
privacyIDEA Documentation
Release 2.3

Cornelius Kölbel

June 23, 2015

Contents

1 Table of Contents 3
1.1 Overview . 3
1.2 Installation . 3
1.3 First Steps . 12
1.4 Configuration . 17
1.5 Tokenview . 47
1.6 Userview . 52
1.7 Policies . 56
1.8 Audit . 72
1.9 Client machines . 72
1.10 Application Plugins . 75
1.11 Tools . 79
1.12 Import . 80
1.13 Code Documentation . 82
1.14 Frequently Asked Questions . 173

2 Indices and tables 175

HTTP Routing Table 177

Python Module Index 179

i

ii

privacyIDEA Documentation, Release 2.3

privacyIDEA is a modular authentication system. Using privacyIDEA you can enhance your existing applications
like local login, VPN, remote access, SSH connections, access to web sites or web portals with a second factor
during authentication. Thus boosting the security of your existing applications. Originally it was used for OTP
authentication devices. But other “devices” like challenge response and SSH keys are also available. It runs on Linux
and is completely Open Source, licensed under the AGPLv3.

privacyIDEA can read users from many different sources like flat files, different LDAP services, SQL databases and
SCIM services. (see Realms)

Authentication devices to provide two factor authentication can be assigned to those users, either by administrators
or by the users themselves. Policies define what a user is allowed to do in the web UI and what an administrator is
allowed to do in the management interface.

The system is written in python, uses flask as web framework and an SQL database as datastore. Thus it can be
enrolled quite easily providing a lean installation. (see Installation)

Contents 1

privacyIDEA Documentation, Release 2.3

2 Contents

CHAPTER 1

Table of Contents

1.1 Overview

privacyIDEA is a system that is used to manage devices for two factor authentication. Using privacyIDEA you can
enhance your existing applications like local login, VPN, remote access, SSH connections, access to web sites or web
portals with a second factor during authentication. Thus boosting the security of your existing applications.

In the beginning there were OTP tokens, but other means to authenticate like SSH keys are added. Other concepts like
handling of machines or enrolling certificates are coming up, you may monitor this development on Github.

privacyIDEA is a web application written in Python based on the flask micro framework. You can use any webserver
with a wsgi interface to run privacyIDEA. E.g. this can be Apache, Nginx or even werkzeug.

A device or item used to authenticate is still called a “token”. All token information is stored in an SQL database,
while you may choose, which database you want to use. privacyIDEA uses SQLAlchemy to map the database to
internal objects. Thus you may choose to run privacyIDEA with SQLite, MySQL, PostgreSQL, Oracle, DB2 or other
database.

The code is divided into three layers, the API, the library and the database layer. Read about it at Code Documentation.
privacyIDEA provides a clean REST API.

Administrators can use a Web UI or a command line client to manage authentication devices. Users can log in to the
Web UI to manage their own tokens.

Authentication is performed via the API or certain plugins for FreeRADIUS, simpleSAMLphp, Wordpress, Contao,
Dokuwiki... to either provide default protocols like RADIUS or SAML or to integrate into applications directly.

Due to this flexibility there are also many different ways to install and setup privacyIDEA. We will take a look at
common ways to setup privacyIDEA in the section Installation but there are still many others.

1.2 Installation

The ways described here to install privacyIDEA are

• the installation via the Python Package Index, which can be used on any Linux distribution and

• ready made Ubuntu Packages for Ubuntu 14.04LTS and

• ready made Debian Packages for Debian Wheezy.

If you want to upgrade from a privacyIDEA 1.5 installation please read Upgrading.

3

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://www.sqlalchemy.org/

privacyIDEA Documentation, Release 2.3

1.2.1 Python Package Index

You can install privacyidea on usually any Linux distribution in a python virtual environment like this:

virtualenv /opt/privacyidea

cd /opt/privacyidea
source bin/activate

Now you are within the python virtual environment. Within the environment you can now run:

pip install privacyidea

Please see the section The Config File for a quick setup of your configuration.

Then create the encryption key and the signing keys:

pi-manage.py create_enckey
pi-manage.py create_signkey

Create the database and the first administrator:

pi-manage.py createdb
pi-manage.py admin add admin admin@localhost

Now you can run the server for your first test:

pi-manage.py runserver

Depending on the database you want to use, you may have to install additional packages.

1.2.2 Ubuntu Packages

There are ready made debian packages for Ubuntu 14.04 LTS. These are available in a public ppa repository 1, so that
the installation will automatically resolve all dependencies. Install it like this:

add-apt-repository ppa:privacyidea/privacyidea
apt-get update
apt-get install python-privacyidea privacyideaadm

Optionally you can also install necessary configuration files to run privacyIDEA within the Nginx Webserver:

apt-get install privacyidea-nginx

Alternatively you can install privacyIDEA running in an Apache webserver:

apt-get install privacyidea-apache2

After installing in Nginx or Apache2 you only need to create your first administrator and you are done:

pi-manage.py admin add admin admin@localhost

Now you may proceed to First Steps.

1 https://launchpad.net/~privacyidea

4 Chapter 1. Table of Contents

https://launchpad.net/~privacyidea

privacyIDEA Documentation, Release 2.3

FreeRADIUS

privacyIDEA has a perl module to “translate” RADIUS requests to the API of the privacyIDEA server. This module
plugs into FreeRADIUS. The FreeRADIUS does not have to run on the same machine like privacyIDEA. To install
this module run:

apt-get install privacyidea-radius

For further details see FreeRADIUS Plugin.

SimpleSAMLphp

Starting with 1.4 privacyIDEA also supports SAML via a plugin for simpleSAMLphp 2. The simpleSAMLphp service
does not need to run on the same machine like the privacyIDEA server.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-simplesamlphp

For further details see simpleSAMLphp Plugin.

PAM

privacyIDEA also comes with a PAM library to add two factor authentication to any Linux system. You can run
one central privacyIDEA server and configure all other systems using the PAM library to authenticate against this
privacyIDEA.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-pam

For further details see Pluggable Authentication Module.

OTRS

OTRS is an important Open Source Ticket Request System. It is written in Perl and privacyIDEA provides an authen-
tication plugin to authenticate at OTRS with two factors.

To install it on Ubuntu 14.04 please run:

apt-get install privacyidea-otrs

For further details and configuration see OTRS.

1.2.3 Debian Packages

You can install privacyIDEA on debian Wheezy either via the Python Package Index or with a ready made Wheezy
package.

The available Wheezy package privacyidea-venv_2.1~dev0_amd64.deb contains a complete virtual environment with
all necessary dependent modules. To install it run:

dpkg -i privacyidea-venv_2.1~dev0_amd64.deb

2 https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

1.2. Installation 5

https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

privacyIDEA Documentation, Release 2.3

This will install privacyIDEA into a virtual environment at /opt/privacyidea/privacyidea-venv.

You can enter the virtual environment by:

source /opt/privacyidea/privacyidea-venv/bin/activate

Running privacyIDEA with Apache2 and MySQL

You need to create and fill the config directory /etc/privacyidea manually:

cp /opt/privacyidea/privacyidea-venv/etc/privacyidea/dictionary \
/etc/privacyidea/

Create a config /etc/privacyidea/pi.cfg like this:

Your database
SQLALCHEMY_DATABASE_URI = 'mysql://pi:password@localhost/pi'
This is used to encrypt the auth_token
SECRET_KEY = 'choose one'
This is used to encrypt the admin passwords
PI_PEPPER = "choose one"
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'
#CRITICAL = 50
#ERROR = 40
#WARNING = 30
#INFO = 20
#DEBUG = 10
PI_LOGLEVEL = 20

You need to create the above mentioned logging directory /var/log/privacyidea.

You need to create the above mentioned database with the corresponding user access:

mysql -u root -p -e "create database pi"
mysql -u root -p -e "grant all privileges on pi.* to 'pi'@'localhost' \
identified by 'password'"

With this config file in place you can create the database tables, the encryption key and the audit keys:

pi-manage.py createdb
pi-manage.py create_enckey
pi-manage.py create_audit_keys

Now you can create the first administrator:

pi-manage.py admin add administrator email@domain.tld

The system is set up. You now only need to configure the Apache2 webserver.

The Apache2 needs a wsgi script that could be located at /etc/privacyidea/piapp.wsgi and look like this:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:

6 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

application = create_app(config_name="production", \
config_file="/etc/privacyidea/pi.cfg")

Finally you need to create a Apache2 configuration /etc/apache2/sites-available/privacyidea.conf
which might look like this:

WSGIPythonHome /opt/privacyidea/privacyidea-venv
<VirtualHost _default_:443>

ServerAdmin webmaster@localhost
You might want to change this
ServerName localhost

DocumentRoot /var/www
<Directory />

For Apache 2.4 you need to set this:
Require all granted
Options FollowSymLinks
AllowOverride None

</Directory>

We can run several instances on different paths with different configurations
WSGIScriptAlias / /etc/privacyidea/piapp.wsgi
#
The daemon is running as user 'privacyidea'
This user should have access to the encKey database encryption file
WSGIDaemonProcess privacyidea processes=1 threads=15 display-name=%{GROUP} user=privacyidea
WSGIProcessGroup privacyidea
WSGIPassAuthorization On

ErrorLog /var/log/apache2/error.log

LogLevel warn
LogFormat "%h %l %u %t %>s \"%m %U %H\" %b \"%{Referer}i\" \"%{User-agent}i\"" privacyIDEA
CustomLog /var/log/apache2/ssl_access.log privacyIDEA

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on

If both key and certificate are stored in the same file, only the
SSLCertificateFile directive is needed.
SSLCertificateFile /etc/ssl/certs/privacyideaserver.pem
SSLCertificateKeyFile /etc/ssl/private/privacyideaserver.key

<FilesMatch "\.(cgi|shtml|phtml|php)$">
SSLOptions +StdEnvVars

</FilesMatch>
<Directory /usr/lib/cgi-bin>

SSLOptions +StdEnvVars
</Directory>
BrowserMatch ".*MSIE.*" \

nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

</VirtualHost>

The configuration assumes, a user privacyidea, which you need to create:

1.2. Installation 7

privacyIDEA Documentation, Release 2.3

useradd -r -m privacyidea

The files in /etc/privacyidea and the logfiles in /var/log/privacyidea/ should be restricted to this user.

1.2.4 Upgrading

Upgrade From privacyIDEA 2.x to 2.3

In 2.3 the priority of resolvers in realms was added.

You need to update the database models:

pi-manage.py db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage.py db upgrade -d path/to/migrations

Note: You need to specify the path to the migrations scripts. This could be /usr/lib/privacyidea/migrations.

Note: When upgrading with the Ubuntu LTS packages, the database update is performed automatically.

Upgrade From privacyIDEA 1.5

Warning: privacyIDEA 2.0 introduces many changes in database schema, so at least perform a database backup!

Stopping Your Server

Be sure to stop your privacyIDEA server.

Upgrade Software

To upgrade the code enter your python virtualenv and run:

pip install --upgrade privacyidea

Configuration

Read about the configuration in the The Config File.

You can use the old enckey, the old signing keys and the old database uri. The values can be found in your old ini-file as
privacyideaSecretFile, privacyideaAudit.key.private, privacyideaAudit.key.public
and sqlalchemy.url. Your new config file might look like this:

config_path = "/home/cornelius/tmp/pi20/etc/privacyidea/"
This is your old database URI
Note the three slashes!
SQLALCHEMY_DATABASE_URI = "sqlite:///" + config_path + "token.sqlite"
This is new!
SECRET_KEY = 't0p s3cr3t'
This is new
#This is used to encrypt the admin passwords

8 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
This is your old encryption key!
PI_ENCFILE = config_path + 'enckey'
THese are your old signing keys
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = config_path + 'private.pem'
PI_AUDIT_KEY_PUBLIC = config_path + 'public.pem'

To verify the new configuration run:

pi-manage.py create_enckey

It should say, that the enckey already exists!

Migrate The Database

You need to upgrade the database to the new database schema:

pi-manage.py db upgrade -d lib/privacyidea/migrations

Note: In the Ubuntu package the migrations folder is located at /usr/lib/privacyidea/migrations/.

Create An Administrator

With privacyIDEA 2.0 the administrators are stored in the database. The password of the administrator is salted and
also peppered, to avoid having a database administrator slip in a rogue password.

You need to create new administrator accounts:

pi-manage.py addadmin <email-address> <admin-name>

Start The Server

Run the server:

pi-manage.py runserver

or add it to your Apache or Nginx configuration.

1.2.5 The Config File

privacyIDEA reads its configuration from different locations:

1. default configuration from the module privacyidea/config.py

2. then from the config file /etc/privacyidea/pi.cfg if it exists and then

3. from the file specified in the environment variable PRIVACYIDEA_CONFIGFILE.

The configuration is overwritten and extended in each step. I.e. values define in privacyidea/config.py that
are not redefined in one of the other config files, stay the same.

You can create a new config file (either /etc/privacyidea/pi.cfg) or any other file at any location and set the
environment variable. The file should contain the following contents:

1.2. Installation 9

privacyIDEA Documentation, Release 2.3

The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super', 'administrators']
Your database
SQLALCHEMY_DATABASE_URI = 'sqlite:////etc/privacyidea/data.sqlite'
This is used to encrypt the auth_token
SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/home/cornelius/src/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/home/cornelius/src/privacyidea/public.pem'
PI_LOGFILE = '....'
PI_LOGLEVEL = 20
PI_INIT_CHECK_HOOK = 'your.module.function'

Note: The config file is parsed as python code, so you can use variables to set the path and you need to take care for
indentations.

If you are using a config file other than /etc/privacyidea/pi.cfg you need to set the environment variable:

export PRIVACYIDEA_CONFIGFILE=/your/config/file

The SUPERUSER_REALM is a list of realms, in which the users get the role of an administrator.

PI_INIT_CHECK_HOOK is a function in an external module, that will be called as decorator to token/init and
token/assign. This function takes the request and action (either “init” or “assing”) as an arguments and can
modify the request or raise an exception to avoid the request being handled.

There are three config entries, that can be used to define the logging. These are PI_LOGLEVEL, PI_LOGFILE,
PI_LOGCONFIG. These are described in Debugging and Logging.

1.2.6 Debugging and Logging

You can set PI_LOGLEVEL to a value 10 (Debug), 20 (Info), 30 (Warngin), 40 (Error) or 50 (Critical). If you
experience problems, set PI_LOGLEVEL = 10 restart the web service and resume the operation. The log file
privacyidea.log should contain some clues.

You can define the location of the logfile using the key PI_LOGFILE. Usually it is set to:

PI_LOGFILE = "/var/log/privacyidea/privacyidea.log"

Advanced Logging

You can also define a more detailed logging by specifying a log configuration file like this:

PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

Such a configuration could look like this:

[formatters]
keys=detail

[handlers]
keys=file,mail

10 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

[formatter_detail]
class=privacyidea.lib.log.SecureFormatter
format=[%(asctime)s][%(process)d][%(thread)d][%(levelname)s][%(name)s:%(lineno)d] %(message)s

[handler_mail]
class=logging.handlers.SMTPHandler
level=ERROR
formatter=detail
args=('mail.example.com', 'privacyidea@example.com', ['admin1@example.com',\

'admin2@example.com'], 'PI Error')

[handler_file]
Rollover the logfile at midnight
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=DEBUG
args=('/var/log/privacyidea/privacyidea.log',)

[loggers]
keys=root,privacyidea

[logger_privacyidea]
handlers=file,mail
qualname=privacyidea
level=DEBUG

[logger_root]
level=NOTSET
handlers=file

The file structure follows 3 and can be used to define additional handlers like logging errors to email addresses.

Note: In this example a mail handler is defined, that will send emails to certain email Adresses, if an ERROR occurs.

1.2.7 The WSGI Script

Apache2 and Nginx are using a WSGI script to start the application.

This script is usually located at /etc/privacyidea/privacyideaapp.py or
/etc/privacyidea/privacyideaapp.wsgi and has the following contents:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production",

config_file="/etc/privacyidea/pi.cfg")

In the create_app-call you can also select another config file.

Note: This way you can run several instances of privacyIDEA in one Apache2 server by defining several WSGIScrip-
tAlias definitions pointing to different wsgi-scripts, that again reference different config files with different database
definitions.

3 https://docs.python.org/2/library/logging.config.html#configuration-file-format

1.2. Installation 11

https://docs.python.org/2/library/logging.config.html#configuration-file-format

privacyIDEA Documentation, Release 2.3

After installtion you might want to take a look at First Steps.

1.3 First Steps

You installed privacyIDEA successfully according to Installation and created an administrator using the command
pi-manage.py admin as e.g. described in Ubuntu Packages.

These first steps will guide you through the tasks of logging in to the management web UI, attaching your first users
and enrolling the first token.

1.3.1 Login to the Web UI

privacyIDEA has only one login form that is used by administrators and normal users to login. Administrators will
be able to configure the system and to manage all tokens, while normal users will only be able to manage their own
tokens.

You should enter your username with the right realm. You need to append the realm to the username like
username@realm.

Login for administrators

Administrators can authenticate at this login form to access the management UI.

Administrators are stored in the database table Admin and can be managed with the tool:

pi-manage.py admin ...

The administrator just logs in with his username.

Note: You can configure privacyIDEA to authenticate administrators against privacyIDEA itself, so that administra-
tors need to login with a second factor. See SUPERUSER_REALM in inifile_superusers how to do this.

Login for normal users

Normal users authenticate at the login form to be able to manage their own tokens. By default users need to authenticate
with the password from their user source.

E.g. if the users are located in an LDAP or Active Directory the user needs to authenticate with his LDAP/AD
password.

But before a user can login, the administrator needs to configure realms, which is described in the next step Creating
your first realm.

Note: The user my either login with his password from the userstore or with any of his tokens.

Note: The administrator may change this behaviour by creating an according policy, which then requires the user
to authenticate against privacyIDEA itself. I.e. this way the user needs to authenticate with a second factor/token to
access the self service portal. (see the policy section login_mode)

12 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.3.2 Creating your first realm

Note: When the administrator logs in and no useridresolver and no realm is defined, a popup appears, which asks
you to create a default realm. During these first steps you may say “No”, to get a better understanding.

Users in privacyIDEA are read from existing sources. See Realms for more information.

In these first steps we will simply read the users from your /etc/passwd file.

Create a UserIdResolver

The UserIdResolver is the connector to the user source. For more information see UserIdResolvers.

• Go to Config -> Users to create a UserIdResolver.

Fig. 1.1: Create the first UserIdResolver

• Choose New passwdresolver and

• Enter the name “myusers”.

• Save it.

You just created your first connection to a user source.

Create a Realm

User sources are grouped togeather to a so called “realm”. For more information see Realms.

• Go to Config -> Realms

• Enter “realm1” as the new realm name and select the priority 1.

• Check the resolver “myusers” to be included into this realm.

• Save it.

• Go to Users and you will see the users from the /etc/passwd.

1.3. First Steps 13

privacyIDEA Documentation, Release 2.3

Fig. 1.2: Create the first UserIdResolver

Fig. 1.3: Create the first Realm

14 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.4: The users from /etc/passwd

1.3. First Steps 15

privacyIDEA Documentation, Release 2.3

Congratulation! You created your first realm.

You are now ready to enroll a token to a user. Read Enrolling your first token.

1.3.3 Enrolling your first token

You may now enroll a new token. In this example we are using the Google Authenticator App, that you need to install
on your smartphone.

• Go to Tokens -> Enroll Token

Fig. 1.5: The Token Enrollment Dialog

• Select the username root. When you start typing “r”, “o”... the system will find the user root automatically.

• Enter a PIN. I entered “test” ...

• ... and click “Enroll Token”.

• After enrolling the token you will see a QR code, that you need to scan with the Google Authenticator App.

• Click on the serial number link at the top of the dialog.

• Now you see the token details.

• Left to the button “Test Token” you can enter the PIN and the OTP value generated by the Google Authenticator.

• Click the button “Test Token”. You should see a green “matching 1 tokens”.

16 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.6: Enrollment Success

Congratulations! You just enrolled your first token to a user.

Now you are ready to attach applications to privacyIDEA in order to add two factor authentication to those applications.
To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

After these first steps you will be able to start attaching applications to privacyIDEA in order to add two factor
authentication to those applications. You can

• use a PAM module to authenticate with OTP at SSH or local login

• or the RADIUS plugin to configure your firewall or VPN to use OTP,

• or use an Apache2 plugin to do Basic Authentication with OTP.

• You can also setup different web applications to use OTP.

To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper insight in the configuration possibilities.

1.4 Configuration

The configuration menu can be used to define useridresolvers and realms, set the system config and the token config.

It also contains a shortcut to the policy tab (see Policies).

1.4.1 UserIdResolvers

Each organisation or company usually has its users managed at a central location. This is why privacyIDEA does not
provide its own user management but rather connects to existing user stores.

UserIdResolvers are connectors to those user stores, the locations, where the users are managed. Nowadays this can
be LDAP directories or especially Active Directory, some times FreeIPA or the Redhat 389 service. But classically

1.4. Configuration 17

privacyIDEA Documentation, Release 2.3

Fig. 1.7: Test the Token

18 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

users are also located in files like /etc/passwd on standalone unix systems. Web services often use SQL databases as
user store.

Today with many more online cloud services SCIM is also an uprising protocol to access userstores.

privacyIDEA already comes with UserIdResolvers to talk to all these user stores:

• Flatfile resolver,

• LDAP resolver,

• SQL resolver,

• SCIM resolver.

Note: New resolver types (python modules) can be added easily. See the module section for this (UserIdResolvers).

You can create as many UserIdResolvers as you wish and edit existing resolvers. When you have added all config-
uration data, most UIs of the UserIdResolvers have a button “Test resolver”, so that you can test your configuration
before saving it.

Starting with privacyIDEA 2.4 resolvers can be editable, i.e. you can edit the users in the user store. Read more about
this at Manage Users.

Note: Using the policy authentication:otppin=userstore users can authenticate with the password from
their user store, being the LDAP password, SQL password or password from flat file.

Flatfile resolver

Flatfile resolvers read files like /etc/passwd.

Note: The file /etc/passwd does not contain the unix password. Thus, if you create a flatfile resolver from this
file the functionality with otppin=userstore is not available. You can create a flatfile with passwords using the
tool privacyidea-create-pwidresolver-user.

Create a flat file like this:

privacyidea-create-pwidresolver-user -u user2 -i 1002 >> /your/flat/file

LDAP resolver

The LDAP resolver can be used to access any kind of LDAP service like OpenLDAP, Active Directory, FreeIPA,
Penrose, Novell eDirectory.

In case of Active Directory connections you might need to check the box No anonymous referral chasing.
The underlying LDAP library is only able to do anonymous referral chasing. Active Directory will produce an error
in this case 4.

The Server URI can contain a comma seperated list of servers. The servers are used to create a server pool and are
used with a round robin strategy 5.

Example:

ldap://server1, ldaps://server2:1636, server3, ldaps://server4

4 http://blogs.technet.com/b/ad/archive/2009/07/06/referral-chasing.aspx
5 https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

1.4. Configuration 19

http://blogs.technet.com/b/ad/archive/2009/07/06/referral-chasing.aspx
https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

privacyIDEA Documentation, Release 2.3

Fig. 1.8: LDAP resolver configuration

20 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

This will create LDAP requests to

• server1 on port 389

• server2 on port 1636 using SSL

• server3 on port 389

• server4 on port 636 using SSL.

The Bind Type with Active Directory can either be chosen as “Simple” or as “NTLM”.

Note: When using bind type “Simple” you need to specify the Bind DN like
cn=administrator,cn=users,dc=domain,dc=name. When using bind type “NTLM” you need to specify Bind
DN like DOMAINNAMEusername.

The LoginName attribute is the attribute that holds the loginname. It can be changed to your needs.

The searchfilter and the userfilter are used for forward and backward search the object in LDAP.

The searchfilter is used to list all possible users, that can be used in this resolver.

The userfilter is used to find the LDAP object for a given loginname. This is why the userfilter contains
the python string replacement parameter %s, which will be filled with the given loginname to find the LDAP object.

The attribute mapping maps LDAP object attributes to user attributes in privacyIDEA. privacyIDEA knows
the following attributes:

• username,

• phone,

• mobile,

• email,

• surname,

• givenname.

The UID Type is the unique identifier for the LDAP object. If it is left blank, the distinguished name will be used.
In case of OpenLDAP this can be entryUUID and in case of Active Directory objectGUID.

SQL resolver

The SQL resolver can be used to retrieve users from any kind of SQL database like MySQL, PostgreSQL, Oracle,
DB2 or sqlite.

In the upper frame you need to configure the SQL connection. The SQL resolver uses SQLAlchemy internally. In the
field Driver you need to set a driver name as defined by the SQLAlchemy dialects like “mysql” or “postgres”.

In the SQL attributes frame you can specify how the users are identified.

The Database table contains the users.

Note: At the moment only one table is supported, i.e. if some of the user data like email address or telephone number
is located in a second table, those data can not be retrieved.

The Limit is the SQL limit for a userlist request. This can be important if you have several thousand user entries in
the table.

The Attribute mapping defines which table column should be mapped to which privayIDEA attribute. The
known attributes are:

1.4. Configuration 21

http://sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_9/dialects/

privacyIDEA Documentation, Release 2.3

Fig. 1.9: SQL resolver configuration

22 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

• userid,

• username,

• phone,

• mobile,

• email,

• givenname,

• surname.

You can add an additional Where statement if you do not want to use all users from the table.

Note: The Additional connection parameters refer to the SQLAlchemy connection but are not used at
the moment.

SCIM resolver

SCIM is a “System for Cross-domain Identity Management”. SCIM is a REST-based protocol that can be used to ease
identity management in the cloud.

The SCIM resolver is tested in basic functions with OSIAM 6, the “Open Source Idenitty & Access Management”.

To connect to a SCIM service you need to provide a URL to an authentication server and a URL to the resource server.
The authentication server is used to authenticate the privacyIDEA server. The authentication is based on a client
name and the Secret for this client.

Userinformation is then retrieved from the resource server.

The available attributes for the Attribute mapping are:

• username,

• givenname,

• surname,

• phone,

• mobile,

• email.

1.4.2 Realms

Users need to be in realms to have tokens assigned. A user, who is not member of a realm can not have a token
assigned and can not authenticate.

You can combine several different UserIdResolvers (see UserIdResolvers) into a realm. The system knows one default
realm. Users within this default realm can authenticate with their username.

Users in realms, that are not the default realm, need to be additionally identified. Therefor the users need to authenticate
with their username and the realm like this:

user@realm

6 http://www.osiam.org

1.4. Configuration 23

http://www.osiam.org

privacyIDEA Documentation, Release 2.3

List of Realms

The realms dialog gives you a list of the already defined realms.

It shows the name of the realms, whether it is the default realm and the names of the resolvers, that are combined to
this realm.

You can delete or edit an existing realm or create a new realm.

Edit Realm

Each realm has to have a unique name. The name of the realm is case insensitive. If you create a new realm with the
same name like an existing realm, the existing realm gets overwritten.

If you click Edit Realm you can select which userresolver should be contained in this realm. A realm can contain
several resolvers.

Fig. 1.10: Edit a realm

Resolver Priority

Within a realm you can give each resolver a priority. The priority is used to find a user that is located in several
resolvers. If a user is located in more than one resolver, the user will be taken from the resolver with the lowest
number in the priority.

Priorities are numbers between 1 and 999. The lower the number the higher the priority.

Example:

A user “administrator” is located in a resolver “users” which contains all Active Directory users. And the “adminis-
trator” is located in a resolver “admins”, which contains all users in the Security Group “Domain Admins” from the
very same domain. Both resolvers are in the realm “AD”, “admins” with priority 1 and “users” with priority 2.

Thus the user “administrator@AD” will always resolve to the user located in resolver “admins”.

This is useful to create policies for the security group “Domain Admins”.

Note: A resolver has a priority per realm. I.e. a resolver can have a different priority in each realm.

24 Chapter 1. Table of Contents

mailto:administrator@AD

privacyIDEA Documentation, Release 2.3

Autocreate Realm

If you have a fresh installation, no resolver and no realm is defined. To get you up and running faster, the system will
ask you, if it should create the first realm for you.

If you answer “yes”, it will create a resolver named “deflocal” that contains all users from /etc/passwd and a realm
named “defrealm” with this very resolver.

Thus you can immediately start assigning and enrolling tokens.

If you check “Do not ask again” this will be stored in a cookie in your browser.

Note: The realm “defrealm” will be the default realm. So if you create a new realm manually and want this new
realm to be the default realm, you need to set this new realm to be default manually.

1.4.3 System Config

The system configuration has three logical topics: Settings, token default settings and GUI settings.

Settings

splitAtSign defines if the username like user@company given during authentication should be split into the
loginname user and the realm name company. In most cases this is the wanted behaviour.

But given your users log in with email addresses like user@gmail.com and otheruser@outlook.com you probably do
not want to split.

Return SAML attributes defines if during an SAML authentication request additional SAML attributes should
be returned. Usuall an authentication response only returns true or false.

If during authentication the given PIN matches a token but the OTP value is wrong the failcounter of the tokens for
which the PIN matches, is increased. If the given PIN does not match any token, by default no failcounter is increased.
The later behaviour can be adapted by FailCounterIncOnFalsePin. If FailCounterIncOnFalsePin is
set and the given OTP PIN does not match any token, the failcounter of all tokens is increased.

PrependPin defines if the OTP PIN should be given in front (“pin123456”) or in the back (“12345pin”) of the OTP
value.

Auto resync defines if the system should try to resync a token if a user provides a wrong OTP value. If checked,
the system remembers the OTP value and if during auto resync timeout the user tries to authenticate again
with the next, successive OTP value, the system tries to resync this token with the two given OTP values.

Pass on user not found let the system return a successful authentication response if the authenticating user
does not exist in the system.

1.4. Configuration 25

privacyIDEA Documentation, Release 2.3

Fig. 1.11: The system config

26 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Warning: Use with care and only if you know what you are doing!

Pass on user no token let the system return a successful authentication response if the authenticating user
exists in the system but has no token assigned.

Warning: Use with care and only if you know what you are doing! Since the user could remove all his tokens in
selfservice and then have free rides forever.

Override Authentication client is important with client specific policies (see Policies) and RADIUS
servers. In case of RADIUS the authenticating client for the privacyIDEA system will always be the RADIUS serve,
which issues the authentication request. But you can allow the RADIUS server IP to send another client information
(in this case the RADIUS client) so that the policy is evaluated for the RADIUS client. This field takes a comma
seperated list of IP addresses.

maximum concurrent OCRA challenges defines how many OCRA requests for a single OCRA token are
allowed to be active simultaniously. (TODO): Not migrated, yet.

OCRA challenge timeout defines how many seconds an OCRA challenge is kept active. The response must be
sent within this timeout. (TODO): Not migrated, yet.

Token default settings

Misc settings

DefaultResetFailCount will reset the failcounter of a token if this token was used for a successful authentica-
tion. If not checked, the failcounter will not be resetted and must be resetted manually.

Note: The following settings are token specific value which are set during enrollment. If you want to change this
value of a token lateron, you need to change this at the tokeninfo dialog.

DefaultMaxFailCount is the maximum failcounter a token way get. If the failcounter exceeds this number the
token can not be used unless the failcounter is resetted.

Note: In fact the failcounter will only increas till this maxfailcount. Even if more failed authentication request occur,
the failcounter will not increase anymore.

DefaultSyncWindow is the window how many OTP values will be caluculated during resync of the token.

DefaultOtpLen is the length of the OTP value. If no OTP lenght is specified during enrollment, this value will be
used.

DefaultCountWindow defines how many OTP values will be calculated during an authentication request.

DefaultChallengeValidityTime is the timeout for a challenge response authentication.

OCRA settings

default OCRA suite is the OCRA suite that is set for an OCRA token during enrollment if no OCRA suite is
specified. (TODO): Not migrated, yet.

default QR suite is the OCRA suite that is set for a QR token during enrollment if no OCRA suite is specified.
(TODO): Not migrated, yet.

