy.ACTION

attribute), 295
hKeyRequired (privacyidea.lib.tokenclass.TokenClass

attribute), 275
hKeyRequired (priva-

cyidea.lib.tokens.certificatetoken.CertificateTokenClass
attribute), 237

hook, 17
HostsMachineResolver (class in priva-

cyidea.lib.machines.hosts), 334
HOTP Token, 72
HOTP tokens, 54
HotpTokenClass (class in priva-

cyidea.lib.tokens.hotptoken), 240
HSM, 24
HTML views, 343
HTTP Provider, 83
HTTP_REQUEST_HEADER (priva-

cyidea.lib.policy.CONDITION_SECTION
attribute), 297

HttpSMSProvider (class in priva-
cyidea.lib.smsprovider.HttpSMSProvider),
320

huey (privacyidea.lib.queues.huey_queue.HueyQueue
attribute), 305

HueyQueue (class in priva-
cyidea.lib.queues.huey_queue), 305

I
identifier (privacyidea.lib.eventhandler.base.BaseEventHandler

attribute), 318
identifier (privacyidea.lib.eventhandler.federationhandler.FederationEventHandler

attribute), 158
identifier (privacyidea.lib.eventhandler.requestmangler.RequestManglerEventHandler

attribute), 160
identifier (privacyidea.lib.eventhandler.responsemangler.ResponseManglerEventHandler

attribute), 161
identifier (privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler

attribute), 154
identifier (privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler

attribute), 150, 319
IdResolver (class in priva-

cyidea.lib.resolvers.LDAPIdResolver), 326
IdResolver (class in priva-

cyidea.lib.resolvers.PasswdIdResolver), 324
import, 170
IMPORT (privacyidea.lib.policy.ACTION attribute), 295
import_policies() (in module priva-

cyidea.lib.policy), 304

import_token() (in module privacyidea.lib.token),
287

inc_count_auth() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

inc_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

inc_count_auth_success() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 254

inc_failcount() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

inc_otp_counter() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

increase() (privacyidea.models.EventCounter
method), 337

info (privacyidea.lib.user.User attribute), 232
INIT (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE

attribute), 154
init_random_pin() (in module priva-

cyidea.api.lib.prepolicy), 309
init_token() (in module privacyidea.lib.token), 287
init_token_defaults() (in module priva-

cyidea.api.lib.prepolicy), 309
init_tokenlabel() (in module priva-

cyidea.api.lib.prepolicy), 309
initialize() (priva-

cyidea.lib.auditmodules.base.Audit method),
329

initialize_log() (priva-
cyidea.lib.auditmodules.base.Audit method),
329

instances, 21
INTERNAL_ADMIN (priva-

cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
attribute), 150

is_active() (privacyidea.lib.tokenclass.TokenClass
method), 275

is_challenge_request() (priva-
cyidea.lib.tokenclass.TokenClass method),
275

is_challenge_request() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 240

is_challenge_request() (priva-
cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 245

is_challenge_request() (priva-
cyidea.lib.tokens.pushtoken.PushTokenClass
method), 249

is_challenge_request() (priva-

378 Index

privacyIDEA Authentication System, Release 3.2.1

cyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass
method), 250

is_challenge_request() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 252

is_challenge_request() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 255

is_challenge_request() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 257

is_challenge_request() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 258

is_challenge_request() (priva-
cyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 266

is_challenge_request() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 268

is_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
276

is_challenge_response() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 252

is_challenge_response() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
static method), 258

is_empty() (privacyidea.lib.user.User method), 232
is_fit_for_challenge() (priva-

cyidea.lib.tokenclass.TokenClass method),
276

is_locked() (privacyidea.lib.tokenclass.TokenClass
method), 277

is_orphaned() (priva-
cyidea.lib.tokenclass.TokenClass method),
277

is_outofband() (priva-
cyidea.lib.tokenclass.TokenClass class
method), 277

is_pin_change() (priva-
cyidea.lib.tokenclass.TokenClass method),
277

is_previous_otp() (priva-
cyidea.lib.tokenclass.TokenClass method),
277

is_previous_otp() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 242

is_readable (priva-
cyidea.lib.auditmodules.base.Audit attribute),
330

is_remote_user_allowed() (in module priva-

cyidea.api.lib.prepolicy), 309
is_revoked() (privacyidea.lib.tokenclass.TokenClass

method), 277
is_token_active() (in module priva-

cyidea.lib.token), 288
is_token_owner() (in module priva-

cyidea.lib.token), 288
is_valid() (privacyidea.models.Challenge method),

337
ISMSProvider (class in priva-

cyidea.lib.smsprovider.SMSProvider), 322

J
job queue, 176
job() (in module privacyidea.lib.queue), 306
JOB_COLLECTOR (in module privacyidea.lib.queue),

