

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	privacyIDEA 2.21.1 documentation »

Welcome to privacyIDEA

privacyIDEA is a modular authentication system.
Using privacyIDEA you can enhance your existing applications like
local login,
VPN,
remote access,
SSH connections,
access to web sites or
web portals
with a second factor during authentication.
Thus boosting the security of your existing applications.
Originally it was used for OTP authentication devices.
But other “devices” like challenge response and SSH keys are also available.
It runs on Linux and is completely Open Source, licensed under the AGPLv3.

privacyIDEA can read users from many different sources like flat files,
different LDAP services, SQL databases and SCIM services. (see Realms)

Authentication devices to provide two factor authentication can be
assigned to those users, either by administrators or by the users themselves.
Policies define what a user is allowed to do in the web UI and
what an administrator is allowed to do in the management interface.

The system is written in python, uses flask as web framework and an
SQL database as datastore. Thus it can be enrolled quite easily providing
a lean installation. (see Installation)

Table of Contents

	1. Overview

	2. Installation

	3. First Steps

	4. Configuration

	5. Components

	6. Tokenview

	7. Userview

	8. Policies

	9. Event Handler

	10. Audit

	11. Client machines

	12. Workflows and Tools

	13. Application Plugins

	14. Code Documentation

	15. Frequently Asked Questions

Note

Some parts are marked as “(TODO) Not yet implemented”.
These are components that have not been migrated from 1.5 to 2.0.
If you are missing an important, not-yet-migrated part, drop us a note!

If you are missing any information or descriptions
file an issue at github [https://github.com/privacyidea/privacyidea/issues] (which would be the preferred way),
drop a note to info(@)privacyidea.org
or go to the Google group [https://groups.google.com/forum/?hl=en#!forum/privacyidea].

This will help us a lot to improve documentation to your needs.

Thanks a lot!

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

1. Overview

privacyIDEA is a system that is used to manage devices for two
factor authentication. Using privacyIDEA you can enhance your existing
applications like local login,
VPN, remote access, SSH connections, access to web sites or web portals with
a second factor during authentication. Thus boosting the security of your
existing applications.

In the beginning there were OTP tokens, but other means to
authenticate like SSH keys are added.
Other concepts like handling of machines or enrolling certificates
are coming up, you may monitor this development on Github.

privacyIDEA is a web application written in Python based on the
flask micro framework [http://flask.pocoo.org/]. You can use any webserver with a wsgi interface
to run privacyIDEA. E.g. this can be Apache, Nginx or even werkzeug [http://werkzeug.pocoo.org/].

A device or item used to authenticate is still called a
“token”. All token information is stored in an SQL database,
while you may choose, which database you want to use.
privacyIDEA uses SQLAlchemy [http://www.sqlalchemy.org/] to map the database to
internal objects. Thus you may choose to run privacyIDEA
with SQLite, MySQL, PostgreSQL, Oracle, DB2 or other database.

The code is divided into three layers, the API, the library and the
database layer. Read about it at Code Documentation.
privacyIDEA provides a clean REST API.

Administrators can use a Web UI or a command line client to
manage authentication devices. Users can log in to the Web UI to manage their
own tokens.

Authentication is performed via the API or certain plugins for
FreeRADIUS, simpleSAMLphp, Wordpress, Contao, Dokuwiki... to
either provide default protocols like RADIUS or SAML or
to integrate into applications directly.

Due to this flexibility there are also many different ways to
install and setup privacyIDEA.
We will take a look at common ways to setup privacyIDEA
in the section Installation
but there are still many others.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

2. Installation

The ways described here to install privacyIDEA are

	the installation via the Python Package Index, which can be used on
any Linux distribution and

	ready made Ubuntu Packages for Ubuntu 14.04LTS and

	ready made Debian Packages for Debian Wheezy.

If you want to upgrade from a privacyIDEA 1.5 installation please read Upgrading.

privacyIDEA needs python 2.7 to run properly!

	2.1. Python Package Index

	2.2. Ubuntu Packages

	2.3. Debian Packages

	2.4. CentOS Installation

	2.5. Upgrading

	2.6. The Config File

	2.7. Debugging and Logging

	2.8. The WSGI Script

	2.9. The pi-manage Script

	2.10. Security Modules

After installation you might want to take a look at First Steps.

Footnotes

	[1]	https://launchpad.net/~privacyidea

	[2]	https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.1. Python Package Index

You can install privacyidea on usually any Linux distribution in a python
virtual environment. This way you keep all privacyIDEA code in one defined
subdirectory.

Note

privacyIDEA depends on python 2.7 to run properly.

You first need to install some development packages. E.g. on debian based
distributions the packages are called

	libjpeg-dev

	libz-dev

	python-dev

	libffi-dev

	libssl-dev

	libxslt1-dev

Now you can install privacyIDEA like this:

virtualenv /opt/privacyidea

cd /opt/privacyidea
source bin/activate

Now you are within the python virtual environment.
Within the environment you can now run:

pip install privacyidea

Please see the section The Config File for a quick setup of your configuration.

Then create the encryption key and the signing keys:

pi-manage create_enckey
pi-manage create_audit_keys

Create the database and the first administrator:

pi-manage createdb
pi-manage admin add admin -e admin@localhost

Now you can run the server for your first test:

pi-manage runserver

Depending on the database you want to use, you may have to install additional packages.

Footnotes

	[1]	https://launchpad.net/~privacyidea

	[2]	https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.2. Ubuntu Packages

There are ready made packages for Ubuntu 14.04 LTS and 16.04 LTS [4].
These are available in a public ppa repository [1],
so that the installation
will automatically resolve all dependencies.
Install it like this:

add-apt-repository ppa:privacyidea/privacyidea
apt-get update

There are the base packages python-privacyidea and the administrator
tool privacyideaadm.

But we recommend installing the meta package:

apt-get install privacyidea-apache2

which will install the code, the webserver and the database and configure
everything accordingly. If you do not like the Apache2 webserver you could
alternatively use the meta package privacyidea-nginx.

After installing with Apache2 or Nginx you only need to create your first
administrator and you are done:

pi-manage admin add admin -e admin@localhost

Now you may proceed to First Steps.

Note

The packages privacyidea-apache2 and privacyidea-nginx assume
that you want to run a privacyIDEA system. These packages deactivate all
other (default) websites. You can install the package
privacyidea-mysql to install the privacyIDEA application and setup the
database. After this, you need to configure the webserver on your own.

Note

To get the latest development snapshots, you can use the repository
ppa:privacyidea/privacyidea-dev. But these packages might be broken
sometimes!

2.2.1. FreeRADIUS

privacyIDEA has a perl module to “translate” RADIUS requests to the API of the
privacyIDEA server. This module plugs into FreeRADIUS. The FreeRADIUS does not
have to run on the same machine like privacyIDEA.
To install this module run:

apt-get install privacyidea-radius

For further details see RADIUS plugin.

2.2.2. SimpleSAMLphp

Starting with 1.4 privacyIDEA also supports SAML via a plugin
for simpleSAMLphp [2].
The simpleSAMLphp service does not need to run on the same machine
like the privacyIDEA server.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-simplesamlphp

For further details see simpleSAMLphp Plugin.

2.2.3. PAM

privacyIDEA also comes with a PAM library to add two factor authentication to
any Linux system. You can run one central privacyIDEA server and configure
all other systems using the PAM library to authenticate against this
privacyIDEA.

To install it on a Ubuntu 14.04 system please run:

apt-get install privacyidea-pam

For further details see Pluggable Authentication Module.

2.2.4. OTRS

OTRS is an important Open Source Ticket Request System. It is written in Perl
and privacyIDEA provides an authentication plugin to authenticate at OTRS
with two factors.

To install it on Ubuntu 14.04 please run:

apt-get install privacyidea-otrs

For further details and configuration see OTRS.

Footnotes

	[1]	https://launchpad.net/~privacyidea

	[2]	https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

	[3]	http://www.otrs.com/

	[4]	Starting with privacyIDEA 2.15 Ubuntu 16.04 packages are
provided

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.3. Debian Packages

2.3.1. Wheezy

You can install privacyIDEA on Debian Wheezy either via the
Python Package Index or with a ready made Wheezy package.

The available Wheezy package privacyidea-venv_2.1~dev0_amd64.deb contains a
complete virtual environment with all necessary dependent modules. To install
it run:

dpkg -i privacyidea-venv_2.1~dev0_amd64.deb

This will install privacyIDEA into a virtual environment at
/opt/privacyidea/privacyidea-venv.

You can enter the virtual environment by:

source /opt/privacyidea/privacyidea-venv/bin/activate

2.3.2. Jessie

At the moment you can use the Ubuntu Trusty packages with Debian Jessie.

Thus you can create a file /etc/apt/sources.list.d/privacyidea.list with
the content:

deb http://ppa.launchpad.net/privacyidea/privacyidea/ubuntu trusty main

Add the GPG key to the keyring:

gpg --keyserver keyserver.ubuntu.com --recv-keys C24DCF7D
gpg --armor --export C24DCF7D | apt-key add -

Now run:

apt-get update
apt-get install privacyidea-apache2

As an alternative you can find a complete guideline how to setup privacyIDEA
including RADIUS here [3].

2.3.3. Running privacyIDEA with Apache2 and MySQL

If you installed via pip or the Wheezy package
you need to create and fill the config directory /etc/privacyidea manually:

cp /opt/privacyidea/privacyidea-venv/etc/privacyidea/dictionary \
/etc/privacyidea/

Create a config /etc/privacyidea/pi.cfg like this:

Your database
SQLALCHEMY_DATABASE_URI = 'mysql://pi:password@localhost/pi'
This is used to encrypt the auth_token
SECRET_KEY = 'choose one'
This is used to encrypt the admin passwords
PI_PEPPER = "choose one"
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/etc/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/etc/privacyidea/public.pem'
PI_LOGFILE = '/var/log/privacyidea/privacyidea.log'
#CRITICAL = 50
#ERROR = 40
#WARNING = 30
#INFO = 20
#DEBUG = 10
PI_LOGLEVEL = 20

You need to create the above mentioned logging directory
/var/log/privacyidea.

You need to create the above mentioned database with the
corresponding user access:

mysql -u root -p -e "create database pi"
mysql -u root -p -e "grant all privileges on pi.* to 'pi'@'localhost' \
identified by 'password'"

With this config file in place you can create the database tables, the
encryption key and the audit keys:

pi-manage createdb
pi-manage create_enckey
pi-manage create_audit_keys

Now you can create the first administrator:

pi-manage admin add administrator

The system is set up. You now only need to configure the Apache2 webserver.

The Apache2 needs a wsgi script that could be located at
/etc/privacyidea/piapp.wsgi and look like this:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production", \
config_file="/etc/privacyidea/pi.cfg")

Finally you need to create a Apache2 configuration
/etc/apache2/sites-available/privacyidea.conf which might look like this:

WSGIPythonHome /opt/privacyidea/privacyidea-venv
<VirtualHost _default_:443>
 ServerAdmin webmaster@localhost
 # You might want to change this
 ServerName localhost

 DocumentRoot /var/www
 <Directory />
 # For Apache 2.4 you need to set this:
 # Require all granted
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 # We can run several instances on different paths with different configurations
 WSGIScriptAlias / /etc/privacyidea/piapp.wsgi
 #
 # The daemon is running as user 'privacyidea'
 # This user should have access to the encKey database encryption file
 WSGIDaemonProcess privacyidea processes=1 threads=15 display-name=%{GROUP} user=privacyidea
 WSGIProcessGroup privacyidea
 WSGIPassAuthorization On

 ErrorLog /var/log/apache2/error.log

 LogLevel warn
 LogFormat "%h %l %u %t %>s \"%m %U %H\" %b \"%{Referer}i\" \"%{User-agent}i\"" privacyIDEA
 CustomLog /var/log/apache2/ssl_access.log privacyIDEA

 # SSL Engine Switch:
 # Enable/Disable SSL for this virtual host.
 SSLEngine on

 # If both key and certificate are stored in the same file, only the
 # SSLCertificateFile directive is needed.
 SSLCertificateFile /etc/ssl/certs/privacyideaserver.pem
 SSLCertificateKeyFile /etc/ssl/private/privacyideaserver.key

 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>
 BrowserMatch ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

</VirtualHost>

The configuration assumes, a user privacyidea, which you need to create:

useradd -r -m privacyidea

The files in /etc/privacyidea and the logfiles in
/var/log/privacyidea/ should be restricted to this user.

Footnotes

	[1]	https://launchpad.net/~privacyidea

	[2]	https://github.com/privacyidea/privacyidea/tree/master/authmodules/simpleSAMLphp

	[3]	http://www.routerperformance.net/howtos/install-privacyidea-2-13-on-a-clean-debian-8-jessie/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.4. CentOS Installation

There is a detailed Howto [1] for installing privacyIDEA with FreeRADIUS
3 on CentOS 7 using a python virtual environment.

2.4.1. RPM Repository

For customers with a valid service level agreement [2] with NetKnights
there is an RPM repository,
that can be used to easily install and update privacyIDEA on CentOS 7 / RHEL 7.
For more information see [3].

	[1]	https://www.privacyidea.org/two-factor-authentication-with-otp-on-centos-7/

	[2]	https://netknights.it/en/leistungen/service-level-agreements/

	[3]	https://netknights.it/en/additional-service-privacyidea-support-customers-centos-7-repository/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.5. Upgrading

If you installed privacyIDEA via DEB or RPM repository you can use the normal
system ways of apt-get, aptitude and rpm to upgrade privacyIDEA to the
current version.

2.5.1. Basic pip upgrade process

If you install privacyIDEA into a python virtualenv like /opt/privacyidea,
you can follow this basic upgrade process.

First you might want to backup your program directory:

tar -zcf privacyidea-old.tgz /opt/privacyidea

and your database:

source /opt/privacyidea/bin/activate
pi-manage backup create

2.5.1.1. Running upgrade

Starting with version 2.17 the script privacyidea-pip-update performs the
update of the python virtualenv and the DB schema.

Just enter your python virtualenv (you already did so, when running the
backup) and run the command:

privacyidea-pip-update

2.5.1.2. Manual upgrade

Now you can upgrade the installation:

source /opt/privacyidea/bin/activate
pip install --upgrade privacyidea

Usually you will need to upgrade/migrate the database:

pi-manage db stamp 4f32a4e1bf33 -d /opt/privacyidea/lib/privacyidea/migrations
pi-manage db upgrade -d /opt/privacyidea/lib/privacyidea/migrations

Now you need to restart your webserver for the new code to take effect.

2.5.2. Upgrade to privacyIDEA 2.12

In privacyIDEA 2.12 the Event Handler framework was added.
Two new tables “eventhandler” and “eventhandleroption” were added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

2.5.3. Upgrade to privacyIDEA 2.11

In privacyIDEA 2.11 the RADIUS server definition was added.
RADIUS servers can be used in RADIUS tokens and in the
RADIUS passthru policy.

A new database table “radiusserver” was added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

2.5.4. Upgrade to privacyIDEA 2.10

In privacyIDEA 2.10 SMTP servers were added. SMTP servers can be used for
notifications, registration and also for Email token and SMS token.

SMTP servers need a new database table “smtpserver”.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

privacyIDEA 2.10 can import all kind of PSKC token files. These XML files
need to be parsed. Therefore BeautifulSoup4 and lxml is used. On pip
installations you need to install a package like libxslt1-dev.

2.5.5. Upgrade From privacyIDEA 2.x to 2.3

In 2.3 the priority of resolvers in realms was added.

You need to update the database models:

pi-manage db stamp 4f32a4e1bf33 -d path/to/migrations
pi-manage db upgrade -d path/to/migrations

Note

You need to specify the path to the migrations scripts.
This could be /usr/lib/privacyidea/migrations.

Note

When upgrading with the Ubuntu LTS packages, the database
update is performed automatically.

2.5.6. Upgrade From privacyIDEA 1.5

Warning

privacyIDEA 2.0 introduces many changes in
database schema, so at least perform a database backup!

2.5.6.1. Stopping Your Server

Be sure to stop your privacyIDEA server.

2.5.6.2. Upgrade Software

To upgrade the code enter your python virtualenv and run:

pip install --upgrade privacyidea

2.5.6.3. Configuration

Read about the configuration in the The Config File.

You can use the old enckey, the old signing keys and the
old database uri. The values can be found in your old ini-file
as privacyideaSecretFile, privacyideaAudit.key.private,
privacyideaAudit.key.public and sqlalchemy.url. Your new
config file might look like this:

config_path = "/home/cornelius/tmp/pi20/etc/privacyidea/"
This is your old database URI
Note the three slashes!
SQLALCHEMY_DATABASE_URI = "sqlite:///" + config_path + "token.sqlite"
This is new!
SECRET_KEY = 't0p s3cr3t'
This is new
#This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
This is your old encryption key!
PI_ENCFILE = config_path + 'enckey'
THese are your old signing keys
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = config_path + 'private.pem'
PI_AUDIT_KEY_PUBLIC = config_path + 'public.pem'

To verify the new configuration run:

pi-manage create_enckey

It should say, that the enckey already exists!

2.5.6.4. Migrate The Database

You need to upgrade the database to the new database schema:

pi-manage db upgrade -d lib/privacyidea/migrations

Note

In the Ubuntu package the migrations folder is located at
/usr/lib/privacyidea/migrations/.

2.5.6.5. Create An Administrator

With privacyIDEA 2.0 the administrators are stored in the database.
The password of the administrator is salted and also peppered, to avoid
having a database administrator slip in a rogue password.

You need to create new administrator accounts:

pi-manage addadmin <email-address> <admin-name>

2.5.6.6. Start The Server

Run the server:

pi-manage runserver

or add it to your Apache or Nginx configuration.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.6. The Config File

privacyIDEA reads its configuration from different locations:

	default configuration from the module privacyidea/config.py

	then from the config file /etc/privacyidea/pi.cfg if it exists and then

	from the file specified in the environment variable PRIVACYIDEA_CONFIGFILE.

export PRIVACYIDEA_CONFIGFILE=/your/config/file

The configuration is overwritten and extended in each step. I.e. values define
in privacyidea/config.py
that are not redefined in one of the other config files, stay the same.

You can create a new config file (either /etc/privacyidea/pi.cfg) or any other
file at any location and set the environment variable.
The file should contain the following contents:

The realm, where users are allowed to login as administrators
SUPERUSER_REALM = ['super', 'administrators']
Your database
SQLALCHEMY_DATABASE_URI = 'sqlite:////etc/privacyidea/data.sqlite'
This is used to encrypt the auth_token
SECRET_KEY = 't0p s3cr3t'
This is used to encrypt the admin passwords
PI_PEPPER = "Never know..."
This is used to encrypt the token data and token passwords
PI_ENCFILE = '/etc/privacyidea/enckey'
This is used to sign the audit log
PI_AUDIT_KEY_PRIVATE = '/home/cornelius/src/privacyidea/private.pem'
PI_AUDIT_KEY_PUBLIC = '/home/cornelius/src/privacyidea/public.pem'
PI_AUDIT_MODUL = <python audit module>
PI_AUDIT_SQL_URI = <special audit log DB uri>
PI_LOGFILE = '....'
PI_LOGLEVEL = 20
PI_INIT_CHECK_HOOK = 'your.module.function'
PI_CSS = '/location/of/theme.css'
PI_UI_DEACTIVATED = True

Note

The config file is parsed as python code, so you can use variables to
set the path and you need to take care for indentations.

SQLALCHEMY_DATABASE_URI defines the location of your database.
You may want to use the MySQL database or Maria DB. There are two possible
drivers, to connect to this database. Please read MySQL database connect string.

The SUPERUSER_REALM is a list of realms, in which the users get the role
of an administrator.

PI_INIT_CHECK_HOOK is a function in an external module, that will be
called as decorator to token/init and token/assign. This function
takes the request and action (either “init” or “assing”) as an
arguments and can modify the request or raise an exception to avoid the
request being handled.

There are three config entries, that can be used to define the logging. These
are PI_LOGLEVEL, PI_LOGFILE, PI_LOGCONFIG. These are described in
Debugging and Logging.

You can use PI_CSS to define the location of another cascading style
sheet to customize the look and fell. Read more at Themes.

Note

If you ever need passwords being logged in the log file, you may
set PI_LOGLEVEL = 9, which is a lower log level than logging.DEBUG.
Use this setting with caution and always delete the logfiles!

privacyIDEA digitally signs the responses. You can disable this using the
parameter PI_NO_RESPONSE_SIGN. Set this to True to suppress the
response signature.

You can set PI_UI_DEACTIVATED = True to deactivate the privacyIDEA UI.
This can be interesting if you are only using the command line client or your
own UI and you do not want to present the UI to the user or the outside world.

Note

The API calls are all still accessable, i.e. privacyIDEA is
technically fully functional.

2.6.1. Audit parameters

PI_AUDIT_MODULE lets you specify an alternative auditing module. The
default which is shipped with privacyIDEA is
privacyidea.lib.auditmodules.sqlaudit. There is no need to change this,
unless you know exactly what you are doing.

You can change the servername of the privacyIDEA node, which will be logged
to the audit log using the variable PI_AUDIT_SERVERNAME.

You can run the database for the audit module on another database or even
server. For this you can specify the database URI via PI_AUDIT_SQL_URI.

PI_AUDIT_TRUNCATE = True lets you truncate audit entries, that to the length
of the database fields.

In certain cases when you experiencing problems you may use the parameters
PI_AUDIT_POOL_SIZE and PI_AUDIT_POOL_RECYCLE.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.7. Debugging and Logging

You can set PI_LOGLEVEL to a value 10 (Debug), 20 (Info), 30 (Warning),
40 (Error) or 50 (Critical).
If you experience problems, set PI_LOGLEVEL = 10 restart the web service
and resume the operation. The log file privacyidea.log should contain
some clues.

You can define the location of the logfile using the key PI_LOGFILE.
Usually it is set to:

PI_LOGFILE = "/var/log/privacyidea/privacyidea.log"

2.7.1. Advanced Logging

You can also define a more detailed logging by specifying a log configuration
file like this:

PI_LOGCONFIG = "/etc/privacyidea/logging.cfg"

Such a configuration could look like this:

[formatters]
keys=detail

[handlers]
keys=file,mail

[formatter_detail]
class=privacyidea.lib.log.SecureFormatter
format=[%(asctime)s][%(process)d][%(thread)d][%(levelname)s][%(name)s:%(lineno)d] %(message)s

[handler_mail]
class=logging.handlers.SMTPHandler
level=ERROR
formatter=detail
args=('mail.example.com', 'privacyidea@example.com', ['admin1@example.com',\
 'admin2@example.com'], 'PI Error')

[handler_file]
Rollover the logfile at midnight
class=logging.handlers.RotatingFileHandler
backupCount=14
maxBytes=10000000
formatter=detail
level=DEBUG
args=('/var/log/privacyidea/privacyidea.log',)

[loggers]
keys=root,privacyidea

[logger_privacyidea]
handlers=file,mail
qualname=privacyidea
level=DEBUG

[logger_root]
level=ERROR
handlers=file

The file structure follows [1] and can be used to define additional
handlers like logging errors to email addresses.

Note

In this example a mail handler is defined, that will send emails
to certain email addresses, if an ERROR occurs.

Footnotes

	[1]	https://docs.python.org/2/library/logging.config.html#configuration-file-format

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.8. The WSGI Script

Apache2 and Nginx are using a WSGI script to start the application.

This script is usually located at /etc/privacyidea/privacyideaapp.py or
/etc/privacyidea/privacyideaapp.wsgi and has the following contents:

import sys
sys.stdout = sys.stderr
from privacyidea.app import create_app
Now we can select the config file:
application = create_app(config_name="production",
 config_file="/etc/privacyidea/pi.cfg")

In the create_app-call you can also select another config file.

Note

This way you can run several instances of privacyIDEA in one
Apache2 server by defining several WSGIScriptAlias definitions pointing to
different wsgi-scripts, that again reference different config files with
different database definitions.

2.8.1. Running Apache instances

To run further Apache instances add additional lines in your Apache config:

WSGIScriptAlias /instance1 /etc/privacyidea1/privacyideaapp.wsgi
WSGIScriptAlias /instance2 /etc/privacyidea2/privacyideaapp.wsgi
WSGIScriptAlias /instance3 /etc/privacyidea3/privacyideaapp.wsgi
WSGIScriptAlias /instance4 /etc/privacyidea4/privacyideaapp.wsgi

It is a good idea to create a subdirectory in /etc for each instance.
Each wsgi script needs to point to the corresponding config file pi.cfg.

Each config file can define its own

	database

	encryption key

	signing key

	...

To create the new database you need the command pi-manage. The command
pi-manage reads the configuration from /etc/privacyidea/pi.cfg.

If you want to use another instance with another config file, you need to set
an environment variable and create the database like this:

PRIVACYIDEA_CONFIGFILE=/etc/privacyidea3/pi.cfg pi-manage createdb

This way you can use pi-manage for each instance.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.9. The pi-manage Script

pi-manage is the script that is used during the installation process to
setup the database and do many other tasks.

Note

The interesting thing about pi-manage is, that it does not need
the server to run as it acts directly on the database.
Therefor you need read access to /etc/privacyidea/pi.cfg and the encryption
key.