1.4. Configuration 27

privacyIDEA Documentation, Release 2.3

GUI settings

The login window of the WebUI may display a dropdown box with all realms. You might hide this dropdown box,
if you do not want to tell the world which realms are defined on your system. If you check display realm
select box the list of all realms including the special realm admin for the administrators from the superuser file
will be displayed in the login form.

1.4.4 Tokens

Supported Tokens

privacyIDEA supports a wide variety of tokens by different hardware vendors. It also supports token apps on the
smartphone.

Tokens not listed, will be probably supported, too, since most tokens use standard algorithms.

If in doubt drop your question on the mailing list.

Hardware Tokens

The following hardware tokens are known to work well.

Yubikey. The Yubikey is supported in all modes: AES (Yubikey), hotp_token and Yubico Cloud. You can initialize the
Yubikey yourself, so that the secret key is not known to the vendor.

eToken Pass. The eToken Pass is a push button token by SafeNet. It can be initialized with a special hardware device.
Or you get a seed file, that you need to import to privacyIDEA. The eToken Pass can run as hotp_token or totp_token
token.

eToken NG OTP. The eToken NG OTP is a push button token by SafeNet. As it has a USB connector, you can
initialize the token via the USB connector. Thus the hardware vendor does not know the secret key.

DaPlug. The DaPlug token is similar to the Yubikey and can be initialized via the USB connector. The secret key is
not known to the hardware vendor.

Smartdisplayer OTP Card. This is a push button card. It features an eInk display, that can be read very good in all
light condition at all angles. The Smartdisplayer OTP card is initialized at the factory and you get a seed file, that you
need to import to privacyIDEA.

Feitian. The C100 and C200 tokens are classical, reasonably priced push button tokens. The C100 is an hotp_token
token and the C200 a totp_token token. These tokens are initialized at the factory and you get a seed file, that you
need to import to privacyIDEA.

Smartphone Apps

Google Authenticator. The Google Authenticator is working well in hotp_token and totp_token mode. If you choose
“Generate OTP Key on the Server” durcing enrollment, you can scan a QR Code with the Google Authenticator. See
Enrolling your first token to learn how to do this.

FreeOTP. privacyIDEA is known to work well with the FreeOTP App. The FreeOTP App is a totp_token token. So
if you scan the QR Code of an HOTP token, the OTP will not validate.

mOTP. Several mOTP Apps like “Potato”, “Token2” or “DroidOTP” are supported.

28 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Supported Tokentypes

At the moment the following tokentypes are supported:

• hotp_token - event base One Time Password tokens based on RFC4225.

• totp_token - time based One Time Password tokens based on RFC6238.

• mOTP - time based One Time Password tokens for mobile phones based on an a public Algorithm.

• password - A password token used for losttoken scenario.

• Registration - A special token type used for enrollment scenarios (see Registration Code).

• Simple Pass - A token that only consists of the Token PIN.

• Certificates - A token that represents a client certificate.

• SSH Keys - An SSH public key that can be managed and used in conjunction with the Client machines concept.

• Remote - A virtual token that forwards the authentication request to another privacyIDEA server.

• RADIUS - A virtual token that forwards the authentication request to a RADIUS server.

• SMS - A token that sends the OTP value to the mobile phone of the user.

• email_token - A token that sends the OTP value to the EMail address of the user.

• Yubico - A Yubikey hardware that authenticates against the Yubico Cloud service.

• Yubikey - A Yubikey hardware initialized in the AES mode, that authenticates against privacyIDEA.

• Daplug - A hardware OTP token similar to the Yubikey.

The Tokentypes:

Certificates

Starting with version 2.3 privacyIDEA supports certificates. A user can

• upload a certificate request,

• upload a certificate or

• he can generate a certificate request in the browser.

privacyIDEA does not sign certificate requests itself but connects to existing certificate authorities. To do so, you need
to define CA Connectors.

Certificates are attached to the user just like normal tokens. One token of type certificate always contains only one
certificate.

If you have defined a CA connector you can upload a certificate signing request (CSR) via the Token Enroll Dialog in
the WebUI.

You need to choose the CA connector. The certificate will be signed by the CA accordingly. Just like all other tokens
the certificate token can be attached to a user.

Generating Signing Requests You can also generate the signing request directly in your browser.

Note: This uses the keygen HTML-tag that is not supported by the Internet Explorer!

When generating the certificate signing request this way the RSA keypair is generated on the client side in the browser.

1.4. Configuration 29

https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
http://motp.sourceforge.net

privacyIDEA Documentation, Release 2.3

Fig. 1.12: Upload a certificate signing request

Fig. 1.13: Generate a certificate signing request

30 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

The certificate is signed by the CA connected by the chosen CA connector.

Fig. 1.14: Download or install the client certificate

Afterwards the user can install the certificate into the browser.

Note: By requiring OTP authentication for the users to login to the WebUI (see login_mode) you can have two factor
authentication required for the user to be allowed to enroll a certificate.

RADIUS

The token type RADIUS forwards the authentication request to a RADIUS Server.

When forwarding the authentication request, you can change the username and mangle the password.

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the RADIUS server.

RADIUS Server

The RADIUS server, to which the authentication request will be forwarded. You can specify the port like
my.radius.server:1812.

RADIUS User

When forwarding the request to the RADIUS server, the authentication request will be issued for this user. If the user
is left empty, the RADIUS request will be sent with the same user.

RADIUS Secret

The RADIUS secret for this RADIUS client.

Note: Using the RADIUS token you can design migration scenarios. When migrating from other (proprietary) OTP
solutions, you can enroll a RADIUS token for the users. The RADIUS token points to the RADIUS server of the
old solution. Thus the user can authenticate against privacyIDEA with the old, proprietary token, till he is enrolled a
new token in privacyIDEA. The interesting thing is, that you also get the authentication request with the proprietary

1.4. Configuration 31

privacyIDEA Documentation, Release 2.3

Fig. 1.15: Enroll a RADIUS token

token in the audit log of privacyIDEA. This way you can have a scenario, where users are still using old tokens and
other users are already using new (privacyIDEA) tokens. You will see all authentication requests in the pricacyIDEA
system.

Registration

(See Registration Code)

The registration token can be used to create a registration code for a user. This registration code can be sent via postal
mail to the user, so that the user can use this registration code as a second factor to login to a portal.

After a one single use, the registration code is deleted and can not be used a second time.

Note: The registration code can only be enrolled via the API to provide automated smooth workflow to your needs.

For a more detailed insight see the code documentation Registration Code Token.

Remote

The token type remote forwards the authentication request to another privacyIDEA Server.

When forwarding the authentication request, you can

• change the username

• change the resolver

• change the realm

• change the serial number

32 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.16: Enroll a Remote token

and mangle the password.

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the PIN matches only the remaining part of the
issued password will be sent to the remote privacyIDEA server.

Remote Server

The privacyIDEA server, to which the authentication request will be forwarded. The path /validate/check will
be added automatically. So a sensible input would be https://my.other.server/.

Remote Serial

If the Remote Serial is specified the given password will be checked against the serial number on the remote priva-
cyIDEA server. Usernames will be ignored.

Remote User

When forwarding the request to the remote server, the authentication request will be issued for this user.

Remote Realm

When forwarding the request to the remote server, the authentication request will be issued for this realm.

Remote Resolver

When forwarding the request to the remote server, the authentication request will be issued for this resolver.

Note: You can use Remote Serial to forward the request to a central privacyIDEA server, that only knows tokens but
has no knowledge of users. Or you can use Remote Serial to forward the request to an existing to on localhost thus
adding a second user to the same token.

1.4. Configuration 33

privacyIDEA Documentation, Release 2.3

SMS

The token type sms sends the OTP value via an SMS service. You can configure the SMS service in SMS OTP Token.

Fig. 1.17: Enroll an SMS token

When enrolling an SMS token, you only need to specify the mobile phone number.

SMS token is a challenge response token. I.e. when sending the OTP PIN in the first authentication request, the
sending of the SMS will be triggered and in a second authentication request the OTP value from the SMS needs to be
presented.

For a more detailed insight see the code documentation SMS Token.

SSH Keys

The token type sshkey is the public SSH key, that you can upload and assign to a user. The SSH key is only used for
the application type SSH in conjunction with the Client machines concept.

A user or the administrator can upload the public SSH key and assign to a user.

Paste the SSH key into the text area. The comment in the SSH key will be used as token comment. You can assign the
SSH key to a user and then use the SSH key in Application Definitions SSH.

Note: This way you can manage SSH keys centrally, as you do not need to distribute the SSH keys to all machines.
You rather store the SSH keys centrally in privacyIDEA and use privacyidea-authorizedkeys to fetch the keys in real
time during the login process.

Yubico

The token type yubico authenticates against the Yubico Cloud mode. You need to configure this at Yubico Cloud mode.

The token is enrolled by simply saving the Yubikey token ID in the token object. You can either enter the 12 digit ID
or you can simply press the Yubikey button in the input field, which will also assign the token.

34 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.18: Enroll an SSH key token

Fig. 1.19: Enroll a Yubico token

1.4. Configuration 35

privacyIDEA Documentation, Release 2.3

Yubikey

The Yubikey is initialized with privacyIDEA and works in Yubicos own AES mode. It outputs a 44 digit OTP value.
But in contrast to the Yubico Cloud mode, in this mode the secret key is contained within the token and your own
privacyIDEA installation.

If you have the time and care about privacy, you should prefer the Yubikey AES mode over the Yubico Cloud mode.

Fig. 1.20: Enroll a Yubikey AES mode token

You can use this dialog to enroll a Yubikey AES mode token, if you have initialized the yubikey with the external
ykpersonalize tool.

Note: However, we recommend that you use the privacyidea command line client, to initialize the Yubikeys.
You can use the mass enrollment, which eases the process of initializing a whole bunch of tokens.

Run the command like this:

privacyidea -U https://your.privacyidea.server -a admin token \
yubikey_mass_enroll --yubimode YUBICO

Token configuration

Each token type can provide its own configuration dialog.

In this configuration dialog you can define default values for these token types.

Email OTP Token

The Email OTP token creates a OTP value and sends this OTP value to the email address of the uses. The Email can
be triggered by authenticating with only the OTP PIN:

36 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.21: Token Configuration: SMS

First step In the first step the user will enter his OTP PIN and the sending of the Email is triggered. The user is
denied the access.

Seconds step In the second step the user authenticates with the OTP PIN and the OTP value he received via Email.
The user is granted access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

Configuration Parameters You can configure the mail parameters for the Email Token centrally at Config ->
Tokens -> Email.

Mail Server

The name or IP address of the mail server that is used to send emails.

Port

The port of the mail server.

Mail User

If the mail server requires authentication you need to enter a username. If no username is entered, no authentication is
performed on the mail server.

Mail User Password

The password of the mail username to send emails.

1.4. Configuration 37

privacyIDEA Documentation, Release 2.3

Fig. 1.22: Email Token configuration

38 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Mail Sender Address

The mail address of the mail sender. This needs to correspond to the Mail User.

OTP validity time

This is the time in seconds, for how long the sent OTP value is valid. If a user tries to authenticate with the sent OTP
value after this time, authentication will fail.

Use TLS

Whether the mail server should use TLS.

SMS OTP Token

The SMS OTP token creates a OTP value and sends this OTP value to the mobile phone of the user. The SMS can be
triggered by authenticating with only the OTP PIN:

First step In the first step the user will enter his OTP PIN and the sending of the SMS is triggered. The user is
denied the access.

Second step In the second step the user authenticates with the OTP PIN and the OTP value he received via SMS.
The user is granted access.

Alternatively the user can authenticate with the transaction_id that was sent to him in the response during the first
step and only the OTP value. The transaction_id assures that the user already presented the first factor (OTP PIN)
successfully.

A python SMS provider module defines how the SMS is sent. This can be done using an HTTP SMS Gateway.
Most services like Clickatel or sendsms.de provide such a simple HTTP gateway. Another possibility is to send SMS
via sipgate, which provides an XMLRPC API. The third possibility is to send the SMS via an SMTP gateway. The
proovider receives a specially designed email and sends the SMS accordingly. The last possibility to send SMS is to
use an attached GSM modem.

In the field SMS provider you can enter the SMS provider module, you wish to use. In the empty field hit the
arrow-down key and you will get a list of the ready made modules.

In the SMS configuration text area you can enter the configuration, which contents is very much dependant on
the selected provider module.

The HTTP and the Sipgate module provide a preset-button, which give you an idea of the configuration.

HTTP provider The HTTP provider can be used for any SMS gateway that provides a simple HTTP POST or GET
request.

The following parameters can be used:

URL

This is the URL for the gateway.

HTTP_Method

Can be GET or POST.

USERNAME and PASSWORD

These are the username and the password if the HTTP request requires basic authentication.

SMS_PHONENUMBER_KEY

1.4. Configuration 39

privacyIDEA Documentation, Release 2.3

This is the name of the HTTP parameter that holds the mobile phone number of the recipient.

SMS_TEXT_KEY

This is the name of the HTTP parameter that holds the SMS text.

RETURN_SUCCESS

You can either use RETURN_SUCCESS or RETURN_FAIL. If the text of RETURN_SUCCESS is found
in the HTTP response of the gateway privacyIDEA assumes that the SMS was sent successfully.

RETURN_FAIL

If the text of RETURN_FAIL is found in the HTTP response of the gateway privacyIDEA assumes that
the SMS could not be sent and an error occurred.

PROXY

You can specify a proxy to connect to the HTTP gateway.

PARAMETER

This can contain a dictionary of arbitrary fixed additional parameters. Usually this would also contain an
ID or a password to identify you as a sender.

Example: In case of the Clicaktell provider the configuration will look like this:

{ "URL" : "http://api.clickatell.com/http/sendmsg",
"PARAMETER" : {

"user":"YOU",
"password":"YOUR PASSWORD",
"api_id":"YOUR API ID"

},
"SMS_TEXT_KEY":"text",
"SMS_PHONENUMBER_KEY":"to",
"HTTP_Method":"GET",
"RETURN_SUCCESS" : "ID"

}

This will consturct an HTTP GET request like this:

http://api.clickatell.com/http/sendmsg?user=YOU&password=YOU&\
api_id=YOUR API ID&text=....&to=....

where text and to will contain the OTP value and the mobile phone number. privacyIDEA will assume a successful
sent SMS if the response contains the text “ID”.

Sipgate provider The sipgate provider connects to https://samurai.sipgate.net/RPC2 and takes only two arguments
USERNAME and PASSWORD. The arguments have to be passed in a dictionary like this:

{ "USERNAME" : "youruser",
"PASSWORD" : "yourpassword" }

Note: You need to use double quotes around the values.

If you activate debug log level you will see the submitted SMS and the response content from the Sipgate gateway.

40 Chapter 1. Table of Contents

https://samurai.sipgate.net/RPC2

privacyIDEA Documentation, Release 2.3

Yubico Cloud mode

The Yubico Cloud mode sends the One Time Password emitted by the yubikey to the Yubico Cloud service.

Fig. 1.23: Configure the Yubico Cloud mode

To contact the Yubico Cloud service you need to get an API key and a Client ID from Yubico and enter these here in
the config dialog.

You can get your own API key at 7.

1.4.5 CA Connectors

You can use privacyIDEA to enroll certificates and assign certificates to users.

You can define connections to Certifacte Authorities, that are used when enrolling certificates.

When you enroll a Token of type certificate the Certificate Signing Request gets signed by one of the CAs attached to
privacyIDEA by the CA connectors.

The first CA connector that ships with privacyIDEA is a connector to a local openSSL based Certificate Authority as
shown in figure A local CA definition.

When enrolling a certificate token you can choose, which CA should sign the certificate request.

1.4.6 privacyIDEA setup tool

(TODO): Not yet migrated.

Starting with 1.3.3 privacyIDEA comes with a graphical setup tool to manage your token administrators and RADIUS
clients. Thus you will get a kind of appliance experience. To install all necessary components read appliance.

To configure the system, login as the user root on your machine and run the command:

7 https://upgrade.yubico.com/getapikey/.

1.4. Configuration 41

https://upgrade.yubico.com/getapikey/

privacyIDEA Documentation, Release 2.3

Fig. 1.24: A local CA definition

42 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.25: Enrolling a certificate token

1.4. Configuration 43

privacyIDEA Documentation, Release 2.3

privacyidea-setup-tui

This will bring you to this start screen.

Fig. 1.26: Start screen of the appliance setup tool.

You can configure privacyidea settings, the log level, administrators, encryption key and much more. You can configure
the webserver settings and RADIUS clients.

Fig. 1.27: Configure privacyidea

All changes done in this setup tool are directly read from and written to the corresponding configuration files. The
setup tool parses the original nginx and freeradius configuration files. So there is no additional place where this data
is kept.

Note: You can also edit the clients.conf and other configuration files manually. The setup tool will also read those
manual changes!

Backup and Restore

Starting with version 1.5 the setup tool also supports backup and restore. Backups are written to the directory
/var/lib/privacyidea/backup.

The backup contains all privacyIDEA configuration, the contents of the directory /etc/privacyidea, the encryption key,
the configured administrators, the complete token database (MySQL) and Audit log. Furthermore if you are running
FreeRADIUS the backup also contains the /etc/freeradius/clients.conf file.

44 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.28: You can create new token administrators, delete them and change their passwords.

Fig. 1.29: In the FreeRADIUS settings you can create and delete RADIUS clients.

1.4. Configuration 45

privacyIDEA Documentation, Release 2.3

Schedulded backup

At the configuration point Configure Backup you can define times when a scheduled backup should be performed.
This information is written to the file /etc/crontab.

Fig. 1.30: Scheduled backup

You can enter minutes, hours, day of month, month and day of week. If the entry should be valid for each e.g. month
or hour, you need to enter a ‘*’.

In this example the 10 17 * * * (minute=10, hour=17) means to perform a backup each day and each month at 17:10
(5:10pm).

The example 1 10 1 * * (minute=1, hour=10, day of month=1) means to perform a backup on the first day of each
month at 10:01 am.

Thus you could also perform backups only once a week at the weekend.

Immediate backup

If you want to run a backup right now you can choose the entry Backup now.

Restore

The entry View Backups will list all the backups available.

Fig. 1.31: All available backups

46 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

You can select a backup and you are asked if you want to restore the data.

Warning: Existing data is overwritten and will be lost.

1.5 Tokenview

The administrator can see all the tokens of all realms he is allowed to manage in the tokenview. Each token can be
located in several realms and be assigned to one user. The administrator can see all the details of the token.

Fig. 1.32: Token View

The administrator can click on one token, to show more details of this token and to perform actions on this token.

1.5.1 Token Details

The Token Details give you more information about the token and also let the administrator perform specific tasks for
this token.

At the bottom you see the assigned user. You can click on the username and change to the User Details.

Lost token

When a user has lost a token, the administrator or the user can create a temporary password token for the user to login.

The administrator has to select the token that was lost and click the button Lost token. A new token of type PW
is generated. The OTP PIN of the old token is automatically copied to the new token. Thus the administrator does not
know the OTP PIN, while the user can use his old PIN.

A long password is displayed to the administrator and the administrator can read this password to the user. The user
now can authenticate with his old OTP PIN and the long password.

The lost token is deactivated.

Get Serial

The administrator can enter a OTP value that was generated by an unknown token. Then the serial number for the
corresponding token is search and displayed.

1.5. Tokenview 47

privacyIDEA Documentation, Release 2.3

Fig. 1.33: Token Detail

48 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Note: Since OTP values for all matching tokens need to be calculated,

this can be time consuming!

Token settings

You can change the following token settings.

MaxFail and FailCount

If the login fail counter reaches the MaxFail the user can not login with this token anymore. The
Failcounter FailCount has to be reset to zero.

TokenDesc

The token description is also displayed in the tokenview. You can set a description to make it easier to
identify a token.

CountWindow

The CountWindow is the look ahead window of event based tokens. If the user pressed the button on
an event based token the counter in the token is increased. If the user does not use this otp value to
authenticate, the server does not know, that the counter in the token was increased. This way the counter
in the token can get out of sync with the server.

SyncWindow

If a token was out of sync (see CountWindow), then it needs to be synchronized. This is done by enter-
ing two consecutive OTP values. The server searches these two values within the next CountWindow
(default 1000) values.

OtpLen

This is the length of the OTP value that is generated by the token. The password that is entered by the
user is splitted according to this length. 6 or 8 characters are splitted as OTP value and the rest is used as
static password (OTP PIN).

Hashlib

The HOTP algorith can be used with SHA1 or SHA256.

Tokeninfo - Auth max

The administrator can set a value how often this token may be used for authentication. If the number of
authentication try exceed this value, the token can not be used, until this Auth max value is increased.

Note: This way you could create tokens, that can be used only once.

Tokeninfo - Auth max success

The administrator can set a value how often this token may be used to successfully authenticate.

Tokeninfo - Valid start

A timestamp can be set. The token will only be usable for authentication after this start time.

Tokeninfo - Valid end

A timestamp can be set. The token can only be used before this end time.

Note: This way you can create temporary tokens for guests or short time or season employees.

1.5. Tokenview 49

privacyIDEA Documentation, Release 2.3

Resync Token

The administrator can select one token and then enter two consecutive OTP values to resynchonize the token if it was
out of sync.

set token realm

A token can be assigned to several realms. This is important if you have administrators for different realms. A realm
administrator is only allowed to see tokens within his realms. He will not see tokens, that are not in his realm. So you
can assign a token to realm A and realm B, thus the administrator A and the administrator B will be able to see the
token.

get OTP

If the corresponding getOTP policy (Policies) is set, the administrator can get the OTP values of a token from the
server without having the token with him.

Note: Of course this is a potential backdoor, since the administrator could login as the user/owner of this very token.

enroll

You can enroll a token either from the Token View or from the User Details. When enrolling a token from the User
Details the token is directly assigned to the user.

If you enroll the token from the token view, you can select a user, to whom the token will be assigned.

When enrolling a token, you can select the token type and according to the token type other necessary information.

assign

This function is used to assign a token to a user. Select a realm and start typing a username to find the user, to whom
the token should be assigned.

unassign

In the token details view you can unassign the token. After that, the token can be assigned to a new user.

enable

If a token is disabled, it can be enabled again.

disable

Tokens can be disabled. Disabled tokens still belong to the assigned user but those tokens can not be used to authenti-
cate. Disabled tokens can be enabled again.

set PIN

You can set the OTP PIN or the mOTP PIN for tokens.

50 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.34: Token enrollment dialog

1.5. Tokenview 51

privacyIDEA Documentation, Release 2.3

Reset Failcounter

If a used locked his token, since he entered wrong OTP values or wrong OTP PINs, the fail counter has reached the mail
failcount. The administrator or help desk user can select those tokens and click the button reset failcounter
to reset the fail counter to zero. The tokens can be used for authentication again.

delete

Deleting a token will remove the token from the database. The token information can not be recovered. But all events
that occurred with this token still remain in the audit log.

1.6 Userview

The administrator can see all users in realms he is allowed to manage.

Note: Users are only visible, if the useridresolver is located within a realm. If you only define a useridresolver but no
realm, you will not be able to see the users!

You can select one of the realms in the left drop down box. The administrator will only see the realms in the drop
down box, that he is allowed to manage. (TODO) No migrated, yet.

Fig. 1.35: User View. List all users in a realm.

The list shows the users from the select realm. The username, surname, given name, email and phone are filled
according to the definition of the useridresolver.

Even if a realm contains several useridresolvers all users from all resolvers within this realm are displayed.

52 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.6.1 User Details

When clicking on a username, you can see the users details and perform several actions on the user.

Fig. 1.36: User Details.

You see a list of the users tokens and change to the Token Details.

Enroll tokens

In the users details view you can enroll additional tokens to the user. In the enrollment dialog the user will be selected
and you only need to choose what tokentype you wish to enroll for this user.

Assign tokens

You can assign a new, already existing token to the user. Just start typing the token serial number. The system will
search for tokens, that are not assigned yet and present you a list to choose from.

View Audit Log

You can also click View user in Audit log which will take you to the Audit log with a filter on this very user, so that
you will only see audit entries regarding this user.

1.6. Userview 53

privacyIDEA Documentation, Release 2.3

Edit user

If the user is located in a resolver, that is marked as editable, the administrator will also see a button “Edit User”. To
read more about this, see Manage Users.

1.6.2 Manage Users

Since version 2.4 privacyIDEA allows you to edit users in the configured resolvers. At the moment this is possible for
SQL resolvers.

In the resolver definition you need to check the new checkbox Edit user store.

Fig. 1.37: Users in SQL can be edited, when checking the checkbox.

In the Users Detail view, the administrator then can click the button “Edit” and modify the user data and also set a new
password.

Fig. 1.38: Edit the attributes of an existing user.

54 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Note: The data of the user will be modified in the user store (database). Thus the users data, which will be returned
by a resolver, is changed. If the resolver is contained in several realms these changes will reflect in all realms.

If you want to add a user, you can click on Add User in the User View.

Fig. 1.39: Add a new user.

Users are contained in resolvers and added to resolvers. So you need to choose an existing resolver and not a realm.
The user will be visible in all realms, the resolver is contained in.

Note: Of course you can set policies to allow or deny the administrator these rights.

Simple local users setup

You can setup a local users definition quite easily. Run:

pi-manage.py resolver create_internal test

This will create a database table “users_test” in your token database. And it will create a resolver “test” that refers to
this database table.

Then you can add this resolver to realm:

pi-manage.py realm create internal_realm test

Which will create a realm “internal_realm” containing the resolver “test”. Now you can start adding users to this
resolver as described above.

Note: This is an example of how to get started with users quite quickly. Of course you do not need to save the users
table in the same database as the tokens. But in scenarios, where you do not have existing user stores or the user stores
are managed by another department or are not accessible easily this may be sensible way.

1.6. Userview 55

privacyIDEA Documentation, Release 2.3

1.7 Policies

Policies can be used to define the reaction and behaviour of the system.

Each policy defines the behaviour in a certain area, called scope. privacyIDEA knows the scopes:

1.7.1 Admin policies

Admin policies are used to regulate the actions that administrators are allowed to do. Technically admin policies
control the use of the REST API Token endpoints, System endpoints, Realm endpoints and Resolver endpoints.

Admin policies are implemented as decorators in Policy Module and Policy Decorators.

The user in the admin policies refers to the name of the administrator.

Starting with privacyIDEA 2.4 admin policies can also store a field “admin realm”. This is used, if you define realms
to be superuser realms. See The Config File for information how to do this.

This way it is easy to define administrative rights for big groups of administrative users like help desk users in the IT
department.

Fig. 1.40: Admin scope provides and additional field ‘admin realm’.

All administrative actions also refer to the defined user realm. Meaning an administrator may have many rights in one
user realm and only a few rights in another realm.

Creating a policy with scope:admin, user:frank, action:enable and realm:sales means that the ad-
ministrator frank is allowed to enable tokens in the realm sales.

56 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Note: As long as no admin policy is defined all administrators are allowed to do everything.

The following actions are available in the scope admin:

init

type: bool

There are init actions per token type. Thus you can create policy that allow an administrator to enroll SMS tokens
but not to enroll HMAC tokens.

enable

type: bool

The enable action allows the administrator to activate disabled tokens.

disable

type: bool

Tokens can be enabled and disabled. Disabled tokens can not be used to authenticate. The disable action allows
the administrator to disable tokens.

set

type: bool

Tokens can have additional token information, which can be viewed in the Token Details.

If the set action is defined, the administrator allowed to set those token information.

setOTPPIN

type: bool

If the setOTPPIN action is defined, the administrator is allowed to set the OTP PIN of a token.

setMOTPPIN

type: bool

If the setMOTPPIN action is defined, the administrator is allowed to set the mOTP PIN of an mOTP token.

resync

type: bool

If the resync action is defined, the administrator is allowed to resynchronize a token.

1.7. Policies 57

privacyIDEA Documentation, Release 2.3

assign

type: bool

If the assign action is defined, the administrator is allowed to assign a token to a user. This is used for assigning an
existing token to a user but also to enroll a new token to a user.

Without this action, the administrator can not create a connection (assignment) between a user and a token.

unassign

type: bool

If the unassign action is defined, the administrator is allowed to unassign tokens from a user. I.e. the administrator
can remove the link between the token and the user. The token still continues to exist in the system.

import

type: bool

If the import action is defined, the administrator is allowed to import token seeds from a token file, thus creating
many new token objects in the systems database.

remove

type: bool

If the remove action is defined, the administrator is allowed to delete a token from the system.

Note: If a token is removed, it can not be recovered.

Note: All audit entries of this token still exist in the audit log.

userlist

type: bool

If the userlist action is defined, the administrator is allowed to view the user list in a realm. An administrator
might not be allowed to list the users, if he should only work with tokens, but not see all users at once.

Note: If an administrator has any right in a realm, the administrator is also allowed to view the token list.

checkstatus

type: bool

If the checkstatus action is defined, the administrator is allowed to check the status of open challenge requests.

58 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

manageToken

type: bool

If the manageToken action is defined, the administrator is allowed to manage the realms of a token.

A token may be located in multiple realms. This can be interesting if you have a pool of spare tokens and several
realms but want to make the spare tokens available to several realm administrators. (Administrators, who have only
rights in one realm)

Then all administrators can see these tokens and assign the tokens. But as soon as the token is assigned to a user in
one realm, the administrator of another realm can not manage the token anymore.

getserial

type: bool

If the getserial action is defined, the administrator is allowed to calculate the token serial number for a given OTP
value.

losttoken

type: bool

If the losttoken action is defined, the administrator is allowed to perform the lost token process.

To only perform the lost token process the actions copytokenuser and copytokenpin are not necessary!

adduser

type: bool

If the adduser action is defined, the administrator is allowed to add users to a user store.

Note: The user store still must be defined as editable, otherwise no users can be added, edited or deleted.

updateuser

type: bool

If the updateuser action is defined, the administrator is allowed to edit users in the user store.

deleteuser

type: bool

If the deleteuser action is defined, the administrator is allowed to delete an existing user from the user store.

1.7. Policies 59

privacyIDEA Documentation, Release 2.3

copytokenuser

(TODO) Not yet migrated.

type: bool

If the copytokenuser action is defined, the administrator is allowed to copy the user assignment of one token to
another.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

copytokenpin

(TODO) Not yet migrated.

type: bool

If the copytokenpin action is defined, the administrator is allowed to copy the OTP PIN from one token to another
without knowing the PIN.

This functionality is also used during the lost token process. But you only need to define this action, if the administrator
should be able to perform this task manually.

getotp

(TODO) Not yet migrated.

type: bool

If the getserial action is defined, the administrator is allowed to retrieve OTP values for a given token.

1.7.2 User Policies

In the Web UI users can manage their own tokens. User can login to the Web UI with the username of their useridre-
solver. I.e. if a user is found in an LDAP resolver pointing to Active Directory the user needs to login with his domain
password.

User policies are used to define, which actions users are allowed to perform.

The user policies also respect the client input, where you can enter a list of IP addresses and subnets (like
10.2.0.0/16).

Using the client parameter you can allow different actions in if the user either logs in from the internal network or
remotely from the internet via the firewall.

Technically user policies control the use of the REST API Token endpoints and are checked using Policy Module and
Policy Decorators.

Note: If no user policy is defined, the user has all actions available to him, to manage his tokens.

The following actions are available in the scope user:

60 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

enroll

type: bool

There are enroll actions per token type. Thus you can create policies that allow the user to enroll SMS tokens but
not to enroll HMAC tokens.

assgin

type: bool

The user is allowed to assgin an existing token, that is located in his realm and that does not belong to any other user,
by entering the serial number.

disable

type: bool

The user is allowed to disable his own tokens. Disabled tokens can not be used to authenticate.

enable

type: bool

The user is allowed to enable his own tokens.

delete

type: bool

The user is allowed to delete his own tokens from the database. Those tokens can not be recovered. Anyway, the audit
log concerning these tokens remains.

unassign

type: bool

The user is allowed to drop his ownership of the token. The token does not belong to any user anymore and can be
reassigned.

resync

type: bool

The user is allowed to resynchronize the token if it has got out of synchronization.

reset

type: bool

The user is allowed to reset the failcounter of the token.