305
JobCollector (class in privacyidea.lib.queue), 305
jobs (privacyidea.lib.queue.JobCollector attribute), 305
jobs (privacyidea.lib.queues.huey_queue.HueyQueue

attribute), 305
JSON Web Token, 184
JWT, 184

L
LASTAUTH (privacyidea.lib.policy.ACTION attribute),

295
LDAP, 32
LDAP resolver, 33
libpolicy (class in privacyidea.lib.policydecorators),

317
library, 231
list_policies() (priva-

cyidea.lib.policy.PolicyClass method), 301
load_config() (priva-

cyidea.lib.machines.base.BaseMachineResolver
method), 334

load_config() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 334

load_config() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
method), 322

loadConfig() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 328

loadConfig() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 326

loadConfig() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 324

loadFile() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 326

Index 379

privacyIDEA Authentication System, Release 3.2.1

LOCKSCREEN (privacyidea.lib.policy.TIMEOUT_ACTION
attribute), 303

log() (privacyidea.lib.auditmodules.base.Audit
method), 330

log_token_num() (priva-
cyidea.lib.auditmodules.base.Audit method),
330

log_used_user() (in module privacyidea.lib.user),
233

LOGGED_IN_USER (priva-
cyidea.lib.eventhandler.usernotification.NOTIFY_TYPE
attribute), 150

Logging, 20
login (privacyidea.lib.user.User attribute), 232
login mode, 129
Login Policy, 129
login_mode() (in module priva-

cyidea.lib.policydecorators), 317
LOGIN_TEXT (privacyidea.lib.policy.ACTION at-

tribute), 295
LOGINMODE (class in privacyidea.lib.policy), 298
LOGINMODE (privacyidea.lib.policy.ACTION attribute),

295
loglevel, 17
LOGOUT (privacyidea.lib.policy.TIMEOUT_ACTION at-

tribute), 303
logout time, 130
LOGOUTTIME (privacyidea.lib.policy.ACTION at-

tribute), 295
Lost token, 92
lost token, 127
lost_token() (in module privacyidea.lib.token), 288
LOSTTOKEN (privacyidea.lib.policy.ACTION attribute),

295
LOSTTOKENPWCONTENTS (priva-

cyidea.lib.policy.ACTION attribute), 295
LOSTTOKENPWLEN (privacyidea.lib.policy.ACTION at-

tribute), 295
LOSTTOKENVALID (privacyidea.lib.policy.ACTION at-

tribute), 295

M
MACHINE (privacyidea.lib.policy.GROUP attribute), 298
Machine Resolvers, 333
MachineApplicationBase (in module priva-

cyidea.lib.applications), 292
MACHINELIST (privacyidea.lib.policy.ACTION at-

tribute), 295
MachineResolver (class in privacyidea.models), 337
MachineResolverConfig (class in priva-

cyidea.models), 337
MACHINERESOLVERDELETE (priva-

cyidea.lib.policy.ACTION attribute), 295

MACHINERESOLVERREAD (priva-
cyidea.lib.policy.ACTION attribute), 295

MACHINERESOLVERWRITE (priva-
cyidea.lib.policy.ACTION attribute), 295

machines, 169
MACHINES (privacyidea.lib.policy.MAIN_MENU at-

tribute), 298
MachineToken (class in privacyidea.models), 337
MachineTokenOptions (class in priva-

cyidea.models), 338
MACHINETOKENS (privacyidea.lib.policy.ACTION at-

tribute), 295
MAIN_MENU (class in privacyidea.lib.policy), 298
MANAGESUBSCRIPTION (priva-

cyidea.lib.policy.ACTION attribute), 295
MANGLE (privacyidea.lib.policy.ACTION attribute), 295
Mangle authentication request, 118
Mangle policy, 118
mangle() (in module privacyidea.api.lib.prepolicy),

309
mangle_challenge_response() (in module pri-

vacyidea.api.lib.postpolicy), 313
map client, 44
Match (class in privacyidea.lib.policy), 298
match_policies() (priva-

cyidea.lib.policy.PolicyClass method), 301
MatchingError, 300
MAXACTIVETOKENUSER (priva-

cyidea.lib.policy.ACTION attribute), 295
maxfail, 92
MAXTOKENREALM (privacyidea.lib.policy.ACTION at-

tribute), 295
MAXTOKENUSER (privacyidea.lib.policy.ACTION

attribute), 295
MethodsMixin (class in privacyidea.models), 338
Migration, 60
migration, 115, 347
migration strategy, 347
mock_fail() (in module priva-

cyidea.api.lib.prepolicy), 309
mock_success() (in module priva-

cyidea.api.lib.prepolicy), 310
mode (privacyidea.lib.tokenclass.TokenClass attribute),