If you want to use a config file other than /etc/privacyidea/pi.cfg, you can
set an environment variable:

PRIVACYIDEA_CONFIGFILE=/home/user/pi.cfg pi-manage

pi-manage always takes a command and sometimes a sub command:

pi-manage <command> [<subcommand>] [<parameters>]

For a complete list of commands and sub commands use the -h parameter.

You can do the following tasks.

2.9.1. Encryption Key

You can create an encryption key and encrypt the encryption key.

Create encryption key:

pi-manage create_enckey

Note

This command takes no parameters. The filename of the encryption
key is read from the configuration. The key will not be created, if it
already exists.

The encryption key is a plain file on your hard drive. You need to take care,
to set the correct access rights.

You can also encrypt the encryption key with a passphrase. To do this do:

pi-manage encrypt_enckey /etc/privacyidea/enckey

and pipe the encrypted enckey to a new file.

Read more about the database encryption and the enckey in Security Modules.

2.9.2. Backup and Restore

You can create a backup which will be save to /var/lib/privacyidea/backup/.

The backup will contain the database dump and the complete directory
/etc/privacyidea. You may choose if you want to add the encryption key to
the backup or not.

Warning

If the backup includes the database dump and the encryption key
all seeds of the OTP tokens can be read from the backup.

As the backup contains the etc directory and the database you only need this
tar archive backup to perform a complete restore.

2.9.3. Rotate Audit Log

Audit logs are written to the database. You can use pi-manage to perform a
log rotation.

pi-manage rotate_audit

You can specify a highwatermark and a lowwatermark, age or a config file. Read more
about it at Cleaning up entries.

2.9.4. API Keys

You can use pi-manage to create API keys. API keys can be used to

	secure the access to the /validate/check API or

	to access administrative tasks via the REST API.

You can create API keys for /validate/check using the command

pi-manage api createtoken -r validate

If you want to secure the access to /validate/check you also need to
define a policy in scope authorizaion. See api_key_required.

If you wan to use the API key to automate administrative REST API calls, you
can use the command:

pi-manage api createtoken -r admin

This command also generates an admin account name. But it does not create
this admin account. You need to do so using pi-manage admin.
You can now use this API key to enroll tokens as administrator.

Note

These API keys are not persistant. They are not stored in the
privacyIDEA server. The API key is connected to the username, that is also
generated. This means you have to create an administrative account with
this very username to use this API key for this admin user.
You also should set policies for this admin user, so that this API key has
only restricted rights!

Note

The API key is valid for 365 days.

2.9.5. Policies

You can use pi-manage policy to enable, disable, create and delete policies.
Using the sub commands p_export and p_import you can also export a
backup of your policies and import this policy set later.

This could also be used to transfer the policies from one privacyIDEA
instance to another.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	2. Installation »

2.10. Security Modules

Note

For a normal installation this section can be safely ignored.

privacyIDEA provides a security module that takes care of

	encrypting the token seeds,

	encrypting passwords from the configuration like the LDAP password,

	creating random numbers,

	and hashing values.

Note

The Security Module concept can also be used to add a Hardware
Security Module to perform the above mentioned tasks.

2.10.1. Default Security Module

The default security module is implemented with the operating systems
capabilities. The encryption key is located in a file enckey specified via
PI_ENCFILE in the configuration file (The Config File).

This enckey contains three 32byte keys and is thus 96 bytes. This file
has to be protected. So the access rights to this file are set
accordingly.

In addition you can encrypt this encryption key with an additional password.
In this case, you need to enter the password each time the privacyIDEA server
is restarted and the password for decrypting the enckey is kept in memory.

The pi-manage Script contains the instruction how to encrypt the enckey

After starting the server, you can check, if the encryption key is accessible.
To do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule

The output will contain "is_ready": True to signal that the encryption
key is operational.

If it is not yet operational, you need to pass the password to the
privacyIDEA server to decrypt the encryption key.
To do so run:

privacyidea -U <yourserver> --admin=<youradmin> securitymodule \
--module=default

Note

If the security module is not operational yet, you might get an
error message “HSM not ready.”.

2.10.2. PKCS11 Security Module

The PKCS11 Security Module can be used to encrypt data with an hardware
security module, that is connected via the PKCS11 interface. To encrypt and
decrypt data you can use an RSA key pair that is stored on the HSM.

To activate this module add the following to the configuration file
(The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.pkcs11.PKCS11SecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full
specified path to the shared object file in the file system.

PI_HSM_MODULE_KEY_ID is the key id (integer) on the HSM.

2.10.3. AES HSM Security Module

The AES Hardware Security Module can be used to encrypt data with an
hardware security module (HSM) connected via the PKCS11
interface. This module allows to use AES keys stored in the HSM to
encrypt and decrypt data.

This module uses three keys, similarly to the content of
PI_ENCFILE, identified as token, config and value.

To activate this module add the following to the configuration file
(The Config File)

PI_HSM_MODULE = “privacyidea.lib.security.aeshsm.AESHardwareSecurityModule”

Additional attributes are

PI_HSM_MODULE_MODULE which takes the pkcs11 library. This is the full
specified path to the shared object file in the file system.

PI_HSM_MODULE_SLOT is the slot on the HSM where the keys are
located (default: 1).

PI_HSM_MODULE_PASSWORD is the password to access the slot.

PI_HSM_MODULE_KEY_LABEL is the label prefix for the keys on the
HSM (default: privacyidea). In order to locate the keys, the
module will search for key with a label equal to the concatenation of
this prefix, _ and the key identifier (respectively token,
config and value).

PI_HSM_MODULE_KEY_LABEL_TOKEN is the label for token key
(defaults to value based on PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_CONFIG is the label for config key
(defaults to value based on PI_HSM_MODULE_KEY_LABEL setting).

PI_HSM_MODULE_KEY_LABEL_VALUE is the label for value key
(defaults to value based on PI_HSM_MODULE_KEY_LABEL setting).

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

3. First Steps

You installed privacyIDEA successfully according to Installation and
created an administrator using the command pi-manage admin as e.g.
described in Ubuntu Packages.

These first steps will guide you through the tasks of logging in to the
management web UI, attaching your first users and enrolling the first token.

	3.1. Login to the Web UI

	3.2. Creating your first realm

	3.3. Enrolling your first token

After these first steps you will be able to start attaching applications to
privacyIDEA in order to add two factor authentication to those applications.
You can

	use a PAM module to authenticate with OTP at SSH or local
login

	or the RADIUS plugin to configure your firewall or VPN to use OTP,

	or use an Apache2 plugin to do Basic Authentication with OTP.

	You can also setup different web applications to use OTP.

To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper
insight in the configuration possibilities.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	3. First Steps »

3.1. Login to the Web UI

privacyIDEA has only one login form that is used by administrators and
normal users to login. Administrators will be able to configure the
system and to manage all tokens, while normal users will only be able
to manage their own tokens.

You should enter your username with the right realm.
You need to
append the realm to the username like username@realm.

3.1.1. Login for administrators

Administrators can authenticate at this login form to access
the management UI.

Administrators are stored in the database table Admin and can be managed
with the tool:

pi-manage admin ...

The administrator just logs in with his username.

Note

You can configure privacyIDEA to authenticate administrators
against privacyIDEA itself, so that administrators
need to login with a second factor. See SUPERUSER_REALM in
inifile_superusers how to do this.

3.1.2. Login for normal users

Normal users authenticate at the login form to be able to manage their own
tokens. By default users need to authenticate
with the password from their user source.

E.g. if the users are located in an LDAP or Active Directory
the user needs to authenticate with his LDAP/AD password.

But before a user can login, the administrator needs to configure
realms, which is described in the next step Creating your first realm.

Note

The user my either login with his password from the userstore
or with any of his tokens.

Note

The administrator may change this behaviour
by creating an according policy, which then requires
the user to authenticate against privacyIDEA itself.
I.e. this way the user needs to authenticate with
a second factor/token to access the self service
portal. (see the policy section login_mode)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	3. First Steps »

3.2. Creating your first realm

Note

When the administrator logs in and no useridresolver and no
realm is defined, a popup appears, which asks you to create a default
realm. During these first steps you may say “No”, to get a better
understanding.

Users in privacyIDEA are read from existing sources. See Realms for
more information.

In these first steps we will simply read the users from your /etc/passwd file.

3.2.1. Create a UserIdResolver

The UserIdResolver is the connector to the user source. For more information
see UserIdResolvers.

	Go to Config -> Users to create a UserIdResolver.

[image: ../_images/resolver1.png]
Create the first UserIdResolver

	Choose New passwdresolver and

	Enter the name “myusers”.

	Save it.

[image: ../_images/resolver2.png]
Create the first UserIdResolver

You just created your first connection to a user source.

3.2.2. Create a Realm

User sources are grouped togeather to a so called “realm”. For more
information see Realms.

	Go to Config -> Realms

	Enter “realm1” as the new realm name and select the priority 1.

	Check the resolver “myusers” to be included into this realm.

	Save it.

[image: ../_images/realm1.png]
Create the first Realm

	Go to Users and you will see the users from the /etc/passwd.

[image: ../_images/users.png]
The users from /etc/passwd

Congratulation! You created your first realm.

You are now ready to enroll a token to a user. Read Enrolling your first token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	3. First Steps »

3.3. Enrolling your first token

You may now enroll a new token. In this example we are using the Google
Authenticator App,
that you need to install on your smartphone.

	Go to Tokens -> Enroll Token

[image: ../_images/enroll1.png]
The Token Enrollment Dialog

	Select the username root. When you start typing “r”, “o”... the system
will find the user root automatically.

	Enter a PIN. I entered “test” ...

	... and click “Enroll Token”.

[image: ../_images/enroll2.png]
Enrollment Success

	After enrolling the token you will see a QR code, that you need to scan with
the Google Authenticator App.

	Click on the serial number link at the top of the dialog.

[image: ../_images/testtoken.png]
Test the Token

	Now you see the token details.

	Left to the button “Test Token” you can enter the PIN and the OTP value
generated by the Google Authenticator.

	Click the button “Test Token”. You should see a green “matching 1 tokens”.

Congratulations! You just enrolled your first token to a user.

Now you are ready to attach applications to
privacyIDEA in order to add two factor authentication to those applications.
To attach applications read the chapter Application Plugins.

You may also go on reading the chapter Configuration to get a deeper
insight in the configuration possibilities.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

4. Configuration

The configuration menu can be used to define useridresolvers and realms,
set the system config and the token config.

It also contains a shortcut to the policy tab (see Policies).

	4.1. UserIdResolvers
	4.1.1. Flatfile resolver

	4.1.2. LDAP resolver
	4.1.2.1. TLS certificates

	4.1.2.2. Modifying users

	4.1.2.3. Expired Users

	4.1.3. SQL resolver

	4.1.4. SCIM resolver

	4.1.5. User Cache

	4.2. Realms
	4.2.1. List of Realms

	4.2.2. Edit Realm

	4.2.3. Resolver Priority

	4.2.4. Autocreate Realm

	4.3. System Config
	4.3.1. Settings
	4.3.1.1. Split @ Sign

	4.3.1.2. SAML Attributes

	4.3.1.3. FailCounterIncOnFalsePin

	4.3.1.4. Automatically clearing Failcounter

	4.3.1.5. Prepend PIN

	4.3.1.6. AutoResync

	4.3.1.7. User Cache

	4.3.1.8. Override Authorization Client

	4.3.2. Token default settings
	4.3.2.1. Reset Fail Counter

	4.3.2.2. Maximum Fail Counter

	4.3.2.3. Sync Window

	4.3.2.4. OTP Length

	4.3.2.5. Count Window

	4.3.2.6. Challenge Validity Time

	4.3.2.7. SerialLength

	4.4. Tokens
	4.4.1. Supported Tokens
	4.4.1.1. Hardware Tokens

	4.4.1.2. Smartphone Apps

	4.4.2. Supported Tokentypes
	4.4.2.1. Four Eyes

	4.4.2.2. Certificates
	4.4.2.2.1. Generating Signing Requests

	4.4.2.3. EMail

	4.4.2.4. HOTP
	4.4.2.4.1. Hardware tokens
	4.4.2.4.1.1. Preseeded or Seedable

	4.4.2.4.1.2. Experiences

	4.4.2.4.2. Software tokens
	4.4.2.4.2.1. Experiences

	4.4.2.4.3. Enrollment

	4.4.2.5. OCRA
	4.4.2.5.1. DisplayTAN token

	4.4.2.6. Paper Token
	4.4.2.6.1. Customization
	4.4.2.6.1.1. CSS

	4.4.2.6.1.2. Header and Footer

	4.4.2.6.1.3. OTP Table

	4.4.2.7. Questionnaire Token

	4.4.2.8. RADIUS

	4.4.2.9. Registration

	4.4.2.10. Remote

	4.4.2.11. SMS

	4.4.2.12. Spass - Simple Pass Token

	4.4.2.13. SSH Keys

	4.4.2.14. TiQR

	4.4.2.15. TOTP
	4.4.2.15.1. Hardware tokens

	4.4.2.15.2. Software tokens
	4.4.2.15.2.1. Experiences

	4.4.2.15.3. Enrollment

	4.4.2.16. U2F

	4.4.2.17. Yubico

	4.4.2.18. Yubikey
	4.4.2.18.1. Using the yubikey personalization GUI
	4.4.2.18.1.1. Redirect api url to privacyideas /ttype/yubikey

	4.4.3. Token configuration
	4.4.3.1. Email OTP Token
	4.4.3.1.1. First step

	4.4.3.1.2. Seconds step

	4.4.3.1.3. Configuration Parameters

	4.4.3.2. HOTP Token Config

	4.4.3.3. SMS OTP Token
	4.4.3.3.1. First step

	4.4.3.3.2. Second step

	4.4.3.4. TiQR Token Config
	4.4.3.4.1. TiQR Registration Server

	4.4.3.4.2. TiQR Authentication Server

	4.4.3.5. TOTP Token Config

	4.4.3.6. U2F Token Config
	4.4.3.6.1. AppId

	4.4.3.6.2. Facets

	4.4.3.6.3. Workflow

	4.4.3.7. Yubico Cloud mode

	4.4.3.8. Yubikey AES mode

	4.5. CA Connectors
	4.5.1. Local CA Connector
	4.5.1.1. Manual Setup

	4.5.1.2. Easy Setup

	4.5.1.3. Management

	4.5.1.4. Templates

	4.6. SMTP server configuration

	4.7. SMS Gateway configuration
	4.7.1. HTTP provider
	4.7.1.1. Options

	4.7.1.2. Examples
	4.7.1.2.1. Clickatell

	4.7.1.2.2. GTX-Messaging

	4.7.1.2.3. Twilio

	4.7.2. Sipgate provider

	4.7.3. SMTP provider

	4.8. privacyIDEA setup tool
	4.8.1. Backup and Restore
	4.8.1.1. Schedulded backup

	4.8.1.2. Immediate backup

	4.8.1.3. Restore

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.1. UserIdResolvers

Each organisation or company usually has its users managed at a central location.
This is why privacyIDEA does not provide its own user management but rather
connects to existing user stores.

UserIdResolvers are connectors to those user stores, the locations,
where the users are managed. Nowadays this can be LDAP directories or
especially Active Directory, some times FreeIPA or the Redhat 389 service.
But classically users are also located in files like /etc/passwd on
standalone unix systems. Web services often use SQL databases as
user store.

Today with many more online cloud services SCIM is also an uprising
protocol to access userstores.

privacyIDEA already comes with UserIdResolvers to talk to all these
user stores:

	Flatfile resolver,

	LDAP resolver,

	SQL resolver,

	SCIM resolver.

Note

New resolver types (python modules) can be added easily. See the
module section for this
(UserIdResolvers).

You can create as many UserIdResolvers as you wish and edit existing resolvers.
When you have added all configuration data, most UIs of the UserIdResolvers have a
button “Test resolver”, so that you can test your configuration before saving
it.

Starting with privacyIDEA 2.4 resolvers can be editable, i.e. you can edit
the users in the user store. Read more about this at Manage Users.

Note

Using the policy authentication:otppin=userstore users can
authenticate with the password
from their user store, being the LDAP password, SQL password or password
from flat file.

4.1.1. Flatfile resolver

Flatfile resolvers read files like /etc/passwd.

Note

The file /etc/passwd does not contain the unix password.
Thus, if you create a flatfile resolver from this file the functionality
with otppin=userstore is not available. You can create a flatfile with
passwords using the tool privacyidea-create-pwidresolver-user.

Create a flat file like this:

privacyidea-create-pwidresolver-user -u user2 -i 1002 >> /your/flat/file

4.1.2. LDAP resolver

The LDAP resolver can be used to access any kind of LDAP service like
OpenLDAP, Active Directory,
FreeIPA, Penrose, Novell eDirectory.

[image: ../_images/ldap-resolver.png]
LDAP resolver configuration

In case of Active Directory connections you might need to check the box
No anonymous referral chasing. The underlying LDAP library is only
able to do anonymous referral chasing. Active Directory will produce an
error in this case [1].

The Server URI can contain a comma separated list of servers.
The servers are used to create a server pool and are used with a round robin
strategy [3].

Example:

ldap://server1, ldaps://server2:1636, server3, ldaps://server4

This will create LDAP requests to

	server1 on port 389

	server2 on port 1636 using SSL

	server3 on port 389

	server4 on port 636 using SSL.

The Bind Type with Active Directory can either be chosen as “Simple” or
as “NTLM”.

Note

When using bind type “Simple” you need to specify the Bind DN like
cn=administrator,cn=users,dc=domain,dc=name. When using bind type “NTLM”
you need to specify Bind DN like DOMAINNAME\username.

The LoginName attribute is the attribute that holds the loginname. It
can be changed to your needs.

Starting with version 2.20 you can provide a list of attributes in
LoginName Attribute like:

sAMAccountName, userPrincipalName

This way a user can login with either his sAMAccountName or his principalName.

The searchfilter is used to list all possible users, that can be used
in this resolver. The searchfilter is used for forward and backward
search the object in LDAP.

The attribute mapping maps LDAP object attributes to user attributes in
privacyIDEA. privacyIDEA knows the following attributes:

	phone,

	mobile,

	email,

	surname,

	givenname,

	password

	accountExpires.

The above attributes are used for privacyIDEA’s normal functionality and are
listed in the userview. However, with a SAML authentication request user
attributes can be returned. (see SAML Attributes). To return
arbitrary attributes from the LDAP you can add additional keys to the
attribute mapping with a key, you make up and the LDAP attribute like:

“homedir”: “homeDirectory”,
“studentID”: “objectGUID”

“homeDirectory” and “objectGUID” being the attributes in the LDAP directory
and “homedir” and “studentID” the keys returned in a SAML authentication
request.

The UID Type is the unique identifier for the LDAP object. If it is left
blank, the distinguished name will be used. In case of OpenLDAP this can be
entryUUID and in case of Active Directory objectGUID. For FreeIPA you
can use ipaUniqueID.

Note

The attributes entryUUID, objectGUID, and ipaUniqueID

are case sensitive!

The option No retrieval of schema information can be used to
disable the retrieval of schema information [4] in
order to improve performance. This checkbox is deactivated by default
and should only be activated after having ensured that schema information
are unnecessary.

4.1.2.1. TLS certificates

Starting with privacyIDEA 2.18 in case of encrypted LDAPS
connections privacyIDEA can verify the TLS
certificate. (Python >= 2.7.9 required)
To have privacyIDEA verify the TLS certificate you need to check the
according checkbox.

You can specify a file with the trusted CA certificate, that signed the
TLS certificate. The default CA filename is /etc/privacyidea/ldap-ca.crt
and can contain a list of base64 encoded CA certificates.
PrivacyIDEA will use the CA file if specifed. If you leave the field empty
it will also try the system certificate store (/etc/ssl/certs/ca-certificates.crt
or /etc/ssl/certs/ca-bundle.crt).

4.1.2.2. Modifying users

Starting with privacyIDEA 2.12 you can define the LDAP resolver as editable.
I.e. you can create and modify users from within privacyIDEA.

There are two additional configuration parameters for this case.

DN Template defines how the DN of the new LDAP object should be created. You can use username, surname,
givenname and basedn to create the distiguished name.

Examples:

CN=<givenname> <surname>,<basedn>

CN=<username>,OU=external users,<basedn>

uid=<username>,ou=users,o=example,c=com

Object Classes defines which object classes the user should be assigned to. This is a comma separated list.
The usual object classes for Active Directory are

top, person, organizationalPerson, user, inetOrgPerson

4.1.2.3. Expired Users

You may set

“accountExpires”: “accountExpires”

in the attribute mapping for Microsoft Active Directories. You can then call
the user listing API with the parameter accountExpires=1 and you will only
see expired accounts.

This functionality is used with the script privacyidea-expired-users.

4.1.3. SQL resolver

The SQL resolver can be used to retrieve users from any kind of
SQL database like MySQL, PostgreSQL, Oracle, DB2 or sqlite.

[image: ../_images/sql-resolver.png]
SQL resolver configuration

In the upper frame you need to configure the SQL connection.
The SQL resolver uses SQLAlchemy [http://sqlalchemy.org] internally.
In the field Driver you need to set a driver name as defined by the
SQLAlchemy dialects [http://docs.sqlalchemy.org/en/rel_0_9/dialects/]
like “mysql” or “postgres”.

In the SQL attributes frame you can specify how the users are
identified.

The Database table contains the users.

Note

At the moment only one table
is supported, i.e. if some of the user data like email address or telephone
number is located in a second table, those data can not be retrieved.

The Limit is the SQL limit for a userlist request. This can be important
if you have several thousand user entries in the table.

The Attribute mapping defines which table column should be mapped to
which privayIDEA attribute. The known attributes are:

	userid (mandatory),

	username (mandatory),

	phone,

	mobile,

	email,

	givenname,

	surname,

	password.

The password attribute is the database column that contains the user
password. This is used, if you are doing user authentication against the SQL
database.

Note

There is no standard way to store passwords in an SQL database.
There are several different ways to do this. privacyIDEA supports the most
common ways like Wordpress hashes starting with $P or $S. Secure hashes
starting with {SHA} or salted secure hashes starting with {SSHA},
{SSHA256} or {SSHA512}. Password hashes of length 64 are interpreted as
OTRS sha256 hashes.

You can mark the users as Editable. The Password_Hash_Type can be
used to determine wich hash algorithm should be used, if a password of an
editable user is written to the database.

You can add an additional Where statement if you do not want to use
all users from the table.

The poolSize and poolTimeout determine the pooling behaviour. The
poolSize (default 5) determine how many connections are kept open in the
pool. The poolTimeout (default 10) specifies how long the application
waits to get a connection from the pool.

Note

The Additional connection parameters
refer to the SQLAlchemy connection but are not used at the moment.

4.1.4. SCIM resolver

SCIM is a “System for Cross-domain Identity Management”. SCIM is a REST-based
protocol that can be used to ease identity management in the cloud.

The SCIM resolver is tested in basic functions with OSIAM [2],
the “Open Source Idenitty & Access Management”.

To connect to a SCIM service you need to provide a URL to an authentication
server and a URL to the resource server. The authentication server is used to
authenticate the privacyIDEA server. The authentication is based on a client
name and the Secret for this client.

Userinformation is then retrieved from the resource server.

The available attributes for the Attribute mapping are:

	username (mandatory),

	givenname,

	surname,

	phone,

	mobile,

	email.

4.1.5. User Cache

privacyIDEA does not implement local user management by design and relies on UserIdResolvers to
connect to external user stores instead. Consequently, privacyIDEA queries user stores quite frequently,
e.g. to resolve a login name to a user ID while processing an authentication request, which
may introduce a significant slowdown.
In order to optimize the response time of authentication requests, privacyIDEA 2.19 introduces the user cache
which is located in the local database. It can be enabled in the system configuration (see User Cache).

A user cache entry stores the association of a login name in a specific UserIdResolver with a specific
user ID for a predefined time called the expiration timeout, e.g. for one week.
The processing of further authentication requests by the same user during this timespan
does not require any queries to the user store, but only to the user cache.

The user cache should only be enabled if the association of users and user ID is not expected to change often:
In case a user is deleted from the user store, but can still be found in the user cache and still has assigned
tokens, the user will still be able to authenticate during the expiration timeout! Likewise, any changes to the
user ID will not be noticed by privacyIDEA until the corresponding cache entry expires.

Expired cache entries are not deleted from the user cache table automatically. Instead, the tool
privacyidea-usercache-cleanup should be used to delete expired cache entries from the database,
e.g. in a cronjob.

However, cache entries are removed at some defined events:

	If a UserIdResolver is modified or deleted, all cache entries belonging to this resolver are deleted.

	If a user is modified or deleted in an editable UserIdResolver, all cache entries belonging to this user
are deleted.

Note

Realms with multiple UserIdResolvers are a special case: If a user userX tries to authenticate in a
realm with two UserIdResolvers resolverA (with highest priority) and resolverB, the user cache is queried
to find the user ID of userX in the UserIdResolver resolverA. If the cache contains no matching entry,
resolverA itself is queried for a matching user ID! Only if resolverA does not find a corresponding
user, the user cache is queried to determine the user ID of userX in resolverB. If no matching entry
can be found, resolverB is queried.

Footnotes

	[1]	http://blogs.technet.com/b/ad/archive/2009/07/06/referral-chasing.aspx

	[2]	http://www.osiam.org

	[3]	https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

	[4]	http://ldap3.readthedocs.io/schema.html

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.2. Realms

Users need to be in realms to have tokens assigned. A user, who is not
member of a realm can not have a token assigned and can not authenticate.