1.7. Policies 61

privacyIDEA Documentation, Release 2.3

setOTPPIN

type: bool

The user ist allowed to set the OTP PIN for his tokens.

setMOTPPIN

type: bool

The user is allowed to set the mOTP PIN of mOTP tokens.

getotp

(TODO): not yet migrated.

type: bool

The user is allowed to retrieve OTP values from a token.

otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the user is allowed to use when setting the OTP PIN.

otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the user must use when setting the OTP PIN.

otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the user sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [.:,;-_<>+*!/()=?$§%&#~^].

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would require the user to
choose OTP PINs that consist of letters and digits which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would not be a valid OTP PIN.

62 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

The logic of the otp_pin_contents can be enhanced and reversed using the characters + and -.

-cn would still mean, that the OTP PIN needs to contain letters and digits and it must not contain any other characters.

-cn (substraction)

test1234 would be a valid OTP PIN, but test12$$ and testABCS would not be valid OTP PINs. The later
since it does not contain digits, the first (test12$$) since it does contain a special character ($), which it
should not.

+cn (grouping)

combines the two required groups. I.e. the OTP PIN should contain characters from the sum of the two
groups. test1234, test12$$, test and 1234 would all be valid OTP PINs.

(TODO) grouping and substraction are not implemented, yet.

Note: You can change these character definitions in the privacyidea.ini file using privacyideaPolicy.pin_c,
privacyideaPolicy.pin_n and privacyideaPolicy.pin_s. (Not migrated, yet)

activateQR

(TODO): not yet migrated.

type: bool

The user is allowed to enroll a QR token.

max_count_dpw

(TODO): not yet migrated.

type: integer

This works together with the getotp action. This is the maximum number of OTP values the user may retrieve from
DPW tokens.

max_count_hotp

(TODO): not yet migrated.

type: integer

This works together with the getotp action. This is the maximum number of OTP values the user may retrieve from
HOTP tokens.

max_count_totp

(TODO): not yet migrated.

type: integer

This works together with the getotp action. This is the maximum number of OTP values the user may retrieve from
TOTP tokens.

1.7. Policies 63

privacyIDEA Documentation, Release 2.3

auditlog

type: bool

This action allows the user to view and search the audit log for actions with his own tokens.

getserial

(TODO): not yet migrated.

type: bool

This action allows the user to search for the serial number of an unassigned token by entering an OTP value.

updateuser

type: bool

If the updateuser action is defined, the user is allowed to change his attributes in the user store.

Note: This is not implemented in the Web UI at the moment.

Note: To be able to edit the attributes, the resolver must be defined as editable.

1.7.3 Authentication policies

The scope authentication gives you more detailed possibilities to authenticate the user or to define what happens during
authentication.

Technically the authentication policies apply to the REST API Validate endpoints and are checked using Policy Module
and Policy Decorators.

The following actions are available in the scope authentication:

otppin

type: string

This action defines how the fixed password part during authentication should be validated. Each token has its own
OTP PIN, but you can choose how the authentication should be processed:

otppin=tokenpin

This is the default behaviour. The user needs to pass the OTP PIN concatenated with the OTP value.

otppin=userstore

The user needs to pass the user store password concatenated with the OTP value. It does not matter if
the OTP PIN is set or not. If the user is located in an Active Directory the user needs to pass his domain
password together with the OTP value.

Note: The domain password is checked with an LDAP bind right at the moment of authentication. So if the user is
locked or the password was changed authentication will fail.

otppin=none

64 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

The user does not have to pass any fixed password. Authentication is only done via the OTP value.

passthru

type: bool

If the user has no token assigned, he will be authenticated against the UserIdResolver, i.e. he needs to provide the
LDAP- or SQL-password.

Note: This is a good way to do a smooth enrollment. Users having a token enrolled will have to use the token, users
not having a token, yet, will be able to authenticate with their domain password.

Warning: If the user has the right to delete his tokens in selfservice portal, the user could delete all his tokens and
then authenticate with his static password again.

passOnNoToken

type: bool

If the user has no token assigned an authentication request for this user will always be true.

Warning: Only use this if you know exactly what you are doing.

passOnNoUser

type: bool

If the user does not exist, the authentication request is successful.

Warning: Only use this if you know exactly what you are doing.

smstext

type: string

This is the text that is sent via SMS to the user trying to authenticate with an SMS token. You can use the tags <otp>
and <serial>.

Default: <otp>

smsautosend

type: bool

A new OTP value will be sent via SMS if the user authenticated successfully with his SMS token. Thus the user does
not have to trigger a new SMS when he wants to login again.

1.7. Policies 65

privacyIDEA Documentation, Release 2.3

emailtext

type: string

This is the text that is sent via Email to be used with Email Token. This text should contain the OTP value. You can
use the tags <otp> and <serial>.

Default: <otp>

emailsubject

type: string

This is the subject of the Email sent by the Email Token. You can use the tags <otp> and <serial>.

Default: Your OTP

emailautosend

type: bool

If set, a new OTP Email will be sent, when successfully authenticated with an Email Token.

qrtanurl

(TODO): not yet migrated.

type: string

This is the URL for the half automatic mode of the QR token. To this URL the TAN/OTP value will be pushed.

challenge_response

(TODO): not yet migrated.

type: string

This is a list of token types for which challenge response can be used during authentication.

1.7.4 Authorization policies

The scope authorization provides means to define what should happen if a user proved his identity and authenticated
successfully.

Authorization policies take the realm, the user and the client into account.

Technically the authorization policies apply to the Validate endpoints and are checked using Policy Module and Policy
Decorators.

The following actions are available in the scope authorization:

66 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

tokentype

type: string

Users will only be authorized with this very tokentype. The string can hold a comma separated list of case insensitive
tokentypes.

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with one
special token type while allowing access to less sensitive areas with other token types.

serial

type: string

Users will only be authorized with the serial number. The string can hold a regular expression as serial number.

This is checked after the authentication request, so that a valid OTP value is wasted, so that it can not be used, even if
the user was not authorized at this request

Note: Combining this with the client IP you can use this to allow remote access to sensitive areas only with hardware
tokens like the Yubikey, while allowing access to less secure areas also with a Google Authenticator.

setrealm

type: string

This policy is checked before the user authenticates. The realm of the user matching this policy will be set to the realm
in this action.

Note: This can be used if the user can not pass his realm when authenticating at a certain client, but the realm needs
to be available during authentication since the user is not located in the default realm.

no_detail_on_success

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user authenticated successfully this additional information will not be returned.

no_detail_on_fail

type: bool

Usually an authentication response returns additional information like the serial number of the token that was used to
authenticate or the reason why the authentication request failed.

If this action is set and the user fails to authenticate this additional information will not be returned.

1.7. Policies 67

privacyIDEA Documentation, Release 2.3

api_key_required

type: bool

This policy is checked before the user is validated.

You can create an API key, that needs to be passed to use the validate API. If an API key is required, but no key is
passed, the authentication request will not be processed. This is used to avoid denial of service attacks by a rogue user
sending arbitrary requests, which could result in the token of a user being locked.

You can also define a policy with certain IP addresses without issuing API keys. This would result in “blocking” those
IP addresses from using the validate endpoint.

You can issue API keys like this:

pi-manage.py api createtoken -r validate

The API key (Authorization token) which is generated is valid for 365 days.

The authorization token has to be used as described in Authentication endpoints.

1.7.5 Enrollment policies

The scope enrollment defines what happens during enrollment either by an administrator or during the user self enroll-
ment.

Enrollment policies take the realms, the client (see Policies) and the user settings into account.

Technically enrollment policies control the use of the REST API Token endpoints and specially the init and assign-
methods.

Technically the decorators in API Policies are used.

The following actions are available in the scope enrollment:

max_token_per_realm

type: int

This is the maximum allowed number of tokens in the specified realm.

Note: If you have several realms with realm admins and you imported a pool of hardware tokens you can thus limit
the consumed hardware tokens per realm.

max_token_per_user

type: int

Limit the maximum number of tokens per user in this realm.

Note: If you do not set this action, a user may have unlimited tokens assigned.

68 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

tokenlabel

type: string

This sets the label for a newly enrolled Google Authenticator. Possible tags to be replaces are <u> for user, <r> for
realm an <s> for the serial number.

The default behaviour is to use the serial number.

Note: This is useful to identify the token in the Authenticator App.

Warning: If you are only using <u> as tokenlabel and you enroll the token without a user, this will result in an
invalid QR code, since it will have an empty label. You should rather use a label like “user: <u>”, which would
result in “user: ”.

autoassignment

type: bool

Users can assign a token just by using this token. The user can take a token from a pool of unassigned tokens. When
this policy is set, and the user has no token assigned, autoassignment will be done: The user authenticates with a new
PIN and an OTP value from the token. If the OTP value is correct the token gets assigned to the user and the given
PIN is set as the OTP PIN.

Note: Requirements are:

1. The user must have no other tokens assign.

2. The token must be not assigned to any user.

3. The token must be located in the realm of the authenticating user.

Warning: In this case assigning the token is only a

one-factor-authentication: the possession of the token.

otp_pin_random

type: int

Generates a random OTP PIN of the given length during enrollment. Thus the user is forced to set a certain OTP PIN.

Note: At the moment this randomly generated PIN is not used. It could be used to be sent via a PIN letter in the
future.

otp_pin_encrypt

type: bool

If set the OTP PIN of a token will be encrypted. The default behaviour is to hash the OTP PIN, which is safer.

1.7. Policies 69

privacyIDEA Documentation, Release 2.3

lostTokenPWLen

type: int

This is the length of the generated password for the lost token process.

lostTokenPWContents

type: string

This is the contents that a generated password for the lost token process should have. You can use

• c: for lowercase letters

• n: for digits

• s: for special characters (!#$%&()*+,-./:;<=>?@[]^_)

• C: for uppercase letters

Example:

The action lostTokenPWLen=10, lostTokenPWContents=Cns could generate a password like AC#!49MK)).

lostTokenValid

type: int

This is how many days the replacement token for the lost token should be valid. After this many days the replacement
can not be used anymore.

1.7.6 WebUI Policies

login_mode

type: string

allowed values: “userstore”, “privacyIDEA”, “disable”

If set to userstore (default), users and administrators need to authenticate with the password of their userstore, being
an LDAP service or an SQL database.

If this action is set to login_mode=privacyIDEA, the users and administrators need to authenticate against privacyIDEA
when logging into the WebUI. I.e. they can not login with their domain password anymore but need to authenticate
with one of their tokens.

If set to login_mode=disable the users and administrators of the specified realms can not login to the UI anymore.

Warning: If you set this action and the user deletes or disables all his tokens, he will not be able to login anymore.

Note: Administrators defined in the database using the pi-manage.py command can still login with their normal
passwords.

Note: A sensible way to use this, is to combine this action in a policy with the client parameter: requiring the
users to login to the Web UI remotely from the internet with OTP but still login from within the LAN with the domain
password.

70 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Note: Another sensible way to use this policy is to disable the login to the web UI either for certain IP addresses
(client) or for users in certain realms.

logout_time

type: int

Set the timeout, after which a user in th WebUI will be logged out. The default timeout is 120 seconds.

Being a policy this time can be set based on clients, realms and users.

You can define as many policies as you wish to. The logic of the policies in the scopes is additive.

Fig. 1.41: Policy Definition

Each policy can contain the following attributes:

policy name

A unique name of the policy. The name is the identifier of the policy. If you create a new policy with the
same name, the policy is overwritten.

scope

The scope of the policy as described above.

action

This is the important part of the policy. Each scope provides its own set of actions. An ac-
tion describes that something is allowed or that some behaviour is configured. A policy can con-
tain several actions. Actions can be of type boolean, string or integer. Boolean actions are
enabled by just adding this action - like scope=user:action=disable, which allows the
user to disable his own tokens. string and integer actions require an additional value - like
scope=authentication:action=’otppin=userstore’.

user

This is the user, for whom this policy is valid. Depending on the scope the user is either an administrator
or a normal authenticating user.

If this field is left blank, this policy is valid for all users.

resolver

This policy will be valid for all users in this resolver.

If this field is left blank, this policy is valid for all resolvers.

1.7. Policies 71

privacyIDEA Documentation, Release 2.3

realm

This is the realm, for which this policy is valid.

If this field is left blank, this policy is valid for all realms.

client

This is the requesting client, for which this action is valid. I.e. you can define different policies if the user
access is allowed to manage his tokens from different IP addresses like the internal network or remotely
via the firewall.

You can enter several IP addresses or subnets divided by comma (like 10.2.0.0/16,
192.168.0.1).

time

Not used, yet.

Note: Policies can be active or inactive. So be sure to activate a policy to get the desired effect.

1.8 Audit

The systems provides a sophisticated audit log, that can be viewed in the WebUI.

privacyIDEA comes with an SQL audit module. (see Audit log)

1.8.1 Cleaning up entries

The sqlaudit module writes audit entries to an SQL database. For performance reasons the audit module does no
log rotation during the logging process.

But you can set up a cron job to clean up old audit entries.

You can specify a highwatermark and a lowwatermark. To clean up the audit log table, you can call the sqlaudit
module at the command line:

python privacyidea/lib/auditmodules/sqlaudit.py \
-f config/privacyidea.ini.example \
--low=5000
--high=10000

This will, if there are more than 10.000 log entries, clean all old log entries, so that only 5000 log entries remain.

1.9 Client machines

privacyIDEA lets you define Machine Resolvers to connect to existing machine stores. The idea is for users to be
able to authenticate on those client machines. Not in all cases an online authentication request is possible, so that
authentication items can be passed to those client machines.

In addition you need to define, which application on the client machine the user should authenticate to. Different
application require different authentication items.

Therefore privacyIDEA can define application types. At the moment privacyIDEA knows the application luks,
offline and ssh. You can write your own application class, which is defined in Application Class.

72 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Fig. 1.42: Audit Log

1.9. Client machines 73

privacyIDEA Documentation, Release 2.3

You need to assign an application and a token to a client machine. Each application type can work with certain token
types and each application type can use additional parameters.

Note: Not all tokens work well with all applications!

1.9.1 SSH

Currently working token types: SSH

Parameters:

user (optional, default=root)

When the SSH token type is assigned to a client, the user specified in the user parameter can login with the private key
of the SSH token.

In the sshd_config file you need to configure the AuthorizedKeysCommand. Set it to:

privacyidea-authorizedkeys

This will fetch the SSH public keys for the requesting machine.

The command expects a configuration file /etc/privacyidea/authorizedkeyscommand which looks like this:

[Default]
url=https://localhost
admin=admin
password=test
nosslcheck=False

Note: To disable a SSH key for all servers, you simple can disable the

SSH token in privacyIDEA.

Warning: In a productive environment you should not set nosslcheck to

true, otherwise you are vulnerable to man in the middle attacks.

1.9.2 LUKS

Currently working token types: Yubikey Challenge Response

Parameters:

slot The slot to which the authentication information should be written

partition The encrypted partition (usually /dev/sda3 or /dev/sda5)

These authentication items need to be pulled on the client machine from the privacyIDEA server.

Thus, the following script need to be executed with root rights (able to write to LUKS) on the client machine:

privacyidea-luks-assign @secrets.txt --clearslot --name salt-minion

For more information please see the man page of this tool.

74 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.9.3 Offline

Currently working token types: HOTP.

Parameters:

user The local user, who should authenticate. (Only needed when calling machine/get_auth_items)

count The number of OTP values passed to the client.

The offline application also triggers when the client calls a /validate/check. If the user authenticates successfully with
the correct token (serial number) and this very token is attached to the machine with an offline application the response
to validate/check is enriched with a “auth_items” tree containing the salted SHA512 hashes of the next OTP values.

The client can cache these values to enable offline authentication. The caching is implemented in the privacyIDEA
PAM module.

The server increases the counter to the last offline cached OTP value, so that it will not be possible to authenticate with
those OTP values available offline on the client side.

1.10 Application Plugins

privacyIDEA comes with application plugins. These are plugins for applications like PAM, OTRS, Apache2, FreeRA-
DIUS or simpleSAMLphp which enable these application to authenticate users against privacyIDEA.

You may also write your own application plugin or connect your own application to privacyIDEA. This is quite simple
using a REST API Validate endpoints.

1.10.1 Pluggable Authentication Module

The PAM module of privacyIDEA directly communicates with the privacyIDEA server via the API. The PAM module
also supports offline authentication. In this case you need to configure an offline machine application. (See Offline)

You can install the PAM module with a ready made debian package for Ubuntu or just use the source code file. It is a
python module, that requires pam-python.

The configuration could look like this:

... pam_python.so /path/to/privacyidea_pam.py
url=https://localhost prompt=privacyIDEA_Authentication

The URL parameter defaults to https://localhost. You can also add the parameters realm= and debug.

If you want to disable certificate validation, which you should not do in a productive environment, you can use the
parameter nosslverify.

A new parameter cacerts= lets you define a CA Cert-Bundle file, that contains the trusted certificate authorities in
PEM format.

The default behaviour is to trigger an online authentication request. If the request was successful, the user is logged
in. If the request was done with a token defined for offline authentication, than in addition all offline information is
passed to the client and cached on the client so that the token can be used to authenticate without the privacyIDEA
server available.

1.10. Application Plugins 75

privacyIDEA Documentation, Release 2.3

1.10.2 FreeRADIUS Plugin

If you want to install the FreeRADIUS Plugin on Ubuntu 14.04 LTS this can be easily done, since there is a ready
made package (see FreeRADIUS).

If you want to run your FreeRADIUS server on another distribution, you may download the module at 8.

Then you need to configure your FreeRADIUS site and the perl module. The latest FreeRADIUS plugin uses the
/validate/check REST API of privacyIDEA.

You need to configure the perl module in FreeRADIUS modules/perl to look something like this:

perl {
module = /usr/share/privacyidea/freeradius/privacyidea_radius.pm

}

Your freeradius enabled site config should contain something like this:

authenticate {
Auth-Type Perl {

perl
}
digest
unix

}

While you define the default authenticate type to be Perl in the users file:

DEFAULT Auth-Type := Perl

Note: The privacyIDEA module uses other perl modules that were not thread safe in the past. So in case you are using
old perl dependencies and are experiencing thread problems, please start FreeRADIUS with the -t switch. (Everything
works fine with Ubuntu 14.04 and Debian 7.)

You can test the RADIUS setup using a command like this:

echo "User-Name=user, Password=password" | radclient -sx yourRadiusServer \
auth topsecret

Note: Do not forget to configure the clients.conf accordingly.

Read more about radius_and_realms or rlm_perl_ini.

1.10.3 simpleSAMLphp Plugin

You can install the plugin for simpleSAMLphp on Ubuntu 14.04 LTS (see SimpleSAMLphp) or on any other distribu-
tion using the source files from 9.

Follow the simpleSAMLphp instructions to configure your authsources.php. A usual configuration will look like this:

'example-privacyidea' => array(
'privacyidea:privacyidea',

/*
* The name of the privacyidea server and the protocol

8 https://github.com/privacyidea/privacyidea/tree/master/authmodules/FreeRADIUS
9 https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

76 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/tree/master/authmodules/FreeRADIUS
https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

privacyIDEA Documentation, Release 2.3

* A port can be added by a colon

* Required.

*/
'privacyideaserver' => 'https://your.server.com',

/*
* Check if the hostname matches the name in the certificate

* Optional.

*/
'sslverifyhost' => False,

/*
* Check if the certificate is valid, signed by a trusted CA

* Optional.

*/
'sslverifypeer' => False,

/*
* The realm where the user is located in.

* Optional.

*/
'realm' => '',

/*
* This is the translation from privacyIDEA attribute names to

* SAML attribute names.

*/
'attributemap' => array('username' => 'samlLoginName',

'surname' => 'surName',
'givenname' => 'givenName',
'email' => 'emailAddress',
'phone' => 'telePhone',
'mobile' => 'mobilePhone',
),

),

1.10.4 TYPO3

You can install the privacyIDEA extension from the TYPO3 Extension Repository. The privacyIDEA extension is
easily configured.

privacyIDEA Server URL

This is the URL of your privacyIDEA installation. You do not need to add the path validate/check. Thus the URL for
a common installation would be https://yourServer/.

Check certificate

Whether the validity of the SSL certificate should be checked or not.

Warning: If the SSL certificate is not checked, the authentication

request could be modified and the answer to the request can be modified, easily granting access to an attacker.

Enable privacyIDEA for backend users

If checked, a user trying to authenticate at the backend, will need to authenticate against privacyIDEA.

1.10. Application Plugins 77

privacyIDEA Documentation, Release 2.3

Enable privacyIDEA for frontend users

If checked, a user trying to authenticate at the frontend, will need to authenticate against privacyIDEA.

Pass to other authentication module

If the authentication at privacyIDEA fails, the credential the user entered will be verified against the next authentication
module.

This can come in handy, if you are setting up the system and if you want to avoid locking yourself out.

Anyway, in a productive environment you probably want to uncheck this feature.

1.10.5 OTRS

There are two plugins for OTRS. For OTRS version 4.0 and higher use privacyIDEA-4_0.pm.

This perl module needs to be installed to the directory Kernel/System/Auth.

On Ubuntu 14.04 LTS you can also install the module using the PPA repository and installing:

apt-get install privacyidea-otrs

To activate the OTP authentication you need to add the following to Kernel/Config.pm:

$Self->{'AuthModule'} = 'Kernel::System::Auth::privacyIDEA';
$Self->{'AuthModule::privacyIDEA::URL'} = \

"https://localhost/validate/check";
$Self->{'AuthModule::privacyIDEA::disableSSLCheck'} = "yes";

Note: As mentioned earlier you should only disable the checking of the SSL certificate if you are in a test environment.
For productive use you should never disable the SSL certificate checking.

Note: This plugin requires, that you also add the path validate/check to the URL.

1.10.6 Apache2

The Apache plugin uses mod_wsgi and redis to provide a basic authentication on Apache2 side and validating the
credentials against privacyIDEA.

On Ubuntu 14.04 LTS you can easily install the module from the PPA repository by issuing:

apt-get install privacyidea-apache-client

To activate the OTP authentication on a “Location” or “Directory” you need to configure Apache2 like this:

<Directory /var/www/html/secretdir>
AuthType Basic
AuthName "Protected Area"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/share/pyshared/privacyidea_apache.py
Require valid-user

</Directory>

Note: Basic Authentication sends the base64 encoded password on each request. So the browser will send the same
one time password with each reqeust. Thus the authentication module needs to cache the password as the successful
authentication. Redis is used for caching the password.

78 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Warning: As redis per default is accessible by every user on the machine, you need to use this plugin with
caution! Every user on the machine can access the redis database to read the passwords of the users. This way the
fix password component of the user will get exposed!

1.10.7 Further plugins

You can find further plugins for Dokuwiki, Wordpress, Contao and Django at 10.

1.11 Tools

(TODO): Not yet migrated.

The menu tools contains some helpful tools to manage your tokens.

1.11.1 Get Serial by OTP value

Here you can enter an OTP value and have the system identify the token. This can be useful if the printed serial number
on the token can not be read anymore or if the hardware token has not serial number printed on it at all.

You can choose the

• tokentype

• whether the token is an assigned token or not

• and the realm of the token

to set limits to the token search.

Warning: The system needs to got to all tokens and calculate the next (default) 10 OTP values. Depending on the
number of tokens you have in the system this can be very time consuming!

1.11.2 Copy token PIN

Here you can enter a token serial number of the token from which you want to copy the OTP PIN and the serial number
of the token to which you want to copy it.

This function is also used in the lost token scenario.

But the help desk can also use it if the administrator enrolls a new token to the user and

1. the user can not set the OTP PIN and

2. the administrator should not set or know the OTP PIN.

Then the administrator can create a second token for the user and copy the OTP PIN (which only the user knows) of
the old token to the new, second token.

10 https://github.com/cornelinux?tab=repositories

1.11. Tools 79

https://github.com/cornelinux?tab=repositories

privacyIDEA Documentation, Release 2.3

1.11.3 Check Policy

If you have complicated policy settings you can use this dialog to determine if the policies behave as expected. You
can enter the scope, the real, action user and client to “simulate” e.g. an authentication request.

The system will tell you if any policy is triggered.

1.11.4 Export token information

Here you can export the list of the tokens to a CSV file.

Note: In the resolver you can define additional fields, that are usually not used by privacyIDEA. But you can add
those fields to the export. Thus you can e.g. add special LDAP attributes in the list of the exported tokens.

1.11.5 Export audit information

Here you can export the audit information.

Warning: You should limit the export to a number of audit entries. As the audit log can grow very big, the export
of 20.000 audit lines could result in blocking the system.

1.12 Import

Seed files that contain the secret keys of hardware tokens can be imported to the system via the menu Import.

The default import options are to import SafeNet XML file, OATH CSV files, Yubikey CSV files or PSKC files.

1.12.1 OATH CSV

This is a very simple CSV file to import HOTP, TOTP or OATH tokens. You can also convert your seed easily to this
file format, to import the tokens.

The file format looks like this:

<serial>, <seed>, <type>, <otp length>, <time step>

For OCRA tokens it looks like this:

<serial>, <seed>, OCRA, <ocra suite>

serial is the serial number of the token that will also be used to identify the token in the database. Importing the same
serial number twice will overwrite the token data.

seed is the secret key, that is used to calculate the OTP value. The seed is provided in a hexadecimal notation.
Depending on the length either the SHA1 or SHA256 hash algorithm is identified.

type is either HOTP, TOTP or OCRA.

otp length is the length of the OTP value generated by the token. This is usually 6 or 8.

time step is the time step of TOTP tokens. This is usually 30 or 60.

80 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

ocra suite is the ocra suite of the OCRA token according to 11.

1.12.2 Yubikey CSV

Here you can import the CSV file that is written by the Yubikey personalization tool 12. privacyIDEA can import all
Yubikey modes, either Yubico mode or HOTP mode.

Note: There is an annoying drawback of the personalization tool: If you a initializing several HOTP yubikeys it will
not write the serial number to the file.

1.12.3 PSKC

The Portable Symmetric Key Container is specified in 13. OATH compliant token vendors provide the token seeds in
a PSKC file. privacyIDEA lets you import PSKC files. All necessary information (OTP lenght, Hash algorithm, token
type) are read from the file.

11 http://tools.ietf.org/html/rfc6287#section-6
12 http://www.yubico.com/products/services-software/personalization-tools/use/
13 https://tools.ietf.org/html/rfc6030

1.12. Import 81

http://tools.ietf.org/html/rfc6287#section-6
http://www.yubico.com/products/services-software/personalization-tools/use/
https://tools.ietf.org/html/rfc6030

privacyIDEA Documentation, Release 2.3

1.13 Code Documentation

The code roughly has three levels.

1.13.1 API level

The API level is used to access the system. For some calls you need to be authenticated as administrator, for some calls
you can be authenticated as normal user. These are the token and the audit endpoint. For calls to the validate
API you do not need to be authenticated at all.

At this level Authentication is performed. In the lower levels there is no authentication anymore.

The object g.logged_in_user is used to pass the authenticated user. The client gets a JSON Web Token to
authenticate every request.

API functions are decorated with the decorators admin_required and user_required to define access rules.

REST API

This is the REST API for privacyidea. It lets you create the system configuration, which is denoted in the system
endpoints.

Special system configuration is the configuration of

• the resolvers

• the realms

• the defaultrealm

• the policies.

Resolvers are dynamic links to existing user sources. You can find users in LDAP directories, SQL databases, flat
files or SCIM services. A resolver translates a loginname to a user object in the user source and back again. It is also
responsible for fetching all additional needed information from the user source.

Realms are collections of resolvers that can be managed by administrators and where policies can be applied.

Defaultrealm is a special endpoint to define the default realm. The default realm is used if no user realm is specified. If
a user from realm1 tries to authenticate or is addressed, the notation user@realm1 is used. If the @realm1 is ommitted,
the user is searched in the default realm.

Policies are rules how privacyidea behaves and which user and administrator is allowed to do what.

Start to read about authentication to the API at Authentication endpoints.

Now you can take a look at the several REST endpoints. This REST API is used to authenticate the users. A user
needs to authenticate when he wants to use the API for administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

82 Chapter 1. Table of Contents

mailto:user@realm1

privacyIDEA Documentation, Release 2.3

Audit endpoint

GET /audit/
return a paginated list of audit entries.

Params can be passed as key-value-pairs.

Example request:

GET /audit?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

"serial": "....",
"missing_line": "..."

}
]

},
"version": "privacyIDEA unknown"

}

GET /audit/(csvfile)
Download the audit entry as CSV file.

Params can be passed as key-value-pairs.

Example request:

GET /audit/audit.csv?realm=realm1 HTTP/1.1
Host: example.com
Accept: text/csv

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{

"serial": "....",
"missing_line": "..."

}
]

1.13. Code Documentation 83

privacyIDEA Documentation, Release 2.3

},
"version": "privacyIDEA unknown"

}

Authentication endpoints

This REST API is used to authenticate the users. A user needs to authenticate when he wants to use the API for
administrative tasks like enrolling a token.

This API must not be confused with the validate API, which is used to check, if a OTP value is valid. See Validate
endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username and password.

GET /auth/rights
This returns the rights of the logged in user. :return:

POST /auth
This call verifies the credentials of the user and issues an authentication token, that is used for the later API
calls. The authentication token has a validity, that is usually 1 hour.

JSON Parameters

• username – The username of the user who wants to authenticate to the API.

• password – The password/credentials of the user who wants to authenticate to the API.

Return A json response with an authentication token, that needs to be used in any further request.

Status Codes

• 200 OK – in case of success

• 401 Unauthorized – if authentication fails

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

username=admin
password=topsecret

Example Authentication Response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"token": "eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM"
}

84 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

},
"version": "privacyIDEA unknown"

}

Response for failed authentication:

HTTP/1.1 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 203

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"error": {
"code": -401,
"message": "missing Authorization header"

},
"status": false

},
"version": "privacyIDEA unknown",
"config": {

"logout_time": 30
}

}

Example Request:

Requests to privacyidea then should use this security token in the Authorization field in the header.

GET /users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM

Validate endpoints

This module contains the REST API for doing authentication. The methods are tested in the file
tests/test_api_validate.py

Authentication is either done by providing a username and a password or a serial number and a password.

Authentication workflow

Authentication workflow is like this:

In case of authenticating a user:

• lib/token/check_user_pass (user, passw, options)

• lib/token/check_token_list(list, passw, user, options)

• lib/tokenclass/authenticate(pass, user, options)

• lib/tokenclass/check_pin(pin, user, options)

• lib/tokenclass/check_otp(otpval, options)

IN case if authenitcating a serial number:

• lib/token/check_serial_pass(serial, passw, options)

1.13. Code Documentation 85

privacyIDEA Documentation, Release 2.3

• lib/token/check_token_list(list, passw, user, options)

• lib/tokenclass/authenticate(pass, user, options)

• lib/tokenclass/check_pin(pin, user, options)

• lib/tokenclass/check_otp(otpval, options)

GET /validate/samlcheck
Authenticate the user and return the SAML user information.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

Return a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"auth": true,

"username: <loginname>,
"realm":,
"surname":,
"givenname":,
"mobile":,
"phone":,
"email":

}
},
"version": "privacyIDEA unknown"

}

POST /validate/samlcheck
Authenticate the user and return the SAML user information.

Parameters

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

Return a json result with a boolean “result”: true

Example response for a successful authentication:

86 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {"auth": true,

"username: <loginname>,
"realm":,
"surname":,
"givenname":,
"mobile":,
"phone":,
"email":

}
},
"version": "privacyIDEA unknown"

}

GET /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

Return a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {

1.13. Code Documentation 87

privacyIDEA Documentation, Release 2.3

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

POST /validate/check
check the authentication for a user or a serial number. Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.

Parameters

• serial – The serial number of the token, that tries to authenticate.

• user – The loginname/username of the user, who tries to authenticate.

• realm – The realm of the user, who tries to authenticate. If the realm is omitted, the user
is looked up in the default realm.

• pass – The password, that consists of the OTP PIN and the OTP value.