277
mode (privacyidea.lib.tokens.pushtoken.PushTokenClass

attribute), 249
mode (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

attribute), 259
mode (privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass

attribute), 261
Monitoring (class in priva-

cyidea.lib.monitoringmodules.base), 331
Monitoring (class in priva-

cyidea.lib.monitoringmodules.sqlstats), 332

380 Index

privacyIDEA Authentication System, Release 3.2.1

monitoring modules, 331
MonitoringStats (class in privacyidea.models), 338
MotpTokenClass (class in priva-

cyidea.lib.tokens.motptoken), 243
MySQL, 36

N
no_detail_on_fail() (in module priva-

cyidea.api.lib.postpolicy), 314
no_detail_on_success() (in module priva-

cyidea.api.lib.postpolicy), 314
NODETAILFAIL (privacyidea.lib.policy.ACTION

attribute), 295
NODETAILSUCCESS (privacyidea.lib.policy.ACTION

attribute), 295
NONE (privacyidea.lib.policy.ACTIONVALUE attribute),

297
NONE (privacyidea.lib.policy.AUTOASSIGNVALUE at-

tribute), 297
NOTIFY_TYPE (class in priva-

cyidea.lib.eventhandler.usernotification),
150

Novell eDirectory, 33

O
OATH CSV, 170
OCRA, 56, 65
OcraTokenClass (class in priva-

cyidea.lib.tokens.ocratoken), 244
offline, 177
offline_info() (in module priva-

cyidea.api.lib.postpolicy), 314
OpenLDAP, 33
openssl, 80
OpenVPN, 184
option_dict (privacyidea.models.SMSGateway at-

tribute), 340
Oracle, 36
orphaned tokens, 174
OTP length, 94
OTPPIN (privacyidea.lib.policy.ACTION attribute), 295
OTPPINCONTENTS (privacyidea.lib.policy.ACTION at-

tribute), 295
OTPPINMAXLEN (privacyidea.lib.policy.ACTION

attribute), 295
OTPPINMINLEN (privacyidea.lib.policy.ACTION

attribute), 295
OTPPINRANDOM (privacyidea.lib.policy.ACTION

attribute), 295
OTPPINSETRANDOM (privacyidea.lib.policy.ACTION

attribute), 295
OTRS, 7, 177
out of sync, 94
Override client, 44

override client, 44
overview, 3
ownCloud, 177, 183

P
PAM, 7, 177, 178
pam_yubico, 178
Paper Token, 58
papertoken_count() (in module priva-

cyidea.api.lib.prepolicy), 310
PaperTokenClass (class in priva-

cyidea.lib.tokens.papertoken), 245
parameters() (priva-

cyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider
class method), 320

parameters() (priva-
cyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider
class method), 321

parameters() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider
class method), 322

parameters() (priva-
cyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider
class method), 321

PASSNOTOKEN (privacyidea.lib.policy.ACTION at-
tribute), 295

PASSNOUSER (privacyidea.lib.policy.ACTION at-
tribute), 295

passOnNoToken, 116
passOnNoUser, 116
passthru, 115
PASSTHRU (privacyidea.lib.policy.ACTION attribute),

295
PASSTHRU_ASSIGN (privacyidea.lib.policy.ACTION

attribute), 295
password reset, 113
PasswordReset (class in privacyidea.models), 338
PASSWORDRESET (privacyidea.lib.policy.ACTION at-

tribute), 295
PasswordTokenClass (class in priva-

cyidea.lib.tokens.passwordtoken), 246
PasswordTokenClass.SecretPassword (class

in privacyidea.lib.tokens.passwordtoken), 246
Penrose, 33
periodic task, 161
PeriodicTask (class in privacyidea.models), 338
PeriodicTaskLastRun (class in priva-

cyidea.models), 338
PeriodicTaskOption (class in privacyidea.models),

339
PERIODICTASKREAD (privacyidea.lib.policy.ACTION

attribute), 295
PERIODICTASKWRITE (priva-

cyidea.lib.policy.ACTION attribute), 295

Index 381

privacyIDEA Authentication System, Release 3.2.1

pi-manage, 22, 346
PIN (privacyidea.lib.policy.GROUP attribute), 298
PIN policies, 126
PIN policy, 102, 112
PinHandler, 126, 335
PinHandler (class in priva-

cyidea.lib.pinhandling.base), 335
PINHANDLING (privacyidea.lib.policy.ACTION at-

tribute), 296
pip install, 4
policies, 100, 134, 137
policies (privacyidea.lib.policy.PolicyClass at-

tribute), 302
policies() (privacyidea.lib.policy.Match method),

299
Policy (class in privacyidea.models), 339
policy template URL, 131
policy templates, 137
PolicyClass (class in privacyidea.lib.policy), 300
PolicyCondition (class in privacyidea.models), 339
POLICYDELETE (privacyidea.lib.policy.ACTION

attribute), 296
POLICYREAD (privacyidea.lib.policy.ACTION at-

tribute), 296
POLICYTEMPLATEURL (priva-

cyidea.lib.policy.ACTION attribute), 296
POLICYWRITE (privacyidea.lib.policy.ACTION at-

tribute), 296
Post Handling, 143
PostgreSQL, 36
postpolicy (class in privacyidea.api.lib.postpolicy),

314
postrequest (class in privacyidea.api.lib.postpolicy),

314
Pre Handling, 143
prepolicy (class in privacyidea.api.lib.prepolicy), 310
preseeded, 54
PRIVACYIDEA (privacyidea.lib.policy.LOGINMODE

attribute), 298
privacyIDEA Authenticator, 174
privacyidea.api (module), 184
privacyidea.api.application (module), 228
privacyidea.api.auth (module), 185, 186
privacyidea.api.caconnector (module), 225
privacyidea.api.event (module), 219
privacyidea.api.lib.postpolicy (module),