You can combine several different UserIdResolvers (see UserIdResolvers)
into a realm.
The system knows one default realm. Users within this default realm can
authenticate with their username.

Users in realms, that are not the default realm, need to be additionally identified.
Therefor the users need to authenticate with their username and the realm like this:

user@realm

4.2.1. List of Realms

The realms dialog gives you a list of the already defined realms.

It shows the name of the realms, whether it is the default realm and
the names of the resolvers, that are combined to this realm.

You can delete or edit an existing realm or create a new realm.

4.2.2. Edit Realm

Each realm has to have a unique name. The name of the realm is
case insensitive. If you create a new realm with the same name
like an existing realm, the existing realm gets overwritten.

If you click Edit Realm you can select which userresolver should be
contained in this realm. A realm can contain several resolvers.

[image: ../_images/edit-realm.png]
Edit a realm

4.2.3. Resolver Priority

Within a realm you can give each resolver a priority. The priority is used to
find a user that is located in several resolvers. If a user is located in
more than one resolver, the user will be taken from the resolver with the
lowest number in the priority.

Priorities are numbers between 1 and 999. The lower the number the higher the
priority.

Example:

A user “administrator” is located in a resolver “users” which contains all
Active Directory users. And the “administrator” is located in a resolver
“admins”, which contains all users in the Security Group “Domain
Admins” from the very same domain. Both resolvers are in the realm
“AD”, “admins” with priority 1 and “users” with priority 2.

Thus the user “administrator@AD” will always resolve to the user located in
resolver “admins”.

This is useful to create policies for the security group “Domain
Admins”.

Note

A resolver has a priority per realm. I.e. a resolver can have a
different priority in each realm.

4.2.4. Autocreate Realm

[image: ../_images/ask-create-realm.png]

If you have a fresh installation, no resolver and no realm is
defined. To get you up and running faster, the system
will ask you, if it should create the first realm for you.

If you answer “yes”, it will create a resolver named “deflocal”
that contains all users from /etc/passwd and a realm named
“defrealm” with this very resolver.

Thus you can immediately start assigning and enrolling tokens.

If you check “Do not ask again” this will be stored in
a cookie in your browser.

Note

The realm “defrealm” will be the default realm.
So if you create a new realm manually and want this new
realm to be the default realm, you need to set this new
realm to be default manually.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.3. System Config

The system configuration has three logical topics: Settings,
token default settings and GUI settings.

[image: ../_images/system-config.png]
The system config

4.3.1. Settings

4.3.1.1. Split @ Sign

splitAtSign defines if the username like user@company
given during authentication should
be split into the loginname user and the realm name company.
In most cases this is the wanted behaviour.

But given your users log in with email addresses like user@gmail.com and
otheruser@outlook.com you probably do not want to split.

4.3.1.2. SAML Attributes

Return SAML attributes defines if during an SAML authentication request
additional SAML attributes should be returned.
Usually an authentication response only returns true or false.

The SAML attributes are the known attributes that are defined in the
attribute mapping e.g. of the LDAP resolver like email, phone,
givenname, surname or any other attributes you fetch from the LDAP
directory. For more information read LDAP resolver.

In addition you can set the parameter ReturnSamlAttributesOnFail. In this
case the response contains the SAML attributes of the user, even if the user
failed to authenticate.

4.3.1.3. FailCounterIncOnFalsePin

If during authentication the given PIN matches a token but the OTP value is
wrong the failcounter of
the tokens for which the PIN matches, is increased.
If the given PIN does not match any token, by default no failcounter is
increased. The later behaviour can be adapted by FailCounterIncOnFalsePin.
If FailCounterIncOnFalsePin is set and the given OTP PIN does not match
any token, the failcounter of all tokens is increased.

4.3.1.4. Automatically clearing Failcounter

If the failcounter reaches the maximum the token gets a timestamp, when the
max fail count was reached. A successful authentication after the specified a
amount of minutes in failcounter_clear_timeout will clear the failcounter
again and the user can
authenticate.

A “0” means automatically clearing the fail counter is not used.

Also see How to mitigate brute force and lock tokens.

4.3.1.5. Prepend PIN

PrependPin defines if the OTP PIN should be given in front (“pin123456”)
or in the back (“12345pin”) of the OTP value.

4.3.1.6. AutoResync

Auto resync defines if the system should try to resync a token if a user
provides a wrong OTP value. AutoResync works like this:

	If the counter of a wrong OTP value is within the resync window, the system
remembers the counter of the OTP value for this token in the token info
field otp1c.

	Now the user needs to authenticate a second time within auto resync
timeout with the next successive OTP value.

	The system checks if the counter of the second OTP value is the successive
value to otp1c.

	If it is, the token counter is set and the user is successfully authenticated.

Note

AutoResync works for all HOTP and TOTP based tokens including SMS and
Email tokens.

4.3.1.7. User Cache

The setting User Cache expiration in seconds is used to enable the user cache and
configure its expiration timeout. If its value is set to 0 (which is the default value),
the user cache is disabled.
Otherwise, the value determines the time in seconds after which entries of the user
cache expire. For more information read User Cache.

Note

If the user cache is already enabled and you increase the expiration timeout,
expired entries that still exist in the user cache could be considered active again!

4.3.1.8. Override Authorization Client

Override Authorization client is important with client specific
policies (see Policies) and RADIUS servers or other proxies. In
case of RADIUS the authenticating client
for the privacyIDEA system will always be the RADIUS server, which issues
the authentication request. But you can allow the RADIUS server IP to
send another client information (in this case the RADIUS client) so that
the policy is evaluated for the RADIUS client. Such a proxy or RADIUS server
may add the API parameter client with a new IP address.

This field takes a comma separated list of IP Networks mapping to other IP
Networks.

Examples

10.1.2.0/24 > 192.168.0.0/16*

Proxies in the sub net 10.1.2.0/24 may mask as client IPs 192.168.0.0/16. In
this case the policies for the corresponding client in 192.168.x.x apply.

172.16.0.1

The proxy 172.16.0.1 may mask as any arbitrary client IP.

10.0.0.18 > 10.0.0.0/8

The proxy 10.0.0.18 may mask as any client in the subnet 10.x.x.x.

4.3.2. Token default settings

4.3.2.1. Reset Fail Counter

DefaultResetFailCount will reset the failcounter of a token if this token was
used for a successful authentication. If not checked, the failcounter will not
be resetted and must be resetted manually.

Note

The following settings are token specific value which are
set during enrollment.
If you want to change this value of a token later on, you need to
change this at the tokeninfo dialog.

4.3.2.2. Maximum Fail Counter

DefaultMaxFailCount is the maximum failcounter a token way get. If the
failcounter exceeds this number the token can not be used unless the failcounter
is resetted.

Note

In fact the failcounter will only increase till this maxfailcount.
Even if more failed authentication request occur, the failcounter will
not increase anymore.

4.3.2.3. Sync Window

DefaultSyncWindow is the window how many OTP values will be calculated
during resync of the token.

4.3.2.4. OTP Length

DefaultOtpLen is the length of the OTP value. If no OTP length is
specified during enrollment, this value will be used.

4.3.2.5. Count Window

DefaultCountWindow defines how many OTP values will be calculated during
an authentication request.

4.3.2.6. Challenge Validity Time

DefaultChallengeValidityTime is the timeout for a challenge response
authentication. If the response is set after the ChallengeValidityTime, the
response is not accepted anymore.

4.3.2.7. SerialLength

The default length of generated serial numbers is an 8 digit hex string.
If you need another length, it can be configured in the database table Config
with the key word SerialLength.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.4. Tokens

	4.4.1. Supported Tokens
	4.4.1.1. Hardware Tokens

	4.4.1.2. Smartphone Apps

4.4.2. Supported Tokentypes

At the moment the following tokentypes are supported:

	HOTP - event based One Time Password tokens based on
RFC4225 [https://tools.ietf.org/html/rfc4226].

	TOTP - time based One Time Password tokens based on
RFC6238 [https://tools.ietf.org/html/rfc6238].

	mOTP - time based One Time Password tokens for mobile phones based on an
a public Algorithm [http://motp.sourceforge.net].

	Paper Token - event based One Time Password tokens that get
you list of one time passwords on a sheet of paper.

	Questionnaire Token - A token that contains a list of answered
questions. During authentication a random question is presented as
challenge from the list of answered questions is presented. The user must
give the right answer.

	EMail - A token that sends the OTP value to the EMail address of
the user.

	Four Eyes - Meta token that can be used to create a
Two Man Rule [https://en.wikipedia.org/wiki/Two-man_rule].

	password - A password token used for losttoken scenario.

	Registration - A special token type used for enrollment scenarios (see
Registration Code).

	Simple Pass - A token that only consists of the Token PIN.

	Certificates - A token that represents a client
certificate.

	SSH Keys - An SSH public key that can be managed and used in conjunction
with the Client machines concept.

	Remote - A virtual token that forwards the authentication request to
another privacyIDEA server.

	RADIUS - A virtual token that forwards the authentication request to
a RADIUS server.

	SMS - A token that sends the OTP value to the mobile phone of the
user.

	Spass - Simple Pass Token - The simple pass token. A token that has no OTP component and
just consists of the OTP pin or (if otppin=userstore is set) of the userstore
password.

	TiQR - A Smartphone token that can be used to login by only scanning
a QR code.

	OCRA - A basic OATH Challenge Response token.

	U2F - A U2F device as specified by the FIDO Alliance. This is a USB
device to be used for challenge response authentication.

	Yubico - A Yubikey hardware that authenticates against the Yubico
Cloud service.

	Yubikey - A Yubikey hardware initialized in the AES mode, that
authenticates against privacyIDEA.

	Daplug - A hardware OTP token similar to the Yubikey.

The Tokentypes:

	4.4.2.1. Four Eyes

	4.4.2.2. Certificates

	4.4.2.3. EMail

	4.4.2.4. HOTP

	4.4.2.5. OCRA

	4.4.2.6. Paper Token

	4.4.2.7. Questionnaire Token

	4.4.2.8. RADIUS

	4.4.2.9. Registration

	4.4.2.10. Remote

	4.4.2.11. SMS

	4.4.2.12. Spass - Simple Pass Token

	4.4.2.13. SSH Keys

	4.4.2.14. TiQR

	4.4.2.15. TOTP

	4.4.2.16. U2F

	4.4.2.17. Yubico

	4.4.2.18. Yubikey

4.4.3. Token configuration

Each token type can provide its own configuration dialog.

In this configuration dialog you can define default values for these token
types.

[image: ../_images/token-config.png]
Token Configuration: SMS

	4.4.3.1. Email OTP Token

	4.4.3.2. HOTP Token Config

	4.4.3.3. SMS OTP Token

	4.4.3.4. TiQR Token Config

	4.4.3.5. TOTP Token Config

	4.4.3.6. U2F Token Config

	4.4.3.7. Yubico Cloud mode

	4.4.3.8. Yubikey AES mode

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.1. Supported Tokens

privacyIDEA supports a wide variety of tokens by different hardware vendors.
It also supports token apps on the smartphone.

Tokens not listed, will be probably supported, too, since most tokens use
standard algorithms.

If in doubt drop your question on the mailing list.

4.4.1.1. Hardware Tokens

The following hardware tokens are known to work well.

Yubikey. The Yubikey is supported in all modes:
AES (Yubikey),
HOTP
and Yubico Cloud.
You can initialize the Yubikey yourself, so that the secret key is not known
to the vendor.

eToken Pass. The eToken Pass is a push button token by SafeNet. It can be
initialized with a special hardware device. Or you get a seed file, that you
need to import to privacyIDEA.
The eToken Pass can run as HOTP or TOTP token.

eToken NG OTP. The eToken NG OTP is a push button token by SafeNet. As it
has a USB connector, you can initialize the token via the USB connector. Thus
the hardware vendor does not know the secret key.

DaPlug. The DaPlug token is similar to the Yubikey and can be initialized
via the USB connector. The secret key is not known to the hardware vendor.

Smartdisplayer OTP Card. This is a push button card. It features an eInk
display, that can be read very good in all light condition at all angles.
The Smartdisplayer OTP card is initialized at the factory and you get a seed
file, that you need to import to privacyIDEA.

Feitian. The C100 and C200 tokens are classical, reasonably priced push
button tokens. The C100 is an HOTP token and the C200 a
TOTP token. These
tokens are initialized at the factory and you get a seed file, that you need
to import to privacyIDEA.

U2F. The Yubikey and the Daplug token are known U2F devices to work well
with privacyIDEA. See U2F.

4.4.1.2. Smartphone Apps

privacyIDEA Authenticator. Our own privacyIDEA Authenticator is based
on the concept of the Google Authenticator and works with the usual QR Code key URI
enrollment. But on top it also allows for a more secure
enrollment process (See Two Step Enrollment).
It can be used for HOTP and TOTP.

Google Authenticator. The Google Authenticator is working well in
HOTP
and TOTP mode. If you choose “Generate OTP Key on the Server”
during
enrollment, you can scan a QR Code with the Google Authenticator.
See Enrolling your first token to learn how to do this.

FreeOTP. privacyIDEA is known to work well with the FreeOTP App. The
FreeOTP App is a TOTP token. So if you scan the QR Code of an
HOTP token, the OTP will not validate.

mOTP. Several mOTP Apps like “Potato”, “Token2” or “DroidOTP” are supported.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.1. Four Eyes

Starting with version 2.6 privacyIDEA supports 4 Eyes Token. This is a meta
token, that can be used to define, that two or more token must be used to
authenticate. This way, you can set up a “two man rule”.

You can define, from which realm how many unique tokens need to be
present, when authenticating:

[image: ../../_images/enroll_4eyes.png]
Enroll a 4 eyes token

In this example authentication will only be possbile if at least two tokens
from realm2 and one token from realm sqlite are present.

Authentication is done by concatenating the OTP PINs and the OTP values of
all tokens. The concatenation is split by the separator character.

It does not matter, in which order the tokens from the realms are entered.

Example

Authentication as:

username: "root@r2"
password: "pin123456 secret789434 key098123"

The three blocks separated by the blank are checked, if they match tokens
in the realms realm2 and sqlite.

The response looks like this in case of success:

{
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PI4E000219E1",
 "type": "4eyes"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA 2.6dev0",
 "versionnumber": "2.6dev0"
}

In case of a failed authentication the response looks like this:

{
 "detail": {
 "foureyes": "Only found 0 tokens in realm themis",
 "message": "wrong otp value",
 "serial": "PI4E000219E1",
 "type": "4eyes"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA 2.6dev0",
 "versionnumber": "2.6dev0"
}

Note

The 4Eyes Token verifies that unique tokens from each realm are
used. I.e. if you require 2 tokens from a realm, you can not use the same
token twice.

Warning

But it does not verify, if these two unique tokens belong to
the same user. Thus you should create a poliy, that in such a realm a user
may only have on token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.2. Certificates

Starting with version 2.3 privacyIDEA supports certificates. A user can

	upload a certificate request,

	upload a certificate or

	he can generate a certificate request in the browser.

privacyIDEA does not sign certificate requests itself but connects to
existing certificate authorities. To do so, you need to define
CA Connectors.

Certificates are attached to the user just like normal tokens. One token of
type certificate always contains only one certificate.

If you have defined a CA connector you can upload a certificate signing
request (CSR) via the Token Enroll Dialog in the WebUI.

[image: ../../_images/upload_csr.png]
Upload a certificate signing request

You need to choose the CA connector. The certificate will be signed by
the CA accordingly. Just like all other tokens the certificate token can be
attached to a user.

4.4.2.2.1. Generating Signing Requests

You can also generate the signing request directly in your browser.

Note

This uses the keygen HTML-tag that is not supported by the Internet
Explorer!

[image: ../../_images/generate_csr1.png]
Generate a certificate signing request

When generating the certificate signing request this way the RSA keypair is
generated on the client side in the browser.

The certificate is signed by the CA connected by the chosen CA connector.

[image: ../../_images/generate_csr2.png]
Download or install the client certificate

Afterwards the user can install the certificate into the browser.

Note

By requiring OTP authentication for the users to login to the WebUI
(see login_mode)
you can have two factor authentication required for the user to be allowed
to enroll a certificate.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.3. EMail

The token type email sends the OTP value in an EMail to the user. You can
configure the EMail server in Email OTP Token.

[image: ../../_images/enroll_email.png]
Enroll an EMail token

When enrolling an EMail token, you only need to specify the email address of
the user.

The EMail token is a challenge response token. I.e. when using the OTP PIN in
the first authentication request, the sending of the EMail will be triggered
and in a second authentication request the OTP value from the EMail needs to be
presented.

For a more detailed insight see the code documentation Email Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.4. HOTP

The HOTP token is - together with the TOTP - the most common token.
The HOTP Algorithm is defined in
RFC4225 [https://tools.ietf.org/html/rfc4226]. The HOTP token is an event
base token.
The HOTP algorithm has some parameter, like if the generated OTP value will
be 6 digits or 8 digits or if the SHA1 oder the SHA256 hashing algorithm is
used.

4.4.2.4.1. Hardware tokens

There are many token vendors out there who are using the official algorithm
to build and sell hardware tokens. You can get HOTP based hardware tokens in
different form factors, as a normal key fob for your key ring or as a display
card for your purse.

4.4.2.4.1.1. Preseeded or Seedable

Usually the hardware tokens like keyfobs or display cards contain a secret
key that was generated and implanted at the vendors factory. The vender ships
the tokens and a seed file.

Warning

In this case privacyIDEA can not guarantee that the secret seed of
the token is unique and if you are using a real strong factor.

privacyIDEA also supports the following seedable HOTP tokens:

	SafeNet eToken NG OTP

	SafeNet eToken Pass

	Yubikey in OATH mode

	Daplug

Those tokens can be initialized by privacyIDEA. Thus you can be sure, that
only you are in possession of the secret seed.

4.4.2.4.1.2. Experiences

The above mentioned hardware tokens are known to play well with privacyIDEA.
In theory all OATH/HOTP tokens should work well with privacyIDEA. However,
there are good experiences with Smartdisplayer OTP cards [1] and
Feitian C200 [2]
tokens.

4.4.2.4.2. Software tokens

Besides the hardware tokens there are also software tokens, implemented as
Apps for your smartphone.
These software tokens allow are seedable, so there is no vendor, knowing the
secret seed of your OTP tokens.

But software tokens are software after all on device prone to security issues.

4.4.2.4.2.1. Experiences

The Google Authenticator can be enrolled easily in HOTP mode using
the QR-Code enrollment Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

4.4.2.4.3. Enrollment

Default settings for HOTP tokens can be configured at HOTP Token Config.

[image: ../../_images/enroll_hotp1.png]
Enroll an HOTP token

During enrollment you can choose, if the server should generate the key or if
you have a key, that you can enter into the enrollment page.

As mentioned earlier, you can also choose the OTP length and the hash
algoriothm.

[image: ../../_images/enroll_hotp2.png]
If the server generated the secret seed, you can scan the QR-Code

After enrolling the token, the QR-Code, containing the secret seed, is
displayed, so that you can scan this with your smartphone and import it to
your app.

	[1]	https://netknights.it/en/produkte/smartdisplayer/

	[2]	https://netknights.it/en/produkte/oath-hotptotp/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.5. OCRA

Starting with version 2.20 privacyIDEA supports common OCRA tokens.
OCRA tokens can not be enrolled via the UI but need to be imported via a seed
file.
The OATH CSV seed file would look like this:

<serial>, <seed>, ocra, <ocrasuite>

The OCRA token is a challenge/response token. So the first authentication
request issues a challenge. This challenge is the input for the response of
the OCRA token.

For more information see OCRA Token.

4.4.2.5.1. DisplayTAN token

privacyIDEA supports the DisplayTAN [1], which can be used for
securing banking
transactions. The OCRA Algorithm is used to digitally sign transaction data.
The transcation data can be verified by the user on an external banking card.
All cryptographical processes are running on the external card, so that an
attacker can not interfere with the user’s component.

The DisplayTAN cards would be imported into privacyIDEA using the token import.

A banking website will use the Validate endpoints API.

The first call will trigger the challenge response mechanism. The first call
needs to contain the transaction data: the recipient’s account number and
amount of money to transfer:

<account>~<amount>~

Please note the tilde:

POST https://privacyidea.example.com/validate/check

pass=pin
serial=ocra1234
challenge=1234567890~423,40~
addrandomchallenge=20
hashchallenge=sha1

This will result in a response like this:

{
 "jsonrpc": "2.0",
 "signature": "128057011582042...408",
 "detail": {
 "multi_challenge": [
 {
 "attributes": {
 "qrcode": "data:image/png;base64, iVBORw0KG..RK5CYII=",
 "original_challenge": "83507112 ~320,
 00~cfbGSopfdDROOMjeu3IR",
 "challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
 },
 "serial": "ocra1234",
 "transaction_id": "05221757445370623976"
 }
],
 "threadid": 139847557760768,
 "attributes": {
 "qrcode": "data:image/png;base64, iVBO...CYII=",
 "original_challenge": "83507112 ~320,00~cfbGSopfdDROOMjeu3IR",
 "challenge": "f8a1818f35ae0cc64fe8a191961ec829487dfa82"
 },
 "message": "Please answer the challenge",
 "serial": "ocra1234",
 "transaction_id": "05221757445370623976"
 },
 "versionnumber": "2.20.dev2",
 "version": "privacyIDEA 2.20.dev2",
 "result": {
 "status": true,
 "value": false
 },
 "time": 1504005837.417481,
 "id": 1
}

Note

The response also contains the QR code. The banking website should
show the QR code, so that the user can scan it with the DisplayTAN App to
transfer the data to the card.

The user can verify the data on the card and transaction data will be
digitally signed on the card.
The card will calculate an OTP value for this very transaction.

The banking website can now send the OTP value to privacyIDEA to check,
if the user authorized the correct transaction data. The banking site
will issue this request:

POST https://privacyidea.example.com/validate/check

serial=ocra1234
transaction_id=05221757445370623976
pass=54006635

privcyIDEA will respond with a usual authentication response:

{
 "jsonrpc": "2.0",
 "signature": "162....2454851",
 "detail": {
 "message": "Found matching challenge",
 "serial": "ocra1234",
 "threadid": 139847549368064
 },
 "versionnumber": "2.20.dev2",
 "version": "privacyIDEA 2.20.dev2",
 "result": {
 "status": true,
 "value": true
 },
 "time": 1504005901.823667,
 "id": 1
}

	[1]	http://www.display-tan.com/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.6. Paper Token

The token type paper lets you print out a list of OTP values, which you can
use to authenticate and cross of the list.

The paper token is based on the HOTP. I.e. you need to use one
value after the other.

4.4.2.6.1. Customization

4.4.2.6.1.1. CSS

You can customize the look and feel of the printed paper token.
You may change the style sheep papertoken.css which is only loaded for
printing.

4.4.2.6.1.2. Header and Footer

Then you may add a header in front and a footer behind the table containing
the OTP values.

Create the files

	static/customize/views/includes/token.enrolled.paper.top.html

	static/customize/views/includes/token.enrolled.paper.bottom.html

to display the contents before (top) and behind (bottom) the table.

Within these html templates you may use angular replacements. To get the
serial number of the token use

{{ tokenEnrolled.serial }}

to get the name and realm of the user use

{{ newUser.user }}
{{ newUser.realm }}

A good example for the token.enrolled.paper.top.html is:

<h1>{{ enrolledToken.serial }}</h1>
<p>

Please use the OTP values of your paper token in order one after the
other. You may scratch of or otherwise mark used values.

</p>

A good example for the token.enrolled.paper.bottom.html is:

	<p>

	The paper token is a weak second factor. Please assure, that noone gets
hold of this paper and can make a copy of it.

</p>
<p>

Store it at a safe location.

</p>

Note

You can change the directory static/customize to a URL that fits
your needs the best by defining a variable PI_CUSTOMIZATION in the file
pi.cfg. This way you can put all modifications in one place apart from
the original code.

4.4.2.6.1.3. OTP Table

If you want to change the complete layout of the table you need to
overwrite the file
static/components/token/views/token.enrolled.paper.html. The
scope variable {{ enrolledToken.otps }} contains an object with the complete
OTP value list.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.7. Questionnaire Token

The administrator can define a list of questions and also how many answers to
the questions a user needs to define.

During enrollment of such a question type token the user answers at least as
many questions as specified with answers only he knows.

This token is a challenge response token.
During authentication the user must give the token PIN and the a random
question from the answered question is chosen. The user has to answer with
the same answer he defined earlier.

Note

If the administrator changes the questions _after_ a token was
enrolled, the enrolled token still works with the old questions and answers.
I.e. an enrolled token is not affected by changing the questions by the
administrator.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.8. RADIUS

The token type RADIUS forwards the authentication request to a
RADIUS Server.

When forwarding the authentication request, you can
change the username
and mangle the password.

[image: ../../_images/enroll_radius.png]
Enroll a RADIUS token

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the
PIN matches only the remaining part of the issued password will be sent to
the RADIUS server.

RADIUS Server

The RADIUS server, to which the authentication request will be forwarded.
You can specify the port like my.radius.server:1812.