• transaction_id – The transaction ID for a response to a challenge request

• state – The state ID for a response to a challenge request

Return a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"message": "matching 1 tokens",
"serial": "PISP0000AB00",
"type": "spass"

},
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

System endpoints

The code of this module is tested in tests/test_api_system.py

POST /system/setDefault

method: system/set

description: define default settings for tokens. These default settings are used when new tokens are generated.
The default settings will not affect already enrolled tokens.

arguments:

DefaultMaxFailCount - Default value for the maximum allowed authentication failures

88 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

DefaultSyncWindow - Default value for the synchronization window

DefaultCountWindow - Default value for the coutner window DefaultOtpLen - Default value for the OTP
value length –

usually 6 or 8

DefaultResetFailCount - Default value, if the FailCounter should be reset on successful authentica-
tion [True|False]

returns:

a json result with a boolean “result”: true

exception: if an error occurs an exception is serialized and returned

POST /system/setConfig
set a configuration key or a set of configuration entries

parameter are generic keyname=value pairs.

*remark: In case of key-value pairs the type information could be provided by an additional parameter
with same keyname with the postfix ”.type”. Value could then be ‘password’ to trigger the storing of
the value in an encrypted form

Parameters

• key – configuration entry name

• value – configuration value

• type – type of the value: int or string/text or password password will trigger to store the
encrypted value

• description – additional information for this config entry

•or

Parameters

• pairs (key-value) – pair of &keyname=value pairs

Return a json result with a boolean “result”: true

GET /system/
This endpoint either returns all config entries or only the value of the one config key.

Parameters

• key – The key to return.

Return A json response or a single value, when queried with a key.

Rtype json or scalar

GET /system/(key)
This endpoint either returns all config entries or only the value of the one config key.

Parameters

• key – The key to return.

Return A json response or a single value, when queried with a key.

Rtype json or scalar

1.13. Code Documentation 89

privacyIDEA Documentation, Release 2.3

DELETE /system/(key)
delete a configuration key * if an error occurs an exception is serializedsetConfig and returned

Parameters

• key – configuration key name

Returns a json result with the deleted value

Resolver endpoints

The code of this module is tested in tests/test_api_system.py

POST /resolver/test

Return a json result with True, if the given values can create a

working resolver and a description.

GET /resolver/
returns a json list of all resolver.

Parameters

• type (basestring (“1”)) – Only return resolvers of type (like passwdresolver..)

• editable – If only editable resolvers should be returned

POST /resolver/(resolver)
This creates a new resolver or updates an existing one. A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (basestring) – the name of the resolver.

• type – the type of the resolver. Valid types are passwdresolver,

ldapresolver, sqlresolver, scimresolver :type type: string :return: a json result with the value being the database
id (>0)

Additional parameters depend on the resolver type.

LDAP: LDAPURI LDAPBASE BINDDN BINDPW TIMEOUT SIZELIMIT LOGINNAMEAT-
TRIBUTE LDAPSEARCHFILTER LDAPFILTER USERINFO NOREFERRALS - True|False

SQL: Database Driver Server Port User Password Table Map

Passwd Filename

DELETE /resolver/(resolver)
this function deletes an existing resolver A resolver can not be deleted, if it is contained in a realm

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

GET /resolver/(resolver)
This function retrieves the definition of a single resolver. If can be called via /system/getResolver?resolver= or
via /resolver/<resolver>

90 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Parameters

• resolver – the name of the resolver

Return a json result with the configuration of a specified resolver

Realm endpoints

The realm endpoints are used to define realms. A realm groups together many users. Administrators can manage the
tokens of the users in such a realm. Policies and tokens can be assigned to realms.

A realm consists of several resolvers. Thus you can create a realm and gather users from LDAP and flat file source
into one realm or you can pick resolvers that collect users from different points from your vast LDAP directory and
group these users into a realm.

You will only be able to see and use user object, that are contained in a realm.

The code of this module is tested in tests/test_api_system.py

GET /realm/superuser
This call returns the list of all superuser realms as they are defined in pi.cfg

Return a json result with a list of realms

Example request:

GET /superuser HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": ["superuser",

"realm2"]
}

},
"version": "privacyIDEA unknown"

}

GET /realm/
This call returns the list of all defined realms. It take no arguments.

Return a json result with a list of realms

Example request:

GET / HTTP/1.1
Host: example.com
Accept: application/json

Example response:

1.13. Code Documentation 91

privacyIDEA Documentation, Release 2.3

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {
"status": true,
"value": {
"realm1_with_resolver": {
"default": true,
"resolver": [

{
"name": "reso1_with_realm",
"type": "passwdresolver"

}
]

}
}

},
"version": "privacyIDEA unknown"

}

POST /realm/(realm)
This call creates a new realm or reconfigures a realm. The realm contains a list of resolvers.

Parameters

• realm – The unique name of the realm

• resolvers – A comma separated list of unique resolver names or a

list object :type resolvers: string or list :param priority: Additional parameters priority.<resolvername> define
the

priority of the resolvers within this realm.

Return a json result with a list of Realms

In the result it returns a list of added resolvers and a list of resolvers, that could not be added.

Example request:

To create a new realm “newrealm”, that consists of the resolvers “reso1_with_realm” and “reso2_with_realm”
call:

POST /realm/newrealm HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

resolvers=reso1_with_realm, reso2_with_realm
priority.reso1_with_realm=1
priority.reso2_with_realm=2

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

92 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"added": ["reso1_with_realm", "reso2_with_realm"],
"failed": []

}
}
"version": "privacyIDEA unknown"

}

DELETE /realm/(realm)
This call deletes the given realm.

Parameters

• realm – The name of the realm to delete

Return a json result with value=1 if deleting the realm was successful

Example request:

DELETE /realm/realm_to_delete HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

Default Realm endpoints

These endpoints are used to define the default realm, retrieve it and delete it.

DELETE /defaultrealm
This call deletes the default realm.

Return a json result with either 1 (success) or 0 (fail)

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

1.13. Code Documentation 93

privacyIDEA Documentation, Release 2.3

},
"version": "privacyIDEA unknown"

}

GET /defaultrealm
This call returns the default realm

Return a json description of the default realm with the resolvers

Example response:

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {

"defrealm": {
"default": true,
"resolver": [
{
"name": "defresolver",
"type": "passwdresolver"

}
]

}
}

},
"version": "privacyIDEA unknown"

}

POST /defaultrealm/(realm)
This call sets the default realm.

Parameters

• realm – the name of the realm, that should be the default realm

Return a json result with either 1 (success) or 0 (fail)

Token endpoints

The token API can be accessed via /token.

You need to authenticate to gain access to these token functions. If you are authenticated as administrator, you can
manage all tokens. If you are authenticated as normal user, you can only manage your own tokens. Some API calls
are only allowed to be accessed by adminitrators.

To see how to authenticate read Authentication endpoints.

POST /token/unassign
Unssign a token from a user. You can either provide “serial” as an argument to unassign this very token or you
can provide user and realm, to unassign all tokens of a user.

Return In case of success it returns “value”: True.

Rtype json object

POST /token/copyuser
Copy the token user from one token to the other.

94 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

You can call the function like this: POST /token/copyuser?from=<serial>&to=<something>

Parameters

• from – the serial number of the single, from where you want to

copy the pin. :type from: basestring :param to: the serial number of the single, from where you want to copy
the pin. :type to: basestring :return: returns value=True in case of success :rtype: bool

POST /token/disable
Disable a single token or all the tokens of a user. Disabled tokens can not be used to authenticate but can be
enabled again.

You can call the function like this: POST /token/disable?serial=<serial> POST /to-
ken/disable?user=<user>&realm=<realm> POST /token/disable/<serial>

Parameters

• serial (basestring) – the serial number of the single token to disable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of disabled

tokens in “value”. :rtype: json object

POST /token/copypin
Copy the token PIN from one token to the other.

You can call the function like this: POST /token/copypin?from=<serial>&to=<something>

Parameters

• from – the serial number of the single, from where you want to

copy the pin. :type from: basestring :param to: the serial number of the single, from where you want to copy
the pin. :type to: basestring :return: returns value=True in case of success :rtype: bool

POST /token/assign
Assign a token to a user. The required arguments are serial, user and realm.

Return In case of success it returns “value”: True.

Rtype json object

POST /token/enable
Enable a single token or all the tokens of a user.

You can call the function like this: POST /token/enable?serial=<serial> POST /to-
ken/enable?user=<user>&realm=<realm> POST /token/enable/<serial>

Parameters

• serial (basestring) – the serial number of the single token to enable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of enabled

1.13. Code Documentation 95

privacyIDEA Documentation, Release 2.3

tokens in “value”. :rtype: json object

POST /token/resync
Resync the OTP token by providing two consecutive OTP values.

You can call the function like this: POST /token/resync?serial=<serial>&otp1=<otp1>&otp2=<otp2> POST
/token/resync/<serial>?otp1=<otp1>&otp2=<otp2>

Parameters

• serial (basestring) – the serial number of the single token to reset

• otp1 (basestring) – First OTP value

• otp2 (basestring) – Second OTP value

Return In case of success it returns “value”=True

Rtype json object

POST /token/setpin
Set the the user pin or the SO PIN of the specific token. Usually these are smartcard or token specific PINs. E.g.
the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

You can call the function like this: POST /token/setpin?serial=<serial>&userpin=<userpin>&sopin=<sopin>
POST /token/setpin/<serial>?userpin=<userpin>&sopin=<sopin>

Parameters

• serial (basestring) – the serial number of the single token to reset

• userpin (basestring) – The user PIN of a smartcard

• sopin (basestring) – The SO PIN of a smartcard

• otppin (basestring) – The OTP PIN of a token

Return In “value” returns the number of PINs set.

Rtype json object

POST /token/reset
Reset the failcounter of a single token or of all tokens of a user.

You can call the function like this: POST /token/reset?serial=<serial> POST /to-
ken/reset?user=<user>&realm=<realm> POST /token/reset/<serial>

Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns “value”=True

Rtype json object

POST /token/init
create a new token.

Parameters

96 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

• otpkey – required: the secret key of the token

• genkey – set to =1, if key should be generated. We either need otpkey or genkey

• keysize – the size (byte) of the key. Either 20 or 32. Default is 20

• serial – required: the serial number/identifier of the token

• description – A description for the token

• pin – the pin of the user pass

• user – the login user name. This user gets the token assigned

• realm – the realm of the user.

• type – the type of the token

• tokenrealm – additional realms, the token should be put into

• otplen – length of the OTP value

• hashlib – used hashlib sha1 oder sha256

ocra arguments: for generating OCRA Tokens type=ocra you can specify the following parameters: :param
ocrasuite: if you do not want to use the default

ocra suite OCRA-1:HOTP-SHA256-8:QA64

Parameters

• sharedsecret – if you are in Step0 of enrolling an OCRA/QR token the sharedsecret=1
specifies, that you want to generate a shared secret

• activationcode – if you are in Step1 of enrolling an OCRA token you need to pass the
activation code, that was generated in the QRTAN-App

Return a json result with a boolean “result”: true

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
"googleurl": {
"description": "URL for google Authenticator",
"img": "",
"value": "otpauth://hotp/mylabel?secret=GEZDGNBVGY3TQOJQGEZDGNBVGY3TQOJQ&counter=0"

},
"oathurl": {
"description": "URL for OATH token",
"img": "",
"value": "oathtoken:///addToken?name=mylabel&lockdown=true&key=3132333435363738393031323334353637383930"

},
"otpkey": {
"description": "OTP seed",
"img": "",
"value": "seed://3132333435363738393031323334353637383930"

},
"serial": "OATH00096020"

},
"id": 1,

1.13. Code Documentation 97

privacyIDEA Documentation, Release 2.3

"jsonrpc": "2.0",
"result": {
"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

POST /token/set
This API is only to be used by the admin! This can be used to set token specific attributes like

•description

•count_window

•sync_window

•count_auth_max

•count_auth_success_max

•hashlib,

•max_failcount

The token is identified by the unique serial number or by the token owner. In the later case all tokens of the
owner will be modified.

You can call the function like this: POST /token/set?serial=<serial>&description=<something> POST /to-
ken/set/<serial>?hashlib=<hash> POST /token/set?user=<username>&realm=<realm>&sync_window=100

Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The username of the token owner

• realm (basestring) – The realm name of the token owner

Return returns the number of attributes set in “value”

Rtype json object

GET /token/
The method is called at /token Display the list of available tokens.

Parameters

• serial – Display the token data of this single token. You can do a

not strict matching by specifying a serial like “OATH”. :param type: Display only token of type. You ca do
a non strict matching by specifying a tokentype like “otp”, to file hotp and totp tokens. :param user: display
tokens of this user :param viewrealm: takes a realm, only the tokens in this realm will be displayed :param
description: Display token with this kind of description :type description: basestring :param sortby: sort the
output by column :param sortdir: asc/desc :param page: request a certain page :param assigned: Only return
assigned (True) or not assigned (False) tokens :param pagesize: limit the number of returned tokens :param
user_fields: additional user fields from the userid resolver of the owner (user) :param outform: if set to “csv”,
than the token list will be given in CSV

Return a json result with the data being a list of token dictionaries { “data”: [{ <token1> }, {
<token2> }.] }

Rtype json

98 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

GET /token/getserial/(otp)
Get the serial number for a given OTP value. If the administrator has a token, he does not know to whom it
belongs, he can type in the OTP value and gets the serial number of the token, that generates this very OTP
value.

Parameters

• otp – The given OTP value

• type – Limit the search to this token type

• unassigned – If set=1, only search in unassigned tokens

• assigned – If set=1, only search in assigned tokens

• serial – This can be a substring of serial numbers to search in.

• window – The number of OTP look ahead (default=10)

Return The serial number of the token found

POST /token/disable/(serial)
Disable a single token or all the tokens of a user. Disabled tokens can not be used to authenticate but can be
enabled again.

You can call the function like this: POST /token/disable?serial=<serial> POST /to-
ken/disable?user=<user>&realm=<realm> POST /token/disable/<serial>

Parameters

• serial (basestring) – the serial number of the single token to disable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of disabled

tokens in “value”. :rtype: json object

POST /token/enable/(serial)
Enable a single token or all the tokens of a user.

You can call the function like this: POST /token/enable?serial=<serial> POST /to-
ken/enable?user=<user>&realm=<realm> POST /token/enable/<serial>

Parameters

• serial (basestring) – the serial number of the single token to enable

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns the number of enabled

tokens in “value”. :rtype: json object

POST /token/resync/(serial)
Resync the OTP token by providing two consecutive OTP values.

You can call the function like this: POST /token/resync?serial=<serial>&otp1=<otp1>&otp2=<otp2> POST
/token/resync/<serial>?otp1=<otp1>&otp2=<otp2>

Parameters

1.13. Code Documentation 99

privacyIDEA Documentation, Release 2.3

• serial (basestring) – the serial number of the single token to reset

• otp1 (basestring) – First OTP value

• otp2 (basestring) – Second OTP value

Return In case of success it returns “value”=True

Rtype json object

POST /token/setpin/(serial)
Set the the user pin or the SO PIN of the specific token. Usually these are smartcard or token specific PINs. E.g.
the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

You can call the function like this: POST /token/setpin?serial=<serial>&userpin=<userpin>&sopin=<sopin>
POST /token/setpin/<serial>?userpin=<userpin>&sopin=<sopin>

Parameters

• serial (basestring) – the serial number of the single token to reset

• userpin (basestring) – The user PIN of a smartcard

• sopin (basestring) – The SO PIN of a smartcard

• otppin (basestring) – The OTP PIN of a token

Return In “value” returns the number of PINs set.

Rtype json object

POST /token/reset/(serial)
Reset the failcounter of a single token or of all tokens of a user.

You can call the function like this: POST /token/reset?serial=<serial> POST /to-
ken/reset?user=<user>&realm=<realm> POST /token/reset/<serial>

Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The login name of the user

• realm (basestring) – the realm name of the user

Return In case of success it returns “value”=True

Rtype json object

POST /token/realm/(serial)
Set the realms of a token. The token is identified by the unique serial number

You can call the function like this: POST /token/realm?serial=<serial>&realms=<something> POST /to-
ken/realm/<serial>?realms=<hash>

Parameters

• serial (basestring) – the serial number of the single token to reset

• realms (basestring) – The realms the token should be assigned to. Comma seperated

Return returns value=True in case of success

100 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Rtype bool

POST /token/load/(filename)
The call imports the given file containing token definitions. The file can be an OATH CSV file, an aladdin XML
file or a Yubikey CSV file exported from the yubikey initialization tool.

The function is called as a POST request with the file upload.

Parameters

• filename (basestring) – The name of the token file, that is imported

• type (basestring) – The file type. Can be “aladdin-xml”, “oathcsv” or “yubikeycsv”.

Return The number of the imported tokens

Rtype int

POST /token/lost/(serial)
Mark the specified token as lost and create a new temporary token. This new token gets the new serial number
“lost<old-serial>” and a certain validity period and the PIN of the lost token.

This method can be called by either the admin or the user on his own tokens.

You can call the function like this: POST /token/lost/serial

Parameters

• serial (basestring) – the serial number of the lost token.

Return returns value=dictionary in case of success

Rtype bool

POST /token/set/(serial)
This API is only to be used by the admin! This can be used to set token specific attributes like

•description

•count_window

•sync_window

•count_auth_max

•count_auth_success_max

•hashlib,

•max_failcount

The token is identified by the unique serial number or by the token owner. In the later case all tokens of the
owner will be modified.

You can call the function like this: POST /token/set?serial=<serial>&description=<something> POST /to-
ken/set/<serial>?hashlib=<hash> POST /token/set?user=<username>&realm=<realm>&sync_window=100

Parameters

• serial (basestring) – the serial number of the single token to reset

• user (basestring) – The username of the token owner

• realm (basestring) – The realm name of the token owner

Return returns the number of attributes set in “value”

1.13. Code Documentation 101

privacyIDEA Documentation, Release 2.3

Rtype json object

DELETE /token/(serial)
Delete a token by its serial number. There are three different ways to delete a token.

DELETE /token/<serial>

Return In case of success it return the number of deleted tokens in

“value” :rtype: json object

User endpoints

The user endpoints is a subset of the system endpoint.

GET /user/
list the users in a realm

Parameters

• realm – a realm that contains several resolvers. Only show users from this realm

• resolver – a distinct resolvername

• <searchexpr> – a search expression, that depends on the ResolverClass

Return json result with “result”: true and the userlist in “value”.

Example request:

GET /user?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"description": "Cornelius K\u00f6lbel,,+49 151 2960 1417,+49 561 3166797,cornelius.koelbel@netknights.it",
"email": "cornelius.koelbel@netknights.it",
"givenname": "Cornelius",
"mobile": "+49 151 2960 1417",
"phone": "+49 561 3166797",
"surname": "K\u00f6lbel",
"userid": "1009",
"username": "cornelius",
"resolver": "name-of-resolver"

}
]

},
"version": "privacyIDEA unknown"

}

102 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

POST /user/
Create a new user in the given resolver.

Example request:

POST /user
user=new_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

PUT /user/
Delete a User in the user store. The resolver must have the flag editable, so that the user can be deleted. Only
administrators are allowed to delete users.

Example request:

PUT /user
user=existing_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

Note: Also a user can call this function to e.g. change his password. But in this case the parameter “user” and
“resolver” get overwritten by the values of the authenticated user, even if he specifies another username.

DELETE /user/(resolvername)/
username Delete a User in the user store. The resolver must have the flag editable, so that the user can be
deleted. Only administrators are allowed to delete users.

Delete a user object in a user store by calling

Example request:

DELETE /user/<resolvername>/<username>
Host: example.com
Accept: application/json

The code of this module is tested in tests/test_api_system.py

Policy endpoints

The policy endpoints are a subset of the system endpoint.

1.13. Code Documentation 103

privacyIDEA Documentation, Release 2.3

GET /policy/check
This function checks, if the given parameters would match a defined policy or not.

Query Parameters

• user – the name of the user

• realm – the realm of the user or the realm the administrator want to do administrative tasks
on.

• resolver – the resolver of a user

• scope – the scope of the policy

• action – the action that is done - if applicable

• client (IP Address) – the client, from which this request would be issued

Return a json result with the keys allowed and policy in the value key

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

GET /policy/check?user=admin&realm=r1&client=172.16.1.1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "172.16.0.0/16",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

GET /policy/defs
This is a helper function that returns the POSSIBLE policy definitions, that can be used to define your policies.

104 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

Parameters

• scope – if given, the function will only return policy definitions for the given scope.

Return The policy definitions of the allowed scope with the actions and

action types. The top level key is the scope. :rtype: dict

GET /policy
this function is used to retrieve the policies that you defined. It can also be used to export the policy to a file.

Parameters

• name – will only return the policy with the given name

• export – The filename needs to be specified as the third part of the URL like policy.cfg.
It will then be exported to this file.

JSON Parameters

• realm – will return all policies in the given realm

• scope – will only return the policies within the given scope

• active – Set to true or false if you only want to display active or inactive policies.

Return a json result with the configuration of the specified policies

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "1.1.1.1",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

1.13. Code Documentation 105

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

}
}

},
"version": "privacyIDEA unknown"

}

POST /policy/disable/(name)
Disable a given policy by its name. :param name: The name of the policy :return: ID in the database

POST /policy/enable/(name)
Enable a given policy by its name. :param name: Name of the policy :return: ID in the database

GET /policy/export/(export)
this function is used to retrieve the policies that you defined. It can also be used to export the policy to a file.

Parameters

• name – will only return the policy with the given name

• export – The filename needs to be specified as the third part of the URL like policy.cfg.
It will then be exported to this file.

JSON Parameters

• realm – will return all policies in the given realm

• scope – will only return the policies within the given scope

• active – Set to true or false if you only want to display active or inactive policies.

Return a json result with the configuration of the specified policies

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "1.1.1.1",
"name": "pol_update_del",

106 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

POST /policy/import/(filename)
This function is used to import policies from a file.

Parameters

• filename – The name of the file in the request

Form Parameters

• file – The uploaded file contents

Return A json response with the number of imported policies.

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

POST /policy/import/backup-policy.cfg HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 2

},
"version": "privacyIDEA unknown"

}

GET /policy/defs/(scope)
This is a helper function that returns the POSSIBLE policy definitions, that can be used to define your policies.

Parameters

• scope – if given, the function will only return policy definitions for the given scope.

Return The policy definitions of the allowed scope with the actions and

action types. The top level key is the scope. :rtype: dict

POST /policy/(name)
Creates a new policy that defines access or behaviour of different actions in privacyIDEA

1.13. Code Documentation 107

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

Parameters

• name (basestring) – name of the policy

JSON Parameters

• scope – the scope of the policy like “admin”, “system”, “authentication” or “selfservice”

• adminrealm – Realm of the administrator. (only for admin scope)

• action – which action may be executed

• realm – For which realm this policy is valid

• resolver – This policy is valid for this resolver

• user (string with wild cards or list of strings) – The policy is valid for these users

• time – on which time does this policy hold

• client (IP address with subnet) – for which requesting client this should be

Return a json result with success or error

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

POST /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

scope=admin
realm=realm1
action=enroll, disable

Example response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"setPolicy pol1": 1

}
},
"version": "privacyIDEA unknown"

}

GET /policy/(name)
this function is used to retrieve the policies that you defined. It can also be used to export the policy to a file.

Parameters

• name – will only return the policy with the given name

108 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

• export – The filename needs to be specified as the third part of the URL like policy.cfg.
It will then be exported to this file.

JSON Parameters

• realm – will return all policies in the given realm

• scope – will only return the policies within the given scope

• active – Set to true or false if you only want to display active or inactive policies.

Return a json result with the configuration of the specified policies

Rtype json

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": {
"pol_update_del": {
"action": "enroll",
"active": true,
"client": "1.1.1.1",
"name": "pol_update_del",
"realm": "r1",
"resolver": "test",
"scope": "selfservice",
"time": "",
"user": "admin"

}
}

},
"version": "privacyIDEA unknown"

}

DELETE /policy/(name)
This deletes the policy of the given name.

Parameters

• name – the policy with the given name

Return a json result about the delete success. In case of success value > 0

1.13. Code Documentation 109

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

Status Codes

• 200 OK – Policy created or modified.

• 401 Unauthorized – Authentication failed

Example request:

In this example a policy “pol1” is created.

DELETE /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": 1

},
"version": "privacyIDEA unknown"

}

This endpoint is used to create, modify, list and delete Machine Resolvers. Machine Resolvers fetch machine infor-
mation from remote machine stores like a hosts file or an Active Directory.

The code of this module is tested in tests/test_api_machineresolver.py

Machine Resolver endpoints

POST /machineresolver/test
This function tests, if the given parameter will create a working machine resolver. The Machine Resolver Class
itself verifies the functionality. This can also be network connectivity to a Machine Store.

Return a json result with bool

GET /machineresolver/
returns a json list of all machine resolver.

Parameters

• type – Only return resolvers of type (like “hosts”...)

POST /machineresolver/(resolver)
This creates a new machine resolver or updates an existing one. A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters. Parameters you do not provide are left
untouched. When updating a resolver you must not change the type! You do not need to specify the type, but if
you specify a wrong type, it will produce an error.

Parameters

• resolver (basestring) – the name of the resolver.

• type (string) – the type of the resolver. Valid types are... “hosts”

Return a json result with the value being the database id (>0)

110 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

privacyIDEA Documentation, Release 2.3

Additional parameters depend on the resolver type.

hosts:

• filename

DELETE /machineresolver/(resolver)
this function deletes an existing machine resolver

Parameters

• resolver – the name of the resolver to delete.

Return json with success or fail

GET /machineresolver/(resolver)
This function retrieves the definition of a single machine resolver.

Parameters

• resolver – the name of the resolver

Return a json result with the configuration of a specified resolver

This REST API is used to list machines from Machine Resolvers.

The code is tested in tests/test_api_machines

Machine endpoints

POST /machine/tokenoption
This sets a Machine Token option or deletes it, if the value is empty.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver

name :param resolver: identify the machine by the machine ID and the resolver name :param serial: identify the
token by the serial number :param application: the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return

GET /machine/authitem
This fetches the authentication items for a given application and the given client machine.

Parameters

• challenge – A challenge for which the authentication item is

calculated. In case of the Yubikey this can be a challenge that produces a response. The authentication item is
the combination of the challenge and the response.

Parameters

• hostname (basestring) – The hostname of the machine

Return dictionary with lists of authentication items

Example response:

1.13. Code Documentation 111

privacyIDEA Documentation, Release 2.3

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": { "ssh": [{ "username": "....",

"sshkey": "...."
}

],
"luks": [{ "slot": ".....",

"challenge": "...",
"response": "...",
"partition": "..."

]
}

},
"version": "privacyIDEA unknown"

}

POST /machine/token
Attach an existing token to a machine with a certain application.

Parameters

• hostname – identify the machine by the hostname

• machineid – identify the machine by the machine ID and the resolver

name :param resolver: identify the machine by the machine ID and the resolver name :param serial: identify the
token by the serial number :param application: the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

Return json result with “result”: true and the machine list in “value”.

Example request:

POST /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
"machienid": "12313098",
"resolver": "machineresolver1",
"serial": "tok123",
"application": "luks" }

GET /machine/token
Return a list of MachineTokens either for a given machine or for a given token.

Parameters

• serial – Return the MachineTokens for a the given Token

• hostname – Identify the machine by the hostname

• machineid – Identify the machine by the machine ID and the resolver

name :param resolver: Identify the machine by the machine ID and the resolver name :return:

112 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

GET /machine/
List all machines that can be found in the machine resolvers.

Parameters

• hostname – only show machines, that match this hostname as substring

• ip – only show machines, that exactly match this IP address

• id – filter for substring matching ids

• resolver – filter for substring matching resolvers

• any – filter for a substring either matching in “hostname”, “ip”

or “id”

Return json result with “result”: true and the machine list in “value”.

Example request:

GET /hostname?hostname=on HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": [
{
"id": "908asljdas90ad0",
"hostname": ["flavon.example.com", "test.example.com"],
"ip": "1.2.3.4",
"resolver_name": "machineresolver1"

},
{
"id": "1908209x48x2183",
"hostname": ["london.example.com"],
"ip": "2.4.5.6",
"resolver_name": "machineresolver1"

}
]

},
"version": "privacyIDEA unknown"

}

DELETE /machine/token/(serial)/
machineid/resolver/application Detach a token from a machine with a certain application.

Parameters

• machineid – identify the machine by the machine ID and the resolver

name :param resolver: identify the machine by the machine ID and the resolver name :param serial: identify the
token by the serial number :param application: the name of the application like “luks” or “ssh”.

Return json result with “result”: true and the machine list in “value”.

1.13. Code Documentation 113

privacyIDEA Documentation, Release 2.3

Example request:

DELETE /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
"resolver": "machineresolver1",
"application": "luks" }

GET /machine/authitem/(application)
This fetches the authentication items for a given application and the given client machine.

Parameters

• challenge – A challenge for which the authentication item is

calculated. In case of the Yubikey this can be a challenge that produces a response. The authentication item is
the combination of the challenge and the response.

Parameters

• hostname (basestring) – The hostname of the machine

Return dictionary with lists of authentication items

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": { "ssh": [{ "username": "....",

"sshkey": "...."
}

],
"luks": [{ "slot": ".....",

"challenge": "...",
"response": "...",
"partition": "..."

]
}

},
"version": "privacyIDEA unknown"

}

This endpoint is used to get the information from the server, which application types are known and which options
these applications provide.

Applications are used to attach tokens to machines.

The code of this module is tested in tests/test_api_applications.py

Application endpoints

GET /application/
returns a json list of the available applications

114 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.13.2 LIB level

At the LIB level all library functions are defined. There is no authentication on this level. Also there is no
flask/Web/request code on this level.

Request information and the logged_in_user need to be passed to the functions as parameters, if they are needed.

If possible, policies are checked with policy decorators.

library functions

Based on the database models, which are tested in tests/test_db_model.py, there are different modules.

resolver.py contains functions to simply deal with resolver definitions. On this level users and realms are not know,
yet.

realm.py contains functions to deal with realm. Realms are a list of several resolvers. So prior to bother the realm.py,
the resolver.py should be understood and working. On this level, users are not known, yet.

user.py contains functions to deal with users. A user object is an entity in a realm. And of course the user object itself
can be found in a resolver. But you need to have working resolver.py and realm.py to be able to work with user.py

For further details see the following modules:

Users

There are the library functions for user functions. It depends on the lib.resolver and lib.realm.

There are and must be no dependencies to the token functions (lib.token) or to webservices!

This code is tested in tests/test_lib_user.py

privacyidea.lib.user.User(*args, **kwds)

The user has the attributes login, realm and resolver.

Usually a user can be found via “login@realm”.

A user object with an empty login and realm should not exist, whereas a user object could have an empty
resolver.

privacyidea.lib.user.create_user(*args, **kwds)
This creates a new user in the given resolver. The resolver must be editable to do so.

The attributes is a dictionary containing the keys “username”, “email”, “phone”, “mobile”, “surname”, “given-
name”, “password”.

We return the UID and not the user object, since the user could be located in several realms!

Parameters

• resolvername (basestring) – The name of the resolver, in which the user should be
created

• attributes (dict) – Attributes of the user

Returns The uid of the user object

privacyidea.lib.user.get_user_from_param(param, optionalOrRequired=True)
Find the parameters user, realm and resolver and create a user object from these parameters.

An exception is raised, if a user in a realm is found in more than one resolvers.

1.13. Code Documentation 115

mailto:login@realm

privacyIDEA Documentation, Release 2.3

Parameters param (dict) – The dictionary of request parameters

Returns User as found in the parameters

Return type User object

privacyidea.lib.user.get_user_info(*args, **kwds)
return the detailed information for a user in a resolver

Parameters

• userid (string) – The id of the user in a resolver

• resolvername – The name of the resolver

Returns a dict with all the userinformation

Return type dict

privacyidea.lib.user.get_user_list(*args, **kwds)

privacyidea.lib.user.get_username(*args, **kwds)
Determine the username for a given id and a resolvername.

Parameters

• userid (string) – The id of the user in a resolver

• resolvername – The name of the resolver

Returns the username or “” if it does not exist

Return type string

privacyidea.lib.user.split_user(*args, **kwds)
Split the username of the form user@realm into the username and the realm splitting mye-
mail@emailprovider.com@realm is also possible and will return (myemail@emailprovider, realm).