312
privacyidea.api.lib.prepolicy (module),

307
privacyidea.api.machine (module), 221
privacyidea.api.machineresolver (module),

220
privacyidea.api.monitoring (module), 226
privacyidea.api.periodictask (module), 227

privacyidea.api.policy (module), 213
privacyidea.api.privacyideaserver (mod-

ule), 224
privacyidea.api.radiusserver (module), 230
privacyidea.api.realm (module), 199
privacyidea.api.recover (module), 225
privacyidea.api.register (module), 225
privacyidea.api.resolver (module), 198
privacyidea.api.smsgateway (module), 229
privacyidea.api.smtpserver (module), 229
privacyidea.api.subscriptions (module),

230
privacyidea.api.system (module), 196
privacyidea.api.token (module), 203
privacyidea.api.ttype (module), 228
privacyidea.api.user (module), 212
privacyidea.api.validate (module), 188
privacyidea.lib (module), 231
privacyidea.lib.auditmodules (module), 329
privacyidea.lib.event (module), 319
privacyidea.lib.eventhandler.federationhandler

(module), 157
privacyidea.lib.eventhandler.requestmangler

(module), 159
privacyidea.lib.eventhandler.responsemangler

(module), 161
privacyidea.lib.eventhandler.tokenhandler

(module), 153
privacyidea.lib.eventhandler.usernotification

(module), 150
privacyidea.lib.machines (module), 333
privacyidea.lib.monitoringmodules (mod-

ule), 331
privacyidea.lib.pinhandling.base (mod-

ule), 335
privacyidea.lib.policy (module), 292
privacyidea.lib.policydecorators (mod-

ule), 315
privacyidea.lib.queue (module), 305
privacyidea.lib.resolvers (module), 322
privacyidea.lib.smsprovider (module), 321
privacyidea.lib.token (module), 280
privacyidea.lib.tokens.ocratoken (mod-

ule), 244
privacyidea.lib.tokens.tiqrtoken (mod-

ule), 259
privacyidea.lib.tokens.u2ftoken (module),

263
privacyidea.lib.user (module), 231
privacyidea.models (module), 336
PrivacyIDEAServer (class in privacyidea.models),

339
PRIVACYIDEASERVERREAD (priva-

cyidea.lib.policy.ACTION attribute), 296

382 Index

privacyIDEA Authentication System, Release 3.2.1

PRIVACYIDEASERVERWRITE (priva-
cyidea.lib.policy.ACTION attribute), 296

proxies, 44
PSKC, 170
push direct authentication, 120
Push Token, 59
push token, 119, 120
pushtoken_add_config() (in module priva-

cyidea.api.lib.prepolicy), 310
pushtoken_disable_wait() (in module priva-

cyidea.api.lib.prepolicy), 310
pushtoken_wait() (in module priva-

cyidea.api.lib.prepolicy), 310
PushTokenClass (class in priva-

cyidea.lib.tokens.pushtoken), 247

Q
Question Token, 60
Questionnaire Token, 60
QuestionnaireTokenClass (class in priva-

cyidea.lib.tokens.questionnairetoken), 249
queue, 176

R
radius migration, 347
RADIUS server, 44
radius server, 347
RADIUS token, 60
RADIUSServer (class in privacyidea.models), 339
RADIUSSERVERREAD (privacyidea.lib.policy.ACTION

attribute), 296
RADIUSSERVERWRITE (priva-

cyidea.lib.policy.ACTION attribute), 296
RadiusTokenClass (class in priva-

cyidea.lib.tokens.radiustoken), 251
read_keys() (priva-

cyidea.lib.auditmodules.base.Audit method),
330

Realm (class in privacyidea.models), 339
REALM (privacyidea.lib.policy.ACTION attribute), 296
realm (privacyidea.lib.user.User attribute), 232
realm administrator, 105
realm autocreation, 41
realm edit, 40
realm relation, 40
realm() (privacyidea.lib.policy.Match class method),

299
realmadmin() (in module priva-

cyidea.api.lib.prepolicy), 310
Realmbox, 132
REALMDROPDOWN (privacyidea.lib.policy.ACTION at-

tribute), 296
realms, 39

realms_dict_to_string() (priva-
cyidea.lib.tokens.foureyestoken.FourEyesTokenClass
static method), 235

recurring task, 161
Red Hat, 11
REGISTER (privacyidea.lib.policy.SCOPE attribute),

303
register policy, 134
register_app() (in module privacyidea.lib.queue),

306
register_app() (privacyidea.lib.queue.JobCollector

method), 305
register_job() (privacyidea.lib.queue.JobCollector

method), 306
register_job() (priva-

cyidea.lib.queues.base.BaseQueue method),
306

register_job() (priva-
cyidea.lib.queues.huey_queue.HueyQueue
method), 305

REGISTERBODY (privacyidea.lib.policy.ACTION
attribute), 296

registration, 49
RegistrationTokenClass (class in priva-

cyidea.lib.tokens.registrationtoken), 253
Remote token, 62
remote_user, 129
REMOTE_USER (class in privacyidea.lib.policy), 303
REMOTE_USER (privacyidea.lib.policy.ACTION at-

tribute), 296
RemoteTokenClass (class in priva-

cyidea.lib.tokens.remotetoken), 254
remove_token() (in module privacyidea.lib.token),