RADIUS User

When forwarding the request to the RADIUS server, the authentication request
will be issued for this user. If the user is left empty, the RADIUS request
will be sent with the same user.

RADIUS Secret

The RADIUS secret for this RADIUS client.

Note

Using the RADIUS token you can design migration scenarios. When
migrating from other (proprietary) OTP solutions, you can enroll a RADIUS
token for the users. The RADIUS token points to the RADIUS server of the
old solution. Thus the user can authenticate against privacyIDEA with the
old, proprietary token, till he is enrolled a new token in privacyIDEA. The
interesting thing is, that you also get the
authentication request with the proprietary token in the audit log of
privacyIDEA. This way you can have a scenario, where users are still using
old tokens and other users are already using new (privacyIDEA) tokens. You
will see all authentication requests in the pricacyIDEA system.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.9. Registration

(See Registration Code)

The registration token can be used to create a registration code for a user.
This registration code can be sent via postal mail to the user, so that the
user can use this registration code as a second factor to login to a portal.

After a one single use, the registration code is deleted and can not be used
a second time.

Note

The registration code can only be enrolled via the API to provide
automated smooth workflow to your needs.

For a more detailed insight see the code documentation
Registration Code Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.10. Remote

The token type remote forwards the authentication request to another
privacyIDEA Server.

When forwarding the authentication request, you can

	change the username

	change the resolver

	change the realm

	change the serial number

and mangle the password.

[image: ../../_images/enroll_remote.png]
Enroll a Remote token

Check the PIN locally

If checked, the PIN of the token will be checked on the local server. If the
PIN matches only the remaining part of the issued password will be sent to
the remote privacyIDEA server.

Remote Server

The privacyIDEA server, to which the authentication request will be forwarded.
The path /validate/check will be added automatically. So a sensible input
would be https://my.other.server/.

Remote Serial

If the Remote Serial is specified the given password will be checked
against the serial number on the remote privacyIDEA server. Usernames will be
ignored.

Remote User

When forwarding the request to the remote server, the authentication request
will be issued for this user.

Remote Realm

When forwarding the request to the remote server, the authentication request
will be issued for this realm.

Remote Resolver

When forwarding the request to the remote server, the authentication request
will be issued for this resolver.

Note

You can use Remote Serial to forward the request to a central
privacyIDEA server, that only knows tokens but has no knowledge of users.
Or you can use Remote Serial to forward the request to an existing to on
localhost thus adding a second user to the same token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.11. SMS

The token type sms sends the OTP value via an SMS service. You can
configure the SMS service in SMS OTP Token.

[image: ../../_images/enroll_sms.png]
Enroll an SMS token

When enrolling an SMS token, you only need to specify the mobile phone number.

SMS token is a challenge response token. I.e. when sending the OTP PIN in the
first authentication request, the sending of the SMS will be triggered and in
a second authentication request the OTP value from the SMS needs to be
presented.

For a more detailed insight see the code documentation SMS Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.12. Spass - Simple Pass Token

The OTP component of the spass token is always true. Thus the user only
needs to provide the OTP pin or the userstore password - depending on the
policy settings.

For a more detailed insight see the code documentation SPass Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.13. SSH Keys

The token type sshkey is the public SSH key, that you can upload and assign
to a user. The SSH key is only used for the application type SSH in
conjunction with the Client machines concept.

A user or the administrator can upload the public SSH key and assign to a user.

[image: ../../_images/sshkey.png]
Enroll an SSH key token

Paste the SSH key into the text area. The comment in the SSH key will be used as
token comment.
You can assign the SSH key to a user and then use the SSH key in Application
Definitions SSH.

Note

This way you can manage SSH keys centrally, as you do not need to
distribute the SSH keys to all machines. You rather store the SSH keys
centrally in privacyIDEA and use privacyidea-authorizedkeys to fetch
the keys in real time during the login process.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.14. TiQR

Starting with version 2.6 privacyIDEA supports the TiQR token.
The TiQR token is a smartphone token, that can be used to login by only
scanning a QR code.

The token is also enrolled by scanning a QR code.

[image: ../../_images/enroll_tiqr_1.png]
Choose a user for the TiQR token

You can only enroll a TiQR token, when a user is selected.

Note

You can not enroll a TiQR token without assign the token to a user.

[image: ../../_images/enroll_tiqr_2.png]

For more technical information about the TiQR token please see
TiQR Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.15. TOTP

The TOTP token is - together with the HOTP - the most common token.
The TOTP Algorithm is defined in
RFC6238 [https://tools.ietf.org/html/rfc6238].
The TOTP token is a time based token.
Roughly speaking the TOTP algorithm is the same algorithm like the HOTP,
where the event based counter is replaced by the unix timestamp.

The TOTP algorithm has some parameter, like if the generated OTP value will
be 6 digits or 8 digits or if the SHA1 oder the SHA256 hashing algorithm is
used and the timestep being 30 or 60 seconds.

4.4.2.15.1. Hardware tokens

The information about preseeded token and seedable tokens is the same as
described in the section about HOTP.

The only available seedable pushbutton TOTP token is the SafeNet eToken Pass.
The Yubikey can be used as a TOTP token, but only in conjunction with a
smartphone app, since the yubikey has not its own clock.

4.4.2.15.2. Software tokens

4.4.2.15.2.1. Experiences

The Google Authenticator and the FreeOTP token can be enrolled easily in
TOTP mode using
the QR-Code enrollment Feature.

The Google Authenticator is available for iOS, Android and Blackberry devices.

4.4.2.15.3. Enrollment

Default settings for TOTP tokens can be configured at TOTP Token Config.

The enrollment is the same as described in HOTP.
However, when enrolling TOTP token, you can specify some additional parameters.

[image: ../../_images/enroll_totp.png]
Enroll an TOTP token

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.16. U2F

Starting with version 2.7 privacyIDEA supports U2F tokens.
The administrator or the user himself can register a U2F device and use this
U2F token to login to the privacyIDEA web UI or to authenticate at
applications.

When enrolling the token a key pair is generated and the public key is sent
to privacyIDEA. During this process the user needs to prove that he is
present by either pressing the button (Yubikey) or by replugging the device
(Plug-up token).

The device is identified and assigned to the user.

Note

This is a normal token object which can also be reassigned to
another user.

Note

As the key pair is only generated virtually, you can register one
physical device for several users.

For configuring privacyIDEA for the use of U2F token, please see
U2F Token Config.

For further details and for information how to add this to your application you
can see the code documentation at
U2F Token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.17. Yubico

The token type yubico authenticates against the Yubico Cloud mode. You need
to configure this at Yubico Cloud mode.

[image: ../../_images/enroll_yubico.png]
Enroll a Yubico token

The token is enrolled by simply saving the Yubikey token ID in the token
object. You can either enter the 12 digit ID or you can simply press the
Yubikey button in the input field, which will also assign the token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.2.18. Yubikey

The Yubikey is initialized with privacyIDEA and works in Yubicos own AES mode.
It outputs a 44 character OTP value, consisting of a 12 character prefix and
a 32 character OTP. But in contrast to the Yubico Cloud
mode, in this mode the secret key is contained within the token and your own
privacyIDEA installation.

If you have the time and care about privacy, you should prefer the
Yubikey AES mode over the Yubico Cloud mode.

There are three possible ways to enroll a Yubikey token.

Note

We recommend that you use the privacyidea command line
client, to initialize the Yubikeys. You can use the mass enrollment, which
eases the process of initializing a whole bunch of tokens.

Run the command like this:

privacyidea -U https://your.privacyidea.server -a admin token \
yubikey_mass_enroll --yubimode YUBICO

This command initializes the token and stores the AES secret and prefix
in privacyidea, so the token is immediatly useful. You can choose the slot
with --yubislot. For further help call
privcyidea yubikey_mass_enroll with the --help option.

The second way to enroll a yubikey token is also using yubikey_mass_enroll,
but with the option --filename to write to token configuration into the
specified file. The resulting file can then be imported into privacyidea:
Select Tokens -> Import Tokens, select “OATH CSV” and the file you just created.

4.4.2.18.1. Using the yubikey personalization GUI

Third and last you can use the privacyIDEA Web UI to enroll a
Yubikey AES mode token, if you have
initialized the yubikey with the external ykpersonalize tool.

[image: ../../_images/yk-personalization-gui.png]
Use the yubikey-personalization-gui to initialize the yubikey

When using the yubikey personalization GUI you need to copy the value of
“Secret Key (16 bytes Hex)”. This is the secret OTP key, which you need to
copy and paste in the field “OTP Key” in the privacyIDEA Web UI. (Remove
possible white spaces!)

[image: ../../_images/enroll_yubikey.png]
Enroll a Yubikey AES mode token

In the field “Test Yubikey” push the Yubikey button. This will grab the
yubikey’s public identifier and also determine the lenght of the otp value.
The field OTP value is automatically filled.

4.4.2.18.1.1. Redirect api url to privacyideas /ttype/yubikey

Yubico servers use /wsapi/2.0/verify as the path in the
validation URL. Some tools (e.g. Kolab 2fa) let the
user/admin change the api host, but not the rest of
the URL. Let’s redirect the api URL to privacyideas
/ttype/yubikey - you’ll need to enable the following two
lines in /etc/apache2/site-enabled/privacyidea.conf:

RewriteEngine on
RewriteRule “^/wsapi/2.0/verify” “/ttype/yubikey” [PT]

If you use nginx there is a similar line provided as a comment
to the nginx configuration as well.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.1. Email OTP Token

[image: ../../_images/email.png]
Email Token configuration

The Email OTP token creates a OTP value and sends this OTP value to the email
address of the uses. The Email can be triggered by authenticating with only
the OTP PIN:

4.4.3.1.1. First step

In the first step the user will enter his OTP PIN and the sending of the
Email is
triggered. The user is denied the access.

4.4.3.1.2. Seconds step

In the second step the user authenticates with the OTP PIN and the OTP value
he received via Email. The user is granted access.

Alternatively the user can authenticate with the transaction_id that was
sent to him in the response during the first step and only the OTP value. The
transaction_id assures that the user already presented the first factor (OTP
PIN) successfully.

4.4.3.1.3. Configuration Parameters

You can configure the mail parameters for the Email Token centrally at
Config -> Tokens -> Email.

Mail Server

The name or IP address of the mail server that is used to send emails.

Port

The port of the mail server.

Mail User

If the mail server requires authentication you need to enter a username. If
no username is entered, no authentication is performed on the mail server.

Mail User Password

The password of the mail username to send emails.

Mail Sender Address

The mail address of the mail sender. This needs to correspond to the Mail
User.

OTP validity time

This is the time in seconds, for how long the sent OTP value is valid. If a
user tries to authenticate with the sent OTP value after this time,
authentication will fail.

Use TLS

Whether the mail server should use TLS.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.2. HOTP Token Config

[image: ../../_images/hotp.png]
HOTP Token configuration

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.3. SMS OTP Token

The SMS OTP token creates a OTP value and sends this OTP value to the mobile
phone of the user. The SMS can be triggered by authenticating
with only the OTP PIN:

4.4.3.3.1. First step

In the first step the user will enter his OTP PIN and the sending of the SMS is
triggered. The user is denied the access.

4.4.3.3.2. Second step

In the second step the user authenticates with the OTP PIN and the OTP value
he received via SMS. The user is granted access.

Alternatively the user can authenticate with the transaction_id that was
sent to him in the response during the first step and only the OTP value. The
transaction_id assures that the user already presented the first factor (OTP
PIN) successfully.

A python SMS provider module defines how the SMS is sent. This can be done
using an HTTP SMS Gateway. Most services like Clickatel or sendsms.de provide
such a simple HTTP gateway. Another possibility is to send SMS via sipgate,
which provides an XMLRPC API.
The third possibility is to send the SMS via an SMTP gateway. The provider
receives a specially designed email and sends the SMS accordingly.
The last possibility to send SMS is to use an attached GSM modem.

Starting with version 2.13 the SMS configuration has been redesigned. You can
now centrally define SMS gateways. These SMS gateways can be used for sending
SMS OTP token but also for the event notifications. (See
User Notification Handler Module)

For configuring SMS Gateways read SMS Gateway configuration.
I this token configuration you can select on defined gateway to send SMS for
authentication.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.4. TiQR Token Config

[image: ../../_images/tiqr.png]
TiQR Token configuration

4.4.3.4.1. TiQR Registration Server

You need at least enter the TiQR Registration Server.
This is the URL of your privacyIDEA installation, that can be reached from
the smartphone during enrollment. So your smartphone needs to be on the same
LAN (WLAN) like the privacyIDEA server or the enrollment URL needs to be
accessible from the internet.

You also need to specify the path, which is usually /ttype/tiqr.

During enrollment the parameter action=metadata and action=enrollment is
added.

Note

We do not recommend putting the registration URL on the internet.

4.4.3.4.2. TiQR Authentication Server

This is the URL that is used during authentication.
This can be another URL than the Registration Server. If it is left blank,
the URL of the Registration Server is used.

During authentication the parameter operation=login is added.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.5. TOTP Token Config

[image: ../../_images/totp.png]
TOTP Token configuration

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.6. U2F Token Config

4.4.3.6.1. AppId

You need to configure the AppId of the privacyIDEA server. The AppId is
define in the FIDO specification [1].

The AppId is the URL of your privacyIDEA and used to find or create the right
key pair on the U2F device. The AppId must correspond the the URL that is
used to call the privacyIDEA server.

Note

if you register a U2F device with an AppId
https://privacyidea.example.com and
try to authenticate at https://10.0.0.1, the U2F authentication will fail.

Note

The AppId must not contain any trailing slashes!

4.4.3.6.2. Facets

If specifying the AppId as the FQDN you will only be able to authenticate at
the privacyIDEA server itself or at any application in a sub directory on the
privacyIDEA server. This is OK, if you are running a SAML IdP on the same
server.

But if you also want to use the U2F token with other applications, you need
to specify the AppId like this:

https://privacyidea.example.com/pi-url/ttype/u2f

pi-url is the path, if you are running the privacyIDEA instance in a sub
folder.

/ttype/u2f is the endpoint that returns a trusted facets list.
Trusted facets are other hosts in the domain example.com. You need to
define a policy that contains a list of the other hosts
(u2f_facets).

For more information on AppId and trusted facets see [1].

For further details and for information how to add U2F to your application you
can see the code documentation at
U2F Token.

4.4.3.6.3. Workflow

You can use a U2F token on privacyIDEA and other hosts in the same Domain. To
do so you need to do the following steps:

	Configure the AppId to reflect your privacyIDEA server:

https://pi.your-network.com/ttype/u2f

Add the path /ttype/u2f is crucial. Otherwise privacyIDEA will not
return the trusted facets.

	Define a policy with the list of trusted facets. (see
u2f_facets). Add the FQDNs of the hosts to the policy:

saml.your-network.com otherapp.your-network.com vpn.your-network.com

Note

The privacyIDEA plugin for simpleSAMLphp supports U2F with
privacyIDEA starting with version 2.8.

	Now register a U2F token on https://pi.your-network.com. Due to the trusted
facets you will also be able to use this U2F token on the other hosts.

	Now got to https://saml.your-network.com and you will be able to authenticate
with the very U2F token without any further registering.

Footnotes

	[1]	(1, 2) https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-appid-and-facets.html

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.7. Yubico Cloud mode

The Yubico Cloud mode sends the One Time Password emitted by the yubikey to
the Yubico Cloud service or another (possibly self hosted) validation server.

[image: ../../_images/yubico.png]
Configure the Yubico Cloud mode

To contact the Yubico Cloud service you need to get an API key and a Client
ID from Yubico and enter these here in the config dialog. In that case you
can leave the Yubico URL blank and privacyidea will use the Yubico servers.

You can use another validation host, e.g. a self hosted validation server.
If you use privacyidea token type yubikey, you can use the URL
https://<privacyideaserver>/ttype/yubikey, other validation servers might
use https://<validationserver>/wsapi/2.0/verify. You’ll get the Client ID
and API key from the configuration of your validation server.

You can get your own API key at [1].

	[1]	https://upgrade.yubico.com/getapikey/.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

 	4.4. Tokens »

4.4.3.8. Yubikey AES mode

The Yubico AES mode uses the same kind of token as the Yubico Cloud service,
but validates the OTP in your local privacyidea server. So the secrets
stay local to your system and are not stored in Yubico’s Cloud service.

[image: ../../_images/yubikey.png]
Configure the Yubikey AES mode

You can have more than one Client with a Client ID connect to your server.
The Client ID starts with yubikey.apiid. and is followed by the API ID,
which you’ll need to configure your clients.
With create new API key you generate a new API for that specific
Client ID. The API key is used to sign the validation request sent to the
server and the server signs the answer too. That way tampering or
MITM attacks might be detected. It is possible to validate token without
the API key, but then the request and answer can’t be verify against
the key. It is useful to use HTTPS for your validation requests, but
this is another kind of protection.

OTP validation can either use the privacyidea API /validate/check or
the Yubikey validation protocol /ttype/yubikey or - if enabled in
your webserver configuration - /wsapi/2.0/verify.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.5. CA Connectors

You can use privacyIDEA to enroll certificates and assign certificates to users.

You can define connections to Certifacte Authorities, that are used when
enrolling certificates.

[image: ../_images/CA-connectors.png]
A local CA definition

When you enroll a Token of type certificate the Certificate Signing Request
gets signed by one of the CAs attached to privacyIDEA by the CA connectors.

The first CA connector that ships with privacyIDEA is a connector to a local
openSSL based Certificate Authority as shown in figure A local CA definition.

When enrolling a certificate token you can choose, which CA should sign the
certificate request.

[image: ../_images/enroll-cert.png]
Enrolling a certificate token

4.5.1. Local CA Connector

The local CA connector calls a local openssl configuration.

Starting with privacyIDEA version 2.12 an example openssl.cnf is provided in
/etc/privacyidea/CA/openssl.cnf.

Note

This configuration and also this
description is ment to be as an example. When setting up a productive CA, you
should ask a PKI consultant for assistance.

4.5.1.1. Manual Setup

	Modify the parameters in the file /etc/privacyidea/CA/openssl.cnf according
to your needs.

	Create your CA certificate:

openssl req -days 1500 -new -x509 -keyout /etc/privacyidea/CA/ca.key \
 -out /etc/privacyidea/CA/ca.crt \
 -config /etc/privacyidea/CA/openssl.cnf

chmod 0600 /etc/privacyidea/CA/ca.key
touch /etc/privacyidea/CA/index.txt
echo 01 > /etc/privacyidea/CA/serial
chown -R privacyidea /etc/privacyIDEA/CA

	Now set up a local CA connector within privacyIDEA with the directory
/etc/privacyidea/CA and the files accordingly.

4.5.1.2. Easy Setup

Starting with privacyIDEA version 2.18 it gets easier to setup local CAs.

You can use the pi-manage tool to setup a new CA like this:

pi-manage ca create myCA

This will ask you for all necessary parameters for the CA and then automatically

	Create the files for this new CA and

	Create the CA connector in privacyIDEA.

4.5.1.3. Management

There are different ways to enroll a certificate token. See Certificates.

When an administrator revokes a certificate token, the certificate is
revoked and a CRL is created.

Note

privacyIDEA does not create the CRL regularly. The CRL usually has a
validity period of 30 days. I.e. you need to create the CRL on a regular
basis. You can use openssl to do so or the pi-manage command.

Starting with version 2.18 the pi-manage command has an additional
sub-command ca:

pi-manage ca list

lists all configured CA connectors. You can use the -v switch to get more
information.

You can create a new CRL with the command:

pi-manage ca create_crl <CA name>

This command will check the overlap period and only create a new CRL if it
is necessary. If you want to force the creation of the CRL, you can use the
switch -f.

For more information on pi-manage see The pi-manage Script.

4.5.1.4. Templates

The local CA supports a kind of certificate templates. These “templates”
are predefined combinations of extensions and validity days, as they are
passed to openssl via the parameters -extensions and -days.

This way the administrator can define certificate templates with certain
X.509 extensions like keyUsage, extendedKeyUsage, CDPs or AIAs and
certificate validity periods.

The extensions are defined in YAML file and the location of this file is
added to the CA connector definition.

The file can look like this, defining three templates “user”, “webserver” and
“template3”:

	user:

	days: 365
extensions: “user”

	webserver:

	days: 750
extensions: “server”

	template3:

	days: 10
extensions: “user”

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.6. SMTP server configuration

Starting with privacyIDEA 2.10 you can define SMTP server configurations.
SMTP server endpoints.

An SMTP server configuration contains the

	server as FQDN or IP address,

	the port,

	the sender email address,

	a username and password in case of authentication and

	a TLS flag.

Each SMTP server configuration is address via a unique identifier.
You can then use such a configuration for Email or SMS token, for PIN
handling or for User registration.

Under Config->Sytem->SMTP servers you can get a list of all configured SMTP
servers, create new server definitions and delete them.

[image: ../_images/smtp_server_list.png]
The list of SMTP servers.

Using the unique identifier like themis you can use this SMTP server
definition in e.g. a policy for user registraion.

[image: ../_images/smtp-server-edit.png]
Edit an existing SMTP server definition.

In the edit dialog you can enter all necessary attributes to talk to the SMTP
server. You can also send a test email, to verify if your settings are correct.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.7. SMS Gateway configuration

You can centrally define SMS gateways that can be used to send SMS with the
SMS token (SMS OTP Token) or to use the SMS gateway for sending
notifications.

There are different providers (gateways) to deliver SMS.

4.7.1. HTTP provider

The HTTP provider can be used for any SMS gateway that provides a simple
HTTP POST or GET request. This is the most commonly used provider.
Each provider type defines its own set of parameters.

The following parameters can be used. These are parameters, that define the
behaviour of the SMS Gateway definition.

URL

This is the URL for the gateway.

HTTP_METHOD

Can be GET or POST.

USERNAME and PASSWORD

These are the username and the password if the HTTP request requires
basic authentication.

RETURN_SUCCESS

You can either use RETURN_SUCCESS or RETURN_FAIL.
If the text of RETURN_SUCCESS is found in the HTTP response
of the gateway privacyIDEA assumes that the SMS was sent successfully.

RETURN_FAIL

If the text of RETURN_FAIL is found in the HTTP response
of the gateway privacyIDEA assumes that the SMS could not be sent
and an error occurred.

PROXY

You can specify a proxy to connect to the HTTP gateway.

PARAMETER

This can contain a dictionary of arbitrary fixed additional
parameters. Usually this would also contain an ID or a password
to identify you as a sender.

CHECK_SSL

If the URL is secured via TLS (HTTPS), you can select, if the
certificate should be verified or not.

TIMEOUT

The timeout for contacting the API and receiving a response.

4.7.1.1. Options

You can define additional options. These are sent as parameters in the GET or
POST request.

Note

The fixed parameters and the options can not have the same name! If
you need an options, that has the same name as a parameter, you must not
fill in the corresponding parameter.

Note

You can use the tags {phone} and {otp} to specify the mobile
number and the otp value.

4.7.1.2. Examples

4.7.1.2.1. Clickatell

In case of the Clickatell provider the configuration will look like this:

	URL: http://api.clickatell.com/http/sendmsg

	HTTP_METHOD: GET

	RETURN_SUCCESS: ID

Set the additional options to be passed as HTTP GET parameters:

	user: YOU

	password: your password

	api_id: you API ID

	text: “Your OTP value is {otp}”

	to: {phone}

This will consturct an HTTP GET request like this:

http://api.clickatell.com/http/sendmsg?user=YOU&password=YOU&\
 api_id=YOUR API ID&text=....&to=....

where text and to will contain the OTP value and the mobile
phone number. privacyIDEA will assume a successful sent SMS if the
response contains the text “ID”.

4.7.1.2.2. GTX-Messaging

GTX-Messaging is an SMS Gateway located in Germany.

The configuration looks like this (see [2]):

	URL: https://http.gtx-messaging.net/smsc.php

	HTTP_METHOD: GET

	CHECK_SSL: yes

	RETURN_SUCCESS: 200 OK

You need to set the additional options:

	user: <your account>

	pass: <the account password>

	to: {phone}

	text: Your OTP value is {otp}.

Note

The user and pass are not the credentials you use to login.
You can find the required credentials for sending SMS in your GTX
messaging account when viewing the details of your routing account.

4.7.1.2.3. Twilio

You can also use the Twilio service for sending SMS. [1].

	URL: https://api.twilio.com/2010-04-01/Accounts/B...8/Messages

	HTTP_METHOD: POST

For basic authentication you need:

	USERNAME: your accountSid

	PASSWORD: your password

Set the additional options as POST parameters:

	From: your Twilio phone number

	Body: {otp}

	To: {phone}

4.7.2. Sipgate provider

The sipgate provider connects to https://samurai.sipgate.net/RPC2 and takes only
two arguments USERNAME and PASSWORD.

Parameters:

USERNAME

The sipgate username.

PASSWORD

The sipgate password.

PROXY

You can specify a proxy to connect to the HTTP gateway.

It takes not options.

If you activate debug log level you will see the submitted SMS and the response
content from the Sipgate gateway.

4.7.3. SMTP provider

The SMTP provider sends an email to an email gateway. This is a specified,
fixed mail address.

The mail should contain the phone number and the OTP value. The email gateway
will send the OTP via SMS to the given phone number.

SMTPIDENTIFIED

Here you can select on of your centrally defined SMTP servers.