We can also split realmuser to (user, realm)

Parameters username (string) – the username to split

Returns username and realm

Return type tuple

Token Class

The following token types are known to privacyIDEA. All are inherited from the base tokenclass describe below.

Certificate Token
class privacyidea.lib.tokens.certificatetoken.CertificateTokenClass(aToken)

Token to implement an X509 certificate. The certificate can be enrolled by sending a CSR to the server. priva-
cyIDEA is capable of working with different CA connectors.

Valid parameters are request or certificate, both PEM encoded. If you pass a request you also need to pass the
ca that should be used to sign the request. Passing a certificate just uploads the certificate to a new token object.

A certificate token can be created by an administrative task with the token/init api like this:

Example Authentication Request:

116 Chapter 1. Table of Contents

mailto:user@realm
mailto:myemail@emailprovider
mailto:myemail@emailprovider
mailto:myemail@emailprovider

privacyIDEA Documentation, Release 2.3

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
request=<PEM encoded request>
ca=<name of the ca connector>

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"certificate": "...PEM..."
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

classmethod get_class_prefix()

classmethod get_class_type()

get_init_detail(*args, **kwds)
At the end of the initialization we return the certificate

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Daplug Token
class privacyidea.lib.tokens.daplugtoken.DaplugTokenClass(*args, **kwds)

daplug token class implementation

check_otp(*args, **kwds)
checkOtp - validate the token otp against a given otpvalue

Parameters

1.13. Code Documentation 117

privacyIDEA Documentation, Release 2.3

• anOtpVal (string, format: efekeiebekeh) – the otpvalue to be verified

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

check_otp_exist(*args, **kwds)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

Returns counter or -1 if otp does not exist

Return type int

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

classmethod get_class_prefix()

classmethod get_class_type()

get_multi_otp(*args, **kwds)

get_otp(*args, **kwds)

resync(*args, **kwds)
resync the token based on two otp values - external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

split_pin_pass(passw, user=None, options=None)

118 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Email Token
class privacyidea.lib.tokens.emailtoken.EmailTokenClass(aToken)

Implementation of the EMail Token Class, that sends OTP values via SMTP. (Similar to SMSTokenClass)

EMAIL_ADDRESS_KEY = ‘email’

check_otp(*args, **kwds)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(*args, **kwds)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

classmethod get_class_info(key=None, ret=’all’)
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : s.o.

classmethod get_class_prefix()

classmethod get_class_type()
return the generic token class identifier

update(*args, **kwds)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

HOTP Token
class privacyidea.lib.tokens.hotptoken.HotpTokenClass(*args, **kwds)

hotp token class implementation

check_otp(*args, **kwds)
check if the given OTP value is valid for this token.

Parameters

1.13. Code Documentation 119

privacyIDEA Documentation, Release 2.3

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state, that should be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

check_otp_exist(*args, **kwds)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter

Returns counter or -1 if otp does not exist

Return type int

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

classmethod get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: oath

classmethod get_class_type()
return the token type shortname

Returns ‘hotp’

Return type string

get_init_detail(*args, **kwds)
to complete the token initialization some additional details should be returned, which are displayed at the
end of the token initialization. This is the e.g. the enrollment URL for a Google Authenticator.

get_multi_otp(*args, **kwds)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

WARNING: the dict that is returned contains a sequence number as key. This it NOT the otp
counter!

Parameters count (int) – how many otp values should be returned

Epoch_start Not used in HOTP

Epoch_end Not used in HOTP

CurTime Not used in HOTP

Timestamp not used in HOTP

120 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(*args, **kwds)
return the next otp value

Parameters curTime – Not Used in HOTP

Returns next otp value and PIN if possible

Return type tuple

get_sync_timeout()
get the token sync timeout value

Returns timeout value in seconds

Return type int

hashlib

is_challenge_request(*args, **kwds)
check, if the request would start a challenge

•default: if the passw contains only the pin, this request would

trigger a challenge

•in this place as well the policy for a token is checked

Parameters

• passw – password, which might be pin or pin+otp

• options – dictionary of additional request parameters

Returns returns true or false

resync(*args, **kwds)
resync the token based on two otp values

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

update(*args, **kwds)
process the initialization parameters

Do we really always need an otpkey? ...the otpKey is handled in the parent class :param param: dict of
initialization parameters :type param: dict

Returns nothing

mOTP Token
class privacyidea.lib.tokens.motptoken.MotpTokenClass(*args, **kwds)

1.13. Code Documentation 121

privacyIDEA Documentation, Release 2.3

check_otp(*args, **kwds)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state, that shoule be verified

• window (int) – the counter +window, which should be checked

• options (dict) – the dict, which could contain token specific info

Returns the counter state or -1

Return type int

classmethod get_class_info(key=None, ret=’all’)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

:rtype : dict or string

classmethod get_class_prefix()

classmethod get_class_type()

get_init_detail(*args, **kwds)
to complete the token normalisation, the response of the initialization should be build by the token specific
method, the getInitDetails

update(*args, **kwds)
update - process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

PasswordToken
class privacyidea.lib.tokens.passwordtoken.PasswordTokenClass(aToken)

This Token does use a fixed Password as the OTP value. In addition, the OTP PIN can be used with this token.
This Token can be used for a scenario like losttoken

check_otp(*args, **kwds)
This checks the static password

Parameters anOtpVal – This contains the “OTP” value, which is the static

password :return: result of password check, 0 in case of success, -1 if fail :rtype: int

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

122 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Return type dict or scalar

classmethod get_class_prefix()

classmethod get_class_type()

set_otplen(*args, **kwds)
sets the OTP length to the length of the password

Parameters otplen (int) – This is ignored in this class

Result None

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

RADIUS Token
class privacyidea.lib.tokens.radiustoken.RadiusTokenClass(db_token)

check_otp(*args, **kwds)
run the RADIUS request against the RADIUS server

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

check_pin_local
lookup if pin should be checked locally or on radius host

Returns bool

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

classmethod get_class_prefix()

classmethod get_class_type()

split_pin_pass(*args, **kwds)
Split the PIN and the OTP value. Only if it is locally checked and not remotely.

update(param)

1.13. Code Documentation 123

privacyIDEA Documentation, Release 2.3

Registration Code Token
class privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass(aToken)

Token to implement a registration code. It can be used to create a registration code or a “TAN” which can be
used once by a user to authenticate somewhere. After this registration code is used, the token is automatically
deleted.

The idea is to provide a workflow, where the user can get a registration code by e.g. postal mail and then use
this code as the initial first factor to authenticate to the UI to enroll real tokens.

A registration code can be created by an administrative task with the token/init api like this:

Example Authentication Request:

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=register
user=cornelius
realm=realm1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"registrationcode": "12345808124095097608"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

check_otp(*args, **kwds)
This checks the static password

Parameters anOtpVal – This contains the “OTP” value, which is the static

password :return: result of password check, 0 in case of success, -1 if fail :rtype: int

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

classmethod get_class_prefix()

classmethod get_class_type()

124 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

get_init_detail(*args, **kwds)
At the end of the initialization we return the registration code.

update(param)
This method is called during the initialization process. :param param: parameters from the token init :type
param: dict :return: None

Remote Token
class privacyidea.lib.tokens.remotetoken.RemoteTokenClass(db_token)

The Remote token forwards an authentication request to another privacyIDEA server. The request can be for-
warded to a user on the other server or to a serial number on the other server. The PIN can be checked on the
local privacyIDEA server or on the remote server.

Using the Remote token you can assign one physical token to many different users.

authenticate(*args, **kwds)
do the authentication on base of password / otp and user and options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

Parameters

• passw – the password / otp

• user – the requesting user

• options – the additional request parameters

Returns tuple of (success, otp_count - 0 or -1, reply)

check_otp(otpval, counter=None, window=None, options=None)
run the http request against the remote host

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific options

Returns counter of the matching OTP value.

Return type int

check_pin_local
lookup if pin should be checked locally or on remote host

Returns bool

classmethod get_class_info(*args, **kwds)

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

classmethod get_class_prefix()
return the token type prefix

1.13. Code Documentation 125

privacyIDEA Documentation, Release 2.3

classmethod get_class_type()
return the class type identifier

is_challenge_request(*args, **kwds)
This method checks, if this is a request, that triggers a challenge. It depends on the way, the pin is checked
- either locally or remote

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

update(param)
second phase of the init process - updates parameters

Parameters param – the request parameters

Returns

• nothing -

SMS Token
class privacyidea.lib.tokens.smstoken.SmsTokenClass(db_token)

The SMS token sends an SMS containing an OTP via some kind of gateway. The gateways can be an SMTP or
HTTP gateway or the special sipgate protocol. The Gateways are defined in the SMSProvider Modules.

The SMS token is a challenge response token. I.e. the first request needs to contain the correct OTP PIN. If the
OTP PIN is correct, the sending of the SMS is triggered. The second authentication must either contain the OTP
PIN and the OTP value or the transaction_id and the OTP value.

Example 1st Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {

"transaction_id": "xyz"
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": false

},
"version": "privacyIDEA unknown"

}

126 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

After this, the SMS is triggered. When the SMS is received the second part of authentication looks like this:

Example 2nd Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
transaction_id=xyz
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"detail": {
},
"id": 1,
"jsonrpc": "2.0",
"result": {

"status": true,
"value": true

},
"version": "privacyIDEA unknown"

}

check_otp(*args, **kwds)
check the otpval of a token against a given counter and the window

Parameters passw (string) – the to be verified passw/pin

Returns counter if found, -1 if not found

Return type int

create_challenge(*args, **kwds)
create a challenge, which is submitted to the user

Parameters

• transactionid – the id of this challenge

• options – the request context parameters / data

Returns

tuple of (bool, message and data) bool, if submit was successful message is submitted to the
user data is preserved in the challenge attributes - additional attributes, which are displayed
in the

output

classmethod get_class_info(key=None, ret=’all’)
returns all or a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

1.13. Code Documentation 127

privacyIDEA Documentation, Release 2.3

Returns subsection if key exists or user defined

:rtype : s.o.

classmethod get_class_prefix()

classmethod get_class_type()
return the generic token class identifier

is_challenge_request(*args, **kwds)
check, if the request would start a challenge

if the passw contains only the pin, this request would trigger a challenge

in this place as well the policy for a token is checked

Parameters

• passw – password, which might be pin or pin+otp

• user – The authenticating user

• options – dictionary of additional request parameters

Returns returns true or false

update(*args, **kwds)
process initialization parameters

Parameters param (dict) – dict of initialization parameters

Returns nothing

SPass Token
class privacyidea.lib.tokens.spasstoken.SpassTokenClass(db_token)

This is a simple pass token. It does have no OTP component. The OTP checking will always succeed. Of
course, an OTP PIN can be used.

authenticate(*args, **kwds)
in case of a wrong passw, we return a bad matching pin, so the result will be an invalid token

check_otp(otpval, counter=None, window=None, options=None)
As we have no otp value we always return true == 0

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition Is used by lib.token.get_token_info

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict

classmethod get_class_prefix()

classmethod get_class_type()

is_challenge_request(passw, user, options=None)
The spass token does not support challenge response :param passw: :param user: :param options: :return:

is_challenge_response(passw, user, options=None, challenges=None)

update(param)

128 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

SSHKey Token
class privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass(db_token)

The SSHKeyTokenClass provides a TokenClass that stores the public SSH key and can give the public SSH key
via the getotp function. This can be used to manage SSH keys and retrieve the public ssh key to import it to
authorized keys files.

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dictionary

classmethod get_class_prefix()

classmethod get_class_type()

get_sshkey(*args, **kwds)
returns the public SSH key

Returns SSH pub key

Return type string

update(param)
The key holds the public ssh key and this is required

The key probably is of the form “ssh-rsa BASE64 comment”

TOTP Token
class privacyidea.lib.tokens.totptoken.TotpTokenClass(*args, **kwds)

check_otp(anOtpVal, counter=None, window=None, options=None)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter – the counter state, that should be verified. For TOTP

this is the unix system time (seconds) devided by 30/60 :type counter: int :param window: the counter
+window (sec), which should be checked :type window: int :param options: the dict, which could contain
token specific info :type options: dict :return: the counter or -1 :rtype: int

check_otp_exist(*args, **kwds)
checks if the given OTP value is/are values of this very token at all. This is used to autoassign and to
determine the serial number of a token. In fact it is a check_otp with an enhanced window.

Parameters

• otp (string) – the to be verified otp value

• window (int) – the lookahead window for the counter in seconds!!!

Returns counter or -1 if otp does not exist

Return type int

1.13. Code Documentation 129

privacyIDEA Documentation, Release 2.3

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or scalar

classmethod get_class_prefix()
Return the prefix, that is used as a prefix for the serial numbers. :return: TOTP

classmethod get_class_type()
return the token type shortname

Returns ‘totp’

Return type string

get_multi_otp(*args, **kwds)
return a dictionary of multiple future OTP values of the HOTP/HMAC token

Parameters

• count (int) – how many otp values should be returned

• epoch_start – not implemented

• epoch_end – not implemented

• curTime (datetime) – Simulate the servertime

• timestamp (epoch time) – Simulate the servertime

Returns tuple of status: boolean, error: text and the OTP dictionary

get_otp(current_time=None, do_truncation=True, time_seconds=None, challenge=None)
get the next OTP value

Parameters current_time – the current time, for which the OTP value

should be calculated for. :type current_time: datetime object :param time_seconds: the current time, for
which the OTP value should be calculated for (date +%s) :type: time_seconds: int, unix system time
seconds :return: next otp value, and PIN, if possible :rtype: tuple

hashlib

resync(*args, **kwds)
resync the token based on two otp values external method to do the resync of the token

Parameters

• otp1 (string) – the first otp value

• otp2 (string) – the second otp value

• options (dict or None) – optional token specific parameters

Returns counter or -1 if otp does not exist

Return type int

resyncDiffLimit = 1

timeshift

130 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

timestep

timewindow

update(*args, **kwds)
This is called during initialzaton of the token to add additional attributes to the token object.

Parameters param (dict) – dict of initialization parameters

Returns nothing

Yubico Token
class privacyidea.lib.tokens.yubicotoken.YubicoTokenClass(db_token)

check_otp(*args, **kwds)
Here we contact the Yubico Cloud server to validate the OtpVal.

classmethod get_class_info(*args, **kwds)

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type dict or string

classmethod get_class_prefix()

classmethod get_class_type()

update(param)

Yubikey Token
class privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass(db_token)

The Yubikey Token in the Yubico AES mode

check_otp(*args, **kwds)
validate the token otp against a given otpvalue

Parameters

• anOtpVal (string) – the to be verified otpvalue

• counter (int) – the counter state. It is not used by the Yubikey because the current
counter value is sent encrypted inside the OTP value

• window (int) – the counter +window, which is not used in the Yubikey because the current
counter value is sent encrypted inside the OTP, allowing a simple comparison between the
encrypted counter value and the stored counter value

• options (dict) – the dict, which could contain token specific info

Returns the counter state or an error code (< 0):

-1 if the OTP is old (counter < stored counter) -2 if the private_uid sent in the OTP is wrong (different
from the one stored with the token) -3 if the CRC verification fails :rtype: int

check_otp_exist(*args, **kwds)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

1.13. Code Documentation 131

privacyIDEA Documentation, Release 2.3

classmethod get_class_info(*args, **kwds)
returns a subtree of the token definition

Parameters

• key (string) – subsection identifier

• ret (user defined) – default return value, if nothing is found

Returns subsection if key exists or user defined

Return type s.o.

classmethod get_class_prefix()

classmethod get_class_type()

is_challenge_request(*args, **kwds)
This method checks, if this is a request, that triggers a challenge.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false
class privacyidea.lib.tokenclass.TokenClass(*args, **kwds)

add_init_details(key, value)
(was addInfo) Adds information to a volatile internal dict

add_tokeninfo(key, value, value_type=None)
Add a key and a value to the DB tokeninfo :param key: :param value: :return:

authenticate(passw, user=None, options=None)
High level interface which covers the check_pin and check_otp This is the method that verifies single shot
authentication like they are done with push button tokens.

It is a high level interface to support other tokens as well, which do not have a pin and otp separation - they
could overwrite this method

If the authentication succeeds an OTP counter needs to be increased, i.e. the OTP value that was used for
this authentication is invalidated!

Parameters

• passw (string) – the password which could be pin+otp value

• user (User object) – The authenticating user

• options (dict) – dictionary of additional request parameters

Returns

returns tuple of 1. true or false for the pin match, 2. the otpcounter (int) and the 3. reply
(dict) that will be added as

additional information in the JSON response of /validate/check.

Return type tuple

challenge_janitor()
Just clean up all challenges, for which the expiration has expired.

132 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Returns None

check_auth_counter()
This function checks the count_auth and the count_auth_success. If the count_auth is less than
count_auth_max and count_auth_success is less than count_auth_success_max it returns True. Otherwise
False.

Returns success if the counter is less than max

Return type bool

check_challenge_response(user=None, passw=None, options=None)
This method verifies if there is a matching challenge for the given passw and also verifies if the response
is correct.

It then returns the new otp_counter of the token.

In case of success the otp_counter will be >= 0.

Parameters

• user (User object) – the requesting user

• passw (string) – the password (pin+otp)

• options (dict) – additional arguments from the request, which could be token specific.
Usually “transactionid”

Returns return otp_counter. If -1, challenge does not match

Return type int

check_failcount()
Checks if the failcounter is exceeded. It returns True, if the failcounter is less than maxfail :return: True or
False

check_otp(otpval, counter=None, window=None, options=None)
This checks the OTP value, AFTER the upper level did the checkPIN

In the base class we do not know, how to calculate the OTP value. So we return -1. In case of success, we
should return >=0, the counter

Parameters

• otpval – the OTP value

• counter (int) – The counter for counter based otp values

• window – a counter window

• options (dict) – additional token specific otpions

Returns counter of the matching OTP value.

Return type int

check_otp_exist(otp, window=None)
checks if the given OTP value is/are values of this very token. This is used to autoassign and to determine
the serial number of a token.

Parameters

• otp – the OTP value

• window (int) – The look ahead window

Returns True or a value > 0 in case of success

1.13. Code Documentation 133

privacyIDEA Documentation, Release 2.3

check_pin(*args, **kwds)
Check the PIN of the given Password. Usually this is only dependent on the token itself, but the user object
can cause certain policies.

Each token could implement its own PIN checking behaviour.

Parameters

• pin (string) – the PIN (static password component), that is to be checked.

• user (User object) – for certain PIN policies (e.g. checking against the user store) this is
the user, whose password would be checked. But at the moment we are checking against
the userstore in the decorator “auth_otppin”.

• options – the optional request parameters

Returns If the PIN is correct, return True

Return type bool

check_validity_period()
This checks if the datetime.datetime.now() is within the validity period of the token.

Returns success

Return type bool

create_challenge(transactionid=None, options=None)
This method creates a challenge, which is submitted to the user. The submitted challenge will be preserved
in the challenge database.

If no transaction id is given, the system will create a transaction id and return it, so that the response can
refer to this transaction.

Parameters

• transactionid – the id of this challenge

• options (dict) – the request context parameters / data

Returns tuple of (bool, message, transactionid, attributes)

Return type tuple

The return tuple builds up like this: bool if submit was successful; message which is displayed in the
JSON response; additional attributes, which are displayed in the JSON response.

del_tokeninfo(key=None)

delete_token()
delete the database token

enable(enable=True)

get_QRimage_data(response_detail)
FIXME: Do we really use this?

get_as_dict()
This returns the token data as a dictionary. It is used to display the token list at /token/list.

Returns The token data as dict

Return type dict

classmethod get_class_info(key=None, ret=’all’)

classmethod get_class_prefix()

134 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

classmethod get_class_type()

get_count_auth()
Return the number of all authentication tries

get_count_auth_max()
Return the number of maximum allowed authentications

get_count_auth_success()
Return the number of successful authentications

get_count_auth_success_max()
Return the maximum allowed successful authentications

get_count_window()

get_failcount()

classmethod get_hashlib(hLibStr)
Returns a hashlib function for a given string :param hLibStr: the hashlib :type hLibStr: string :return: the
hashlib :rtype: function

get_init_detail(params=None, user=None)
to complete the token normalisation, the response of the initialiastion should be build by this token specific
method.

get_init_detail returns additional information after an admin/init like the QR code of an HOTP/TOTP
token. Can be anything else.

Parameters

• params (dict) – The request params during token creation token/init

• user (User object) – the user, token owner

Returns additional descriptions

Return type dict

get_init_details(*args, **kwds)
return the status of the token rollout

Returns return the status dict.

Return type dict

get_max_failcount()

get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)
This returns a dictionary of multiple future OTP values of a token.

Parameters

• count – how many otp values should be returned

• epoch_start – time based tokens: start when

• epoch_end – time based tokens: stop when

• curTime (datetime object) – current time for TOTP token (for selftest)

• timestamp (int) – unix time, current time for TOTP token (for selftest)

Returns True/False, error text, OTP dictionary

Return type Tuple

1.13. Code Documentation 135

privacyIDEA Documentation, Release 2.3

get_otp(current_time=’‘)
The default token does not support getting the otp value will return a tuple of four values a negative value
is a failure.

Returns something like: (1, pin, otpval, combined)

get_otp_count()

get_otp_count_window()

get_otplen()

get_pin_hash_seed()

get_realms()
Return a list of realms the token is assigned to :return: realms :rtype:l list

get_serial()

get_sync_window()

get_tokeninfo(key=None, default=None)
return the complete token info or a single key of the tokeninfo. When returning the complete token info
dictionary encrypted entries are not decrypted. If you want to receive a decrypted value, you need to call
it directly with the key.

Parameters

• key (string) – the key to return

• default (string) – the default value, if the key does not exist

Returns the value for the key

Return type int or string

get_tokentype()

get_type()

get_user()
return the user (owner) of a token If the token has no owner assigned, we return None

Returns The owner of the token

Return type User object

get_user_id()

get_validity_period_end()
returns the end of validity period (if set) if not set, “” is returned. :return: the end of the validity period
:rtype: string

get_validity_period_start()
returns the start of validity period (if set) if not set, “” is returned. :return: the start of the validity period
:rtype: string

get_vars(save=False)
return the token state as dicts with keys like type, token, mode... :return: token as dict

inc_count_auth()
Increase the counter, that counts authentications - successful and unsuccessful

inc_count_auth_success()
Increase the counter, that counts successful authentications

inc_failcount()

136 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

inc_otp_counter(*args, **kwds)
Increase the otp counter and store the token in the database :param counter: the new counter value. If
counter is given, than

the counter is increased by (counter+1) If the counter is not given, the counter is increased by +1

Parameters reset (bool) – reset the failcounter if set to True

Returns the new counter value

is_active()

is_challenge_request(passw, user=None, options=None)
This method checks, if this is a request, that triggers a challenge.

The default behaviour to trigger a challenge is, if the passw parameter only contains the correct token
pin and the request contains a data or a challenge key i.e. if the options parameter contains a key
data or challenge.

Each token type can decide on its own under which condition a challenge is triggered by overwriting this
method.

please note: in case of pin policy == 2 (no pin is required) the check_pin would always return true!
Thus each request containing a data or challenge would trigger a challenge!

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – The user from the authentication request

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

is_challenge_response(passw, user=None, options=None)
This method checks, if this is a request, that is the response to a previously sent challenge.

The default behaviour to check if this is the response to a previous challenge is simply by checking if
the request contains a parameter state or transactionid i.e. checking if the options parameter
contains a key state or transactionid.

This method does not try to verify the response itself! It only determines, if this is a response for a
challenge or not. The response is verified in check_challenge_response.

Parameters

• passw (string) – password, which might be pin or pin+otp

• user (User object) – the requesting user

• options (dict) – dictionary of additional request parameters

Returns true or false

Return type bool

reset()
Reset the failcounter

resync(otp1, otp2, options=None)

save()
Save the database token

1.13. Code Documentation 137

privacyIDEA Documentation, Release 2.3

set_count_auth(count)
Sets the counter for the occurred login attepms as key “count_auth” in token info :param count: a number
:type count: int

set_count_auth_max(count)
Sets the counter for the maximum allowed login attemps as key “count_auth_max” in token info :param
count: a number :type count: int

set_count_auth_success(count)
Sets the counter for the occurred successful logins as key “count_auth_success” in token info :param count:
a number :type count: int

set_count_auth_success_max(count)
Sets the counter for the maximum allowed successful logins as key “count_auth_success_max” in token
info :param count: a number :type count: int

set_count_window(countWindow)

set_defaults()
Set the default values on the database level

set_description(description)
Set the description on the database level

Parameters description (string) – description of the token

set_failcount(failcount)
Set the failcounter in the database

set_hashlib(hashlib)

set_init_details(details)

set_maxfail(maxFail)

set_otp_count(otpCount)

set_otpkey(otpKey)

set_otplen(otplen)

set_pin(pin, encrypt=False)
set the PIN of a token. Usually the pin is stored in a hashed way. :param pin: the pin to be set for the token
:type pin: basestring :param encrypt: If set to True, the pin is stored encrypted and

can be retrieved from the database again

set_pin_hash_seed(pinhash, seed)

set_realms(realms)
Set the list of the realms of a token. :param realms: realms the token should be assigned to :type realms:
list

set_so_pin(soPin)

set_sync_window(syncWindow)

set_tokeninfo(info)
Set the tokeninfo field in the DB. Old values will be deleted. :param info: dictionary with key and value
:type info: dict :return:

138 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

set_type(tokentype)
Set the tokentype in this object and also in the underlying database-Token-object.

Parameters tokentype (string) – The type of the token like HOTP or TOTP

set_user(user, report=None)
Set the user attributes (uid, resolvername, resolvertype) of a token.

Parameters

• user – a User() object, consisting of loginname and realm

• report – tbdf.

Returns None

set_user_identifiers(uid, resolvername, resolvertype)
(was setUid) Set the user attributes of a token :param uid: The user id in the user source :param resolver-
name: The name of the resolver :param resolvertype: The type of the resolver :return: None

set_user_pin(userPin)

set_validity_period_end(end_date)
sets the end date of the validity period for a token :param end_date: the end date in the format “%d/%m/%y
%H:%M”

if the format is wrong, the method will throw an exception

set_validity_period_start(start_date)
sets the start date of the validity period for a token :param start_date: the start date in the format
“%d/%m/%y %H:%M”

if the format is wrong, the method will throw an exception

split_pin_pass(passw, user=None, options=None)
Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the OTP value. The splitting can be dependent of
certain policies. The policies may depend on the user.

Each token type may define its own way to slit the PIN and the OTP value.

Parameters

• passw – the password to split

• user (User object) – The user/owner of the token

• options (dict) – can be used be the token types.

Returns tuple of pin and otp value

Returns tuple of (split status, pin, otp value)

Return type tuple

status_validation_fail()
callback to enable a status change, if auth failed

status_validation_success()
callback to enable a status change, if auth succeeds

1.13. Code Documentation 139

privacyIDEA Documentation, Release 2.3

update(param, reset_failcount=True)
Update the token object

Parameters param – a dictionary with different params like keysize, description, genkey, otp-
key, pin

Type param: dict

Token Functions

This module contains all top level token functions. It depends on the models, lib.user and lib.tokenclass (which depends
on the tokenclass implementations like lib.tokens.hotptoken)

This is the middleware/glue between the HTTP API and the database

privacyidea.lib.token.add_tokeninfo(*args, **kwds)
Sets a token info field in the database. The info is a dict for each token of key/value pairs.

Parameters

• serial (basestring) – The serial number of the token

• info – The key of the info in the dict

• value – The value of the info

• value_type – The type of the value. If set to “password” the value

is stored encrypted :type value_type: basestring :param user: The owner of the tokens, that should be modified
:type user: User object :return: the number of modified tokens :rtype: int

privacyidea.lib.token.assign_token(*args, **kwds)
Assign token to a user. If the PIN is given, the PIN is reset.

Parameters

• serial (basestring) – The serial number of the token

• user (User object) – The user, to whom the token should be assigned.

• pin (basestring) – The PIN for the newly assigned token.

• encrypt_pin (bool) – Whether the PIN should be stored in an encrypted way

Returns True if the token was assigned, in case of an error an exception

is thrown :rtype: bool

privacyidea.lib.token.auto_assign_token(*args, **kwds)
This function is called to auto_assign a token to the user.

If the user does not have a token, yet, the not assigned tokens in his realm are searched if they match the given
passw.

Parameters

• user (User object) – The user, who is authenticating

• passw (basestring) – The given password (pin + otp)

• pin –

• param (dict) – additional parameters

Returns True or False and detailed reply information

140 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Return type bool, dict

privacyidea.lib.token.check_serial(*args, **kwds)
This checks, if the given serial number can be used for a new token. it returns a tuple (result, new_serial) result
being True if the serial does not exist, yet. new_serial is a suggestion for a new serial number, that does not
exist, yet.

Parameters serial – Seral number that is to be checked, if it can be used for

a new token. :type serial: string :result: bool and serial number :rtype: tuple

privacyidea.lib.token.check_serial_pass(*args, **kwds)
This function checks the otp for a given serial

If the OTP matches, True is returned and the otp counter is increased.

The function tries to determine the user (token owner), to derive possible additional policies from the user.

Parameters

• serial (basestring) – The serial number of the token

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

Return type tuple

privacyidea.lib.token.check_token_list(*args, **kwds)
this takes a list of token objects and tries to find the matching token for the given passw. In also tests, * if the
token is active or * the max fail count is reached, * if the validity period is ok...

This function is called by check_serial_pass, check_user_pass and check_yubikey_pass.

Parameters

• tokenobject_list – list of identified tokens

• passw – the provided passw (mostly pin+otp)

• user – the identified use - as class object

• option – additional parameters, which are passed to the token

Returns tuple of success and optional response

Return type (bool, dict)

privacyidea.lib.token.check_user_pass(*args, **kwds)
This function checks the otp for a given user. It is called by the API /validate/check and simplecheck

If the OTP matches, True is returned and the otp counter is increased.

Parameters

• user (User object) – The user who is trying to authenticate

• passw (basestring) – The password usually consisting of pin + otp

• options (dict) – Additional options. Token specific.

Returns tuple of result (True, False) and additional dict

Return type tuple

1.13. Code Documentation 141

privacyIDEA Documentation, Release 2.3

privacyidea.lib.token.copy_token_pin(*args, **kwds)
This function copies the token PIN from one token to the other token. This can be used for workflows like lost
token.

In fact the PinHash and the PinSeed are transferred

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.copy_token_realms(*args, **kwds)
Copy the realms of one token to the other token

Parameters

• serial_from – The token to copy from

• serial_to – The token to copy to

Returns None

privacyidea.lib.token.copy_token_user(*args, **kwds)
This function copies the user from one token to the other token. In fact the user_id, resolver and resolver type
are transferred.

Parameters

• serial_from (basestring) – The token to copy from

• serial_to (basestring) – The token to copy to

Returns True. In case of an error raise an exception

Return type bool

privacyidea.lib.token.create_tokenclass_object(*args, **kwds)
(was createTokenClassObject) create a token class object from a given type If a tokenclass for this type does not
exist, the function returns None.

Parameters db_token (database token object) – the database referenced token

Returns instance of the token class object

Return type tokenclass object

privacyidea.lib.token.enable_token(*args, **kwds)
Enable or disable a token. This can be checked with is_token_active

Enabling an already active token will return 0.

Parameters

• serial (basestring) – The serial number of the token

• enable (bool) – False is the token should be disabled

• user (User object) – all tokens of the user will be enabled or disabled

Returns Number of tokens that were enabled/disabled

Return type

142 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

privacyidea.lib.token.gen_serial(*args, **kwds)
generate a serial for a given tokentype

Parameters

• tokentype – the token type prefix is done by a lookup on the tokens

• prefix – A prefix to the serial number

Returns serial number

Return type string

privacyidea.lib.token.get_all_token_users(*args, **kwds)
return a dictionary with all tokens, that are assigned to users. This returns a dictionary with the key being the
serial number of the token and the user information as dict.