288
request, 51
RequestMangler, 158
RequestManglerEventHandler (class in priva-

cyidea.lib.eventhandler.requestmangler), 160
required_email() (in module priva-

cyidea.api.lib.prepolicy), 311
REQUIREDEMAIL (privacyidea.lib.policy.ACTION at-

tribute), 296
RESET (privacyidea.lib.policy.ACTION attribute), 296
reset password, 113
reset() (privacyidea.lib.tokenclass.TokenClass

method), 277
reset_all_user_tokens() (in module priva-

cyidea.lib.policydecorators), 317
reset_token() (in module privacyidea.lib.token),

288
RESETALLTOKENS (privacyidea.lib.policy.ACTION at-

tribute), 296
Resolver (class in privacyidea.models), 339
RESOLVER (privacyidea.lib.policy.ACTION attribute),

Index 383

privacyIDEA Authentication System, Release 3.2.1

296
resolver (privacyidea.lib.user.User attribute), 232
resolver priority, 40
ResolverConfig (class in privacyidea.models), 339
RESOLVERDELETE (privacyidea.lib.policy.ACTION at-

tribute), 296
RESOLVERREAD (privacyidea.lib.policy.ACTION

attribute), 296
ResolverRealm (class in privacyidea.models), 340
RESOLVERWRITE (privacyidea.lib.policy.ACTION at-

tribute), 296
ResponseMangler, 160
ResponseManglerEventHandler (class in priva-

cyidea.lib.eventhandler.responsemangler), 161
REST, 184
Restore, 23, 87
RESYNC (privacyidea.lib.policy.ACTION attribute), 296
resync token, 94
resync() (privacyidea.lib.tokenclass.TokenClass

method), 277
resync() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 238
resync() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 242
resync() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 263
resync_token() (in module privacyidea.lib.token),

288
resyncDiffLimit (priva-

cyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 263

retention time, 166
REVOKE (privacyidea.lib.policy.ACTION attribute), 296
revoke() (privacyidea.lib.tokenclass.TokenClass

method), 277
revoke() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 237
revoke_token() (in module privacyidea.lib.token),

289
RFC6030, 170
RHEL, 11
rollout strategy, 346
RPM, 13

S
SAML, 177
SAML attributes, 33, 42
save() (privacyidea.lib.tokenclass.TokenClass

method), 277
save() (privacyidea.models.PeriodicTask method), 338
save() (privacyidea.models.PeriodicTaskLastRun

method), 338
save() (privacyidea.models.PeriodicTaskOption

method), 339

save() (privacyidea.models.RADIUSServer method),
339

save() (privacyidea.models.TokenRealm method), 342
save_client_application_type() (in module

privacyidea.api.lib.prepolicy), 311
save_config_timestamp() (in module priva-

cyidea.models), 343
save_pin_change() (in module priva-

cyidea.api.lib.postpolicy), 314
SCIM resolver, 38
scope, 100
SCOPE (class in privacyidea.lib.policy), 303
Script Handler, 155
Search on Enter, 132
search() (privacyidea.lib.auditmodules.base.Audit

method), 330
search() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 331
SEARCH_ON_ENTER (privacyidea.lib.policy.ACTION

attribute), 296
search_query() (priva-

cyidea.lib.auditmodules.base.Audit method),
330

search_query() (priva-
cyidea.lib.auditmodules.sqlaudit.Audit
method), 331

Security Module, 24
seedable, 54
selfservice policies, 110
send() (privacyidea.lib.pinhandling.base.PinHandler

method), 335
SERIAL (privacyidea.lib.policy.ACTION attribute), 296
SET (privacyidea.lib.eventhandler.requestmangler.ACTION_TYPE

attribute), 160
SET (privacyidea.lib.eventhandler.responsemangler.ACTION_TYPE

attribute), 161
SET (privacyidea.lib.policy.ACTION attribute), 296
set_conditions() (privacyidea.models.Policy

method), 339
set_count_auth() (in module priva-

cyidea.lib.token), 289
set_count_auth() (priva-

cyidea.lib.tokenclass.TokenClass method),
277

set_count_auth_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
277

set_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
277

set_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

set_count_window() (in module priva-

384 Index

privacyIDEA Authentication System, Release 3.2.1

cyidea.lib.token), 289
set_count_window() (priva-

cyidea.lib.tokenclass.TokenClass method),
278

SET_COUNTWINDOW (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_data() (privacyidea.models.Challenge method),
337

set_defaults() (in module privacyidea.lib.token),
289

set_defaults() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

SET_DESCRIPTION (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_description() (in module priva-
cyidea.lib.token), 289