MAILTO

This is the address where the email with the OTP value will be sent.
Usually this is a fixed email address provided by your SMTP Gateway
provider. But you can also use the tags {phone} and {otp} to
replace the phone number or the one time password.

SUBJECT

This is the subject of the email to be sent.
You can use the tags {phone} and {otp} to
replace the phone number or the one time password.

BODY

This is the body of the email. You can use this to explain the user, what
he should do with this email.
You can use the tags {phone} and {otp} to
replace the phone number or the one time password.

The default SUBJECT is set to {phone} and the default BODY to {otp}.
You may change the SUBJECT and the BODY accordingly.

	[1]	https://www.twilio.com/docs/api/rest/sending-messages

	[2]	https://www.gtx-messaging.com/de/api-docs/http/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	4. Configuration »

4.8. privacyIDEA setup tool

privacyIDEA comes with a graphical setup tool
to manage your token administrators and RADIUS clients.
Thus you will get a kind of appliance experience.
To install all necessary components read appliance.

To configure the system, login as the user root on your machine and
run the command:

privacyidea-setup

This will bring you to this start screen.

[image: ../_images/start-screen.png]
Start screen of the appliance setup tool.

You can configure privacyidea settings, the log level, administrators, encryption key and
much more. You can configure the webserver settings and RADIUS clients.

[image: ../_images/configure-privacyidea.png]
Configure privacyidea

[image: ../_images/manage-admins.png]
You can create new token administrators, delete them and change
their passwords.

[image: ../_images/manage-radius-clients.png]
In the FreeRADIUS settings you can create and delete RADIUS
clients.

All changes done in this setup tool are directly read from and written to the
corresponding configuration files. The setup tool parses the original nginx
and freeradius configuration files. So there is no additional place where this
data is kept.

Note

You can also edit the clients.conf and other configuration files
manually. The setup tool will also read those manual changes!

4.8.1. Backup and Restore

Starting with version 1.5 the setup tool also supports backup and
restore. Backups are written to the directory /var/lib/privacyidea/backup.

The backup contains all privacyIDEA configuration, the contents of
the directory /etc/privacyidea, the encryption key, the configured
administrators, the complete token database (MySQL) and Audit log.
Furthermore if you are running FreeRADIUS the backup also contains
the /etc/freeradius/clients.conf file.

[image: ../_images/backup1.png]

4.8.1.1. Schedulded backup

At the configuration point Configure Backup you can define times
when a scheduled backup should be performed. This information is
written to the file /etc/crontab.

[image: ../_images/backup2.png]
Scheduled backup

You can enter minutes, hours, day of month, month and day of week.
If the entry should be valid for each e.g. month or hour, you need
to enter a ‘*’.

In this example the 10 17 * * * (minute=10, hour=17)
means to perform a backup each day
and each month at 17:10 (5:10pm).

The example 1 10 1 * * (minute=1, hour=10, day of month=1) means
to perform a backup on the first day of each month at 10:01 am.

Thus you could also perform backups only once a week at the weekend.

4.8.1.2. Immediate backup

If you want to run a backup right now you can choose the entry
Backup now.

4.8.1.3. Restore

The entry View Backups will list all the backups available.

[image: ../_images/backup3.png]
All available backups

You can select a backup and you are asked if you want to restore the data.

Warning

Existing data is overwritten and will be lost.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

5. Components

Starting with privacyIDEA 2.15 you can see privacyIDEA components in the Web UI.
privacyIDEA collects authenticating clients with their User Agent. Usually
this is a type like PAM, FreeRADIUS, OTRS, Wordpress...
This overview helps you to understand your network and keep track which clients
are connected to your network.

[image: ../_images/components.png]
components

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

6. Tokenview

The administrator can see all the tokens of all realms he is allowed to manage in the
tokenview. Each token can be located in several realms and be assigned to one
user. The administrator can see all the details of the token.

[image: ../_images/token-view.png]
Token View

The administrator can click on one token, to show more details of this token
and to perform actions on this token.

6.1. Token Details

The Token Details give you more information about the token and also let the
administrator perform specific tasks for this token.

[image: ../_images/token-detail.png]
Token Detail

At the bottom you see the assigned user. You can click on the username and
change to the User Details.

6.1.1. Lost token

When a user has lost a token, the administrator or the user can create a
temporary password token for the user to login.

The administrator has to select the token that was lost and click the button
Lost token. A new token of type PW is generated. The OTP PIN of the
old token is automatically copied to the new token. Thus the administrator
does not know the OTP PIN, while the user can use his old PIN.

A long password is displayed to the administrator and the administrator
can read this password to the user. The user now can authenticate
with his old OTP PIN and the long password.

The lost token is deactivated.

6.1.2. Get Serial

The administrator can enter a OTP value that was generated by an unknown token.
Then the serial number for the corresponding token is search and displayed.

Note

Since OTP values for all matching tokens need to be calculated,
this can be time consuming!

6.1.3. Token settings

You can change the following token settings.

MaxFail and FailCount

If the login fail counter reaches the MaxFail the user can not login
with this token anymore. The Failcounter FailCount has to be reset
to zero.

TokenDesc

The token description is also displayed in the tokenview. You can
set a description to make it easier to identify a token.

CountWindow

The CountWindow is the look ahead window of event based tokens.
If the user pressed the button on an event based token the counter
in the token is increased. If the user does not use this otp value
to authenticate, the server does not know, that the counter in the
token was increased.
This way the counter in the token can get
out of sync with the server.

SyncWindow

If a token was out of sync (see CountWindow), then it needs to
be synchronized. This is done by entering two consecutive OTP values.
The server searches these two values within the next CountWindow
(default 1000) values.

OtpLen

This is the length of the OTP value that is generated by the token.
The password that is entered by the user is split according to
this length. 6 or 8 characters are split as OTP value and the
rest is used as static password (OTP PIN).

Hashlib

The HOTP algorithm can be used with SHA1 or SHA256.

Tokeninfo - Auth max

The administrator can set a value how often this token
may be used for authentication. If the number of authentication
try exceed this value, the token can not be used, until this
Auth max value is increased.

Note

This way you could create tokens, that can be used only once.

Tokeninfo - Auth max success

The administrator can set a value how often this token
may be used to successfully authenticate.

Tokeninfo - Valid start

A timestamp can be set. The token will only be usable for authentication
after this start time.

Tokeninfo - Valid end

A timestamp can be set. The token can only be used before this end time.

Note

This way you can create temporary tokens for guests or
short time or season employees.

6.1.4. Resync Token

The administrator can select one token and then enter two consecutive
OTP values to resynchonize the token if it was out of sync.

6.1.5. set token realm

A token can be assigned to several realms. This is important if you
have administrators for different realms.
A realm administrator is only allowed to see tokens within his realms.
He will not see tokens, that are not in his realm.
So you can assign a token to realm A and realm B, thus the administrator A
and the administrator B will be able to see the token.

6.1.6. get OTP

If the corresponding getOTP policy (Policies) is set, the administrator
can get the OTP values of a token from the server without having the token
with him.

Note

Of course this is a potential backdoor, since the administrator
could login as the user/owner of this very token.

6.1.7. enroll

You can enroll a token either from the Token View or from the
User Details. When enrolling a token from the User Details the token
is directly assigned to the user.

If you enroll the token from the token view, you can select a user, to whom
the token will be assigned.

When enrolling a token, you can select the token type and according to the
token type other necessary information.

[image: ../_images/token-enroll.png]
Token enrollment dialog

6.1.8. assign

This function is used to assign a token to a user.
Select a realm and start typing a username to find the user, to whom the
token should be assigned.

6.1.9. unassign

In the token details view you can unassign the token. After that, the token
can be assigned to a new user.

6.1.10. enable

If a token is disabled, it can be enabled again.

6.1.11. disable

Tokens can be disabled. Disabled tokens still belong to the assigned user
but those tokens can not be used to authenticate. Disabled tokens can
be enabled again.

6.1.12. set PIN

You can set the OTP PIN or the mOTP PIN for tokens.

6.1.13. Reset Failcounter

If a used locked his token, since he entered wrong OTP values or
wrong OTP PINs, the fail counter has reached the mail failcount.
The administrator or help desk user can select those tokens and
click the button reset failcounter to reset the fail counter
to zero.
The tokens can be used for authentication again.

6.1.14. delete

Deleting a token will remove the
token from the database.
The token information can not be recovered. But all events that
occurred with this token still remain in the audit log.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

7. Userview

The administrator can see all users in realms he is allowed
to manage.

Note

Users are only visible, if the useridresolver is located
within a realm. If you only define a useridresolver but no realm,
you will not be able to see the users!

You can select one of the realms in the left drop down box. The administrator
will only see the realms in the drop down box, that he is allowed to manage.
(TODO) No migrated, yet.

[image: ../_images/user-view.png]
User View. List all users in a realm.

The list shows the users from the select realm. The username, surname,
given name, email and phone are filled according to the definition of
the useridresolver.

Even if a realm contains several useridresolvers all users from all
resolvers within this realm are displayed.

	7.1. User Details

	7.2. Manage Users

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	7. Userview »

7.1. User Details

When clicking on a username, you can see the users details and perform
several actions on the user.

[image: ../_images/user-detail.png]
User Details.

You see a list of the users tokens and change to the Token Details.

7.1.1. Enroll tokens

In the users details view you can enroll additional tokens to the user. In
the enrollment dialog the user will be selected and you only need to choose
what tokentype you wish to enroll for this user.

7.1.2. Assign tokens

You can assign a new, already existing token to the user. Just start typing
the token serial number. The system will search for tokens, that are not
assigned yet and present you a list to choose from.

7.1.3. View Audit Log

You can also click View user in Audit log which will take you to the
Audit log with a filter on this very user, so that you will only see
audit entries regarding this user.

7.1.4. Edit user

If the user is located in a resolver, that is marked as editable, the
administrator will also see a button “Edit User”. To read more about this,
see Manage Users.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	7. Userview »

7.2. Manage Users

Since version 2.4 privacyIDEA allows you to edit users in the configured
resolvers. At the moment this is possible for SQL resolvers.

In the resolver definition you need to check the new checkbox Edit user
store.

[image: ../_images/edit_user_store.png]
Users in SQL can be edited, when checking the checkbox.

In the Users Detail view, the administrator then can click the button “Edit”
and modify the user data and also set a new password.

[image: ../_images/user_edit.png]
Edit the attributes of an existing user.

Note

The data of the user will be modified in the user store (database).
Thus the users data, which will be returned by a resolver, is changed. If the
resolver is contained in several realms these changes will reflect in all
realms.

If you want to add a user, you can click on Add User in the User View.

[image: ../_images/user_add.png]
Add a new user.

Users are contained in resolvers and added to resolvers.
So you need to choose an existing
resolver and not a realm. The user will be visible in all realms, the
resolver is contained in.

Note

Of course you can set policies to allow or deny the administrator
these rights.

7.2.1. Simple local users setup

You can setup a local users definition quite easily. Run:

pi-manage resolver create_internal test

This will create a database table “users_test” in your token database. And it
will create a resolver “test” that refers to this database table.

Then you can add this resolver to realm:

pi-manage realm create internal_realm test

Which will create a realm “internal_realm” containing the resolver “test”.
Now you can start adding users to this resolver as described above.

Note

This is an example of how to get started with users quite quickly.
Of course you do not need to save the users table in the same database as
the tokens. But in scenarios, where you do not have existing user stores or
the user stores are managed by another department or are not accessible
easily this may be sensible way.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

8. Policies

Policies can be used to define the reaction and behaviour of the system.

Each policy defines the behaviour in a certain area, called scope.
privacyIDEA knows the scopes:

	8.1. Admin policies

	8.2. User Policies

	8.3. Authentication policies

	8.4. Authorization policies

	8.5. Enrollment policies

	8.6. WebUI Policies

	8.7. Gettoken policies

	8.8. Register Policy

You can define as many policies as you wish to.
The logic of the policies in the scopes is additive.

[image: ../_images/policies.png]
Policy Definition

Starting with privacyIDEA 2.5 you can use policy templates to ease the setup.

	8.9. Policy Templates

Each policy can contain the following attributes:

policy name

A unique name of the policy. The name is the identifier of
the policy. If you create a new policy with the same name,
the policy is overwritten.

scope

The scope of the policy as described above.

action

This is the important part of the policy.
Each scope provides its own
set of actions.
An action describes that something is allowed or
that some behaviour is configured.
A policy can contain several actions.
Actions can be of type boolean, string or integer.
Boolean actions are enabled by just adding this action - like
scope=user:action=disable, which allows the user to disable his own
tokens.
string and integer actions require an additional value - like
scope=authentication:action='otppin=userstore'.

user

This is the user, for whom this policy is valid. Depending on the scope
the user is either an administrator or a normal authenticating user.

If this field is left blank, this policy is valid for all users.

resolver

This policy will be valid for all users in this resolver.

If this field is left blank, this policy is valid for all resolvers.

Note

Starting with version 2.17 you can use the parameter
check_all_resolvers. This is Check all possible resolvers
of a user to match the resolver in this policy in the Web UI.

Assume a user user@realm1 is contained in resolver1 and resolver2
in the realm realm1, where resolver1 is the resolver with the
highest priority. If the user authenticates as user@realm1, only
policies for resolver1 will match, since the user is identified as
user.resolver1@realm1.

If you also want to match a policy with resolver=resolver2, you need
to select Check all possible resolvers in this policy. Thus this
policy will match for all users, which are als contained in resolver2
as a secondary resolver.

realm

This is the realm, for which this policy is valid.

If this field is left blank, this policy is valid for all realms.

client

This is the requesting client, for which this action is valid.
I.e. you can define different policies if the user access is
allowed to manage his tokens from different IP addresses like the internal
network or remotely via the firewall.

You can enter several IP addresses or subnets divided by comma
(like 10.2.0.0/16, 192.168.0.1).

time

(added in privacyIDEA 2.12)

In the time field of a policy you can define a list of time ranges. A time
range can consist of day of weeks (dow) and of times in 24h format.
Possible values are:

<dow>: <hh>-<hh>
<dow>: <hh:mm>-<hh:mm>
<dow>-<dow>: <hh:mm>-<hh:mm>

You may use any combination of these. Like:

Mon-Fri: 8-18

to define certain policies to be active throughout working hours.

Note

If the time of a policy does not match, the policy is not found.
Thus you can get effects you did not plan. So think at least twice before
using time restricted policies.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.1. Admin policies

Admin policies are used to regulate the actions that administrators are
allowed to do.
Technically admin policies control the use of the REST
API Token endpoints, System endpoints, Realm endpoints and
Resolver endpoints.

Admin policies are implemented as decorators in Policy Module and
Policy Decorators.

The user in the admin policies refers to the name of the administrator.

Starting with privacyIDEA 2.4 admin policies can also store a field “admin
realm”. This is used, if you define realms to be superuser realms. See
The Config File for information how to do this. Read So what’s the thing with all the admins? for
more information on the admin realms.

This way it is easy to define administrative rights for big groups of
administrative users like help desk users in the IT department.

[image: ../_images/admin_policies.png]
Admin scope provides and additional field ‘admin realm’.

All administrative actions also refer to the defined user realm. Meaning
an administrator may have many rights in one user realm and only a few
rights in another realm.

Creating a policy with scope:admin, admin-realm:helpdesk,
user:frank, action:enable and realm:sales
means that the administrator frank in the admin-realm helpdesk is allowed
to enable tokens in the user-realm sales.

Note

As long as no admin policy is defined all administrators
are allowed to do everything.

The following actions are available in the scope
admin:

8.1.1. init

type: bool

There are init actions per token type. Thus you can
create policy that allow an administrator to enroll
SMS tokens but not to enroll HMAC tokens.

8.1.2. enable

type: bool

The enable action allows the administrator to activate
disabled tokens.

8.1.3. disable

type: bool

Tokens can be enabled and disabled. Disabled tokens can not be
used to authenticate. The disable action allows the
administrator to disable tokens.

8.1.4. revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked.
A locked token can not be modified anymore. It can only be deleted.

Certain token types like certificate may define special actions when
revoking a token.

8.1.5. set

type: bool

Tokens can have additional token information, which can be
viewed in the Token Details.

If the set action is defined, the administrator allowed
to set those token information.

8.1.6. setpin

type: bool

If the setpin action is defined, the administrator
is allowed to set the OTP PIN of a token.

8.1.7. enrollpin

type: bool

If the action enrollpin is defined, the administrator
can set a token PIN during enrollment. If the action is not defined and
the administrator tries to set a PIN during enrollment, this PIN is deleted
from the request.

8.1.8. otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the admin is allowed to
use when setting the OTP PIN.

Note

There can be token type specific policies like

spass_otp_pin_maxlength, spass_otp_pin_minlength and
spass_otp_pin_contents. If suche a token specific policy exists, it takes
priority of the common PIN policy.

8.1.9. otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the admin must use when setting the
OTP PIN.

8.1.10. otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the admin
sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [.:,;-_<>+*!/()=?$§%&#~^].

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would
require the admin to choose OTP PINs that consist of letters and digits
which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would
not be a valid OTP PIN.

The logic of the otp_pin_contents can be enhanced and reversed using the
characters + and -.

-cn would still mean, that the OTP PIN needs to contain letters and digits
and it must not contain any other characters.

-cn (substraction)

test1234 would be a valid OTP PIN, but test12$$ and testABCS would
not be valid OTP PINs. The later since it does not contain digits, the first
(test12$$) since it does contain a special character ($), which it should not.

+cn (grouping)

combines the two required groups. I.e. the OTP PIN should contain
characters from the sum of the two groups.
test1234, test12$$, test
and 1234 would all be valid OTP PINs.

8.1.11. resync

type: bool

If the resync action is defined, the administrator is
allowed to resynchronize a token.

8.1.12. assign

type: bool

If the assign action is defined, the administrator is
allowed to assign a token to a user. This is used for
assigning an existing token to a user but also to
enroll a new token to a user.

Without this action, the administrator can not create
a connection (assignment) between a user and a token.

8.1.13. unassign

type: bool

If the unassign action is defined, the administrator
is allowed to unassign tokens from a user. I.e. the
administrator can remove the link between the token
and the user. The token still continues to exist in the system.

8.1.14. import

type: bool

If the import action is defined, the administrator is
allowed to import token seeds from a token file, thus
creating many new token objects in the systems database.

8.1.15. remove

type: bool

If the remove action is defined, the administrator is
allowed to delete a token from the system.

Note

If a token is removed, it can not be recovered.

Note

All audit entries of this token still exist in the audit log.

8.1.16. userlist

type: bool

If the userlist action is defined, the administrator is
allowed to view the user list in a realm.
An administrator might not be allowed to list the users, if
he should only work with tokens, but not see all users at once.

Note

If an administrator has any right in a realm, the administrator
is also allowed to view the token list.

8.1.17. checkstatus

type: bool

If the checkstatus action is defined, the administrator is
allowed to check the status of open challenge requests.

8.1.18. manageToken

type: bool

If the manageToken action is defined, the administrator is allowed
to manage the realms of a token.

A token may be located in multiple realms. This can be interesting if
you have a pool of spare tokens and several realms but want to
make the spare tokens available to several realm administrators.
(Administrators, who have only rights in one realm)

Then all administrators can see these tokens and assign the tokens.
But as soon as the token is assigned to a user in one realm, the
administrator of another realm can not manage the token anymore.

8.1.19. getserial

type: bool

If the getserial action is defined, the administrator is
allowed to calculate the token serial number for a given OTP
value.

8.1.20. getrandom

type: bool

The getrandom action allows the administrator to retrieve random
keys from the endpoint getrandom. This is an endpoint in System endpoints.

getrandom can be used by the client, if the client has no reliable random
number generator. Creating API keys for the Yubico Validation Protocol uses
this endpoint.

8.1.21. getchallenges

type: bool

This policy allows the administrator to retrieve a list of active challenges
of a challenge response tokens. The administrator can view these challenges
in the web UI.

8.1.22. losttoken

type: bool

If the losttoken action is defined, the administrator is
allowed to perform the lost token process.

To only perform the lost token process the actions copytokenuser
and copytokenpin are not necessary!

8.1.23. adduser

type: bool

If the adduser action is defined, the administrator is allowed to add
users to a user store.

Note

The user store still must be defined as editable, otherwise no
users can be added, edited or deleted.

8.1.24. updateuser

type: bool

If the updateuser action is defined, the administrator is allowed to edit
users in the user store.

8.1.25. deleteuser

type: bool

If the deleteuser action is defined, the administrator is allowed to
delete an existing user from the user store.

8.1.26. copytokenuser

type: bool

If the copytokenuser action is defined, the administrator is
allowed to copy the user assignment of one token to another.

This functionality is also used during the lost token process.
But you only need to define this action, if the administrator
should be able to perform this task manually.

8.1.27. copytokenpin

type: bool

If the copytokenpin action is defined, the administrator is
allowed to copy the OTP PIN from one token to another without
knowing the PIN.

This functionality is also used during the lost token process.
But you only need to define this action, if the administrator
should be able to perform this task manually.

8.1.28. smtpserver_write

type: bool

To be able to define new SMTP server configuration or delete existing ones, the
administrator needs this rights smtpserver_write.

8.1.29. eventhandling_write

type: bool

Allow the admiinstrator to configure Event Handler.

8.1.30. auditlog

type: bool

The administrators are allowed to view the audit log. If the policy contains
a user realm, than the administrator is only allowed to see entries which
contain this very user realm. A list of user realms may be defined.

To learn more about the audit log, see Audit.

8.1.31. auditlog_download

type: bool

The administrator is allowed to download the audit log.

Note

The download is not restricted to filters and audit age.
Thus, if you want to avoid, that an administrator can see older
logs, you need to disallow downloading the data. Otherwise he
may download the audit log and look at older entries manually.

8.1.32. auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not
remove from the audit table but the administrator is simply not allowed to
view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

8.1.33. trigger_challenge

type: bool

If set the administrator is allowed to call the API
/validate/triggerchallenge. This API can be used to send an OTP SMS to
user without having specified the PIN of the SMS token.

The usual setup that one administrative account has only this single policy
and is only used for triggering challenges.

New in version 2.17.

8.1.34. hotp_2step and totp_2step

type: string

This allows or forces the administrator to enroll a smartphone based token in two steps.
In the second step the smartphone generates a part of the OTP secret, which the administrator
needs to enter. (see Two Step Enrollment).
Possible values are allow and force.
This works in conjunction with the enrollment parameters {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

Such a policy can also be set for the user. See hotp_2step and totp_2step.

New in version 2.21

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.2. User Policies

In the Web UI users can manage their own tokens.
User can login to the Web UI with the username of their
useridresolver. I.e. if a user is found in an LDAP resolver pointing
to Active Directory the user needs to login with his domain
password.

User policies are used to define, which actions users are
allowed to perform.

The user policies also respect the client input, where you
can enter a list of IP addresses and subnets (like 10.2.0.0/16).

Using the client parameter you can allow different actions in
if the user either logs in from the internal network
or remotely from the internet via the firewall.

Technically user policies control the use of the REST API
Token endpoints and are checked using Policy Module and
Policy Decorators.

Note

If no user policy is defined, the user has
all actions available to him, to manage his tokens.

The following actions are available in the scope
user:

8.2.1. enroll

type: bool

There are enroll actions per token type. Thus you can
create policies that allow the user to enroll
SMS tokens but not to enroll HMAC tokens.

8.2.2. assgin

type: bool

The user is allowed to assgin an existing token, that is
located in his realm and that does not belong to any other user,
by entering the serial number.

8.2.3. disable

type: bool

The user is allowed to disable his own tokens.
Disabled tokens can not be used to authenticate.

8.2.4. enable

type: bool

The user is allowed to enable his own tokens.

8.2.5. delete

type: bool

The user is allowed to delete his own tokens from the database.
Those tokens can not be recovered. Anyway, the audit log concerning
these tokens remains.

8.2.6. unassign

type: bool

The user is allowed to drop his ownership of the token.
The token does not belong to any user anymore and can be
reassigned.

8.2.7. resync

type: bool

The user is allowed to resynchronize the token if it has got out
of synchronization.

8.2.8. reset

type: bool

The user is allowed to reset the failcounter of the token.

8.2.9. setpin

type: bool

The user ist allowed to set the OTP PIN for his tokens.

8.2.10. enrollpin

type: bool

If the action enrollpin is defined, the user
can set a token PIN during enrollment. If the action is not defined and
the user tries to set a PIN during enrollment, this PIN is deleted
from the request.

8.2.11. otp_pin_maxlength

type: integer

range: 0 - 31

This is the maximum allowed PIN length the user is allowed to
use when setting the OTP PIN.

Note

There can be token type specific policies like

spass_otp_pin_maxlength, spass_otp_pin_minlength and
spass_otp_pin_contents. If suche a token specific policy exists, it takes
priority of the common PIN policy.

8.2.12. otp_pin_minlength

type: integer

range: 0 - 31

This is the minimum required PIN the user must use when setting the
OTP PIN.

8.2.13. otp_pin_contents

type: string

contents: cns

This defines what characters an OTP PIN should contain when the user
sets it.

c are letters matching [a-zA-Z].

n are digits matching [0-9].

s are special characters matching [.:,;-_<>+*!/()=?$§%&#~^].