Returns dictionary of serial numbers

Return type dict

privacyidea.lib.token.get_dynamic_policy_definitions(scope=None)
This returns the dynamic policy definitions that come with the new loaded token classes.

Parameters scope – an optional scope parameter. Only return the policies of

this scope. :return: The policy definition for the token or only for the scope.

privacyidea.lib.token.get_multi_otp(*args, **kwds)
This function returns a list of OTP values for the given Token. Please note, that the tokentype needs to support
this function.

Parameters

• serial (basestring) – the serial number of the token

• count – number of the next otp values (to be used with event or time based tokens)

• epoch_start – unix time start date (used with time based tokens)

• epoch_end – unix time end date (used with time based tokens)

• curTime (datetime) – Simulate the servertime

• timestamp (int) – Simulate the servertime (unix time in seconds)

Returns dictionary of otp values

Return type dictionary

privacyidea.lib.token.get_num_tokens_in_realm(*args, **kwds)
This returns the number of tokens in one realm. :param realm: The name of the realm :type realm: basestring
:param active: If only active tokens should be taken into account :type active: bool :return: The number of
tokens in the realm :rtype: int

privacyidea.lib.token.get_otp(*args, **kwds)
This function returns the current OTP value for a given Token. The tokentype needs to support this function. if
the token does not support getting the OTP value, a -2 is returned.

Parameters

• serial – serial number of the token

• current_time (datetime) – a fake servertime for testing of TOTP token

Returns tuple with (result, pin, otpval, passw)

Return type tuple

1.13. Code Documentation 143

privacyIDEA Documentation, Release 2.3

privacyidea.lib.token.get_realms_of_token(*args, **kwds)
This function returns a list of the realms of a token

Parameters serial (basestring) – the serial number of the token

Returns list of the realm names

Return type list

privacyidea.lib.token.get_serial_by_otp(*args, **kwds)
Returns the serial for a given OTP value The tokenobject_list would be created by get_tokens()

Parameters

• token_list (list of token objects) – the list of token objects to be investigated

• otp – the otp value, that needs to be found

• window (int) – the window of search

Returns the serial for a given OTP value and the user

Return type basestring

privacyidea.lib.token.get_token_by_otp(*args, **kwds)
search the token in the token_list, that creates the given OTP value. The tokenobject_list would be created by
get_tokens()

Parameters

• token_list (list of token objects) – the list of token objects to be investigated

• otp (basestring) – the otp value, that needs to be found

• window (int) – the window of search

Returns The token, that creates this OTP value

Return type Tokenobject

privacyidea.lib.token.get_token_owner(*args, **kwds)
returns the user object, to which the token is assigned. the token is identified and retrieved by it’s serial number

If the token has no owner, None is returned

Parameters serial (basestring) – serial number of the token

Returns The owner of the token

Return type User object or None

privacyidea.lib.token.get_token_type(*args, **kwds)
Returns the tokentype of a given serial number

Parameters serial (string) – the serial number of the to be searched token

Returns tokentype

Return type string

privacyidea.lib.token.get_tokenclass_info(*args, **kwds)
return the config definition of a dynamic token

Parameters

• tokentype (basestring) – the tokentype of the token like “totp” or “hotp”

• section (basestring) – subsection of the token definition - optional

144 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Returns dict - if nothing found an empty dict

Return type dict

privacyidea.lib.token.get_tokens(*args, **kwds)
(was getTokensOfType) This function returns a list of token objects of a * given type, * of a realm * or tokens
with assignment or not * for a certain serial number or * for a User

E.g. thus you can get all assigned tokens of type totp.

Parameters

• tokentype (basestring) – The type of the token. If None, all tokens are returned.

• realm (basestring) – get tokens of a realm. If None, all tokens are returned.

• assigned (bool) – Get either assigned (True) or unassigned (False) tokens. If None get
all tokens.

• user (User Object) – Filter for the Owner of the token

• serial (basestring) – The serial number of the token

• active (bool) – Whether only active (True) or inactive (False) tokens should be returned

• resolver (basestring) – filter for the given resolver name

• rollout_state – returns a list of the tokens in the certain rollout state. Some tokens are
not enrolled in a single step but in multiple steps. These tokens are then identified by the
DB-column rollout_state.

• count (bool) – If set to True, only the number of the result and not the list is returned.

Returns A list of tokenclasses (lib.tokenclass)

Return type list

privacyidea.lib.token.get_tokens_in_resolver(*args, **kwds)
Return a list of the token ojects, that contain this very resolver

Parameters resolver (basestring) – The resolver, the tokens should be in

Returns list of tokens with this resolver

Return type list of token objects

privacyidea.lib.token.get_tokens_paginate(*args, **kwds)
This function is used to retrieve a token list, that can be displayed in the Web UI. It supports pagination. Each
retrieved page will also contain a “next” and a “prev”, indicating the next or previous page. If either does not
exist, it is None.

Parameters

• tokentype –

• realm –

• assigned (bool) – Returns assigned (True) or not assigned (False) tokens

• user (User object) – The user, whos token should be displayed

• serial –

• active –

• resolver –

• rollout_state –

1.13. Code Documentation 145

privacyIDEA Documentation, Release 2.3

• sortby (A Token column or a string.) – Sort by a certain Token DB field. The default is
Token.serial. If a string like “serial” is provided, we try to convert it to the DB column.

• sortdir (basestring) – Can be “asc” (default) or “desc”

• psize (int) – The size of the page

• page (int) – The number of the page to view. Starts with 1 ;-)

Returns dict with tokens, prev, next and count

Return type dict

privacyidea.lib.token.get_tokenserial_of_transaction(*args, **kwds)
get the serial number of a token from a challenge state / transaction

Parameters transaction_id (basestring) – the state / transaction id

Returns the serial number or None

Return type basestring

privacyidea.lib.token.init_token(*args, **kwds)
create a new token or update an existing token

Parameters

• param (dict) – initialization parameters like: serial (optional) type (optionl, default=hotp)
otpkey

• user (User Object) – the token owner

• tokenrealms (list) – the realms, to which the token should belong

Returns token object or None

Return type TokenClass object

privacyidea.lib.token.is_token_active(serial)
Return True if the token is active, otherwise false Returns None, if the token does not exist.

Parameters serial (basestring) – The serial number of the token

Returns True or False

Return type bool

privacyidea.lib.token.is_token_owner(*args, **kwds)
Check if the given user is the owner of the token with the given serial number :param serial: The serial number
of the token :type serial: str :param user: The user that needs to be checked :type user: User object :return:
Return True or False :rtype: bool

privacyidea.lib.token.lost_token(*args, **kwds)
This is the workflow to handle a lost token. The token <serial> is lost and will be disabled. A new token of type
password token will be created and assigned to the user. The PIN of the lost token will be copied to the new
token. The new token will have a certain validity period.

Parameters

• serial – Token serial number

• new_serial – new serial number

• password – new password

• validity (int) – Number of days, the new token should be valid

• contents – The contents of the generated password. “C”: upper case

146 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

characters, “c”: lower case characters, “n”: digits and “s”: special characters :type contents: A string like “Ccn”
:param pw_len: The length of the generated password :type pw_len: int :param options: optional values for the
decorator passed from the upper API level :type options: dict

Returns result dictionary

privacyidea.lib.token.remove_token(*args, **kwds)
remove the token that matches the serial number or all tokens of the given user and also remove the realm
associations and all its challenges

Parameters

• user (User object) – The user, who’s tokens should be deleted.

• serial (basestring) – The serial number of the token to delete

Returns The number of deleted token

Return type int

privacyidea.lib.token.reset_token(*args, **kwds)
Reset the failcounter :param serial: :param user: :return: The number of tokens, that were resetted :rtype: int

privacyidea.lib.token.resync_token(*args, **kwds)
Resyncronize the token of the given serial number by searching the otp1 and otp2 in the future otp values.

Parameters

• serial (basestring) – token serial number

• otp1 (basestring) – first OTP value

• otp2 (basestring) – second OTP value, directly after the first

• options (dict) – additional options like the servertime for TOTP token

Returns

privacyidea.lib.token.set_count_auth(*args, **kwds)
The auth counters are stored in the token info database field. There are different counters, that can be set

count_auth -> max=False, success=False count_auth_max -> max=True, success=False
count_auth_success -> max=False, success=True count_auth_success_max -> max=True, suc-
cess=True

Parameters

• count (int) – The counter value

• user (User object) – The user owner of the tokens tokens to modify

• serial (basestring) – The serial number of the one token to modifiy

• max – True, if either count_auth_max or count_auth_success_max are

to be modified :type max: bool :param success: True, if either count_auth_success or count_auth_success_max
are to be modified :type success: bool :return: number of modified tokens :rtype: int

privacyidea.lib.token.set_count_window(*args, **kwds)
The count window is used during authentication to find the matching OTP value. This sets the count window
per token.

Parameters

• serial (basestring) – The serial number of the token

1.13. Code Documentation 147

privacyIDEA Documentation, Release 2.3

• countwindow (int) – the size of the window

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_defaults(*args, **kwds)
Set the default values for the token with the given serial number :param serial: token serial :type serial: bases-
tring :return: None

privacyidea.lib.token.set_description(*args, **kwds)
Set the description of a token

Parameters

• serial (basestring) – The serial number of the token

• description (int) – The description for the token

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_hashlib(*args, **kwds)
Set the hashlib in the tokeninfo. Can be something like sha1, sha256...

Parameters

• serial (basestring) – The serial number of the token

• hashlib (basestring) – The hashlib of the token

• user (User object) – The User, for who’s token the hashlib should be set

Returns the number of token infos set

Return type int

privacyidea.lib.token.set_max_failcount(*args, **kwds)
Set the maximum fail counts of tokens. This is the maximum number a failed authentication is allowed.

Parameters

• serial (basestring) – The serial number of the token

• maxfail (int) – The maximum allowed failed authentications

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_otplen(*args, **kwds)
Set the otp length of the token defined by serial or for all tokens of the user. The OTP length is usually 6 or 8.

Parameters

• serial (basestring) – The serial number of the token

• otplen (int) – The length of the OTP value

• user (User object) – The owner of the tokens

Returns number of modified tokens

148 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Return type int

privacyidea.lib.token.set_pin(*args, **kwds)
Set the token PIN of the token. This is the static part that can be used to authenticate.

Parameters

• pin (basestring) – The pin of the token

• user – If the user is specified, the pins for all tokens of this

user will be set :type used: User object :param serial: If the serial is specified, the PIN for this very token will
be set. :return: The number of PINs set (usually 1) :rtype: int

privacyidea.lib.token.set_pin_so(*args, **kwds)
Set the SO PIN of a smartcard. The SO Pin can be used to reset the PIN of a smartcard. The SO PIN is stored
in the database, so that it could be used for automatic processes for User PIN resetting.

Parameters

• serial (basestring) – The serial number of the token

• so_pin – The Security Officer PIN

Returns The number of SO PINs set. (usually 1)

Return type int

privacyidea.lib.token.set_pin_user(*args, **kwds)
This sets the user pin of a token. This just stores the information of the user pin for (e.g. an eTokenNG,
Smartcard) in the database

Parameters

• serial (basestring) – The serial number of the token

• user_pin (basestring) – The user PIN

Returns The number of PINs set (usually 1)

Return type int

privacyidea.lib.token.set_realms(*args, **kwds)
Set all realms of a token. This sets the realms new. I.e. it does not add realms. So realms that are not contained
in the list will not be assigned to the token anymore.

Thus, setting realms=[] clears all realms assignments.

Parameters

• serial (basestring) – the serial number of the token

• realms (list) – A list of realm names

Returns the number of tokens, to which realms where added. As a serial

number should be unique, this is either 1 or 0. :rtype: int

privacyidea.lib.token.set_sync_window(*args, **kwds)
The sync window is the window that is used during resync of a token. Such many OTP values are calculated
ahead, to find the matching otp value and counter.

Parameters

• serial (basestring) – The serial number of the token

• syncwindow (int) – The size of the sync window

1.13. Code Documentation 149

privacyIDEA Documentation, Release 2.3

• user (User object) – The owner of the tokens, which should be modified

Returns number of modified tokens

Return type int

privacyidea.lib.token.set_validity_period_end(*args, **kwds)
Set the validity period for the given token.

Parameters

• serial –

• user –

• end (basestring) – Timestamp in the format DD/MM/YY HH:MM

privacyidea.lib.token.set_validity_period_start(*args, **kwds)
Set the validity period for the given token.

Parameters

• serial –

• user –

• start (basestring) – Timestamp in the format DD/MM/YY HH:MM

privacyidea.lib.token.token_exist(*args, **kwds)
returns true if the token with the given serial number exists

Parameters serial – the serial number of the token

privacyidea.lib.token.token_has_owner(*args, **kwds)
returns true if the token is owned by any user

privacyidea.lib.token.unassign_token(*args, **kwds)
unassign the user from the token

Parameters serial – The serial number of the token to unassign

Returns True

Application Class

privacyidea.lib.applications.MachineApplicationBase
alias of MachineApplication

Policy Module

Base function to handle the policy entries in the database. This module only depends on the db/models.py

The functions of this module are tested in tests/test_lib_policy.py

A policy has the attributes

• name

• scope

• action

• realm

• resolver

150 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

• user

• client

• active

name is the unique identifier of a policy. scope is the area, where this policy is meant for. This can be values like
admin, selfservice, authentication... scope takes only one value.

active is bool and indicates, whether a policy is active or not.

action, realm, resolver, user and client can take a comma separated list of values.

realm and resolver If these are empty ‘*’, this policy matches each requested realm.

user If the user is empty or ‘*’, this policy matches each user. You can exclude users from matching this policy, by
prepending a ‘-‘ or a ‘!’. *, -admin will match for all users except the admin.

client The client is identified by its IP address. A policy can contain a list of IP addresses or subnets. You can
exclude clients from subnets by prepending the client with a ‘-‘ or a ‘!’. 172.16.0.0/24, -172.16.0.17 will
match each client in the subnet except the 172.16.0.17.

class privacyidea.lib.policy.ACTION
This is the list of usual actions.

ADDUSER = ‘adduser’

APIKEY = ‘api_key_required’

ASSIGN = ‘assign’

AUDIT = ‘auditlog’

AUTHITEMS = ‘fetch_authentication_items’

AUTOASSIGN = ‘autoassignment’

CACONNECTORDELETE = ‘caconnectordelete’

CACONNECTORREAD = ‘caconnectorread’

CACONNECTORWRITE = ‘caconnectorwrite’

COPYTOKENPIN = ‘copytokenpin’

COPYTOKENUSER = ‘copytokenuser’

DELETE = ‘delete’

DELETEUSER = ‘deleteuser’

DISABLE = ‘disable’

ENABLE = ‘enable’

ENCRYPTPIN = ‘encrypt_pin’

GETSERIAL = ‘getserial’

IMPORT = ‘importtokens’

LOGINMODE = ‘login_mode’

LOGOUTTIME = ‘logout_time’

1.13. Code Documentation 151

privacyIDEA Documentation, Release 2.3

LOSTTOKEN = ‘losttoken’

LOSTTOKENPWCONTENTS = ‘losttoken_PW_contents’

LOSTTOKENPWLEN = ‘losttoken_PW_length’

LOSTTOKENVALID = ‘losttoken_valid’

MACHINELIST = ‘machinelist’

MACHINERESOLVERDELETE = ‘mresolverdelete’

MACHINERESOLVERWRITE = ‘mresolverwrite’

MACHINETOKENS = ‘manage_machine_tokens’

MAXTOKENREALM = ‘max_token_per_realm’

MAXTOKENUSER = ‘max_token_per_user’

NODETAILFAIL = ‘no_detail_on_fail’

NODETAILSUCCESS = ‘no_detail_on_success’

OTPPIN = ‘otppin’

OTPPINCONTENTS = ‘otp_pin_contents’

OTPPINMAXLEN = ‘otp_pin_maxlength’

OTPPINMINLEN = ‘otp_pin_minlength’

OTPPINRANDOM = ‘otp_pin_random’

PASSNOTOKEN = ‘passOnNoToken’

PASSNOUSER = ‘passOnNoUser’

PASSTHRU = ‘passthru’

POLICYDELETE = ‘policydelete’

POLICYWRITE = ‘policywrite’

RESET = ‘reset’

RESOLVERDELETE = ‘resolverdelete’

RESOLVERWRITE = ‘resolverwrite’

RESYNC = ‘resync’

SERIAL = ‘serial’

SET = ‘set’

SETPIN = ‘setpin’

SETREALM = ‘setrealm’

SYSTEMDELETE = ‘configdelete’

SYSTEMWRITE = ‘configwrite’

TOKENLABEL = ‘tokenlabel’

TOKENREALMS = ‘tokenrealms’

TOKENTYPE = ‘tokentype’

UNASSIGN = ‘unassign’

152 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

UPDATEUSER = ‘updateuser’

USERLIST = ‘userlist’

class privacyidea.lib.policy.ACTIONVALUE
This is a list of usual action values for e.g. policy action-values like otppin.

DISABLE = ‘disable’

NONE = ‘none’

TOKENPIN = ‘tokenpin’

USERSTORE = ‘userstore’

class privacyidea.lib.policy.LOGINMODE
This is the list of possible values for the login mode.

DISABLE = ‘disable’

PRIVACYIDEA = ‘privacyIDEA’

USERSTORE = ‘userstore’

class privacyidea.lib.policy.PolicyClass
The Policy_Object will contain all database policy entries for easy filtering and mangling. It will be created at
the beginning of the request and is supposed to stay alive unchanged during the request.

get_action_values(action, scope=’authorization’, realm=None, resolver=None, user=None,
client=None, unique=False, allow_white_space_in_action=False)

Get the defined action values for a certain action like scope: authorization action: tokentype

would return a list of the tokentypes

scope: authorization action: serial

would return a list of allowed serials

Parameters

• unique – if set, the function will raise an exception if more than one value is returned

• allow_white_space_in_action (bool) – Some policies like emailtext would al-
low entering text with whitespaces. These whitespaces must not be used to seperate action
values!

Returns A list of the allowed tokentypes

Return type list

get_policies(name=None, scope=None, realm=None, active=None, resolver=None, user=None,
client=None, action=None, adminrealm=None)

Return the policies of the given filter values

Parameters

• name –

• scope –

• realm –

• active –

• resolver –

• user –

1.13. Code Documentation 153

privacyIDEA Documentation, Release 2.3

• client –

• action –

• adminrealm – This is the realm of the admin. This is only evaluated in the scope admin.

Returns list of policies

Return type list of dicts

ui_get_enroll_tokentypes(client, logged_in_user)
Return a dictioary of the allowed tokentypes for the logged in user. This used for the token enrollment UI.

It looks like this:

{“hotp”: “HOTP: event based One Time Passwords”, “totp”: “TOTP: time based One Time
Passwords”, “spass”: “SPass: Simple Pass token. Static passwords”, “motp”: “mOTP: clas-
sical mobile One Time Passwords”, “sshkey”: “SSH Public Key: The public SSH key”,
“yubikey”: “Yubikey AES mode: One Time Passwords with Yubikey”, “remote”: “Remote
Token: Forward authentication request to another server”, “yubico”: “Yubikey Cloud mode:
Forward authentication request to YubiCloud”, “radius”: “RADIUS: Forward authentication
request to a RADIUS server”, “email”: “EMail: Send a One Time Passwort to the users
email address”, “sms”: “SMS: Send a One Time Password to the users mobile phone”, “cer-
tificate”: “Certificate: Enroll an x509 Certificate Token.”}

Parameters

• client (basestring) – Client IP address

• logged_in_user (dict) – The Dict of the logged in user

Returns list of token types, the user may enroll

class privacyidea.lib.policy.SCOPE
This is the list of the allowed scopes that can be used in policy definitions.

ADMIN = ‘admin’

AUDIT = ‘audit’

AUTH = ‘authentication’

AUTHZ = ‘authorization’

ENROLL = ‘enrollment’

GETTOKEN = ‘gettoken’

USER = ‘user’

WEBUI = ‘webui’

privacyidea.lib.policy.delete_policy(*args, **kwds)
Function to delete one named policy

Parameters name – the name of the policy to be deleted

Returns the count of the deleted policies.

Return type int

privacyidea.lib.policy.enable_policy(*args, **kwds)
Enable or disable the policy with the given name :param name: :return: ID of the policy

privacyidea.lib.policy.export_policies(*args, **kwds)
This function takes a policy list and creates an export file from it

154 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Parameters policies (list of policy dictionaries) – a policy definition

Returns the contents of the file

Return type string

privacyidea.lib.policy.get_static_policy_definitions(*args, **kwds)
These are the static hard coded policy definitions. They can be enhanced by token based policy definitions, that
can be found in lib.token.get_dynamic_policy_definitions.

Parameters scope (basestring) – Optional the scope of the policies

Returns allowed scopes with allowed actions, the type of action and a

description. :rtype: dict

privacyidea.lib.policy.import_policies(*args, **kwds)
This function imports policies from a file. The file has a config_object format, i.e. the text file has a header

[<policy_name>] key = value

and key value pairs.

Parameters file_contents (basestring) – The contents of the file

Returns number of imported policies

Return type int

privacyidea.lib.policy.set_policy(*args, **kwds)
Function to set a policy. If the policy with this name already exists, it updates the policy. It expects a dict of with
the following keys: :param name: The name of the policy :param scope: The scope of the policy. Something like
“admin”, “system”, “authentication” :param action: A scope specific action or a comma seperated list of actions
:type active: basestring :param realm: A realm, for which this policy is valid :param resolver: A resolver, for
which this policy is valid :param user: A username or a list of usernames :param time: N/A if type() :param
client: A client IP with optionally a subnet like 172.16.0.0/16 :param active: If the policy is active or not :type
active: bool :return: The database ID od the the policy :rtype: int

API Policies

Pre Policies These are the policy decorators as PRE conditions for the API calls. I.e. these conditions are exe-
cuted before the wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also
components from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.prepolicy.api_key_required(request=None, action=None)
This is a decorator for check_user_pass and check_serial_pass. It checks, if a policy scope=auth, ac-
tion=apikeyrequired is set. If so, the validate request will only performed, if a JWT token is passed with
role=validate.

privacyidea.api.lib.prepolicy.check_base_action(request=None, action=None)
This decorator function takes the request and verifies the given action for the SCOPE ADMIN or USER. :param
req: :param action: :return: True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_external(request=None, action=’init’)
This decorator is a hook to an external check function, that is called before the token/init or token/assign API.

Parameters

• request (flask Request object) – The REST request

1.13. Code Documentation 155

privacyIDEA Documentation, Release 2.3

• action (basestring) – This is either “init” or “assign”

Returns either True or an Exception is raised

privacyidea.api.lib.prepolicy.check_max_token_realm(request=None, action=None)
Pre Policy This checks the maximum token per realm. Check ACTION.MAXTOKENREALM

This decorator can wrap: /token/init (with a realm and user) /token/assign /token/tokenrealms

Parameters

• req (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_max_token_user(request=None, action=None)
Pre Policy This checks the maximum token per user policy. Check ACTION.MAXTOKENUSER

This decorator can wrap: /token/init (with a realm and user) /token/assign

Parameters

• req –

• action –

Returns True otherwise raises an Exception

privacyidea.api.lib.prepolicy.check_otp_pin(request=None, action=None)
This policy function checks if the OTP PIN that is about to be set follows the OTP PIN poli-
cies ACTION.OTPPINMAXLEN, ACTION.OTPPINMINLEN and ACTION.OTPPINCONTENTS in the
SCOPE.USER. It is used to decorate the API functions.

The pin is investigated in the params as pin = params.get(“pin”)

In case the given OTP PIN does not match the requirements an exception is raised.

privacyidea.api.lib.prepolicy.check_token_init(request=None, action=None)
This decorator function takes the request and verifies if the requested tokentype is allowed to be enrolled in the
SCOPE ADMIN or the SCOPE USER. :param request: :param action: :return: True or an Exception is raised

privacyidea.api.lib.prepolicy.check_token_upload(request=None, action=None)
This decorator function takes the request and verifies the given action for scope ADMIN :param req: :param
filename: :return:

privacyidea.api.lib.prepolicy.encrypt_pin(request=None, action=None)
This policy function is to be used as a decorator for several API functions. E.g. token/assign, token/setpin, to-
ken/init If the policy is set to define the PIN to be encrypted, the request.all_data is modified like this: encryptpin
= True

It uses the policy SCOPE.ENROLL, ACTION.ENCRYPTPIN

privacyidea.api.lib.prepolicy.init_random_pin(request=None, action=None)
This policy function is to be used as a decorator in the API init function. If the policy is set accordingly it adds
a random PIN to the request.all_data like.

It uses the policy SCOPE.ENROLL, ACTION.OTPPINRANDOM to set a random OTP PIN during Token
enrollment

156 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

privacyidea.api.lib.prepolicy.init_tokenlabel(request=None, action=None)
This policy function is to be used as a decorator in the API init function. It adds the tokenlabel definition to the
params like this: params : { “tokenlabel”: “<u>@<r>” }

It uses the policy SCOPE.ENROLL, ACTION.TOKENLABEL to set the tokenlabel of Smartphone tokens dur-
ing enrollment and this fill the details of the response.

privacyidea.api.lib.prepolicy.mock_fail(req, action)
This is a mock function as an example for check_external. This function creates a problem situation and the
token/init or token/assign will show this exception accordingly.

privacyidea.api.lib.prepolicy.mock_success(req, action)
This is a mock function as an example for check_external. This function returns success and the API call will
go on unmodified.

class privacyidea.api.lib.prepolicy.prepolicy(function, request, action=None)
This is the decorator wrapper to call a specific function before an API call. The prepolicy decorator is to be used
in the API calls. A prepolicy decorator then will modify the request data or raise an exception

privacyidea.api.lib.prepolicy.set_realm(request=None, action=None)
Pre Policy This pre condition gets the current realm and verifies if the realm should be rewritten due to the
policy definition. I takes the realm from the request and - if a policy matches - replaces this realm with the realm
defined in the policy

Check ACTION.SETREALM

This decorator should wrap /validate/check

Parameters

• req (Request Object) – The request that is intercepted during the API call

• action (basestring) – An optional Action

Returns Always true. Modified the parameter request

Post Policies These are the policy decorators as POST conditions for the API calls. I.e. these conditions are executed
after the wrapped API call. This module uses the policy base functions from privacyidea.lib.policy but also components
from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

privacyidea.api.lib.postpolicy.autoassign(request, response)
This decorator decorates the function /validate/check. Depending on ACTION.AUTOASSIGN it checks if the
user has no token and if the given OTP-value matches a token in the users realm, that is not yet assigned to any
user.

If a token can be found, it assigns the token to the user also taking into account ACTION.MAXTOKENUSER
and ACTION.MAXTOKENREALM. :return:

privacyidea.api.lib.postpolicy.check_serial(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call has a serial number that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

1.13. Code Documentation 157

privacyIDEA Documentation, Release 2.3

privacyidea.api.lib.postpolicy.check_tokentype(request, response)
This policy function is to be used in a decorator of an API function. It checks, if the token, that was used in the
API call is of a type that is allowed to be used.

If not, a PolicyException is raised.

Parameters response (Response object) – The response of the decorated function

Returns A new (maybe modified) response

privacyidea.api.lib.postpolicy.get_logout_time(request, response)
This decorator is used in the /auth API to add configuration information like the logout time to the response.
:param request: flask request object :param response: flask response object :return: the response

privacyidea.api.lib.postpolicy.no_detail_on_fail(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_fail is set, the details
will be stripped if the authentication request failed.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.no_detail_on_success(request, response)
This policy function is used with the AUTHZ scope. If the boolean value no_detail_on_success is set, the details
will be stripped if the authentication request was successful.

Parameters

• request –

• response –

Returns

privacyidea.api.lib.postpolicy.offline_info(request, response)
This decorator is used with the function /validate/check. It is not triggered by an ordinary policy but by a
MachineToken definition. If for the given Client and Token an offline application is defined, the response is
enhanced with the offline information - the hashes of the OTP.

class privacyidea.api.lib.postpolicy.postpolicy(function, request=None)
Decorator that allows to call a specific function after the decorated function. The postpolicy decorator is to be
used in the API calls.

Policy Decorators

These are the policy decorator functions for internal (lib) policy decorators. policy decorators for the API (pre/post)
are defined in api/lib/policy

The functions of this module are tested in tests/test_lib_policy_decorator.py

privacyidea.lib.policydecorators.auth_otppin(wrapped_function, *args, **kwds)
Decorator to decorate the tokenclass.check_pin function. Depending on the ACTION.OTPPIN it * either simply
accepts an empty pin * checks the pin against the userstore * or passes the request to the wrapped_function

Parameters wrapped_function – In this case the wrapped function should be

tokenclass.check_ping :param *args: args[1] is the pin :param **kwds: kwds[”options”] contains the flask g
:return: True or False

158 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

privacyidea.lib.policydecorators.auth_user_does_not_exist(wrapped_function,
user_object, passw,
options=None)

This decorator checks, if the user does exist at all. If the user does exist, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_has_no_token(wrapped_function,
user_object, passw,
options=None)

This decorator checks if the user has a token at all. If the user has a token, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.auth_user_passthru(wrapped_function, user_object,
passw, options=None)

This decorator checks the policy settings of ACTION.PASSTHRU. If the authentication against the userstore is
not successful, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the arguments (user, passw, options={})

Parameters

• wrapped_function –

• user_object –

• passw –

• options – Dict containing values for “g” and “clientip”

Returns Tuple of True/False and reply-dictionary

privacyidea.lib.policydecorators.config_lost_token(wrapped_function, *args,
**kwds)

Decorator to decorate the lib.token.lost_token function. Depending on ACTION.LOSTTOKENVALID, AC-
TION.LOSTTOKENPWCONTENTS, ACTION.LOSTTOKENPWLEN it sets the check_otp parameter, to sig-
nal how the lostToken should be generated.

Parameters

• wrapped_function – Usually the function lost_token()

• args – argument “serial” as the old serial number

1.13. Code Documentation 159

privacyIDEA Documentation, Release 2.3

• kwds – keyword arguments like “validity”, “contents”, “pw_len”

kwds[”options”] contains the flask g

Returns calls the original function with the modified “validity”,

“contents” and “pw_len” argument

class privacyidea.lib.policydecorators.libpolicy(decorator_function)
This is the decorator wrapper to call a specific function before a library call in contrast to prepolicy and postpol-
icy, which are to be called in API Calls.

The decorator expects a named parameter “options”. In this options dict it will look for the flask global “g”.

privacyidea.lib.policydecorators.login_mode(wrapped_function, *args, **kwds)
Decorator to decorate the lib.auth.check_webui_user function. Depending on ACTION.LOGINMODE it sets
the check_otp parameter, to signal that the authentication should be performed against privacyIDEA.

Parameters

• wrapped_function – Usually the function check_webui_user

• args – arguments user_obj and password

• kwds – keyword arguments like options and !check_otp!

kwds[”options”] contains the flask g :return: calls the original function with the modified “check_otp” argument

UserIdResolvers

The useridresolver is responsible for getting userids for loginnames and vice versa.

This base module contains the base class UserIdResolver.UserIdResolver and also the community class PasswdIdRe-
solver.IdResolver, that is inherited from the base class.

Base class

class privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

add_user(attributes=None)
Add a new user in the useridresolver. This is only possible, if the UserIdResolver supports this and if we
have write access to the user store.

Parameters

• username (basestring) – The login name of the user

• attributes – Attributes according to the attribute mapping

Returns The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

Parameters

• uid (string or int) – The uid in the resolver

• password (string) – the password to check. Usually in cleartext

160 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Returns True or False

Return type bool

close()
Hook to close down the resolver after one request

delete_user(uid)
Delete a user from the useridresolver. The user is referenced by the user id. :param uid: The uid of the
user object, that should be deleted. :type uid: basestring :return: Returns True in case of success :rtype:
bool

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

classmethod getResolverClassType()
provide the resolver type for registration

getResolverDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
get resolver specific information :return: the resolver identifier string - empty string if not exist

classmethod getResolverType()
getResolverType - return the type of the resolver

Returns returns the string ‘ldapresolver’

Return type string

getUserId(loginName)
The loginname is resolved to a user_id. Depending on the resolver type the user_id can be an ID (like in
/etc/passwd) or a string (like the DN in LDAP)

It needs to return an emptry string, if the user does not exist.