set_description() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

set_event() (in module privacyidea.lib.event), 320
set_failcount() (priva-

cyidea.lib.tokenclass.TokenClass method),
278

SET_FAILCOUNTER (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_failcounter() (in module priva-
cyidea.lib.token), 290

set_hashed_pin() (privacyidea.models.Token
method), 341

set_hashlib() (in module privacyidea.lib.token),
290

set_hashlib() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

set_info() (privacyidea.models.Token method), 341
set_init_details() (priva-

cyidea.lib.tokenclass.TokenClass method),
278

set_last_run() (privacyidea.models.PeriodicTask
method), 338

set_max_failcount() (in module priva-
cyidea.lib.token), 290

set_maxfail() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

set_next_pin_change() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

set_otp_count() (priva-
cyidea.lib.tokenclass.TokenClass method),

278
set_otpkey() (privacyidea.lib.tokenclass.TokenClass

method), 278
set_otplen() (in module privacyidea.lib.token), 290
set_otplen() (privacyidea.lib.tokenclass.TokenClass

method), 278
set_otplen() (priva-

cyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 246

set_pin() (in module privacyidea.lib.token), 290
set_pin() (privacyidea.lib.tokenclass.TokenClass

method), 278
set_pin() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 237
set_pin() (privacyidea.models.Token method), 341
set_pin_hash_seed() (priva-

cyidea.lib.tokenclass.TokenClass method),
278

set_pin_so() (in module privacyidea.lib.token), 291
set_pin_user() (in module privacyidea.lib.token),

291
set_policy() (in module privacyidea.lib.policy), 304
SET_RANDOM_PIN (priva-

cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_random_pin() (in module priva-
cyidea.api.lib.prepolicy), 311

set_realm() (in module priva-
cyidea.api.lib.prepolicy), 311

set_realms() (in module privacyidea.lib.token), 291
set_realms() (privacyidea.lib.tokenclass.TokenClass

method), 278
set_realms() (privacyidea.models.Token method),

341
set_so_pin() (privacyidea.lib.tokenclass.TokenClass

method), 278
set_so_pin() (privacyidea.models.Token method),

342
set_sync_window() (in module priva-

cyidea.lib.token), 291
set_sync_window() (priva-

cyidea.lib.tokenclass.TokenClass method),
278

SET_TOKENINFO (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_tokeninfo() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

SET_TOKENREALM (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_type() (privacyidea.lib.tokenclass.TokenClass
method), 278

Index 385

privacyIDEA Authentication System, Release 3.2.1

set_user_pin() (priva-
cyidea.lib.tokenclass.TokenClass method),
278

SET_VALIDITY (priva-
cyidea.lib.eventhandler.tokenhandler.ACTION_TYPE
attribute), 154

set_validity_period_end() (in module priva-
cyidea.lib.token), 292

set_validity_period_end() (priva-
cyidea.lib.tokenclass.TokenClass method),
279

set_validity_period_start() (in module pri-
vacyidea.lib.token), 292

set_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
279

SETDESCRIPTION (privacyidea.lib.policy.ACTION at-
tribute), 296

SETHSM (privacyidea.lib.policy.ACTION attribute), 296
SETPIN (privacyidea.lib.policy.ACTION attribute), 296
SETRANDOMPIN (privacyidea.lib.policy.ACTION

attribute), 296
SETREALM (privacyidea.lib.policy.ACTION attribute),

296
SETTOKENINFO (privacyidea.lib.policy.ACTION

attribute), 296
setup tool, 87
setup() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

static method), 326
SHOW_SEED (privacyidea.lib.policy.ACTION attribute),

296
sign_response() (in module priva-

cyidea.api.lib.postpolicy), 314
Sipgate, 73
SipgateSMSProvider (class in priva-

cyidea.lib.smsprovider.SipgateSMSProvider),
321

SMS, 49
SMS automatic resend, 116
SMS Gateway, 73, 83
SMS policy, 116
SMS Provider, 83, 320
SMS text, 116
SMS Token, 72
SMS token, 63
sms_identifiers() (in module priva-

cyidea.api.lib.prepolicy), 311
SMSGateway (class in privacyidea.models), 340
SMSGatewayOption (class in privacyidea.models),

340
SMSGATEWAYREAD (privacyidea.lib.policy.ACTION at-

tribute), 296
SMSGATEWAYWRITE (privacyidea.lib.policy.ACTION

attribute), 296

SmsTokenClass (class in priva-
cyidea.lib.tokens.smstoken), 255

SMTP server, 81
SMTPServer (class in privacyidea.models), 340
SMTPSERVERREAD (privacyidea.lib.policy.ACTION at-

tribute), 296
SMTPSERVERWRITE (privacyidea.lib.policy.ACTION

attribute), 296
SmtpSMSProvider (class in priva-

cyidea.lib.smsprovider.SmtpSMSProvider),
321

Software Tokens, 46
SPass token, 63
SpassTokenClass (class in priva-

cyidea.lib.tokens.spasstoken), 258
split_pin_pass() (priva-

cyidea.lib.tokenclass.TokenClass method),
279

split_pin_pass() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 238

split_pin_pass() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 253

split_uri() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
static method), 328