Example: The policy action otp_pin_contents=cn, otp_pin_minlength=8 would
require the user to choose OTP PINs that consist of letters and digits
which have a minimum length of 8.

cn

test1234 and test12$$ would be valid OTP PINs. testABCD would
not be a valid OTP PIN.

The logic of the otp_pin_contents can be enhanced and reversed using the
characters + and -.

-cn would still mean, that the OTP PIN needs to contain letters and digits
and it must not contain any other characters.

-cn (substraction)

test1234 would be a valid OTP PIN, but test12$$ and testABCS would
not be valid OTP PINs. The later since it does not contain digits, the first
(test12$$) since it does contain a special character ($), which it should not.

+cn (grouping)

combines the two required groups. I.e. the OTP PIN should contain
characters from the sum of the two groups.
test1234, test12$$, test
and 1234 would all be valid OTP PINs.

8.2.14. auditlog

type: bool

This action allows the user to view and search the audit log
for actions with his own tokens.

To learn more about the audit log, see Audit.

8.2.15. auditlog_age

type: string

This limits the maximum age of displayed audit entries. Older entries are not
remove from the audit table but the user is simply not allowed to
view older entries.

Can be something like 10m (10 minutes), 10h (10 hours) or 10d (ten days).

8.2.16. updateuser

type: bool

If the updateuser action is defined, the user is allowed to change his
attributes in the user store.

Note

To be able to edit the attributes, the resolver must be defined as
editable.

8.2.17. revoke

type: bool

Tokens can be revoked. Usually this means the token is disabled and locked.
A locked token can not be modified anymore. It can only be deleted.

Certain token types like certificate may define special actions when
revoking a token.

8.2.18. password_reset

type: bool

Introduced in version 2.10.

If the user is located in an editable user store, this policy can define, if
the user is allowed to perform a password reset. During the password reset an
email with a link to reset the password is sent to the user.

8.2.19. hotp_2step and totp_2step

type: string

This allows or forces the user to enroll a smartphone based token in two steps.
In the second step the smartphone generates a part of the OTP secret, which the user
needs to enter. (see Two Step Enrollment).
Possible values are allow and force.
This works in conjunction with the enrollment parameters {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

Such a policy can also be set for the administrator. See hotp_2step and totp_2step.

New in version 2.21

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.3. Authentication policies

The scope authentication gives you more detailed
possibilities to authenticate the user or to define
what happens during authentication.

Technically the authentication policies apply
to the REST API Validate endpoints and are checked
using Policy Module and
Policy Decorators.

The following actions are available in the scope
authentication:

8.3.1. otppin

type: string

This action defines how the fixed password part during
authentication should be validated.
Each token has its own OTP PIN, but you can choose
how the authentication should be processed:

otppin=tokenpin

This is the default behaviour. The user needs to
pass the OTP PIN concatenated with the OTP value.

otppin=userstore

The user needs to pass the user store password
concatenated with the OTP value. It does not matter
if the OTP PIN is set or not.
If the user is located in an Active Directory the user
needs to pass his domain password together with the
OTP value.

Note

The domain password is checked with an LDAP
bind right at the moment of authentication.
So if the user is locked or the password was
changed authentication will fail.

otppin=none

The user does not have to pass any fixed password.
Authentication is only done via the OTP value.

8.3.2. passthru

type: str

If the user has no token assigned, he will be authenticated
against the userstore or against the given RADIUS configuration.
I.e. the user needs to provide the LDAP- or SQL-password or valid credentials
for the RADIUS server.

Note

This is a good way to do a smooth enrollment.
Users having a token enrolled will have to use the
token, users not having a token, yet, will be able
to authenticate with their domain password.

It is also a way to do smooth migrations from other OTP systems.
The authentication request of users without a token is forwarded to the
specified RADIUS server.

Note

The passthru policy overrides the authorization policy
for tokentype. I.e. a user may authenticate due
to the passthru policy (since he has no token)
although a tokentype policy is active!

Warning

If the user has the right to delete his
tokens in selfservice portal, the user could
delete all his tokens and then authenticate with
his static password again.

8.3.3. passOnNoToken

type: bool

If the user has no token assigned an authentication request
for this user will always be true.

Warning

Only use this if you know exactly what
you are doing.

8.3.4. passOnNoUser

type: bool

If the user does not exist, the authentication request is successful.

Warning

Only use this if you know exactly what you are doing.

8.3.5. smstext

type: string

This is the text that is sent via SMS to the user trying to
authenticate with an SMS token.
You can use the tags <otp> and <serial>.

Starting with version 2.20 you can use the tag {challenge}. This will add
the challenge data that was passed in the first authentication request in the
challenge parameter. This could contain banking transaction data.

Default: <otp>

8.3.6. smsautosend

type: bool

A new OTP value will be sent via SMS if the user authenticated
successfully with his SMS token. Thus the user does not
have to trigger a new SMS when he wants to login again.

8.3.7. emailtext

type: string

This is the text that is sent via Email to be used with Email Token. This
text should contain the OTP value.
You can use the tags <otp> and <serial>.

Starting with version 2.20 you can use the tag {challenge}. This will add
the challenge data that was passed in the first authentication request in the
challenge parameter. This could contain banking transaction data.

Default: <otp>

8.3.8. emailsubject

type: string

This is the subject of the Email sent by the Email Token.
You can use the tags <otp> and <serial>.

Default: Your OTP

8.3.9. emailautosend

type: bool

If set, a new OTP Email will be sent, when successfully authenticated with an
Email Token.

8.3.10. mangle

type: string

The mangle policy can mangle the authentication request data before they
are processed. I.e. the parameters user, pass and realm can be
modified prior to authentication.

This is useful if either information needs to be stripped or added to such a
parameter.
To accomplish that, the mangle policy can do a regular expression search and
replace using the keyword user, pass (password) and realm.

A valid action could look like this:

action: mangle=user/.*(.{4})/user\\1/

This would modify a username like “userwithalongname” to “username”, since it
would use the last four characters of the given username (“name”) and prepend
the fixed string “user”.

This way you can add, remove or modify the contents of the three parameters.
For more information on the regular expressions see [1].

Note

You must escape the backslash as \\ to refer to the found
substrings.

Example: A policy to remove whitespace characters from the realm name would
look like this:

action: mangle=realm/\\s//

Example: If you want to authenticate the user only by the OTP value, no
matter what OTP PIN he enters, a policy might look like this:

action: mangle=pass/.*(.{6})/\\1/

Example: If you want to strip a string from the front of a username, for
example to have “admin_username” resolve to just “username”, it would look like
this:

action: mangle=user/admin_(.*)/\\1/

8.3.11. challenge_response

type: string

This is a list of token types for which challenge response can
be used during authentication. The list is separated by whitespaces like
“hotp totp”.

Note

The TiQR token does not need this setting, since it always works with
challenge response.

8.3.12. u2f_facets

type: string

This is a white space separated list of domain names, that are trusted to
also use a U2F device that was registered with privacyIDEA.

You need to specify a list of FQDNs without the https scheme like:

“host1.example.com host2.exmaple.com firewall.example.com”

For more information on configuring U2F see U2F Token Config.

	[1]	https://docs.python.org/2/library/re.html

8.3.13. reset_all_user_tokens

type: bool

If a user authenticates successfully all failcounter of all of his tokens
will be reset. This can be important, if using empty PINs or otppin=None.

8.3.14. auth_cache

type: string

The Authentication Cache caches the credentials of a successful
authentication and allows to use the same credentials - also with an OTP
value - for the specified amount of time.

The time to cache the credentials can be specified like “4h”, “5m”, “2d”
(hours, minutes days) or “4h/5m”. The notation 4h/5m means, that credentials
are cached for 4 hours, but only may be used again, if every 5 minutes the
authentication occurs. If the authentication with the same credentials would
not occur within 5 minutes, the credentials can not be used anymore.

In future implementations the caching of the credentials could also be
dependent on the clients IP address and the user agent.

Note

The AuthCache only works for user authentication, not for
authentication with serials.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.4. Authorization policies

The scope authorization provides means to define
what should happen if a user proved his identity
and authenticated successfully.

Authorization policies take the realm, the user
and the client into account.

Technically the authorization policies apply
to the Validate endpoints and are checked
using Policy Module and
Policy Decorators.

The following actions are available in the scope
authorization:

8.4.1. tokentype

type: string

Users will only be authorized with this very tokentype.
The string can hold a space separated list of
case sensitive tokentypes. It should look like:

hotp totp spass

This is checked after the authentication request, so that a valid OTP value
is wasted, so that it can not be used, even if the user was not authorized at
this request

Note

Combining this with the client IP
you can use this to allow remote access to
sensitive areas only with one special token type
while allowing access to less sensitive areas
with other token types.

8.4.2. serial

type: string

Users will only be authorized with the serial number.
The string can hold a regular expression as serial
number.

This is checked after the authentication request, so that a valid OTP value
is wasted, so that it can not be used, even if the user was not authorized at
this request

Note

Combining this with the client IP
you can use this to allow remote access to
sensitive areas only with hardware tokens
like the Yubikey, while allowing access
to less secure areas also with a Google
Authenticator.

8.4.3. setrealm

type: string

This policy is checked before the user authenticates.
The realm of the user matching this policy will be set to
the realm in this action.

Note

This can be used if the user can not pass his
realm when authenticating at a certain client, but
the realm needs to be available during authentication
since the user is not located in the default realm.

8.4.4. no_detail_on_success

type: bool

Usually an authentication response returns additional information like the
serial number of the token that was used to authenticate or the reason why
the authentication request failed.

If this action is set and the user authenticated successfully
this additional information will not be returned.

8.4.5. no_detail_on_fail

type: bool

Usually an authentication response returns additional information like the
serial number of the token that was used to authenticate or the reason why
the authentication request failed.

If this action is set and the user fails to authenticate
this additional information will not be returned.

8.4.6. api_key_required

type: bool

This policy is checked before the user is validated.

You can create an API key, that needs to be passed to use the validate API.
If an API key is required, but no key is passed, the authentication request
will not be processed. This is used to avoid denial of service attacks by a
rogue user sending arbitrary requests, which could result in the token of a
user being locked.

You can also define a policy with certain IP addresses without issuing API
keys. This would result in “blocking” those IP addresses from using the
validate endpoint.

You can issue API keys like this:

pi-manage api createtoken -r validate

The API key (Authorization token) which is generated is valid for 365 days.

The authorization token has to be used as described in Authentication endpoints.

8.4.7. auth_max_success

type: string

Here you can specify how many successful authentication requests a user is
allowed to perform during a given time.
If this value is exceeded, the authentication attempt is canceled.

Specify the value like 2/5m meaning 2 successful authentication requests
per 5 minutes. If during the last 5 minutes 2 successful authentications were
performed the authentication request is discarded. The used OTP value is
invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

8.4.8. auth_max_fail

type: string

Here you can specify how many failed authentication requests a user is
allowed to perform during a given time.

If this value is exceeded, authentication is not possible anymore. The user
will have to wait.

If this policy is not defined, the normal behaviour of the failcounter
applies. (see Reset Fail Counter)

Specify the value like 2/1m meaning 2 successful authentication requests
per minute. If during the last 5 minutes 2 successful authentications were
performed the authentication request is discarded. The used OTP value is
invalidated.

Allowed time specifiers are s (second), m (minute) and h (hour).

8.4.9. last_auth

type: string

You can define if an authentication should fail, if the token was not
successfully used for a certain time.

Specify a value like 12h, 123d or 2y to disallow authentication,
if the token was not successfully used for 12 hours, 123 days or 2 years.

The date of the last successful authentication is store in the tokeninfo
field of a token and denoted in UTC.

8.4.10. u2f_req

type: string

Only the specified U2F devices are authorized to authenticate.
The administrator can specify the action like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a
regular expression. During registration of the U2F device the information
from the attestation certificate is stored in the tokeninfo.
Only if the regexp matches this value, the authentication with such U2F
device is authorized.

8.4.11. add_user_in_response

type: bool

In case of a successful authentication additional user information is added
to the response. A dictionary containing user information is added in
detail->user.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.5. Enrollment policies

The scope enrollment defines what happens during enrollment
either by an administrator or during the user self enrollment.

Enrollment policies take the realms, the client (see Policies)
and the user settings into account.

Technically enrollment policies control the use of the
REST API Token endpoints and specially the init and assign-methods.

Technically the decorators in API Policies are used.

The following actions are available in the scope
enrollment:

8.5.1. max_token_per_realm

type: int

This is the maximum allowed number of tokens in the specified realm.

Note

If you have several realms with realm admins and you
imported a pool of hardware tokens you can thus limit the
consumed hardware tokens per realm.

8.5.2. max_token_per_user

type: int

Limit the maximum number of tokens per user in this realm.

Note

If you do not set this action, a user may have
unlimited tokens assigned.

8.5.3. tokenissuer

type: string

This sets the issuer label for a newly enrolled Google Authenticator.
This policy takes a fixed string, to add additional information about the
issuer of the soft token.

Starting with version 2.20 you can use the tags {user}, {realm}, {serial}
and as new tags {givenname} and {surname} in the field issuer.

Note

A good idea is to set this to the instance name of your privacyIDEA
installation or the name of your company.

8.5.4. tokenlabel

type: string

This sets the label for a newly enrolled Google Authenticator.
Possible tags to be replaces are <u> for user, <r> for realm an
<s> for the serial number.

The default behaviour is to use the serial number.

Note

This is useful to identify the token in the Authenticator App.

Note

Starting with version 2.19 the usage of <u>, <s> and <r>
is deprecated. Instead you should use {user}, {realm},
{serial} and as new tags {givenname} and {surname}.

Warning

If you are only using <u> or {user} as tokenlabel and you
enroll the token without a user, this will result in an invalid QR code,
since it will have an empty label.
You should rather use a label like “{user}@{realm}”,
which would result in “@”.

8.5.5. autoassignment

type: string

allowed values: any_pin, userstore

Users can assign a token just by using this token. The user can take
a token from a pool of unassigned tokens. When this policy is set,
and the user has no token assigned, autoassignment will be done:
The user authenticates with a new PIN or his userstore password and an OTP
value from the token.
If the OTP value is correct the token gets assigned to the user and the given
PIN is set as the OTP PIN.

Note

Requirements are:

	The user must have no other tokens assigned.

	The token must be not assigned to any user.

	The token must be located in the realm of the authenticating user.

	(The user needs to enter the correct userstore password)

Warning

If you set the policy to any_pin the token will be assigned to
the user no matter what pin he enters.
In this case assigning the token is only a
one-factor-authentication: the possession of the token.

8.5.6. otp_pin_random

type: int

Generates a random OTP PIN of the given length during enrollment. Thus the user
is forced to set a certain OTP PIN.

Note

To use the random PIN, you also need to define a
pinhandling policy.

8.5.7. pinhandling

type: string

If the otp_pin_random policy is defined, you can use this policy to
define, what should happen with the random pin.
The action value take the class of a PinHandler like
privacyidea.lib.pinhandling.base.PinHandler.
The base PinHandler just logs the PIN to the log file. You can add classes to
send the PIN via EMail or print it in a letter.

For more information see the base class PinHandler.

8.5.8. change_pin_on_first_use

type: bool

If the administrator enrolls a token or resets a PIN of a token, then the PIN
of this token is marked to be changed on the first (or next) use.
When the user authenticates with the old PIN, the user is authenticated
successfully. But the detail-response contains the keys “next_pin_change” and
“pin_change”. If “pin_change” is True the authenticating application must
trigger the change of the PIN using the API /token/setpin. See
Token endpoints.

Note

If the application does not honour the “pin_change” attribute, then
the user can still authenticate with his old PIN.

8.5.9. change_pin_every

type: string

This policy requires the user to change the PIN of his token on a regular
basis. Enter a value follewed by “d”, e.g. change the PIN every 180 days will
be “180d”.

The date, when the PIN needs to be changed, is returned in the API response
of /validate/check. For more information see change_pin_on_first_use.
To specifiy the contents of the PIN see User Policies.

8.5.10. otp_pin_encrypt

type: bool

If set the OTP PIN of a token will be encrypted. The default
behaviour is to hash the OTP PIN, which is safer.

8.5.11. lostTokenPWLen

type: int

This is the length of the generated password for the lost token process.

8.5.12. lostTokenPWContents

type: string

This is the contents that a generated password for the lost token process
should have. You can use

	c: for lowercase letters

	n: for digits

	s: for special characters (!#$%&()*+,-./:;<=>?@[]^_)

	C: for uppercase letters

Example:

The action lostTokenPWLen=10, lostTokenPWContents=Cns could generate a
password like AC#!49MK)).

8.5.13. lostTokenValid

type: int

This is how many days the replacement token for the lost token should
be valid. After this many days the replacement can not be used anymore.

8.5.14. yubikey_access_code

type: string

This is a 12 character long access code in hex format to be used to initialize yubikeys. If
no access code is set, yubikeys can be re-initialized by everybody. You can choose
a company wide access code, so that Yubikeys can only be re-initialized by your own system.

You can add two access codes separated by a colon to change from one access code to the other.

313233343536:414243444546

8.5.15. papertoken_count

type: int

This is a specific action of the paper token. Here the administrator can
define how many OTP values should be printed on the paper token.

8.5.16. u2f_req

type: string

Only the specified U2F devices are allowed to be registered.
The action can be specified like this:

u2f_req=subject/.*Yubico.*/

The the key word can be “subject”, “issuer” or “serial”. Followed by a
regular expression. During registration of the U2F device the information
is fetched from the attestation certificate.
Only if the attribute in the attestation certificate matches accordingly the
token can be registered.

8.5.17. {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty

type: string

These are token type specific parameters. They control the key generation during the
2step token enrollment (see Two Step Enrollment).

The serversize is the optional size (in bytes) of the server’s key part.
The clientsize is the size (in bytes) of the smartphone’s key part.
The difficulty is a parameter for the key generation.
In the implementation in version 2.21 PBKDF2 is used. In this case the difficulty
specifies the number of rounds.

This is new in version 2.21

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.6. WebUI Policies

8.6.1. login_mode

type: string

allowed values: “userstore”, “privacyIDEA”, “disable”

If set to userstore (default), users and administrators need to
authenticate with the password of their userstore, being an LDAP service or
an SQL database.

If this action is set to login_mode=privacyIDEA, the users and
administrators need to
authenticate against privacyIDEA when logging into the WebUI.
I.e. they can not login with their domain password anymore
but need to authenticate with one of their tokens.

If set to login_mode=disable the users and administrators of the specified
realms can not login to the UI anymore.

Warning

If you set this action and the user deletes or disables
all his tokens, he will not be able to login anymore.

Note

Administrators defined in the database using the pi-manage
command can still login with their normal passwords.

Note

A sensible way to use this, is to combine this action in
a policy with the client parameter: requiring the users to
login to the Web UI remotely from the internet with
OTP but still login from within the LAN with the domain password.

Note

Another sensible way to use this policy is to disable the login to
the web UI either for certain IP addresses (client) or for users in
certain realms.

8.6.2. remote_user

type: string

This policy defines, if the login to the privacyIDEA using the web servers
integrated authentication (like basic authentication or digest
authentication) should be allowed.

Possible values are “disable” and “allowed”.

Note

The policy is evaluated before the user is logged in. At this point
in time there is no realm known, so a policy to allow remote_user must not
select any realm.

Note

The policy login_mode and remote_user work independent of each
other. I.e. you can disable login_mode and allow remote_user.

You can use this policy to enable Single-Sign-On and integration into Kerberos
or Active Directory. Add the following template into you apache configuration
in /etc/apache2/sites-available/privacyidea.conf:

<Directory />
 # For Apache 2.4 you need to set this:
 # Require all granted
 Options FollowSymLinks
 AllowOverride None

 SSLRequireSSL
 AuthType Kerberos
 AuthName "Kerberos Login"
 KrbMethodNegotiate On
 KrbMethodK5Passwd On
 KrbAuthRealms YOUR-REALM
 Krb5KeyTab /etc/apache2/http.keytab
 KrbServiceName HTTP
 KrbSaveCredentials On
 <RequireAny>
 # Either we need a URL with no authentication or we need a valid user
 <RequireAny>
 # Any of these URL do NOT need a basic authentication
 Require expr %{REQUEST_URI} =~ m#^/validate#
 Require expr %{REQUEST_URI} =~ m#^/ttype#
 </RequireAny>
 Require valid-user
 </RequireAny>
</Directory>

8.6.3. logout_time

type: int

Set the timeout, after which a user in th WebUI will be logged out.
The default timeout is 120 seconds.

Being a policy this time can be set based on clients, realms and users.

8.6.4. token_page_size

type: int

By default 15 tokens are displayed on one page in the token view.
On big screens you might want to display more tokens. Thus you can define in
this
policy how many tokens should be displayed.

8.6.5. user_page_size

type: int

By default 15 users are displayed on one page in the user view.
On big screens you might want to display more users. Thus you can define in
this policy how many users should be displayed.

8.6.6. policy_template_url

type: str

Here you can define a URL from where the policies should be fetched. The
default URL is a Github repository [#defaulturl]_.

Note

When setting a template_url policy the modified URL will only get
active after the user has logged out and in again.

	[1]	https://github.com/privacyidea/policy-templates/.

8.6.7. default_tokentype

type: str

You can define which is the default tokentype when enrolling a new token in
the Web UI. This is the token, which will be selected, when entering the
enrollment dialog.

8.6.8. tokenwizard

type: bool

If this policy is set and the user has no token, then the user will only see
an easy token wizard to enroll his first token. If the user has enrolled his
first token and he logs in to the web UI, he will see the normal view.

The user will enroll a token defined in default_tokentype.

Other sensible policies to combine are in User Policies the OTP
length, the TOTP timestep and the HASH-lib.

You can add a prologue and epilog to the enrollment wizard in the greeting
and after the token is enrolled and e.g. the QR code is displayed.

Create the files

	static/customize/views/includes/token.enroll.pre.top.html

	static/customize/views/includes/token.enroll.pre.bottom.html

	static/customize/views/includes/token.enroll.post.top.html

	static/customize/views/includes/token.enroll.post.bottom.html

to display the contents in the first step (pre) or in the second step (post).

Note

You can change the directory static/customize to a URL that fits
your needs the best by defining a variable PI_CUSTOMIZATION in the file
pi.cfg. This way you can put all modifications in one place apart from
the original code.

8.6.9. realm_dropdown

type: str

If this policy is activated the web UI will display a realm dropdown box.
Of course this policy can not filter for users or realms, since the
user is not known at this moment.

The type of this action was changed to “string” in version 2.16. You can set
a space separated list of realm names. Only these realmnames are displayed in
the dropdown box.

Note

The realm names in the policy are not checked, if they realy exist!

8.6.10. search_on_enter

type: bool

The searching in the user list is performed as live search. Each time a key
is pressed, the new substring is searched in the user store.

Sometimes this can be too time consuming. You can use this policy to change
the bahaviour that the administrator needs to press enter to trigger the
search.

(Since privacyIDEA 2.17)

8.6.11. custom_baseline

type: str

The administrator can replace the file templates/baseline.html with another template.
This way he can change the links to e.g. internal documentation or ticketing systems.
The new file could be called mytemplates/mybase.html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note

This policy is evaluated before login. So any realm or user setting will have no
effect. But you can specify different baselines for different client IP addresses.

(Since privacyIDEA 2.21)

8.6.12. custom_menu

type: str

The administrator can replace the file templates/menu.html with another template.
This way he can change the links to e.g. internal documentation or ticketing systems.
The new file could be called mytemplates/mymenu.html.

This will only work with a valid subscription of privacyIDEA Enterprise Edition.

Note

This policy is evaluated before login. So any realm or user setting will have no
effect. But you can specify different menus for different client IP addresses.

(Since privacyIDEA 2.21)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.7. Gettoken policies

The scope gettoken defines the maximum number of OTP values
that may be retrieved from an OTP token by an administrator.

The user attribute may hold a list of administrators.

Technically the gettoken policies control the use of the
gettoken_controller.

The following actions are available in the scope
gettoken:

8.7.1. max_count_dpw

type: int

This is the maximum number of OTP values that are allowed to be
retrieved from a DPW token.

Note

Issuing only one OTP value per day, this means
that this is the number of days, this OTP list can
be used.

8.7.2. max_count_hotp

type: int

This is the maximum number of OTP values that are allowed to
be retrieved from an HOTP (HMAC) token.

Note

As hotp values only expire, when they are used,
you can use this to create an OTP list, that can be used
from the first to the last OTP value.

8.7.3. max_count_totp

type: int

This is the maximum number of OTP balues that are allowed to
be retrieved from a TOTP token.

Note

As the default TOTP token generates a new OTP value all
30 seconds, retrieving 100 OTP values will only give you
OTP values, that are usable for 50 minutes.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.8. Register Policy

8.8.1. User registration

Starting with privacyIDEA 2.10 users are allowed to register with privacyIDEA.
I.e. a user that does not exist in a given realm and resolver can create a
new account.

Note

Registering new users is only possible, if there is a writeable
resolver and if the necessary policy in the scope register is defined.
For editable UserIdResolvers see UserIdResolvers.

If a register policy is defined, the login window of the Web UI gets a new
link “Register”.

[image: ../_images/register.png]
Next to the login button is a new link ‘register’, so that new users are
able to register.

A user who clicks the link to register a new account gets this registration
dialog:

[image: ../_images/register-dialog.png]
Registration form

During registration the user is also enrolled Registration token. This
registration code is sent to the user via a notification email.