Parameters loginName (sting) – The login name of the user

Returns The ID of the user

Return type string or int

getUserInfo(userid)
This function returns all user information for a given user object identified by UserID. :param userid: ID
of the user in the resolver :type userid: int or string :return: dictionary, if no object is found, the dictionary
is empty :rtype: dict

getUserList(searchDict=None)
This function finds the user objects, that have the term ‘value’ in the user object field ‘key’

Parameters searchDict (dict) – dict with key values of user attributes - the key may be
something like ‘loginname’ or ‘email’ the value is a regular expression.

Returns list of dictionaries (each dictionary contains a user object) or an empty string if no
object is found.

Return type list of dicts

1.13. Code Documentation 161

privacyIDEA Documentation, Release 2.3

getUsername(userid)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: string

loadConfig(config)
Load the configuration from the dict into the Resolver object. If attributes are missing, need to set default
values. If required attributes are missing, this should raise an Exception.

Parameters config (dict) – The configuration values of the resolver

classmethod testconnection(param)
This function lets you test if the parameters can be used to create a working resolver. The implementation
should try to connect to the user store and verify if users can be retrieved. In case of success it should
return a text like “Resolver config seems OK. 123 Users found.”

param param: The parameters that should be saved as the resolver type param: dict return: returns True in
case of success and a descriptive text rtype: tuple

update_user(uid, attributes=None)
Update an existing user. This function is also used to update the password. Since the attribute mapping
know, which field contains the password, this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not modified.

Parameters

• uid (basestring) – The uid of the user object in the resolver.

• attributes (dict) – Attributes to be updated.

Returns True in case of success

PasswdResolver

class privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

checkPass(uid, password)
This function checks the password for a given uid. returns true in case of success false if password does
not match

We do not support shadow passwords. so the seconds column of the passwd file needs to contain the
crypted password

Parameters

• uid (int) – The uid of the user

• password (sting) – The password in cleartext

Returns True or False

Return type bool

checkUserId(line, pattern)
Check if a userid matches a pattern. A pattern can be “=1000”, “>=1000”, “<2000” or “between
1000,2000”.

Parameters

• line (dict) – the dictionary of a user

• pattern (string) – match pattern with <, <=...

162 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

Returns True or False

Return type bool

checkUserName(line, pattern)
check for user name

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
return the resolver identifier string, which in fact is filename, where it points to.

getSearchFields(searchDict=None)
show, which search fields this userIdResolver supports

TODO: implementation is not completed

Parameters searchDict (dict) – fields, which can be queried

Returns dict of all searchFields

Return type dict

getUserId(LoginName)
search the user id from the login name

Parameters LoginName – the login of the user

Returns the userId

getUserInfo(userId, no_passwd=False)
get some info about the user as we only have the loginId, we have to traverse the dict for the value

Parameters

• userId – the to be searched user

• no_passwd – retrun no password

Returns dict of user info

getUserList(searchDict)
get a list of all users matching the search criteria of the searchdict

Parameters searchDict – dict of search expressions

getUsername(userId)
Returns the username/loginname for a given userid :param userid: The userid in this resolver :type userid:
string :return: username :rtype: string

loadConfig(configDict)
The UserIdResolver could be configured from the pylons app config - here this could be the passwd file ,
whether it is /etc/passwd or /etc/shadow

loadFile()
Loads the data of the file initially. if the self.fileName is empty, it loads /etc/passwd. Empty lines are
ignored.

classmethod setup(config=None, cache_dir=None)
this setup hook is triggered, when the server starts to serve the first request

Parameters config (the privacyidea config dict) – the privacyidea config

1.13. Code Documentation 163

privacyIDEA Documentation, Release 2.3

LDAPResolver

class privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

checkPass(uid, password)
This function checks the password for a given uid. - returns true in case of success - false if password does
not match

classmethod getResolverClassDescriptor()
return the descriptor of the resolver, which is - the class name and - the config description

Returns resolver description dict

Return type dict

getResolverId()
Returns the resolver Id This should be an Identifier of the resolver, preferable the type and the name of the
resolver.

getUserId(LoginName)
resolve the loginname to the userid.

Parameters LoginName (string) – The login name from the credentials

Returns UserId as found for the LoginName

getUserInfo(userId)
This function returns all user info for a given userid/object.

Parameters userId (string) – The userid of the object

Returns A dictionary with the keys defined in self.userinfo

Return type dict

getUserList(searchDict)

Parameters searchDict (dict) – A dictionary with search parameters

Returns list of users, where each user is a dictionary

getUsername(user_id)
Returns the username/loginname for a given user_id :param user_id: The user_id in this resolver :type
user_id: string :return: username :rtype: string

classmethod get_serverpool(urilist, timeout)
This create the serverpool for the ldap3 connection. The URI from the LDAP resolver can contain a comma
seperated list of LDAP servers. These are split and then added to the pool.

See https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

Parameters

• urilist (basestring) – The list of LDAP URIs, comma seperated

• timeout (float) – The connection timeout

Returns Server Pool

Return type LDAP3 Server Pool Instance

loadConfig(config)
Load the config from conf.

Parameters config (dict) – The configuration from the Config Table

164 Chapter 1. Table of Contents

https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

privacyIDEA Documentation, Release 2.3

‘#ldap_uri’: ‘LDAPURI’, ‘#ldap_basedn’: ‘LDAPBASE’, ‘#ldap_binddn’: ‘BINDDN’,
‘#ldap_password’: ‘BINDPW’, ‘#ldap_timeout’: ‘TIMEOUT’, ‘#ldap_sizelimit’: ‘SIZELIMIT’,
‘#ldap_loginattr’: ‘LOGINNAMEATTRIBUTE’, ‘#ldap_searchfilter’: ‘LDAPSEARCHFILTER’,
‘#ldap_userfilter’: ‘LDAPFILTER’, ‘#ldap_mapping’: ‘USERINFO’, ‘#ldap_uidtype’: ‘UIDTYPE’,
‘#ldap_noreferrals’ : ‘NOREFERRALS’, ‘#ldap_certificate’: ‘CACERTIFICATE’,

classmethod split_uri(uri)
Splits LDAP URIs like: * ldap://server * ldaps://server * ldap[s]://server:1234 * server :param uri: The
LDAP URI :return: Returns a tuple of Servername, Port and SSL(bool)

classmethod testconnection(param)
This function lets you test the to be saved LDAP connection.

This is taken from controllers/admin.py

Parameters param (dict) – A dictionary with all necessary parameter to test the connection.

Returns Tuple of success and a description

Return type (bool, string)

Parameters are: BINDDN, BINDPW, LDAPURI, TIMEOUT, LDAPBASE, LOGINNAMEAT-
TRIBUTE, LDAPSEARCHFILTER, LDAPFILTER, USERINFO, SIZELIMIT, NOREFERRALS,
CACERTIFICATE, AUTHTYPE

Audit log

Base class

class privacyidea.lib.auditmodules.base.Audit(config=None)

add_to_log(param)
Add to existing log entry :param param: :return:

audit_entry_to_dict(audit_entry)
If the searchQuery returns an iteretor with elements that are not a dictionary, the audit module needs to
provide this function, to convert the audit entry to a dictionary.

csv_generator(param)
A generator that can be used to stream the audit log

Parameters param –

Returns

finalize_log()
This method is called to finalize the audit_data. I.e. sign the data and write it to the database. It should
hash the data and do a hash chain and sign the data

get_audit_id()

get_total(param, AND=True, display_error=True)
This method returns the total number of audit entries in the audit store

initialize(*args, **kwds)

initialize_log(param)
This method initialized the log state. The fact, that the log state was initialized, also needs to be logged.
Therefor the same params are passed as i the log method.

1.13. Code Documentation 165

privacyIDEA Documentation, Release 2.3

log(*args, **kwds)
This method is used to log the data. During a request this method can be called several times to fill the
internal audit_data dictionary.

log_token_num(count)
Log the number of the tokens. Can be passed like log_token_num(get_tokens(count=True))

Parameters count (int) – Number of tokens

Returns

read_keys(*args, **kwds)
Set the private and public key for the audit class. This is achieved by passing the entries.

#priv = config.get(“privacyideaAudit.key.private”) #pub = config.get(“privacyideaAudit.key.public”)

Parameters

• pub (string with filename) – Public key, used for verifying the signature

• priv (string with filename) – Private key, used to sign the audit entry

Returns None

search(param, display_error=True, rp_dict=None)
This function is used to search audit events.

param: Search parameters can be passed.

return: A pagination object

This function is deprecated.

search_query(search_dict, rp_dict)
This function returns the audit log as an iterator on the result

set()
This function could be used to set certain things like the signing key. But maybe it should only be read
from privacyidea.ini?

SQL Audit module

class privacyidea.lib.auditmodules.sqlaudit.Audit(config=None)
This is the SQLAudit module, which writes the audit entries to an SQL database table. It requires the configu-
ration parameters. PI_AUDIT_SQL_URI

add_to_log(param)
Add new text to an existing log entry :param param: :return:

clear()
Deletes all entries in the database table. This is only used for test cases! :return:

csv_generator(param=None, user=None)
Returns the audit log as csv file. :param config: The current flask app configuration :type config: dict
:param param: The request parameters :type param: dict :param user: The user, who issued the request
:return: None. It yields results as a generator

finalize_log()
This method is used to log the data. It should hash the data and do a hash chain and sign the data

get_total(param, AND=True, display_error=True)
This method returns the total number of audit entries in the audit store

166 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

log(param)
Add new log details in param to the internal log data self.audit_data.

Parameters param (dict) – Log data that is to be added

Returns None

search(search_dict, page_size=15, page=1, sortorder=’asc’)
This function returns the audit log as a Pagination object.

searchQuery(search_dict, page_size=15, page=1, sortorder=’asc’, sortname=’number’)
This function returns the audit log as an iterator on the result

Machine Resolvers

Machine Resolvers are used to find machines in directories like LDAP, Active Directory, puppet, salt, or the /etc/hosts
file.

Machines can then be used to assign applications and tokens to those machines.

Base class

class privacyidea.lib.machines.base.BaseMachineResolver(name, config=None)

classmethod get_config_description()
Returns a description what config values are expected and allowed.

Returns dict

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return a list of all machine objects in this resolver

Parameters substring – If set to true, it will also match search_hostnames,

that only are a subnet of the machines hostname. :type substring: bool :param any: a substring that matches
EITHER hostname, machineid or ip :type any: basestring :return: list of machine objects

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

Returns None

1.13. Code Documentation 167

privacyIDEA Documentation, Release 2.3

classmethod testconnection(params)
This method can test if the passed parameters would create a working machine resolver.

Parameters params –

Returns tupple of success and description

Return type (bool, string)

Hosts Machine Resolver

class privacyidea.lib.machines.hosts.HostsMachineResolver(name, config=None)

get_machine_id(hostname=None, ip=None)
Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the hostname matches the IP. If it can check
this and hostname and IP do not match, then an Exception must be raised.

Parameters

• hostname (basestring) – The hostname of the machine

• ip (netaddr) – IP address of the machine

Returns The machine ID, which depends on the resolver

Return type basestring

get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)
Return matching machines.

Parameters

• machine_id – can be matched as substring

• hostname – can be matched as substring

• ip – can not be matched as substring

• substring (bool) – Whether the filtering should be a substring matching

• any (basestring) – a substring that matches EITHER hostname, machineid or ip

Returns list of Machine Objects

load_config(config)
This loads the configuration dictionary, which contains the necessary information for the machine resolver
to find and connect to the machine store.

Parameters config (dict) – The configuration dictionary to run the machine resolver

Returns None

classmethod testconnection(params)
Test if the given filename exists.

Parameters params –

Returns

168 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.13.3 DB level

On the DB level you can simply modify all objects.

The database model

class privacyidea.models.Admin(**kwargs)
The administrators for managing the system. To manage the administrators use the command pi-manage.py.

In addition certain realms can be defined to be administrative realms.

Parameters

• username (basestring) – The username of the admin

• password (basestring) – The password of the admin (stored using PBKDF2, salt and
pepper)

• email (basestring) – The email address of the admin (not used at the momemt)

class privacyidea.models.CAConnector(name, catype)
The table “caconnector” contains the names and types of the defined CA connectors. Each connector has a
different configuration, that is stored in the table “caconnectorconfig”.

class privacyidea.models.CAConnectorConfig(caconnector_id=None, Key=None, Value=None,
caconnector=None, Type=’‘, Description=’‘)

Each CAConnector can have multiple configuration entries. Each CA Connector type can have different required
config values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set
to “password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.Challenge(*args, **kwds)
Table for handling of the generic challenges.

get(timestamp=False)
return a dictionary of all vars in the challenge class

Parameters timestamp (bool) – if true, the timestamp will given in a readable format 2014-
11-29 21:56:43.057293

Returns dict of vars

get_otp_status()
This returns how many OTPs were already received for this challenge. and if a valid OTP was received.

Returns tuple of count and True/False

Return type tuple

is_valid()
Returns true, if the expiration time has not passed, yet. :return: True if valid :rtype: bool

set_data(data)
set the internal data of the challenge :param data: unicode data :type data: string, length 512

class privacyidea.models.Config(*args, **kwds)
The config table holds all the system configuration in key value pairs.

Additional configuration for realms, resolvers and machine resolvers is stored in specific tables.

1.13. Code Documentation 169

privacyIDEA Documentation, Release 2.3

class privacyidea.models.MachineResolver(name, rtype)
This model holds the definition to the machinestore. Machines could be located in flat files, LDAP directory or
in puppet services or other...

The usual MachineResolver just holds a name and a type and a reference to its config

class privacyidea.models.MachineResolverConfig(resolver_id=None, Key=None,
Value=None, resolver=None, Type=’‘,
Description=’‘)

Each Machine Resolver can have multiple configuration entries. The config entries are referenced by the id of
the machine resolver

class privacyidea.models.MachineToken(*args, **kwds)
The MachineToken assigns a Token and an application type to a machine. The Machine is represented as the
tuple of machineresolver.id and the machine_id. The machine_id is defined by the machineresolver.

This can be an n:m mapping.

class privacyidea.models.MachineTokenOptions(machinetoken_id, key, value)
This class holds an Option for the token assigned to a certain client machine. Each Token-Clientmachine-
Combination can have several options.

class privacyidea.models.MethodsMixin
This class mixes in some common Class table functions like delete and save

class privacyidea.models.Policy(name, active=True, scope=’‘, action=’‘, realm=’‘, admin-
realm=’‘, resolver=’‘, user=’‘, client=’‘, time=’‘, condition=0)

The policy table contains policy definitions which control the behaviour during

•enrollment

•authentication

•authorization

•administration

•user actions

get(key=None)
Either returns the complete policy entry or a single value :param key: return the value for this key :type
key: string :return: complete dict or single value :rytpe: dict or value

class privacyidea.models.Realm(*args, **kwds)
The realm table contains the defined realms. User Resolvers can be grouped to realms. This very table contains
just contains the names of the realms. The linking to resolvers is stored in the table “resolverrealm”.

class privacyidea.models.Resolver(name, rtype)
The table “resolver” contains the names and types of the defined User Resolvers. As each Resolver can have
different required config values the configuration of the resolvers is stored in the table “resolverconfig”.

class privacyidea.models.ResolverConfig(resolver_id=None, Key=None, Value=None, re-
solver=None, Type=’‘, Description=’‘)

Each Resolver can have multiple configuration entries. Each Resolver type can have different required config
values. Therefor the configuration is stored in simple key/value pairs. If the type of a config entry is set to
“password” the value of this config entry is stored encrypted.

The config entries are referenced by the id of the resolver.

class privacyidea.models.ResolverRealm(resolver_id=None, realm_id=None, re-
solver_name=None, realm_name=None, prior-
ity=None)

This table stores which Resolver is located in which realm This is a N:M relation

170 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

class privacyidea.models.Token(serial, tokentype=u’‘, isactive=True, otplen=6, otpkey=u’‘,
userid=None, resolver=None, realm=None, **kwargs)

The table “token” contains the basic token data like

• serial number

• assigned user

• secret key...

while the table “tokeninfo” contains additional information that is specific to the tokentype.

del_info(key=None)
Deletes tokeninfo for a given token. If the key is omitted, all Tokeninfo is deleted.

Parameters key – searches for the given key to delete the entry

Returns

get(*args, **kwds)
simulate the dict behaviour to make challenge processing easier, as this will have to deal as well with ‘dict
only challenges’

Parameters

• key – the attribute name - in case of key is not provided, a dict of all class attributes are
returned

• fallback – if the attribute is not found, the fallback is returned

• save – in case of all attributes and save==True, the timestamp is converted to a string
representation

get_hashed_pin(pin)
calculate a hash from a pin Fix for working with MS SQL servers MS SQL servers sometimes return a
‘<space>’ when the column is empty: ‘’

get_info()

Returns The token info as dictionary

get_realms()
return a list of the assigned realms :return: realms :rtype: list

get_user_pin(*args, **kwds)
return the userPin :rtype : the PIN as a secretObject

set_info(info)
Set the additional token info for this token

Entries that end with ”.type” are used as type for the keys. I.e. two entries sshkey=”XYZ” and
sshkey.type=”password” will store the key sshkey as type “password”.

Parameters info (dict) – The key-values to set for this token

set_pin(pin, hashed=True)
set the OTP pin in a hashed way

set_realms(realms)
Set the list of the realms. This is done by filling the tokenrealm table. :param realms: realms :type realms:
list

set_so_pin(soPin)
For smartcards this sets the security officer pin of the token

:rtype : None

1.13. Code Documentation 171

privacyIDEA Documentation, Release 2.3

split_pin_pass(passwd, prepend=True)
The password is split into the PIN and the OTP component. THe token knows its length, so it can split
accordingly.

Parameters

• passwd – The password that is to be split

• prepend – The PIN is put in front of the OTP value

Returns tuple of (res, pin, otpval)

update_otpkey(otpkey)
in case of a new hOtpKey we have to do some more things

update_type(typ)
in case the previous has been different type we must reset the counters But be aware, ray, this could also
be upper and lower case mixing...

class privacyidea.models.TokenInfo(token_id, Key, Value, Type=None, Description=None)
The table “tokeninfo” is used to store additional, long information that is specific to the tokentype. E.g. the
tokentype “TOTP” has additional entries in the tokeninfo table for “timeStep” and “timeWindow”, which are
stored in the column “Key” and “Value”.

The tokeninfo is reference by the foraign key to the “token” table.

class privacyidea.models.TokenRealm(realm_id=0, token_id=0, realmname=None)
This table stored to wich realms a token is assigned. A token is in the realm of the user it is assigned to. But a
token can also be put into many additional realms.

save()
We only save this, if it does not exist, yet.

privacyidea.models.cleanup_challenges()
Delete all challenges, that have expired.

Returns None

privacyidea.models.get_machineresolver_id(resolvername)
Return the database ID of the machine resolver :param resolvername: :return:

privacyidea.models.get_machinetoken_id(machine_id, resolver_name, serial, application)
Returns the ID in the machinetoken table

Parameters

• machine_id (basestring) – The resolverdependent machine_id

• resolver_name (basestring) – The name of the resolver

• serial (basestring) – the serial number of the token

• application (basestring) – The application type

Returns The ID of the machinetoken entry

Return type int

privacyidea.models.get_token_id(serial)
Return the database token ID for a given serial number :param serial: :return: token ID :rtpye: int

172 Chapter 1. Table of Contents

privacyIDEA Documentation, Release 2.3

1.14 Frequently Asked Questions

1.14.1 How can I create users in the privacyIDEA Web UI?

So you installed privacyIDEA and want to enroll tokens to the users and are wondering how to create users.

privacyIDEA itself does not manage users and therfor you do not need to create users.

You very much likely already have an application (like your VPN or a Web Application...) for which you want to
increase the logon security. Then this application already knows users. Either in an LDAP or in an SQL database.
Most web applications keep their users in a (My)SQL database. And you also need to create users in this very user
database for the user to be able to use this application.

So there is no sense in creating the user in the application and in privacyIDEA. Right?

This is why you can not create users in privacyIDEA but you only need to tell privacyIDEA where the users are located
and you can start enrolling tokens to those users.

Please read the sections UserIdResolvers and Userview for more details.

1.14.2 So what’s the thing with all the admins?

privacyIDEA comes with its own admins, who are stored in a database table Admin in its own database (The database
model). You can use the tool pi-manage.py to manage those admins from the command line as the system’s root
user. (see Installation)

These admin users can logon to the WebUI using the admin’s user name and the specified password. These admins
are used to get a simple quick start.

Then you can define realms (see Realms), that should be administrative realms. I.e. each user in this realm will have
administrative rights in the WebUI.

Note: Use this carefully. Imagine you defined a resolver to a specific group in your Active Directory to be the prica-
cyIDEA admins. Then the Active Directory domain admins can simply add users to be administrator in privacyIDEA.

You define the administrative realms in the config file pi.cfg, which is usually located at
/etc/privacyidea/pi.cfg:

SUPERUSER_REALM = ["adminrealm1", "super", "boss"]

In this case all the users in the realms “adminrealm1”, “super” and “boss” will have administrative rights in the WebUI,
when they login with this realm.

As for all other users, you can use the login_mode to define, if these administrators should login to the WebUI with
their userstore password or with an OTP token.

1.14.3 What are possible rollout strategies?

There are different ways to enroll tokens to a big number of users. Here are some selected high level ideas, you can
do with privacyIDEA.

Autoenrollment

Using the autoassignment policy you can distribute physical tokens to the users. The users just start using the tokens.

1.14. Frequently Asked Questions 173

privacyIDEA Documentation, Release 2.3

Registration Code

If your users are physically not available and spread around the world, you can send a registration code to the users
by postal mail. The registration code is a special token type which can be used by the user to authenticate with 2FA.
If used once, the registration token get deleted and can not be used anymore. While logged in, the user can enroll a
token on his own.

Note: Some parts are marked as “(TODO) Not yet implemented”. These are components that have not been migrated
from 1.5 to 2.0. If you are missing an important, not-yet-migrated part, drop us a note!

If you are missing any information or descriptions file an issue at github (which would be the preferred way), drop a
note to info(@)privacyidea.org or go to the Google group.

This will help us a lot to improve documentation to your needs.

Thanks a lot!

174 Chapter 1. Table of Contents

https://github.com/privacyidea/privacyidea/issues
https://groups.google.com/forum/?hl=en#!forum/privacyidea

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

175

privacyIDEA Documentation, Release 2.3

176 Chapter 2. Indices and tables

HTTP Routing Table

/application
GET /application/, 114

/audit
GET /audit/, 83
GET /audit/(csvfile), 83

/auth
GET /auth/rights, 84
POST /auth, 84

/defaultrealm
GET /defaultrealm, 94
POST /defaultrealm/(realm), 94
DELETE /defaultrealm, 93

/machine
GET /machine/, 112
GET /machine/authitem, 111
GET /machine/authitem/(application), 114
GET /machine/token, 112
POST /machine/token, 112
POST /machine/tokenoption, 111
DELETE /machine/token/(serial)/(machineid)/(resolver)/(application),

113

/machineresolver
GET /machineresolver/, 110
GET /machineresolver/(resolver), 111
POST /machineresolver/(resolver), 110
POST /machineresolver/test, 110
DELETE /machineresolver/(resolver), 111

/policy
GET /policy, 105
GET /policy/(name), 108
GET /policy/check, 103
GET /policy/defs, 104
GET /policy/defs/(scope), 107
GET /policy/export/(export), 106

POST /policy/(name), 107
POST /policy/disable/(name), 106
POST /policy/enable/(name), 106
POST /policy/import/(filename), 107
DELETE /policy/(name), 109

/realm
GET /realm/, 91
GET /realm/superuser, 91
POST /realm/(realm), 92
DELETE /realm/(realm), 93

/resolver
GET /resolver/, 90
GET /resolver/(resolver), 90
POST /resolver/(resolver), 90
POST /resolver/test, 90
DELETE /resolver/(resolver), 90

/system
GET /system/, 89
GET /system/(key), 89
POST /system/setConfig, 89
POST /system/setDefault, 88
DELETE /system/(key), 89

/token
GET /token/, 98

/token/(serial)
DELETE /token/(serial), 102

/token/assign
POST /token/assign, 95

/token/copypin
POST /token/copypin, 95

/token/copyuser
POST /token/copyuser, 94

177

privacyIDEA Documentation, Release 2.3

/token/disable
POST /token/disable, 95
POST /token/disable/(serial), 99

/token/enable
POST /token/enable, 95
POST /token/enable/(serial), 99

/token/getserial
GET /token/getserial/(otp), 98

/token/init
POST /token/init, 96

/token/load
POST /token/load/(filename), 101

/token/lost
POST /token/lost/(serial), 101

/token/realm
POST /token/realm/(serial), 100

/token/reset
POST /token/reset, 96
POST /token/reset/(serial), 100

/token/resync
POST /token/resync, 96
POST /token/resync/(serial), 99

/token/set
POST /token/set, 98
POST /token/set/(serial), 101

/token/setpin
POST /token/setpin, 96
POST /token/setpin/(serial), 100

/token/unassign
POST /token/unassign, 94

/user
GET /user/, 102
POST /user/, 102
PUT /user/, 103
DELETE /user/(resolvername)/(username),

103

/validate
GET /validate/check, 87
GET /validate/samlcheck, 86
POST /validate/check, 88
POST /validate/samlcheck, 86

178 HTTP Routing Table

Python Module Index

p
privacyidea.api, 82
privacyidea.api.application, 114
privacyidea.api.auth, 84
privacyidea.api.lib.postpolicy, 157
privacyidea.api.lib.prepolicy, 155
privacyidea.api.machine, 111
privacyidea.api.machineresolver, 110
privacyidea.api.policy, 103
privacyidea.api.realm, 91
privacyidea.api.resolver, 90
privacyidea.api.system, 88
privacyidea.api.token, 94
privacyidea.api.user, 102
privacyidea.api.validate, 85
privacyidea.lib, 115
privacyidea.lib.auditmodules, 165
privacyidea.lib.machines, 167
privacyidea.lib.policy, 150
privacyidea.lib.policydecorators, 158
privacyidea.lib.resolvers, 160
privacyidea.lib.token, 140
privacyidea.lib.user, 115
privacyidea.models, 169

179

privacyIDEA Documentation, Release 2.3

180 Python Module Index

Index

A
ACTION (class in privacyidea.lib.policy), 151
ACTIONVALUE (class in privacyidea.lib.policy), 153
Active Directory, 17, 19
Add User, 54, 59
add_init_details() (privacyidea.lib.tokenclass.TokenClass

method), 132
add_to_log() (privacyidea.lib.auditmodules.base.Audit

method), 165
add_to_log() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 166
add_tokeninfo() (in module privacyidea.lib.token), 140
add_tokeninfo() (privacyidea.lib.tokenclass.TokenClass

method), 132
add_user() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 160
ADDUSER (privacyidea.lib.policy.ACTION attribute),

151
Admin (class in privacyidea.models), 169
ADMIN (privacyidea.lib.policy.SCOPE attribute), 154
admin accounts, 173
admin policies, 56
admin realm, 56
API, 82
api_key_required() (in module priva-

cyidea.api.lib.prepolicy), 155
APIKEY (privacyidea.lib.policy.ACTION attribute), 151
appliance, 41
Application Plugins, 75
ASSIGN (privacyidea.lib.policy.ACTION attribute), 151
assign_token() (in module privacyidea.lib.token), 140
Audit, 72
Audit (class in privacyidea.lib.auditmodules.base), 165
Audit (class in privacyidea.lib.auditmodules.sqlaudit),

166
AUDIT (privacyidea.lib.policy.ACTION attribute), 151
AUDIT (privacyidea.lib.policy.SCOPE attribute), 154
audit modules, 165
audit_entry_to_dict() (priva-

cyidea.lib.auditmodules.base.Audit method),

165
AUTH (privacyidea.lib.policy.SCOPE attribute), 154
auth_otppin() (in module priva-

cyidea.lib.policydecorators), 158
auth_user_does_not_exist() (in module priva-

cyidea.lib.policydecorators), 158
auth_user_has_no_token() (in module priva-

cyidea.lib.policydecorators), 159
auth_user_passthru() (in module priva-

cyidea.lib.policydecorators), 159
authenticate() (privacyidea.lib.tokenclass.TokenClass

method), 132
authenticate() (privacyidea.lib.tokens.remotetoken.RemoteTokenClass

method), 125
authenticate() (privacyidea.lib.tokens.spasstoken.SpassTokenClass

method), 128
authenticating client, 27
authentication policies, 64
AUTHITEMS (privacyidea.lib.policy.ACTION attribute),

151
authorization policies, 66
AUTHZ (privacyidea.lib.policy.SCOPE attribute), 154
auto_assign_token() (in module privacyidea.lib.token),

140
AUTOASSIGN (privacyidea.lib.policy.ACTION at-

tribute), 151
autoassign() (in module privacyidea.api.lib.postpolicy),

157
autoassignment, 69
autoresync, 25

B
Backup, 44
BaseMachineResolver (class in priva-

cyidea.lib.machines.base), 167

C
CA, 29, 41
CAConnector (class in privacyidea.models), 169
CAConnectorConfig (class in privacyidea.models), 169

181

privacyIDEA Documentation, Release 2.3

CACONNECTORDELETE (priva-
cyidea.lib.policy.ACTION attribute), 151

CACONNECTORREAD (priva-
cyidea.lib.policy.ACTION attribute), 151

caconnectors, 41
CACONNECTORWRITE (priva-

cyidea.lib.policy.ACTION attribute), 151
Certificate Authority, 41
certificate token, 41
certificates, 29
CertificateTokenClass (class in priva-

cyidea.lib.tokens.certificatetoken), 116
Challenge (class in privacyidea.models), 169
challenge_janitor() (priva-

cyidea.lib.tokenclass.TokenClass method),
132

Change User Password, 54
check_auth_counter() (priva-

cyidea.lib.tokenclass.TokenClass method),
133

check_base_action() (in module priva-
cyidea.api.lib.prepolicy), 155

check_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
133

check_external() (in module priva-
cyidea.api.lib.prepolicy), 155

check_failcount() (privacyidea.lib.tokenclass.TokenClass
method), 133

check_max_token_realm() (in module priva-
cyidea.api.lib.prepolicy), 156

check_max_token_user() (in module priva-
cyidea.api.lib.prepolicy), 156

check_otp() (privacyidea.lib.tokenclass.TokenClass
method), 133

check_otp() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 117

check_otp() (privacyidea.lib.tokens.emailtoken.EmailTokenClass
method), 119

check_otp() (privacyidea.lib.tokens.hotptoken.HotpTokenClass
method), 119

check_otp() (privacyidea.lib.tokens.motptoken.MotpTokenClass
method), 121

check_otp() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass
method), 122

check_otp() (privacyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 123

check_otp() (privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 124

check_otp() (privacyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 125

check_otp() (privacyidea.lib.tokens.smstoken.SmsTokenClass
method), 127

check_otp() (privacyidea.lib.tokens.spasstoken.SpassTokenClass

method), 128
check_otp() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 129
check_otp() (privacyidea.lib.tokens.yubicotoken.YubicoTokenClass

method), 131
check_otp() (privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass

method), 131
check_otp_exist() (privacyidea.lib.tokenclass.TokenClass

method), 133
check_otp_exist() (priva-

cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 118

check_otp_exist() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 120

check_otp_exist() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
method), 129

check_otp_exist() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 131

check_otp_pin() (in module priva-
cyidea.api.lib.prepolicy), 156

check_pin() (privacyidea.lib.tokenclass.TokenClass
method), 133

check_pin_local (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
attribute), 123

check_pin_local (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
attribute), 125

check_serial() (in module privacyidea.api.lib.postpolicy),
157

check_serial() (in module privacyidea.lib.token), 141
check_serial_pass() (in module privacyidea.lib.token),