split_user() (in module privacyidea.lib.user), 233
SQL resolver, 36
sqlite, 36
SSH Key, 49
SSH keys, 63
SSHkeyTokenClass (class in priva-

cyidea.lib.tokens.sshkeytoken), 258
START (privacyidea.lib.eventhandler.tokenhandler.VALIDITY

attribute), 154
STATISTICSDELETE (privacyidea.lib.policy.ACTION

attribute), 297
STATISTICSREAD (privacyidea.lib.policy.ACTION at-

tribute), 297
status_validation_fail() (priva-

cyidea.lib.tokenclass.TokenClass method),
279

status_validation_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
279

submit_message() (priva-
cyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider
method), 320

submit_message() (priva-
cyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider
method), 321

submit_message() (priva-
cyidea.lib.smsprovider.SMSProvider.ISMSProvider

386 Index

privacyIDEA Authentication System, Release 3.2.1

method), 322
submit_message() (priva-

cyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider
method), 321

Subscription (class in privacyidea.models), 340
superuser realm, 100
syncwindow, 94
SYSTEM (privacyidea.lib.policy.GROUP attribute), 298
system config, 42
SYSTEMDELETE (privacyidea.lib.policy.ACTION

attribute), 297
SYSTEMREAD (privacyidea.lib.policy.ACTION at-

tribute), 297
SYSTEMWRITE (privacyidea.lib.policy.ACTION at-

tribute), 297

T
TAN Token, 65
tantoken_count() (in module priva-

cyidea.api.lib.prepolicy), 311
task queue, 176
templates, 343
test_config() (priva-

cyidea.lib.tokenclass.TokenClass static
method), 279

test_config() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
class method), 240

testconnection() (priva-
cyidea.lib.machines.base.BaseMachineResolver
static method), 334

testconnection() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
static method), 335

testconnection() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 328

testconnection() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 324

themes, 344
TIMEOUT_ACTION (class in privacyidea.lib.policy),

303
TIMEOUT_ACTION (privacyidea.lib.policy.ACTION at-

tribute), 297
timeshift (privacyidea.lib.tokens.totptoken.TotpTokenClass

attribute), 263
TimestampMethodsMixin (class in priva-

cyidea.models), 340
timestep (privacyidea.lib.tokens.totptoken.TotpTokenClass

attribute), 263
timewindow (privacyidea.lib.tokens.totptoken.TotpTokenClass

attribute), 263
TiQR, 49, 65

TiQR Token, 73
TiqrTokenClass (class in priva-

cyidea.lib.tokens.tiqrtoken), 260
token, 3
Token (class in privacyidea.models), 340
TOKEN (privacyidea.lib.policy.GROUP attribute), 298
token configuration, 70
token default settings, 42
token description, 92
Token Enrollment Wizard, 173
Token Handler, 151
Token specific PIN policy, 102, 112
token types, 49
Token view page size, 130
Token wizard, 131
token_exist() (in module privacyidea.lib.token),

292
TokenClass (class in privacyidea.lib.tokenclass), 269
TokenEventHandler (class in priva-

cyidea.lib.eventhandler.tokenhandler), 154
TokenInfo (class in privacyidea.models), 342
TOKENINFO (privacyidea.lib.policy.ACTION attribute),

297
TOKENISSUER (privacyidea.lib.policy.ACTION at-

tribute), 297
TOKENLABEL (privacyidea.lib.policy.ACTION at-

tribute), 297
TOKENLIST (privacyidea.lib.policy.ACTION attribute),

297
TokenOwner (class in privacyidea.models), 342
TOKENOWNER (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE

attribute), 150
TOKENPAGESIZE (privacyidea.lib.policy.ACTION at-

tribute), 297
TOKENPIN (privacyidea.lib.policy.ACTIONVALUE at-

tribute), 297
TokenRealm (class in privacyidea.models), 342
TOKENREALMS (privacyidea.lib.policy.ACTION at-

tribute), 297
TOKENS (privacyidea.lib.policy.MAIN_MENU attribute),

298
TOKENTYPE (privacyidea.lib.policy.ACTION attribute),

297
tokenview, 92
TOKENWIZARD (privacyidea.lib.policy.ACTION at-

tribute), 297
TOKENWIZARD2ND (privacyidea.lib.policy.ACTION at-

tribute), 297
tools, 173
TOOLS (privacyidea.lib.policy.GROUP attribute), 298
TOTP Token, 75
TotpTokenClass (class in priva-

cyidea.lib.tokens.totptoken), 261
TRIGGERCHALLENGE (privacyidea.lib.policy.ACTION