Note

Thus - using the right policies in scope webui and
authentication - the user could login with the password he set during
registration an the registration code he received via email.

8.8.2. Policy settings

In the scope register several settings define the behaviour of the
registration process.

[image: ../_images/register-policy.png]
Creating a new registration policy

8.8.2.1. realm

type: string

This is the realm, in which a new user will be registered. If this realm is
not specified, the user will be registered in the default realm.

8.8.2.2. resolver

type: string

This is the resolver, in which the new user will be registered. If this
resolver is not specified, registration is not possible!

Note

This resolver must be an editable resolver, otherwise the user can
not be created in this resolver.

8.8.2.3. smtpconfig

type: string

This is the unique identifier of the SMTP server configuration. This SMTP server is
used to send the notification email with the registration code during the
registration process.

Note

If there is no smtpconfig or set to a wrong identifier, the user
will get no notification email.

8.8.2.4. requiredemail

type: string

This is a regular expression according to [1].

Only email addresses matching this regular expression are allowed to register.

Example: If you want to authenticate the user only by the OTP value, no
matter what OTP PIN he enters, a policy might look like this:

action: requiredemail=/.*@mydomain\..*/

This will allow all email addresses from the domains mydomain.com,
mydomain.net
etc...

	[1]	https://docs.python.org/2/library/re.html

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	8. Policies »

8.9. Policy Templates

Policy templates are defined in a Github repository which can be changed
using a WebUI policy policy_template_url.

The policy templates are json files, which can contain common settings, that
can be used to start your own polcies. When creating a new policy, you can
select an existing policy template as a starting point.

You may also fork the github repository and commit pull request to improve
the policy templates. Or you may fork the github repositry and use your own
policy template URL for your policy templates.

A policy templates looks like this:

{
 "name": "template_name1",
 "scope": "enrollment",
 "action": {
 "tokenlabel": "<u>@<r>/<s>",
 "autoassignment": true
 }
}

realms, resolver and clients are not used in the templates.

A template must be referenced in a special index.json file:

{
 "template_name1": "description1",
 "template_name2": "description2"
}

where the key is the name of the template file and the value is a description
displayed in the WebUI.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

9. Event Handler

Added in version 2.12.

What is the difference between Policies and event handlers?

Policies are used to define the behaviour of the system. With policies you
can change the way the system reacts.

With event handlers you do not change the way the system reacts. But on
certain events you can trigger a new action in addition to the behaviour
defined in the policies.

These additional actions are also logged to the audit log. These actions are
marked as EVENT in the audit log and you can see, which event triggered
these actions. Thus a single API call can cause several audit log entries:
One for the API call and more for the triggered actions.

9.1. Events

Each API call is an event and you can bind arbitrary actions to each
event as you like.

Internally events are marked by a decorator “event” with an event identifier.
At the moment not all events might be tagged. Please drop us a note to tag
all further API calls.

[image: ../_images/event-list.png]
An action is bound to the event token_init.

9.2. Handler Modules and Actions

The actions are defined in handler modules. So you bind a handler module and
the action, defined in the handler module, to the events.

The handler module can define several actions and each action in the handler
module can require additional options.

[image: ../_images/event-details.png]
The event sendmail requires the option emailconfig.

9.3. Conditions

Added in version 2.14

An event handler module may also contain conditions. Only if all conditions
are fullfilled, the action is triggered. Conditions are defined in the class
property conditions and checked in the method check_condition. The
UserNotification Event Handler defines such conditions.

9.3.1. Basic conditions

The basic event handler module has the following conditions.

last_auth

This condition checks if the last authentication is older than the specified
time delta. The timedelta is specified with “h” (hours), “d” (days) or “y”
(years). Specifying 180d would mean, that the action is triggered if the
last successful authentication witht he token was berformed more than 180
days ago.

This can be used to send notifications to users or administrators to inform
them, that there is a token, that might be orphaned.

logged_in_user

This condition checks if the logged in user is either an administrator or a
normal user. This way the administrator can bind actions to events triggered
by normal users or e.g. by help desk users. If a help desk user enrolls a
token for a user, the user might get notified.

If a normal user enrolls some kind of token, the administrator might get
notified.

otp_counter

The action is triggered, if the otp counter of a token has reached the given
value.

The administrator can use this condition to e.g. automatically enroll a new
paper token for the user or notify the user that nearly all OTP values of a
paper token have been spent.

realm

The condition realm matches the user realm. The action will only trigger,
if the user in this event is located in the given realm.

This way the administrator can bind certain actions to specific realms. E.g.
some actions will only be triggered, if the event happens for normal users,
but not for users in admin- or helpdesk realms.

result_value

This condition checks the result of an event.

E.g. the result of the event validate_check can be a failed authentication.
This can be the trigger to notify either the token owner or the administrator.

serial

The action will only be triggered, if the serial number of the token in the
event does match the regular expression.

This is a good idea to combine with other conditions. E.g. only tokens with a
certain kind of serial number like Google Authenticator will be deleted
automatically.

tokenrealm

In contrast to the realm this is the realm of the token - the tokenrealm.
The action is only triggerd, if the token within the event has the given
tokenrealm. This can be used in workflows, when e.g. hardware tokens which
are not assigned to a user are pushed into a kind of storage realm.

tokentype

The action is only triggered if the token in this event is of the given type.
This way the administrator can design workflows for enrolling and reenrolling
tokens. E.g. the tokentype can be a registration token and the registration
code can be easily and automatically sent to the user.

token_locked

The action is only triggered, if the token in the event is locked, i.e. the
maximum failcounter is reached. In such a case the user can not use the token
to authenticate anymore. So an action to notify the user or enroll a new
token can be triggered.

token_has_owner

The action is only triggered, if the token is or is not assigned to a user.

token_is_orphaned

The action is only triggered, if the user, to whom the token is assigned,
does not exist anymore.

This can be used to trigger the deletion of the token, if the token owner was
removed from the userstore.

token_validity_period

Checks if the token is in the current validity period or not. Can be set to
True or False.

Note

token_validity_period==False will trigger an action if either the
validitiy period is either over or has not started, yet.

user_token_number

The action is only triggered, if the user in the event has the given number
of tokens assigned.

This can be used to e.g. automatically enroll a token for the user if the
user has no tokens left (token_number == 0) of to notify the administrator if
the user has to many tokens assigned.

tokeninfo

The tokeninfo condition can compare any arbitrary tokeninfo field against a
fixed value. You can compare strings and integers. Integers are converted
automatically. Valid compares are:

myValue == 1000
myValue > 1000
myValue < 99
myTokenInfoField == EnrollmentState
myTokenInfoField < ABC
myTokenInfoField > abc

“myValue” and “myTokenInfoField” being any possible tokeninfo fields.

Starting with version 2.20 you can also compare dates in the isoformat like
that:

myValue > 2017-10-12T10:00+0200
myValue < 2020-01-01T00:00+0000

In addition you can also use the tag {now} to compare to the curren time
and you can add offsets to {now} in seconds, minutes, hours or days:

myValue < {now}
myValue > {now}+10d
myValue < {now}-5h

Which would match if the tokeninfo myValue is a date, which is later than
10 days from now or it the tokeninfo myValue is a date, which is 5 more
than 5 hours in the past.

detail_error_message

This condition checks a regular expression against the detail section in
the HTTP response. The field detail->error->message is evaluated.

Error messages can be manyfold. In case of authentication you could get error
messages like:

“The user can not be found in any resolver in this realm!”

With token/init you could get:

“missing Authorization header”

	..note:: The field ``detail->error->message is only available in case of an

	internal error, i.e. if the response status is False.

detail_message

This condition checks a regular expression against the detail section in
the HTTP response. The field detail->message is evaluated.

Those messages can be manyfold like:

“wrong otp pin”

“wrong otp value”

“Only 2 failed authentications per 1:00:00”

	..note:: The field detail->message is available in case of status True,

	like an authentication request that was handled successfully but failed.

9.4. Available Handler Modules

	9.4.1. User Notification Handler Module

	9.4.2. Token Handler Module

	9.4.3. Script Handler Module

	9.4.4. Federation Handler Module

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	9. Event Handler »

9.4.1. User Notification Handler Module

The user notification handler module is used to send emails token owners or
administrators in case of any event.

9.4.1.1. Possible Actions

9.4.1.1.1. sendmail

The sendmail action sends an email to the tokenowner user. The email is
sent, if an administrator managed the users token.

emailconfig

	required Option

	The email is sent via this SMTP server configuration.

subject

	optional

The subject line of the mail that is sent.

9.4.1.1.2. sendsms

The sendsms action sends an SMS to the tokenowner. The SMS is sent, if an
administrator managed the users token.

smsconfig

	required Option

	The SMS Gateway configuration.

9.4.1.2. Options for both actions

Both actions sendmail and sendsms take several common options.

body

	optional

Here the administartor can specify the body of the email, that is sent.
The body may contain the following tags

	{admin} name of the logged in user.

	{realm} realm of the logged in user.

	{action} the action that the logged in user performed.

	{serial} the serial number of the token.

	{url} the URL of the privacyIDEA system.

	{user} the given name of the token owner.

	{givenname} the given name of the token owner.

	{surname} the surname of the token owner.

	{username} the loginname of the token owner.

	{userrealm} the realm of the token owner.

	{tokentype} the type of the token.

	{registrationcode} the registration code in the detail response.

	{recipient_givenname} the given name of the recipient.

	{recipient_surname} the surname of the recipient.

	{googleurl_value} is the KEY URI for a google authenticator.

	{googleurl_img} is the data image source of the google authenticator QR code.

	{time} the current server time in the format HH:MM:SS.

	{date} the current server date in the format YYYY-MM-DD

	{client_ip} the client IP of the client, which issued the original request.

	{ua_browser} the user agent of the client, which issued the original request.

	{ua_string} the complete user agent string (including version number), which issued the original request.

mimetype

You can choose if the email should be sent as plain text or HTML. If the
email is sent as HTML, you can do the following:

Your new token

Which will create a clickable link. Clicked on the smartphone, the token will
be imported to the smartphone app.

You can also do this:

This will add the QR Code into the HTML email.

Warning

The KEY URI and the QR Code contain the secret OTP key in plain
text. Everyone who receives this data has a detailed copy of this token.
Thus we very much recommend to never send these data in an unencrypted
email!

To

	required

This specifies to which type of user the notification should be sent.
Possible recipient types are:

	token owner,

	logged in user,

	admin realm,

	internal admin,

	email address.

Depending on the recipient type you can enter additional information. The
recipient type email takes a comma separated list of email addresses.

9.4.1.3. Code

This is the event handler module for user notifications.
It can be bound to each event and can perform the action:

	sendmail: Send an email to the user/token owner

	sendsms: We can also notify the user with an SMS.

The module is tested in tests/test_lib_events.py

	
class privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE[source]

	Allowed token owner

	
ADMIN_REALM = 'admin realm'

	

	
EMAIL = 'email'

	

	
INTERNAL_ADMIN = 'internal admin'

	

	
LOGGED_IN_USER = 'logged_in_user'

	

	
TOKENOWNER = 'tokenowner'

	

	
class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler[source]

	An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

	
actions

	This method returns a dictionary of allowed actions and possible
options in this handler module.

	Returns:	dict with actions

	
description = 'This eventhandler notifies the user about actions on his tokens'

	

	
do(action, options=None)[source]

	This method executes the defined action in the given event.

	Parameters:	
	action –

	options (dict) – Contains the flask parameters g, request, response
and the handler_def configuration

	Returns:	

	
identifier = 'UserNotification'

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	9. Event Handler »

9.4.2. Token Handler Module

The token event handler module is used to perform actions on tokens in
certain events.

This way you can define workflows to automatically modify tokens, delete or
even create new tokens.

9.4.2.1. Possible Actions

9.4.2.1.1. set tokenrealm

Here you can set the token realms of the token.

	E.g. You could use this action to automatically put all newly enrolled tokens

	into a special realm by attaching this action to the event token_init.

9.4.2.1.2. delete

The token which was identified in the request will be deleted if all
conditions are matched.

9.4.2.1.3. unassign

The token which was identified in the request will be unassign from the user
if all conditions are matched.

9.4.2.1.4. disable

The token which was identified in the request will be disabled
if all conditions are matched.

9.4.2.1.5. enable

The token which was identified in the request will be enabled
if all conditions are matched.

9.4.2.1.6. enroll

If all conditions are matched a new token will be enrolled. This new token
can be assigned to a user, which was identified in the request.

	The administrator can specify the tokentype and the realms of the new

	token.

9.4.2.1.7. set description

If all conditions are matched the description of the token identified in the
request will be set.

You can use the tag {current_time} or {now} to set the current
timestamp. In addition you can append an offset to current_time or now
like {now}-12d or {now}+10m. This would write a timestamp which is 12
days in the passt or 10 minutes in the future. The plus or minus must follow
without blank, allowed time identifiers are s (seconds), m (minutes), h
(hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser}
and {ua_string} for information on the user agent.

9.4.2.1.8. set validity

If all conditions are matched the validity period of the token will be set.

There are different possibilities to set the start and the end of the
validity period. The event definition can either contain a fixed date and
time or if can contain a time offset.

Fixed Time

A fixed time can be specified in the following formats.

Only date without time:

	2016/12/23

	23.12.2016

Date with time:

	2016/12/23 9:30am

	2016/12/23 11:20:pm

	23.12.2016 9:30

	23.12.2016 23:20

Starting with version 2.19 we recommend setting the fixed time in the ISO
8601 corresponding time format

	2016-12-23T15:30+0600

Time Offset

You can also specify a time offset. In this case the validity period will be
set such many days after the event occurred. This is indicated by using a “+”
and a specifier for days (d), hours (h) and minutes (m).

E.g. +30m will set to start the validity period in 30 minutes after the
event occurred.

+30d could set the validity period to end 30 days after an event occurred.

Note

This way you could easily define a event definition, which will set
newly enrolled tokens to be only valid for a certain amount of days.

9.4.2.1.9. set countwindow

Here the count window of a token can be set. This requires an integer value.

9.4.2.1.10. set tokeninfo

Using the action set tokeninfo you can set any arbitrary tokeninfo
attribute for the token. You need to specify the key of the
tokeninfo and the value.

In the value field you can use the tag {current_time} to set the current
timestamp. In addition you can append an offset to current_time or now
like {now}-12d or {now}+10m. This would write a timestamp which is 12
days in the passt or 10 minutes in the future. The plus or minus must follow
without blank, allowed time identifiers are s (seconds), m (minutes), h
(hours) and d (days).

Other tags are {client_ip} for the client IP address and {ua_browser}
and {ua_string} for information on the user agent and {username} and
{realm} for information on the user in the parameters.

Note

Some tokens have token specific attributes that are stored in the
tokeninfo. The TOTP token type has a timeWindow. The TOTP and the HOTP
token store the hashlib in the tokeninfo, the SMS token stores the
phone number.

Note

You can use this to set the timeWindow of a TOTP token for
Automatic initial synchronization.

9.4.2.1.11. set failcounter

Using the action set failcounter you can reset the fail counter by
setting it to 0 or also “block” the token by setting the fail counter to what

ever value the “max_fail” is, e.g. 10. Only integer values are allowed.

9.4.2.2. Code

This is the event handler module for token actions.
You can attach token actions like enable, disable, delete, unassign,... of the

	current token

	all the user’s tokens

	all unassigned tokens

	all disabled tokens

	...

	
class privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE[source]

	Allowed actions

	
DELETE = 'delete'

	

	
DISABLE = 'disable'

	

	
ENABLE = 'enable'

	

	
INIT = 'enroll'

	

	
SET_COUNTWINDOW = 'set countwindow'

	

	
SET_DESCRIPTION = 'set description'

	

	
SET_FAILCOUNTER = 'set failcounter'

	

	
SET_TOKENINFO = 'set tokeninfo'

	

	
SET_TOKENREALM = 'set tokenrealm'

	

	
SET_VALIDITY = 'set validity'

	

	
UNASSIGN = 'unassign'

	

	
class privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler[source]

	An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

	
actions

	This method returns a dictionary of allowed actions and possible
options in this handler module.

	Returns:	dict with actions

	
description = 'This event handler can trigger new actions on tokens.'

	

	
do(action, options=None)[source]

	This method executes the defined action in the given event.

	Parameters:	
	action –

	options (dict) – Contains the flask parameters g, request, response
and the handler_def configuration

	Returns:	

	
identifier = 'Token'

	

	
class privacyidea.lib.eventhandler.tokenhandler.VALIDITY[source]

	Allowed validity options

	
END = 'valid till'

	

	
START = 'valid from'

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	9. Event Handler »

9.4.3. Script Handler Module

The script event handler module is used to trigger external scripts in case
of certain events.

This way you can even add external actions to your workflows.
You could trigger a database dump, an external printing device, a backup and
much more.

9.4.3.1. Possible Actions

The actions of the script event handler are the scripts located in a certain
script directory. The default script directory is /etc/privacyidea/scripts.

You can change the location of the script directory and give the new
directory in the parameter PI_SCRIPT_HANDLER_DIRECTORY in your pi.cfg

file.

9.4.3.2. Possible Options

Options can be passed to the script. Your script has to take care of the
parsing of these parameters.

9.4.3.2.1. logged_in_role

Add the role of the logged in user. This can be either admin or user. If
there is no logged in user, none will be passed.

The script will be called with the parameter

–logged_in_role <role>

9.4.3.2.2. logged_in_user

Add the logged in user. If
there is no logged in user, none will be passed.

The script will be called with the parameter

–logged_in_user <username>@<realm>

9.4.3.2.3. realm

Add --realm <realm> as script parameter. If no realm is given, none
will be passed.

9.4.3.2.4. serial

Add --serial <serial number> as script parameter. If no serial number is
given, none will be passed.

9.4.3.2.5. user

Add --serial <username>' as script parameter. If no username is given,
none will be passed.

Note

A possible script you could call is the privacyidea-get-unused-tokens.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	9. Event Handler »

9.4.4. Federation Handler Module

The federation event handler can be used to configure relations between
several privacyIDEA instances. Requests can be forwarded to child privacyIDEA
instances.

Note

The federation event handler can modify the original response.
If the response was modified a new field origin will be added to the
detail section in the response. The origin will contain the URL of
the privacyIDEA server that finally handled the request.

9.4.4.1. Possible Actions

9.4.4.1.1. forward

A request (usually an authentication request validate_check) can be
forwarded to another privacyIDEA instance. The administrator can
define privacyIDEA instances centrally at conifg -> privacyIDEA servers.

In addition to the privacyIDEA instance the action forward takes the
following parameters:

client_ip The originial client IP will be passed to the child privacyIDEA
server. Otherwise the child privacyIDEA server will use the parent
privacyIDEA server as client.

Note

You need to configure the allow override client in the child
privacyIDEA server.

realm The forwarding request will change the realm to the specified realm
. This might be necessary since the child privacyIDEA server could have

different realms than the parent privacyIDEA server.

	resolver The forwarding request will change the resolver to the specified

	resolver. This might be necessary since the child privacyIDEA server could
have different resolvers than the parent privacyIDEA server.

One simple possibility would be, that a user has a token in the parent
privacyIDEA server and in the child privacyIDEA server. Configuring a forward
event handler on the parent with the condition result_value = False would
have the effect, that the user can either authenticate with the parent’s
token or with the child’s token on the parent privacyIDEA server.

Federation can be used, if privacyIDEA was introduced in a subdivision of a
larger company. When privacyIDEA should be enrolled to the complete company
you can use federation. Instead of dropping the privacyIDEA instance in the
subdivision and installing on single central privacyIDEA, the subdivision can
still go on using the original privacyIDEA system (child) and the company
will install a new top level privacyIDEA system (parent).

Using the federation handler you can setup many other, different scenarios we
can not think of, yet.

9.4.4.2. Code

This is the event handler module for privacyIDEA federations.
Requests can be forwarded to other privacyIDEA servers.

	
class privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE[source]

	Allowed actions

	
FORWARD = 'forward'

	

	
class privacyidea.lib.eventhandler.federationhandler.FederationEventHandler[source]

	An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

	
actions

	This method returns a dictionary of allowed actions and possible
options in this handler module.

	Returns:	dict with actions

	
description = 'This event handler can forward the request to other privacyIDEA servers'

	

	
do(action, options=None)[source]

	This method executes the defined action in the given event.

	Parameters:	
	action –

	options (dict) – Contains the flask parameters g, request, response
and the handler_def configuration

	Returns:	

	
identifier = 'Federation'

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

10. Audit

The systems provides a sophisticated audit log, that can be viewed in the
WebUI.

[image: ../_images/auditlog.png]
Audit Log

privacyIDEA comes with an SQL audit module. (see Audit log)

10.1. Cleaning up entries

The sqlaudit module writes audit entries to an SQL database.
For performance reasons the audit module does no log rotation during
the logging process.

But you can set up a cron job to clean up old audit entries. Since version
2.19 audit entries can be either cleaned up based on the number of entries or
based on on the age.

Cleaning based on the age takes precedence:

You can specify a highwatermark and a lowwatermark. To clean
up the audit log table, you can call pi-manage at command line:

pi-manage rotate_audit --highwatermark 20000 --lowwatermark 18000

This will, if there are more than 20.000 log entries, clean all old
log entries, so that only 18000 log entries remain.

Cleaning based on the age:

You can specify the number of days, how old an audit entry may be at a max.

pi-manage rotate_audit –age 365

will delete all audit entries that are older than one year.

Cleaning based on the config file:

Using a config file you can define different retention times for the audit data.
E.g. this way you can define, that audit entries about token listings can be deleted after
one month,
while the audit information about token creation will only deleted after ten years.

The config file is a YAML format and looks like this:

DELETE auth requests of nils after 10 days
- rotate: 10
 user: nils
 action: .*/validate/check.*

DELETE auth requests of friedrich after 7 days
- rotate: 7
 user: friedrich
 action: .*/validate/check.*

Delete nagios user test auth directly
- rotate: 0
 user: nagiosuser
 action: POST /validate/check.*

Delete token listing after one month
- rotate: 30
 action: ^GET /token

Delete audit logs for token creating after 10 years
- rotate: 3650
 action: POST /token/init

Delete everything else after 6 months
- rotate: 180
 action: .*

This is a list of rules.
privacyIDEA iterates over all audit entries. The first matching rule for an entry wins.
If the rule matches, the audit entry is deleted if the entry is older than the days
specified in “rotate”.

If is a good idea to have a catch-all rule at the end.

Note

The keys “user”, “action”... correspond to the column names of the audit table.
You can use any column name here like “date”, “action”, “action_detail”, “success”, “serial”, “administrator”,
“user”, “realm”... for a complete list see the model definition.
You may use Python regular expressions for matching.

You can the add a call like

pi-manage rotate_audit –config /etc/privacyidea/audit.yaml

in your crontab.

10.1.1. Access rights

You may also want to run the cron job with reduced rights. I.e. a user who
has no read access to the original pi.cfg file, since this job does not need
read access to the SECRET or PEPPER in the pi.cfg file.

So you can simply specify a config file with only the content:

PI_AUDIT_SQL_URI = <your database uri>

Then you can call pi-manage like this:

PRIVACYIDEA_CONFIGFILE=/home/cornelius/src/privacyidea/audit.cfg \
pi-manage rotate_audit

This will read the configuration (only the database uri) from the config file
audit.cfg.

10.1.2. Table size

Sometimes the entires to be written to the database may be longer than the
column in the database. You can either enlarge the columns in the database or
you can set

PI_AUDIT_SQL_TRUNCATE = True

in pi.cfg. This will truncate each entry to the defined column length.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

11. Client machines

privacyIDEA lets you define Machine Resolvers to connect to existing machine
stores. The idea is for users to be able to authenticate
on those client machines.
Not in all cases an online authentication request is possible,
so that authentication items
can be passed to those client machines.

In addition you need to define, which application on the client machine
the user should authenticate
to. Different application require different authentication items.

Therefore privacyIDEA can define application types.
At the moment privacyIDEA knows the application
luks, offline and ssh. You can write your own application class,
which is defined in
Application Class.

You need to assign an application and a token to a client machine. Each application type
can work with certain token types and each application type can use additional parameters.

Note

Not all tokens work well with all applications!

11.1. SSH

Currently working token types: SSH

Parameters:

user (optional, default=root)

When the SSH token type is assigned to a client, the user specified in the
user parameter
can login with the private key of the SSH token.

In the sshd_config file you need to configure the AuthorizedKeysCommand.
Set it to:

privacyidea-authorizedkeys

This will fetch the SSH public keys for the requesting machine.

The command expects a configuration file
/etc/privacyidea/authorizedkeyscommand which looks like this:

[Default]
url=https://localhost
admin=admin
password=test
nosslcheck=False

Note

To disable a SSH key for all servers, you simple can disable the
SSH token in privacyIDEA.

Warning

In a productive environment you should not set nosslcheck to
true, otherwise you are vulnerable to man in the middle attacks.

11.2. LUKS

Currently working token types: Yubikey Challenge Response

Parameters:

slot The slot to which the authentication information should be written

partition The encrypted partition (usually /dev/sda3 or /dev/sda5)

These authentication items need to be pulled on the client machine from
the privacyIDEA server.