141
check_token_init() (in module priva-

cyidea.api.lib.prepolicy), 156
check_token_list() (in module privacyidea.lib.token), 141
check_token_upload() (in module priva-

cyidea.api.lib.prepolicy), 156
check_tokentype() (in module priva-

cyidea.api.lib.postpolicy), 157
check_user_pass() (in module privacyidea.lib.token), 141
check_validity_period() (priva-

cyidea.lib.tokenclass.TokenClass method),
134

checkPass() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 164

checkPass() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 162

checkPass() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 160

checkUserId() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

182 Index

privacyIDEA Documentation, Release 2.3

method), 162
checkUserName() (priva-

cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 163

cleanup_challenges() (in module privacyidea.models),
172

clear() (privacyidea.lib.auditmodules.sqlaudit.Audit
method), 166

Clickatel, 39
client, 27
client certificates, 29
client machines, 72
client policies, 60
close() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161
Config (class in privacyidea.models), 169
config file, 9
config_lost_token() (in module priva-

cyidea.lib.policydecorators), 159
configuration, 17
copy_token_pin() (in module privacyidea.lib.token), 141
copy_token_realms() (in module privacyidea.lib.token),

142
copy_token_user() (in module privacyidea.lib.token), 142
COPYTOKENPIN (privacyidea.lib.policy.ACTION at-

tribute), 151
COPYTOKENUSER (privacyidea.lib.policy.ACTION at-

tribute), 151
count window, 49
create_challenge() (priva-

cyidea.lib.tokenclass.TokenClass method),
134

create_challenge() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
method), 119

create_challenge() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
method), 127

create_tokenclass_object() (in module priva-
cyidea.lib.token), 142

create_user() (in module privacyidea.lib.user), 115
CSR, 29
csv_generator() (privacyidea.lib.auditmodules.base.Audit

method), 165
csv_generator() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 166

D
DaplugTokenClass (class in priva-

cyidea.lib.tokens.daplugtoken), 117
database, 169
DB2, 21
debug, 9
Debugging, 10

default realm, 23
del_info() (privacyidea.models.Token method), 171
del_tokeninfo() (privacyidea.lib.tokenclass.TokenClass

method), 134
DELETE (privacyidea.lib.policy.ACTION attribute), 151
Delete User, 59
delete_policy() (in module privacyidea.lib.policy), 154
delete_token() (privacyidea.lib.tokenclass.TokenClass

method), 134
delete_user() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161
DELETEUSER (privacyidea.lib.policy.ACTION at-

tribute), 151
DISABLE (privacyidea.lib.policy.ACTION attribute),

151
DISABLE (privacyidea.lib.policy.ACTIONVALUE at-

tribute), 153
DISABLE (privacyidea.lib.policy.LOGINMODE at-

tribute), 153

E
Edit User, 54, 59, 64
Edit Users, 54
Editable Resolver, 54
EMail policy, 66
Email policy, 66
Email subject, 66
Email text, 66
Email Token, 36
EMAIL_ADDRESS_KEY (priva-

cyidea.lib.tokens.emailtoken.EmailTokenClass
attribute), 119

EmailTokenClass (class in priva-
cyidea.lib.tokens.emailtoken), 119

ENABLE (privacyidea.lib.policy.ACTION attribute), 151
enable() (privacyidea.lib.tokenclass.TokenClass method),

134
enable_policy() (in module privacyidea.lib.policy), 154
enable_token() (in module privacyidea.lib.token), 142
encrypt_pin() (in module privacyidea.api.lib.prepolicy),

156
ENCRYPTPIN (privacyidea.lib.policy.ACTION at-

tribute), 151
ENROLL (privacyidea.lib.policy.SCOPE attribute), 154
enroll token, 50
enrollment policies, 68
export_policies() (in module privacyidea.lib.policy), 154
external hook, 9

F
failcount, 49
FAQ, 173
finalize_log() (privacyidea.lib.auditmodules.base.Audit

method), 165

Index 183

privacyIDEA Documentation, Release 2.3

finalize_log() (privacyidea.lib.auditmodules.sqlaudit.Audit
method), 166

flatfile resolver, 19
FreeIPA, 19
FreeRADIUS, 75

G
gen_serial() (in module privacyidea.lib.token), 142
Get Serial (Determine Serial by OTP), 47
get() (privacyidea.models.Challenge method), 169
get() (privacyidea.models.Policy method), 170
get() (privacyidea.models.Token method), 171
get_action_values() (privacyidea.lib.policy.PolicyClass

method), 153
get_all_token_users() (in module privacyidea.lib.token),

143
get_as_dict() (privacyidea.lib.tokenclass.TokenClass

method), 134
get_audit_id() (privacyidea.lib.auditmodules.base.Audit

method), 165
get_class_info() (privacyidea.lib.tokenclass.TokenClass

class method), 134
get_class_info() (priva-

cyidea.lib.tokens.certificatetoken.CertificateTokenClass
class method), 117

get_class_info() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
class method), 118

get_class_info() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
class method), 119

get_class_info() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
class method), 120

get_class_info() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
class method), 122

get_class_info() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
class method), 122

get_class_info() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
class method), 123

get_class_info() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
class method), 124

get_class_info() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
class method), 125

get_class_info() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
class method), 127

get_class_info() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass

class method), 128
get_class_info() (priva-

cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
class method), 129

get_class_info() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
class method), 129

get_class_info() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
class method), 131

get_class_info() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
class method), 131

get_class_prefix() (privacyidea.lib.tokenclass.TokenClass
class method), 134

get_class_prefix() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
class method), 117

get_class_prefix() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
class method), 118

get_class_prefix() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
class method), 119

get_class_prefix() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
class method), 120

get_class_prefix() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
class method), 122

get_class_prefix() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
class method), 123

get_class_prefix() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
class method), 123

get_class_prefix() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
class method), 124

get_class_prefix() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
class method), 125

get_class_prefix() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
class method), 128

get_class_prefix() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
class method), 128

get_class_prefix() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
class method), 129

get_class_prefix() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
class method), 130

184 Index

privacyIDEA Documentation, Release 2.3

get_class_prefix() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
class method), 131

get_class_prefix() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
class method), 132

get_class_type() (privacyidea.lib.tokenclass.TokenClass
class method), 134

get_class_type() (priva-
cyidea.lib.tokens.certificatetoken.CertificateTokenClass
class method), 117

get_class_type() (priva-
cyidea.lib.tokens.daplugtoken.DaplugTokenClass
class method), 118

get_class_type() (priva-
cyidea.lib.tokens.emailtoken.EmailTokenClass
class method), 119

get_class_type() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
class method), 120

get_class_type() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
class method), 122

get_class_type() (priva-
cyidea.lib.tokens.passwordtoken.PasswordTokenClass
class method), 123

get_class_type() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
class method), 123

get_class_type() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
class method), 124

get_class_type() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
class method), 125

get_class_type() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass
class method), 128

get_class_type() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
class method), 128

get_class_type() (priva-
cyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass
class method), 129

get_class_type() (priva-
cyidea.lib.tokens.totptoken.TotpTokenClass
class method), 130

get_class_type() (priva-
cyidea.lib.tokens.yubicotoken.YubicoTokenClass
class method), 131

get_class_type() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
class method), 132

get_config_description() (priva-

cyidea.lib.machines.base.BaseMachineResolver
class method), 167

get_count_auth() (privacyidea.lib.tokenclass.TokenClass
method), 135

get_count_auth_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
135

get_count_auth_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
135

get_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
135

get_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
135

get_dynamic_policy_definitions() (in module priva-
cyidea.lib.token), 143

get_failcount() (privacyidea.lib.tokenclass.TokenClass
method), 135

get_hashed_pin() (privacyidea.models.Token method),
171

get_hashlib() (privacyidea.lib.tokenclass.TokenClass
class method), 135

get_info() (privacyidea.models.Token method), 171
get_init_detail() (privacyidea.lib.tokenclass.TokenClass

method), 135
get_init_detail() (priva-

cyidea.lib.tokens.certificatetoken.CertificateTokenClass
method), 117

get_init_detail() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 120

get_init_detail() (priva-
cyidea.lib.tokens.motptoken.MotpTokenClass
method), 122

get_init_detail() (priva-
cyidea.lib.tokens.registrationtoken.RegistrationTokenClass
method), 124

get_init_details() (privacyidea.lib.tokenclass.TokenClass
method), 135

get_logout_time() (in module priva-
cyidea.api.lib.postpolicy), 158

get_machine_id() (priva-
cyidea.lib.machines.base.BaseMachineResolver
method), 167

get_machine_id() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
method), 168

get_machineresolver_id() (in module priva-
cyidea.models), 172

get_machines() (privacyidea.lib.machines.base.BaseMachineResolver
method), 167

get_machines() (privacyidea.lib.machines.hosts.HostsMachineResolver

Index 185

privacyIDEA Documentation, Release 2.3

method), 168
get_machinetoken_id() (in module privacyidea.models),

172
get_max_failcount() (priva-

cyidea.lib.tokenclass.TokenClass method),
135

get_multi_otp() (in module privacyidea.lib.token), 143
get_multi_otp() (privacyidea.lib.tokenclass.TokenClass

method), 135
get_multi_otp() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 118
get_multi_otp() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 120
get_multi_otp() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 130
get_num_tokens_in_realm() (in module priva-

cyidea.lib.token), 143
get_otp() (in module privacyidea.lib.token), 143
get_otp() (privacyidea.lib.tokenclass.TokenClass

method), 135
get_otp() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 118
get_otp() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 121
get_otp() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 130
get_otp_count() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_otp_count_window() (priva-

cyidea.lib.tokenclass.TokenClass method),
136

get_otp_status() (privacyidea.models.Challenge method),
169

get_otplen() (privacyidea.lib.tokenclass.TokenClass
method), 136

get_pin_hash_seed() (priva-
cyidea.lib.tokenclass.TokenClass method),
136

get_policies() (privacyidea.lib.policy.PolicyClass
method), 153

get_QRimage_data() (priva-
cyidea.lib.tokenclass.TokenClass method),
134

get_realms() (privacyidea.lib.tokenclass.TokenClass
method), 136

get_realms() (privacyidea.models.Token method), 171
get_realms_of_token() (in module privacyidea.lib.token),

143
get_serial() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_serial_by_otp() (in module privacyidea.lib.token),

144
get_serverpool() (priva-

cyidea.lib.resolvers.LDAPIdResolver.IdResolver

class method), 164
get_sshkey() (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

method), 129
get_static_policy_definitions() (in module priva-

cyidea.lib.policy), 155
get_sync_timeout() (priva-

cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 121

get_sync_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
136

get_token_by_otp() (in module privacyidea.lib.token),
144

get_token_id() (in module privacyidea.models), 172
get_token_owner() (in module privacyidea.lib.token), 144
get_token_type() (in module privacyidea.lib.token), 144
get_tokenclass_info() (in module privacyidea.lib.token),

144
get_tokeninfo() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_tokens() (in module privacyidea.lib.token), 145
get_tokens_in_resolver() (in module priva-

cyidea.lib.token), 145
get_tokens_paginate() (in module privacyidea.lib.token),

145
get_tokenserial_of_transaction() (in module priva-

cyidea.lib.token), 146
get_tokentype() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_total() (privacyidea.lib.auditmodules.base.Audit

method), 165
get_total() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 166
get_type() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_user() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_user_from_param() (in module privacyidea.lib.user),

115
get_user_id() (privacyidea.lib.tokenclass.TokenClass

method), 136
get_user_info() (in module privacyidea.lib.user), 116
get_user_list() (in module privacyidea.lib.user), 116
get_user_pin() (privacyidea.models.Token method), 171
get_username() (in module privacyidea.lib.user), 116
get_validity_period_end() (priva-

cyidea.lib.tokenclass.TokenClass method),
136

get_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
136

get_vars() (privacyidea.lib.tokenclass.TokenClass
method), 136

getResolverClassDescriptor() (priva-

186 Index

privacyIDEA Documentation, Release 2.3

cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 164

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
class method), 163

getResolverClassDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 161

getResolverClassType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 161

getResolverDescriptor() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 161

getResolverId() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver
method), 164

getResolverId() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 163

getResolverId() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 161

getResolverType() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 161

getSearchFields() (priva-
cyidea.lib.resolvers.PasswdIdResolver.IdResolver
method), 163

getserial, 59
GETSERIAL (privacyidea.lib.policy.ACTION attribute),

151
GETTOKEN (privacyidea.lib.policy.SCOPE attribute),

154
getUserId() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 164
getUserId() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
getUserId() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161
getUserInfo() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 164
getUserInfo() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
getUserInfo() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161
getUserList() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 164
getUserList() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
getUserList() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161
getUsername() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 164
getUsername() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
getUsername() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 161

H
Hardware Tokens, 28
hashlib (privacyidea.lib.tokens.hotptoken.HotpTokenClass

attribute), 121
hashlib (privacyidea.lib.tokens.totptoken.TotpTokenClass

attribute), 130
help desk, 56
hook, 9
HostsMachineResolver (class in priva-

cyidea.lib.machines.hosts), 168
HotpTokenClass (class in priva-

cyidea.lib.tokens.hotptoken), 119

I
IdResolver (class in priva-

cyidea.lib.resolvers.LDAPIdResolver), 164
IdResolver (class in priva-

cyidea.lib.resolvers.PasswdIdResolver), 162
import, 80
IMPORT (privacyidea.lib.policy.ACTION attribute), 151
import_policies() (in module privacyidea.lib.policy), 155
inc_count_auth() (privacyidea.lib.tokenclass.TokenClass

method), 136
inc_count_auth_success() (priva-

cyidea.lib.tokenclass.TokenClass method),
136

inc_failcount() (privacyidea.lib.tokenclass.TokenClass
method), 136

inc_otp_counter() (privacyidea.lib.tokenclass.TokenClass
method), 136

init_random_pin() (in module priva-
cyidea.api.lib.prepolicy), 156

init_token() (in module privacyidea.lib.token), 146
init_tokenlabel() (in module priva-

cyidea.api.lib.prepolicy), 156
initialize() (privacyidea.lib.auditmodules.base.Audit

method), 165
initialize_log() (privacyidea.lib.auditmodules.base.Audit

method), 165
is_active() (privacyidea.lib.tokenclass.TokenClass

method), 137
is_challenge_request() (priva-

cyidea.lib.tokenclass.TokenClass method),
137

is_challenge_request() (priva-
cyidea.lib.tokens.hotptoken.HotpTokenClass
method), 121

is_challenge_request() (priva-
cyidea.lib.tokens.remotetoken.RemoteTokenClass
method), 126

is_challenge_request() (priva-
cyidea.lib.tokens.smstoken.SmsTokenClass

Index 187

privacyIDEA Documentation, Release 2.3

method), 128
is_challenge_request() (priva-

cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 128

is_challenge_request() (priva-
cyidea.lib.tokens.yubikeytoken.YubikeyTokenClass
method), 132

is_challenge_response() (priva-
cyidea.lib.tokenclass.TokenClass method),
137

is_challenge_response() (priva-
cyidea.lib.tokens.spasstoken.SpassTokenClass
method), 128

is_token_active() (in module privacyidea.lib.token), 146
is_token_owner() (in module privacyidea.lib.token), 146
is_valid() (privacyidea.models.Challenge method), 169

J
JSON Web Token, 82
JWT, 82

L
LDAP, 17
LDAP resolver, 19
libpolicy (class in privacyidea.lib.policydecorators), 160
library, 115
load_config() (privacyidea.lib.machines.base.BaseMachineResolver

method), 167
load_config() (privacyidea.lib.machines.hosts.HostsMachineResolver

method), 168
loadConfig() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

method), 164
loadConfig() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
loadConfig() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver

method), 162
loadFile() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

method), 163
log() (privacyidea.lib.auditmodules.base.Audit method),

165
log() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 166
log_token_num() (priva-

cyidea.lib.auditmodules.base.Audit method),
166

Logging, 10
login mode, 70
Login Policy, 70
login_mode() (in module priva-

cyidea.lib.policydecorators), 160
LOGINMODE (class in privacyidea.lib.policy), 153
LOGINMODE (privacyidea.lib.policy.ACTION at-

tribute), 151
loglevel, 9

logout time, 71
LOGOUTTIME (privacyidea.lib.policy.ACTION at-

tribute), 151
Lost token, 47
lost token, 70
lost_token() (in module privacyidea.lib.token), 146
LOSTTOKEN (privacyidea.lib.policy.ACTION at-

tribute), 151
LOSTTOKENPWCONTENTS (priva-

cyidea.lib.policy.ACTION attribute), 152
LOSTTOKENPWLEN (privacyidea.lib.policy.ACTION

attribute), 152
LOSTTOKENVALID (privacyidea.lib.policy.ACTION

attribute), 152

M
Machine Resolvers, 167
MachineApplicationBase (in module priva-

cyidea.lib.applications), 150
MACHINELIST (privacyidea.lib.policy.ACTION at-

tribute), 152
MachineResolver (class in privacyidea.models), 169
MachineResolverConfig (class in privacyidea.models),

170
MACHINERESOLVERDELETE (priva-

cyidea.lib.policy.ACTION attribute), 152
MACHINERESOLVERWRITE (priva-

cyidea.lib.policy.ACTION attribute), 152
machines, 72
MachineToken (class in privacyidea.models), 170
MachineTokenOptions (class in privacyidea.models), 170
MACHINETOKENS (privacyidea.lib.policy.ACTION at-

tribute), 152
maxfail, 49
MAXTOKENREALM (privacyidea.lib.policy.ACTION

attribute), 152
MAXTOKENUSER (privacyidea.lib.policy.ACTION at-

tribute), 152
MethodsMixin (class in privacyidea.models), 170
Migration, 31
mock_fail() (in module privacyidea.api.lib.prepolicy),

157
mock_success() (in module priva-

cyidea.api.lib.prepolicy), 157
MotpTokenClass (class in priva-

cyidea.lib.tokens.motptoken), 121
MySQL, 21

N
no_detail_on_fail() (in module priva-

cyidea.api.lib.postpolicy), 158
no_detail_on_success() (in module priva-

cyidea.api.lib.postpolicy), 158

188 Index

privacyIDEA Documentation, Release 2.3

NODETAILFAIL (privacyidea.lib.policy.ACTION
attribute), 152

NODETAILSUCCESS (privacyidea.lib.policy.ACTION
attribute), 152

NONE (privacyidea.lib.policy.ACTIONVALUE at-
tribute), 153

Novell eDirectory, 19

O
OATH CSV, 80
offline, 75
offline_info() (in module privacyidea.api.lib.postpolicy),

158
OpenLDAP, 19
Oracle, 21
OTP length, 49
OTPPIN (privacyidea.lib.policy.ACTION attribute), 152
OTPPINCONTENTS (privacyidea.lib.policy.ACTION at-

tribute), 152
OTPPINMAXLEN (privacyidea.lib.policy.ACTION at-

tribute), 152
OTPPINMINLEN (privacyidea.lib.policy.ACTION at-

tribute), 152
OTPPINRANDOM (privacyidea.lib.policy.ACTION at-

tribute), 152
OTRS, 5, 75
out of sync, 49
override client, 27
overview, 3

P
PAM, 5, 75
pass on user no token, 25
pass on user not found, 25
PASSNOTOKEN (privacyidea.lib.policy.ACTION

attribute), 152
PASSNOUSER (privacyidea.lib.policy.ACTION at-

tribute), 152
passOnNoToken, 65
passOnNoUser, 65
passthru, 65
PASSTHRU (privacyidea.lib.policy.ACTION attribute),

152
PasswordTokenClass (class in priva-

cyidea.lib.tokens.passwordtoken), 122
Penrose, 19
pi-manage, 173
pip install, 4
policies, 56
Policy (class in privacyidea.models), 170
PolicyClass (class in privacyidea.lib.policy), 153
POLICYDELETE (privacyidea.lib.policy.ACTION at-

tribute), 152

POLICYWRITE (privacyidea.lib.policy.ACTION at-
tribute), 152

PostgreSQL, 21
postpolicy (class in privacyidea.api.lib.postpolicy), 158
prepolicy (class in privacyidea.api.lib.prepolicy), 157
PRIVACYIDEA (privacyidea.lib.policy.LOGINMODE

attribute), 153
privacyidea.api (module), 82
privacyidea.api.application (module), 114
privacyidea.api.auth (module), 82, 84
privacyidea.api.lib.postpolicy (module), 157
privacyidea.api.lib.prepolicy (module), 155
privacyidea.api.machine (module), 111
privacyidea.api.machineresolver (module), 110
privacyidea.api.policy (module), 103
privacyidea.api.realm (module), 91
privacyidea.api.resolver (module), 90
privacyidea.api.system (module), 88
privacyidea.api.token (module), 94
privacyidea.api.user (module), 102
privacyidea.api.validate (module), 85
privacyidea.lib (module), 115
privacyidea.lib.auditmodules (module), 165
privacyidea.lib.machines (module), 167
privacyidea.lib.policy (module), 150
privacyidea.lib.policydecorators (module), 158
privacyidea.lib.resolvers (module), 160
privacyidea.lib.token (module), 140
privacyidea.lib.user (module), 115
privacyidea.models (module), 169
PSKC, 80

R
RADIUS token, 31
RadiusTokenClass (class in priva-

cyidea.lib.tokens.radiustoken), 123
read_keys() (privacyidea.lib.auditmodules.base.Audit

method), 166
Realm (class in privacyidea.models), 170
realm administrator, 59
realm autocreation, 25
realm edit, 24
realms, 23
registration, 29
RegistrationTokenClass (class in priva-

cyidea.lib.tokens.registrationtoken), 124
Remote token, 32
RemoteTokenClass (class in priva-

cyidea.lib.tokens.remotetoken), 125
remove_token() (in module privacyidea.lib.token), 147
request, 29
RESET (privacyidea.lib.policy.ACTION attribute), 152
reset() (privacyidea.lib.tokenclass.TokenClass method),

137

Index 189

privacyIDEA Documentation, Release 2.3

reset_token() (in module privacyidea.lib.token), 147
Resolver (class in privacyidea.models), 170
resolver priority, 24
ResolverConfig (class in privacyidea.models), 170
RESOLVERDELETE (privacyidea.lib.policy.ACTION

attribute), 152
ResolverRealm (class in privacyidea.models), 170
RESOLVERWRITE (privacyidea.lib.policy.ACTION at-

tribute), 152
REST, 82
Restore, 44
RESYNC (privacyidea.lib.policy.ACTION attribute), 152
resync token, 50
resync() (privacyidea.lib.tokenclass.TokenClass method),

137
resync() (privacyidea.lib.tokens.daplugtoken.DaplugTokenClass

method), 118
resync() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 121
resync() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 130
resync_token() (in module privacyidea.lib.token), 147
resyncDiffLimit (priva-

cyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 130

RFC6030, 80
rollout strategy, 173

S
SAML, 75
save() (privacyidea.lib.tokenclass.TokenClass method),

137
save() (privacyidea.models.TokenRealm method), 172
SCIM resolver, 23
scope, 56
SCOPE (class in privacyidea.lib.policy), 154
search() (privacyidea.lib.auditmodules.base.Audit

method), 166
search() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 167
search_query() (privacyidea.lib.auditmodules.base.Audit

method), 166
searchQuery() (privacyidea.lib.auditmodules.sqlaudit.Audit

method), 167
selfservice policies, 60
SERIAL (privacyidea.lib.policy.ACTION attribute), 152
SET (privacyidea.lib.policy.ACTION attribute), 152
set() (privacyidea.lib.auditmodules.base.Audit method),

166
set_count_auth() (in module privacyidea.lib.token), 147
set_count_auth() (privacyidea.lib.tokenclass.TokenClass

method), 137
set_count_auth_max() (priva-

cyidea.lib.tokenclass.TokenClass method),

138
set_count_auth_success() (priva-

cyidea.lib.tokenclass.TokenClass method),
138

set_count_auth_success_max() (priva-
cyidea.lib.tokenclass.TokenClass method),
138

set_count_window() (in module privacyidea.lib.token),
147

set_count_window() (priva-
cyidea.lib.tokenclass.TokenClass method),
138

set_data() (privacyidea.models.Challenge method), 169
set_defaults() (in module privacyidea.lib.token), 148
set_defaults() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_description() (in module privacyidea.lib.token), 148
set_description() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_failcount() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_hashlib() (in module privacyidea.lib.token), 148
set_hashlib() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_info() (privacyidea.models.Token method), 171
set_init_details() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_max_failcount() (in module privacyidea.lib.token),

148
set_maxfail() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_otp_count() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_otpkey() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_otplen() (in module privacyidea.lib.token), 148
set_otplen() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_otplen() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass

method), 123
set_pin() (in module privacyidea.lib.token), 149
set_pin() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_pin() (privacyidea.models.Token method), 171
set_pin_hash_seed() (priva-

cyidea.lib.tokenclass.TokenClass method),
138

set_pin_so() (in module privacyidea.lib.token), 149
set_pin_user() (in module privacyidea.lib.token), 149
set_policy() (in module privacyidea.lib.policy), 155
set_realm() (in module privacyidea.api.lib.prepolicy), 157
set_realms() (in module privacyidea.lib.token), 149
set_realms() (privacyidea.lib.tokenclass.TokenClass

method), 138

190 Index

privacyIDEA Documentation, Release 2.3

set_realms() (privacyidea.models.Token method), 171
set_so_pin() (privacyidea.lib.tokenclass.TokenClass

method), 138
set_so_pin() (privacyidea.models.Token method), 171
set_sync_window() (in module privacyidea.lib.token),

149
set_sync_window() (priva-

cyidea.lib.tokenclass.TokenClass method),
138

set_tokeninfo() (privacyidea.lib.tokenclass.TokenClass
method), 138

set_type() (privacyidea.lib.tokenclass.TokenClass
method), 138

set_user() (privacyidea.lib.tokenclass.TokenClass
method), 139

set_user_identifiers() (priva-
cyidea.lib.tokenclass.TokenClass method),
139

set_user_pin() (privacyidea.lib.tokenclass.TokenClass
method), 139

set_validity_period_end() (in module priva-
cyidea.lib.token), 150

set_validity_period_end() (priva-
cyidea.lib.tokenclass.TokenClass method),
139

set_validity_period_start() (in module priva-
cyidea.lib.token), 150

set_validity_period_start() (priva-
cyidea.lib.tokenclass.TokenClass method),
139

SETPIN (privacyidea.lib.policy.ACTION attribute), 152
SETREALM (privacyidea.lib.policy.ACTION attribute),

152
setup tool, 41
setup() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver

class method), 163
Sipgate, 39
SMS, 29
SMS automatic resend, 65
SMS Gateway, 39
SMS policy, 65
SMS text, 65
SMS Token, 39
SMS token, 34
SmsTokenClass (class in priva-

cyidea.lib.tokens.smstoken), 126
Software Tokens, 28
SpassTokenClass (class in priva-

cyidea.lib.tokens.spasstoken), 128
split_pin_pass() (privacyidea.lib.tokenclass.TokenClass

method), 139
split_pin_pass() (priva-

cyidea.lib.tokens.daplugtoken.DaplugTokenClass
method), 118

split_pin_pass() (priva-
cyidea.lib.tokens.radiustoken.RadiusTokenClass
method), 123

split_pin_pass() (privacyidea.models.Token method), 172
split_uri() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver

class method), 165
split_user() (in module privacyidea.lib.user), 116
SQL resolver, 21
sqlite, 21
SSH Key, 29
SSH keys, 34
SSHkeyTokenClass (class in priva-

cyidea.lib.tokens.sshkeytoken), 129
status_validation_fail() (priva-

cyidea.lib.tokenclass.TokenClass method),
139

status_validation_success() (priva-
cyidea.lib.tokenclass.TokenClass method),
139

superuser realm, 56
syncwindow, 49
system config, 25
SYSTEMDELETE (privacyidea.lib.policy.ACTION at-

tribute), 152
SYSTEMWRITE (privacyidea.lib.policy.ACTION

attribute), 152

T
testconnection() (priva-

cyidea.lib.machines.base.BaseMachineResolver
class method), 167

testconnection() (priva-
cyidea.lib.machines.hosts.HostsMachineResolver
class method), 168

testconnection() (priva-
cyidea.lib.resolvers.LDAPIdResolver.IdResolver
class method), 165

testconnection() (priva-
cyidea.lib.resolvers.UserIdResolver.UserIdResolver
class method), 162

timeshift (privacyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 130

timestep (privacyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 130

timewindow (privacyidea.lib.tokens.totptoken.TotpTokenClass
attribute), 131

token, 3
Token (class in privacyidea.models), 170
token configuration, 36
token default settings, 25
token description, 49
token types, 29
token_exist() (in module privacyidea.lib.token), 150
token_has_owner() (in module privacyidea.lib.token), 150

Index 191

privacyIDEA Documentation, Release 2.3

TokenClass (class in privacyidea.lib.tokenclass), 132
TokenInfo (class in privacyidea.models), 172
TOKENLABEL (privacyidea.lib.policy.ACTION at-

tribute), 152
TOKENPIN (privacyidea.lib.policy.ACTIONVALUE at-

tribute), 153
TokenRealm (class in privacyidea.models), 172
TOKENREALMS (privacyidea.lib.policy.ACTION at-

tribute), 152
TOKENTYPE (privacyidea.lib.policy.ACTION at-

tribute), 152
tokenview, 47
tools, 79
TotpTokenClass (class in priva-

cyidea.lib.tokens.totptoken), 129

U
ubuntu, 4
ui_get_enroll_tokentypes() (priva-

cyidea.lib.policy.PolicyClass method), 154
UNASSIGN (privacyidea.lib.policy.ACTION attribute),

152
unassign_token() (in module privacyidea.lib.token), 150
update() (privacyidea.lib.tokenclass.TokenClass method),

139
update() (privacyidea.lib.tokens.certificatetoken.CertificateTokenClass

method), 117
update() (privacyidea.lib.tokens.emailtoken.EmailTokenClass

method), 119
update() (privacyidea.lib.tokens.hotptoken.HotpTokenClass

method), 121
update() (privacyidea.lib.tokens.motptoken.MotpTokenClass

method), 122
update() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass

method), 123
update() (privacyidea.lib.tokens.radiustoken.RadiusTokenClass

method), 123
update() (privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass

method), 125
update() (privacyidea.lib.tokens.remotetoken.RemoteTokenClass

method), 126
update() (privacyidea.lib.tokens.smstoken.SmsTokenClass

method), 128
update() (privacyidea.lib.tokens.spasstoken.SpassTokenClass

method), 128
update() (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass

method), 129
update() (privacyidea.lib.tokens.totptoken.TotpTokenClass

method), 131
update() (privacyidea.lib.tokens.yubicotoken.YubicoTokenClass

method), 131
update_otpkey() (privacyidea.models.Token method), 172
update_type() (privacyidea.models.Token method), 172

update_user() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver
method), 162

UPDATEUSER (privacyidea.lib.policy.ACTION at-
tribute), 152

USER (privacyidea.lib.policy.SCOPE attribute), 154
user policies, 60
User() (in module privacyidea.lib.user), 115
UserIdResolver (class in priva-

cyidea.lib.resolvers.UserIdResolver), 160
useridresolvers, 17, 160
USERLIST (privacyidea.lib.policy.ACTION attribute),

153
Users, 59
USERSTORE (privacyidea.lib.policy.ACTIONVALUE

attribute), 153
USERSTORE (privacyidea.lib.policy.LOGINMODE at-

tribute), 153
userview, 52

V
virtual environment, 4

W
WEBUI (privacyidea.lib.policy.SCOPE attribute), 154
WebUI Login, 70
WebUI Policy, 70

Y
Yubico, 29
Yubico AES mode, 36
Yubico Cloud mode, 34, 41
YubicoTokenClass (class in priva-

cyidea.lib.tokens.yubicotoken), 131
Yubikey, 29, 34, 36
Yubikey CSV, 80
YubikeyTokenClass (class in priva-

cyidea.lib.tokens.yubikeytoken), 131

192 Index

	Table of Contents
	Overview
	Installation
	First Steps
	Configuration
	Tokenview
	Userview
	Policies
	Audit
	Client machines
	Application Plugins
	Tools
	Import
	Code Documentation
	Frequently Asked Questions

	Indices and tables
	HTTP Routing Table
	Python Module Index