Index 387

privacyIDEA Authentication System, Release 3.2.1

attribute), 297
Two Man, 50
twostep, 174
twostep_enrollment_activation() (in mod-

ule privacyidea.api.lib.prepolicy), 312
twostep_enrollment_parameters() (in mod-

ule privacyidea.api.lib.prepolicy), 312

U
U2F, 67
U2F Token, 75
u2ftoken_allowed() (in module priva-

cyidea.api.lib.prepolicy), 312
u2ftoken_verify_cert() (in module priva-

cyidea.api.lib.prepolicy), 312
U2fTokenClass (class in priva-

cyidea.lib.tokens.u2ftoken), 265
ubuntu, 5
ui_get_enroll_tokentypes() (priva-

cyidea.lib.policy.PolicyClass method), 302
ui_get_main_menus() (priva-

cyidea.lib.policy.PolicyClass method), 302
ui_get_rights() (priva-

cyidea.lib.policy.PolicyClass method), 303
UNASSIGN (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE

attribute), 154
UNASSIGN (privacyidea.lib.policy.ACTION attribute),

297
unassign_token() (in module priva-

cyidea.lib.token), 292
update() (privacyidea.lib.tokenclass.TokenClass

method), 279
update() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 237
update() (privacyidea.lib.tokens.emailtoken.EmailTokenClass

method), 240
update() (privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass

method), 235
update() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 243
update() (privacyidea.lib.tokens.motptoken.MotpTokenClass

method), 243
update() (privacyidea.lib.tokens.ocratoken.OcraTokenClass

method), 245
update() (privacyidea.lib.tokens.papertoken.PaperTokenClass

method), 246
update() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass

method), 246
update() (privacyidea.lib.tokens.pushtoken.PushTokenClass

method), 249
update() (privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass

method), 251
update() (privacyidea.lib.tokens.radiustoken.RadiusTokenClass

method), 253

update() (privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 254

update() (privacyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 255

update() (privacyidea.lib.tokens.smstoken.SmsTokenClass
method), 257

update() (privacyidea.lib.tokens.spasstoken.SpassTokenClass
method), 258

update() (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
method), 259

update() (privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass
method), 261

update() (privacyidea.lib.tokens.totptoken.TotpTokenClass
method), 263

update() (privacyidea.lib.tokens.u2ftoken.U2fTokenClass
method), 267

update() (privacyidea.lib.tokens.yubicotoken.YubicoTokenClass
method), 267

update() (privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 269

update_otpkey() (privacyidea.models.Token
method), 342

update_type() (privacyidea.models.Token method),
342

update_user() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 329

update_user() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 324

update_user_info() (privacyidea.lib.user.User
method), 232

UPDATEUSER (privacyidea.lib.policy.ACTION at-
tribute), 297

User (class in privacyidea.lib.user), 231
USER (privacyidea.lib.policy.GROUP attribute), 298
USER (privacyidea.lib.policy.SCOPE attribute), 303
user (privacyidea.lib.tokenclass.TokenClass attribute),

279
user cache, 39
User Notification, 147, 319
user policies, 110
user registration, 134
User view page size, 131
user() (privacyidea.lib.policy.Match class method),

299
UserCache (class in privacyidea.models), 342
USERDETAILS (privacyidea.lib.policy.ACTION at-

tribute), 297
UserIdResolver (class in priva-

cyidea.lib.resolvers.UserIdResolver), 322
useridresolvers, 32, 322
USERINFO (privacyidea.lib.policy.CONDITION_SECTION

attribute), 297

388 Index

privacyIDEA Authentication System, Release 3.2.1

USERLIST (privacyidea.lib.policy.ACTION attribute),
297

UserNotificationEventHandler (class in priva-
cyidea.lib.eventhandler.usernotification), 150,
319

USERPAGESIZE (privacyidea.lib.policy.ACTION
attribute), 297

Users, 106
USERS (privacyidea.lib.policy.MAIN_MENU attribute),

298
USERSTORE (privacyidea.lib.policy.ACTIONVALUE at-

tribute), 297
USERSTORE (privacyidea.lib.policy.AUTOASSIGNVALUE

attribute), 297
USERSTORE (privacyidea.lib.policy.LOGINMODE at-

tribute), 298
userview, 96
using_pin (privacyidea.lib.tokenclass.TokenClass at-

tribute), 280
using_pin (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

attribute), 237
using_pin (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

attribute), 259

V
VALIDITY (class in priva-

cyidea.lib.eventhandler.tokenhandler), 154
VASCO, 68
verify_response() (priva-

cyidea.lib.tokens.ocratoken.OcraTokenClass
method), 245

virtual environment, 4

W
WEBUI (privacyidea.lib.policy.SCOPE attribute), 303
WebUI Login, 129
WebUI Policy, 129
Windows, 184
Wizard, 131
Wordpress, 184
wrap_job() (in module privacyidea.lib.queue), 306

Y
Yubico, 49
Yubico AES mode, 68
Yubico Cloud mode, 68, 76
YubicoTokenClass (class in priva-

cyidea.lib.tokens.yubicotoken), 267
Yubikey, 49, 68
Yubikey AES mode, 77
Yubikey CSV, 170
YubikeyTokenClass (class in priva-

cyidea.lib.tokens.yubikeytoken), 267
YUM, 13

Index 389

	Table of Contents
	Indices and tables
	HTTP Routing Table
	Python Module Index
	Index