Thus, the following script need to be executed with root rights (able to
write to LUKS) on the client machine:

privacyidea-luks-assign @secrets.txt --clearslot --name salt-minion

For more information please see the man page of this tool.

11.3. Offline

Currently working token types: HOTP.

Parameters:

user The local user, who should authenticate. (Only needed when calling
machine/get_auth_items)

count The number of OTP values passed to the client.

The offline application also triggers when the client calls a /validate/check.
If the user authenticates successfully with the correct token (serial number)
and this very token is attached to the machine with an offline application
the response to validate/check is enriched with a “auth_items” tree
containing the salted SHA512 hashes of the next OTP values.

The client can cache these values to enable offline authentication.
The caching is implemented in the privacyIDEA PAM module.

The server increases the counter to the last offline cached OTP value, so
that it will not be possible to authenticate with those OTP values available
offline on the client side.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

12. Workflows and Tools

	12.1. Import

	12.2. Token Enrollment Wizard

	12.3. Tools

	12.4. Two Step Enrollment

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	12. Workflows and Tools »

12.1. Import

Seed files that contain the secret keys of hardware tokens can be
imported to the system via the menu Import.

The default import options are to import SafeNet XML file,
OATH CSV files, Yubikey CSV files or
PSKC files.

12.1.1. GPG Encryption

Starting with privacyIDEA 2.14 you can import GPG encrypted seed files.
All files mentioned below can be encrypted this way.

privacyIDEA needs its own GPG key. You may create one like this:

mkdir /etc/privacyidea/gpg
GNUPGHOME=/etc/privacyidea/gpg gpg --gen-key

Then make sure, that the directory /etc/privacyidea/gpg is chown 700 for
the user privacyidea.

Now you can export the public key and hand it to your token vendor:

GNUPGHOME=/etc/privacyidea/gpg gpg -a --export <keyid>

Now the token vendor can send the seed file GPG encrypted. You do not need to
decrypt the file and store the decrypted file on a network folder. Just
import the GPG encrypted file to privacyIDEA!

Note

Using the key PI_GNUPG_HOME in pi.cfg you can change the default
above mentioned GNUPGHOME directory.

Note

privacyIDEA imports an ASCII armored file. The file needs to be
encrypted like this:

gpg -e -a -r <keyid> import.csv

12.1.2. OATH CSV

This is a very simple CSV file to import HOTP, TOTP or OATH tokens.
You can also convert your seed easily to this file format, to import
the tokens.

The file format looks like this:

<serial>, <seed>, <type>, <otp length>, <time step>

For OCRA tokens it looks like this:

<serial>, <seed>, OCRA, <ocra suite>

serial is the serial number of the token that will also be used
to identify the token in the database. Importing the same serial number
twice will overwrite the token data.

seed is the secret key, that is used to calculate the OTP
value. The seed is provided in a hexadecimal notation.
Depending on the length either the SHA1 or SHA256 hash algorithm
is identified.

type is either HOTP, TOTP or OCRA.

otp length is the length of the OTP value generated by the token.
This is usually 6 or 8.

time step is the time step of TOTP tokens. This is usually
30 or 60.

ocra suite is the ocra suite of the OCRA token according to [1].

12.1.3. Yubikey CSV

Here you can import the CSV file that is written by the Yubikey personalization
tool [2].
privacyIDEA can import all Yubikey modes, either Yubico mode or HOTP mode.

[image: ../../_images/yubikey1.png]

Note

There is an annoying drawback of the personalization tool: If you a
initializing
several HOTP yubikeys it will not write the serial number to the file.

12.1.4. PSKC

The Portable Symmetric Key Container is specified in [3].
OATH compliant token vendors provide the token seeds in a PSKC file.
privacyIDEA lets you import PSKC files.
All necessary information (OTP length, Hash algorithm, token type) are read
from the file.

	[1]	http://tools.ietf.org/html/rfc6287#section-6

	[2]	http://www.yubico.com/products/services-software/personalization-tools/use/

	[3]	https://tools.ietf.org/html/rfc6030

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	12. Workflows and Tools »

12.2. Token Enrollment Wizard

The enrollment wizard helps the user to enroll his first token. When
enrolling the first token, we assume, that the user is not very familiar with
the privacyIDEA web UI. So the enrollment wizard only contains a very
reduced API.

12.2.1. Necessary requirements for the enrollment wizard

	The enrollment wizard will only be displayed, if the user has no token
assigned, yet. Thus the user must be able to login to the web UI with his
userstore password. This is the default behaviour or set the corresponding
policy.

	Set a policy in scope webui and activate the policy action
tokenwizard.

	The user will not be able to choose a token type. But the default token
type will be enrolled.

You can see the token enrollment wizard in action here:
https://www.youtube.com/watch?v=diAGbsiG8_A

12.2.2. Customization

There are two dialog windows in the wizard. You can configure the text in the
wizard in your html templates defined in these files:

static/customize/views/includes/token.enroll.pre.top.html
static/customize/views/includes/token.enroll.pre.bottom.html
static/customize/views/includes/token.enroll.post.top.html
static/customize/views/includes/token.enroll.post.bottom.html

Note

You can change the directory static/customize to a URL that fits
your needs the best by defining a variable PI_CUSTOMIZATION in the file
pi.cfg. This way you can put all modifications in one place apart from the
original code.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	12. Workflows and Tools »

12.3. Tools

privacyIDEA comes with a list of command line tools, which also help to
automate tasks.

12.3.1. privacyidea-token-janitor

Starting with version 2.19 privacyIDEA comes with a token janitor script.
This script can find orphaned tokens, unused tokens or tokens of specific
type, description or token info.

It can unassign, delete or disable those tokens and it can set additional
tokeninfo or descriptions.

If you are unsure to directly delete orphaned tokens, because there might be
a glimpse in the connection to your user store, you could as well in a first
step mark the orphaned tokens. A day later you could run the script again
and delete those tokens, which are (still) orphaned and marked.

12.3.2. privacyidea-get-unused-tokens

The script privacyidea-get-unused-tokens allows you to search for tokens,
which were not used for authentication for a while. These tokens can be
listed, disabled, marked or deleted.

You can specify how old the last authentication of such a token has to be.
You can use the tags h (hours), d (day) and y (year).
Sepcifying 180d will find tokens, that were not used for authentication for
the last 180 days.

The command

privacyidea-get-unused-tokens disable 180d

will disable those tokens.

This script can be well used with the Script Handler Module.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	12. Workflows and Tools »

12.4. Two Step Enrollment

Starting with version 2.21 privacyIDEA allows to enroll smartphone based tokens in a
2step enrollment.

With the rise of the smartphones and the fact that every user has a smartphone, carries it
with him all the time and cares about it a lot, using the smartphone for authentication
gets more and more attractive to IT departments.

Google came up with the Key URI [1] to use a QR code to easily enroll
a smartphone token, i.e. transport the OTP secret from the server to the phone.
However this bears some security issues as already pointed out [2].

This is why privacyIDEA allows to generate the OTP secret from a server component
and from a client component (generated by the smartphone). This way the enrolled
token is more tightly bound to this single smartphone and can not be copied that easily
anymore.

12.4.1. Workflow

In a two step enrollment process the user clicks in the Web UI to enroll a token.
The server generates a QR code and the user will scan this QR code
with his smartphone app. The QR code contains the server component of the key
and the information, that a second component is needed.

The smartphone generates the second component and displays this to the
user.

The user enters this second component into the privacyIDEA Web UI.

Both the smartphone and the server calculate the OTP secret from
both components.

12.4.2. Two Step policies

Two step enrollment is controlled by policies in the admin/user scope and
in the enrollment scope.

Thus the administrator can allow or force a user (or other administrators) to
do a two step enrollment. This way it is possible to avoid the enrollment of insecure
Google Authenticator QR codes in the complete installation. (hotp_2step and totp_2step).

The default behaviour is to not allow a two step enrollment. Only if a corresponding
admin or user policy is defined, two step enrollment is possible.

12.4.2.1. Key generation

In addition the administrator can define an enrollment policy to specify
necessary parameters for the key generation.

Two step enrollment is possible for HOTP and TOTP tokens. Thus the administrator
can define token type specific policies in the scope enrollment:
hotp_2step_clientsize, totp_2step_clientsize, hotp_2step_difficulty...
see {type}_2step_clientsize, {type}_2step_serversize, {type}_2step_difficulty.

12.4.3. privacyIDEA Authenticator

The privacyIDEA Authenticator [3] that is available from the
Google Play Store supports the two step enrollment.

12.4.4. Specification

The two step enrollment simply adds some parameters to the original Key URI.

2step_output

This is the resulting key size, which the smartphone should generate (in bytes).

2step_salt

This is the length of the client component that the smartphone should generate (in bytes).

2step_difficulty

This is the number of rounds for the PBKDF2 that the smartphone should use
to generate the OTP secret.

The secret parameter of the Key URI contains the server component.

The smartphone app then generates the client component, which is 2step_salt random bytes.
It is then displayed in a human-readable format called base32check:

b32encode(sha1(client_component).digest()[0:4] + client_component).strip("=")

In other words, the first four bytes of the client component’s SHA-1 hash are concatenated
with the actual client component. The result is encoded using base32, whereas
trailing padding characters are removed.

The second step of the enrollment process is realized as another request to the /token/init
endpoint:

POST /token/init

serial=<token serial>
otpkey=<base32check(client_component)>
otpkeyformat=base32check

Server and smartphone app then use PBKDF2 to generate the final secret (see [4] for parameter names):

secret = PBKDF2(P=hexlify(<server component>),
 S=<client component>,
 c=<2step_difficulty>
 dkLen=<2step_output>)

whereas hexlify(<server component>) denotes a hex-encoding (using lowercase letters)
of the byte array which comprises the server component.

Note

Please note that the two-step enrollment process is currently not designed to protect
against malicious attackers. Depending on the choice of iteration count and salt size,
an attacker who knows the server component and an OTP value may be able
to obtain the client component with a brute-force approach.
However, two-step enrollment is still an improvement to the status quo, as a simple copy
of the QR code does not immediately leak the OTP secret and obtaining the OTP secret
using brute-force is not trivial.

	[1]	https://github.com/google/google-authenticator/wiki/Key-Uri-Format

	[2]	https://netknights.it/en/the-problem-with-the-google-authenticator/

	[3]	https://play.google.com/store/apps/details?id=it.netknights.piauthenticator

	[4]	https://www.ietf.org/rfc/rfc2898.txt

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

13. Application Plugins

privacyIDEA comes with application plugins. These are plugins for
applications like PAM, OTRS, Apache2, FreeRADIUS, ownCloud or simpleSAMLphp
which enable these
application to authenticate users against privacyIDEA.

You may also write your own application plugin or connect your own application
to privacyIDEA. This is quite simple using a REST API
Validate endpoints.

13.1. Pluggable Authentication Module

The PAM module of privacyIDEA directly communicates with the privacyIDEA
server via the API. The PAM module also supports offline authentication. In
this case you need to configure an offline machine application. (See
Offline)

You can install the PAM module with a ready made Debian package for Ubuntu or
just use the source code file. It is a python module, that requires pam-python.

The configuration could look like this:

... pam_python.so /path/to/privacyidea_pam.py
url=https://localhost prompt=privacyIDEA_Authentication

The URL parameter defaults to https://localhost. You can also add the
parameters realm= and debug.

If you want to disable certificate validation, which you should not do in a
productive environment, you can use the parameter nosslverify.

A new parameter cacerts= lets you define a CA Cert-Bundle file, that
contains the trusted certificate authorities in PEM format.

The default behaviour is to trigger an online authentication request.
If the request was successful, the user is logged in.
If the request was done with a token defined for offline authentication, then
in addition all offline information is passed to the client and cached on the
client so that the token can be used to authenticate without the privacyIDEA
server available.

13.1.1. try_first_pass

Starting with version 2.8 privacyidea_pam supports try_first_pass.
In this case the password that exists in the PAM stack will be sent to
privacyIDEA. If this password is successfully validated, than the user is
logged in without additional requests.
If the password is not validated by privacyIDEA, the user is asked for an
additional OTP value.

Note

This can be used in conjunction with the passthru
policy. In this case users with no tokens will be able to login with only
the password in the PAM stack.

Read more about how to use PAM to do OTP with OpenVPN.

13.2. Using pam_yubico

If you are using yubikey tokens you might also use pam_yubico.
You can use Yubikey tokens for two more or less distinct applications.
The first is using privacyideas PAM module as described above.
In this case privacyidea handles the policies
for user access and password validation. This works fine, when you only use
privacyidea for token validation.

The second mode is using the standard PAM module for yubikeys from Yubico
pam_yubico to handle the token validation. The upside ist that you can
use the PAM module included with you distribution, but there are downsides as
well.

	You can’t set a token PIN in privacyidea, because pam_yubico tries to
use the token PIN entered by the user as a system password (which is likely
to fail), i.e. the PIN will be stripped by pam_yubico and will not reach
the privacyIDEA system.

	Setting the policy which tokens are valid for which users is done either in
~/.yubico/authorized_keys or in the file given by the authfile option
in the PAM configuration. The api server will only validate the token, but
not check any kind of policy.

You can work around the restrictions by using a clever combination
of tokentype yubikey and yubico as follows:

	enroll a yubikey token with yubikey_mass_enroll --mode YUBICO.

	do not set a token password.

	do not assign the token to a user.

	please make a note of yubikey.prefix (12 characters starting with vv).

Now the token can be used with pam_yubico, but will not allow any
user access in privacyidea. If you want to use the token with
pam_yubico see the manual page for details. You’ll want something like the
following in your PAM config:

auth required pam_yubico.so id=<apiid> key=<API key> \
 urllist=https://<privacyidea-server>/ttype/yubikey authfile=/etc/yubikeys/authorized_yubikeys

The file /etc/yubikeys/authorized_yubikeys contains a line
for each user with the username and the allowed tokens delimited
by ”:”, for example:

<username>:<serial number1>:<prefix1>:<prefix2>

... doc/configuration/tokenconfig, add yubikey.rst to describe
how to configure Client ID/apiid and API key

Now create a second token representing the Yubikey, but this time
use the Yubico Cloud mode. Go to Tokens -> Enroll Token and select
Yubico Cloud mode. Enter the 12 characters prefix you noted above
and assign this token to a user and possibly set a token PIN. It would
be nice to have the the serial number of the UBCM token correspond
to the UBAM token, but this is right now not possible with the WebUI.

In the WebUI, test the UBAM token without a Token PIN, test the UBCM token
with the stored Token PIN, and check the token info afterwards.
Check the yubikey token via /ttype/yubikey, for example with:

ykclient --debug --url https://<privacyidea>/ttype/yubikey --apikey "<API key>" "apiid" <otp>

There should be successful authentications (count_auth_success),
but no failures.

13.3. FreeRADIUS

Starting with privacyIDEA 2.19, there are two ways to integrate FreeRADIUS:

	Using a Perl-based privacyIDEA plugin, which is available for FreeRADIUS 2.0.x and above.
It supports advanced use cases (such as challenge-response authentication or attribute mapping).
Read more about it at RADIUS plugin.

	Using the rlm_rest plugin provided by FreeRADIUS 3.0.x and above. However, this setup does not support
challenge-response or attribute mapping. Read more about it at Configuration of rlm_rest.

With either setup, you can test the RADIUS setup using a command like this:

echo "User-Name=user, Password=password" | radclient -sx yourRadiusServer \
 auth topsecret

Note

Do not forget to configure the clients.conf accordingly.

13.4. Microsoft NPS server

You can also use the Microsoft Network Protection Server with privacyIDEA.
A full featured integration guide can be found at the NetKnights webpage
[5].

13.5. simpleSAMLphp Plugin

You can install the plugin for simpleSAMLphp on Ubuntu 14.04 LTS (see
SimpleSAMLphp) or on any other distribution using the
source files from [1].

Follow the simpleSAMLphp instructions to configure your authsources.php.
A usual configuration will look like this:

'example-privacyidea' => array(
 'privacyidea:privacyidea',

 /*
 * The name of the privacyidea server and the protocol
 * A port can be added by a colon
 * Required.
 */
 'privacyideaserver' => 'https://your.server.com',

 /*
 * Check if the hostname matches the name in the certificate
 * Optional.
 */
 'sslverifyhost' => False,

 /*
 * Check if the certificate is valid, signed by a trusted CA
 * Optional.
 */
 'sslverifypeer' => False,

 /*
 * The realm where the user is located in.
 * Optional.
 */
 'realm' => '',

 /*
 * This is the translation from privacyIDEA attribute names to
 * SAML attribute names.
 */
 'attributemap' => array('username' => 'samlLoginName',
 'surname' => 'surName',
 'givenname' => 'givenName',
 'email' => 'emailAddress',
 'phone' => 'telePhone',
 'mobile' => 'mobilePhone',
),
),

13.6. TYPO3

You can install the privacyIDEA extension from the TYPO3 Extension Repository.
The privacyIDEA extension is easily configured.

privacyIDEA Server URL

This is the URL of your privacyIDEA installation. You do not need to add the
path validate/check. Thus the URL for a common installation would be
https://yourServer/.

Check certificate

Whether the validity of the SSL certificate should be checked or not.

Warning

If the SSL certificate is not checked, the authentication
request could be modified and the answer to the request can be modified,
easily granting access to an attacker.

Enable privacyIDEA for backend users

If checked, a user trying to authenticate at the backend, will need to
authenticate against privacyIDEA.

Enable privacyIDEA for frontend users

If checked, a user trying to authenticate at the frontend, will need to
authenticate against privacyIDEA.

Pass to other authentication module

If the authentication at privacyIDEA fails, the credential the user entered
will be verified against the next authentication module.

This can come in handy, if you are setting up the system and if you want to
avoid locking yourself out.

Anyway, in a productive environment you probably want to uncheck this feature.

13.7. OTRS

There are two plugins for OTRS. For OTRS version 4.0 and higher use
privacyIDEA-4_0.pm.

This perl module needs to be installed to the directory Kernel/System/Auth.

On Ubuntu 14.04 LTS you can also install the module using the PPA repository
and installing:

apt-get install privacyidea-otrs

To activate the OTP authentication you need to add the following to
Kernel/Config.pm:

$Self->{'AuthModule'} = 'Kernel::System::Auth::privacyIDEA';
$Self->{'AuthModule::privacyIDEA::URL'} = \
 "https://localhost/validate/check";
$Self->{'AuthModule::privacyIDEA::disableSSLCheck'} = "yes";

Note

As mentioned earlier you should only disable the checking of the
SSL certificate if you are in a test environment. For productive use
you should never disable the SSL certificate checking.

Note

This plugin requires, that you also add the path validate/check
to the URL.

13.8. Apache2

The Apache plugin uses mod_wsgi and redis to provide a basic
authentication on Apache2 side and validating the credentials against
privacyIDEA.

On Ubuntu 14.04 LTS you can easily install the module from the PPA repository
by issuing:

apt-get install privacyidea-apache-client

To activate the OTP authentication on a “Location” or “Directory” you need to
configure Apache2 like this:

<Directory /var/www/html/secretdir>
 AuthType Basic
 AuthName "Protected Area"
 AuthBasicProvider wsgi
 WSGIAuthUserScript /usr/share/pyshared/privacyidea_apache.py
 Require valid-user
</Directory>

Note

Basic Authentication sends the base64 encoded password on each
request. So the browser will send the same one time password with each
reqeust. Thus the authentication module needs to cache the password as the
successful authentication. Redis is used for caching the password.

Warning

As redis per default is accessible by every user on the machine,
you need to use this plugin with caution! Every user on the machine can
access the redis database to read the passwords of the users. The cached
credentials are stored as pbkdf2+sha512 hash.

13.9. NGINX

The NGINX plugin uses the internal scripting language lua of the NGINX
webserver and redis as caching backend to provide basic authentication
against privacyIDEA.

On Ubuntu 14.04 LTS or Debian Jessi 8 you can easyly install the module
by installing the following packages:

nginx-extras lua-nginx-redis lua-cjson redis-server

You can retrieve the nginx plugin here: [4]

To activate the OTP authentication on a “Location” you need to include the
lua script that basically verifies the given credentials against the
caching backend. New authentications will be sent to a different (internal)
location via subrequest which points to the privacyIDEA authentication backend
(via proxy_pass).

For the basic configuration you need to include the following lines to your
location block

	location / {

	# additional plugin configuration goes here #
access_by_lua_file ‘privacyidea.lua’;

}
location /privacyidea-validate-check {

internal;
proxy_pass https://privacyidea/validate/check;

}

You can customize the authentication plugin by setting some of the following
variables in the secured location block:

redis host:port
set $privacyidea_redis_host "127.0.0.1";
set $privacyidea_redis_post 6379;

how long are accepted authentication allowed to be cached
if expired, the user has to reauthenticate
set $privacyidea_ttl 900;

privacyIDEA realm. leave empty == default
set $privacyidea_realm 'somerealm'; # (optional)

pointer to the internal validation proxy pass
set $privacyidea_uri "/privacyidea-validate-check";

the http realm presented to the user
set $privacyidea_http_realm "Secure zone (use PIN + OTP)";

Note

Basic Authentication sends the base64 encoded password on each
request. So the browser will send the same one time password with each
reqeust. Thus the authentication module needs to cache the password as the
successful authentication. Redis is used for caching the password similar
to the Apache2 plugin.

Warning

As redis per default is accessible by every user on the machine,
you need to use this plugin with caution! Every user on the machine can
access the redis database to read the passwords of the users. The cached
credentials are stored as SHA1_HMAC hash. If you prefer a stronger hashing
method feel free to extend the given password_hash/verify functions
using additional lua libraries (for example by using lua-resty-string).

13.10. ownCloud

The ownCloud plugin is a ownCloud user backend. The directory
user_privacyidea needs to be copied to your owncloud apps directory.

[image: ../_images/owncloud.png]
Activating the ownCloud plugin

You can then activate the privacyIDEA ownCloud plugin by checking Use
privacyIDEA to authenticate the users.
All users now need to be known to privacyIDEA and need to authenticate using
the second factor enrolled in privacyIDEA - be it an OTP token, Google
Authenticator or SMS/Smartphone.

Checking Also allow users to authenticate with their normal passwords. lets
the user choose if he wants to authenticate with the OTP token or with his
original password from the original user backend.

Note

At the moment using a desktop client with a one time password is not
supported.

ownCloud 9.1 and Nextcloud 10 come with a new two factor framework. The new
privacyIDEA ownCloud App allows you to add a second factor, that is centrally
managed by privacyIDEA to the ownCloud or Nextcloud installation.

The ownCloud privacyIDEA App is available here [7].

	The App requires a subscription file to work for more than ten users. You can

	get the subscription file at NetKnights [8].

13.11. Django

You can add two factor authentication with privacyIDEA to Django using this
Django plugin. See django.

You can simple add PrivacyIDEA class to AUTHENTICATION_BACKENDS
settings of Django.

13.12. OpenVPN

Read more about how to use OpenVPN with privacyidea at OTP with OpenVPN.

13.13. Windows

13.13.1. Credential Provider

The privacyIDEA Credential Provider adds two factor authentication to
the Windows desktop or Terminal server.
See http://privacyidea-credential-provider.readthedocs.io

13.13.2. Provider Class

There is a dot Net provider class, which you can use to integrate privacyIDEA
authentication into other products and worflows.
See https://github.com/sbidy/privacyIDEA_dotnetProvider

13.14. Further plugins

You can find further plugins for
Dokuwiki, Wordpress, Contao and Django at [3].

	[1]	https://github.com/privacyidea/simplesamlphp-module-privacyidea

	[2]	https://github.com/privacyidea/privacyidea/tree/master/authmodules

	[3]	https://github.com/cornelinux?tab=repositories

	[4]	https://github.com/dhoffend/lua-nginx-privacyidea

	[5]	https://netknights.it/en/nps-2012-for-two-factor-authentication-with-privacyidea/

	[6]	https://github.com/jeweber/django-privacyidea-auth

	[7]	https://apps.owncloud.com/content/show.php/privacyIDEA+ownCloud+App?content=174779

	[8]	https://netknights.it/en/produkte/privacyidea-owncloud-app/

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

14. Code Documentation

The code roughly has three levels.

14.1. API level

The API level is used to access the system.
For some calls you need to be authenticated as administrator,
for some calls you can be authenticated as normal user.
These are the token and the audit endpoint.
For calls to the validate API you do not need to be authenticated at all.

At this level Authentication is performed. In the lower levels there is no
authentication anymore.

The object g.logged_in_user is used to pass the authenticated user.
The client gets a JSON Web Token to authenticate every request.

API functions are decorated with the decorators admin_required and
user_required to define access rules.

	14.1.1. REST API
	14.1.1.1. Audit endpoint

	14.1.1.2. Authentication endpoints

	14.1.1.3. Validate endpoints

	14.1.1.4. System endpoints

	14.1.1.5. Resolver endpoints

	14.1.1.6. Realm endpoints

	14.1.1.7. Default Realm endpoints

	14.1.1.8. Token endpoints

	14.1.1.9. User endpoints

	14.1.1.10. Policy endpoints

	14.1.1.11. Machine Resolver endpoints

	14.1.1.12. Machine endpoints

	14.1.1.13. Application endpoints

	14.1.1.14. Tokentype endpoints

	14.1.1.15. SMTP server endpoints

14.2. LIB level

At the LIB level all library functions are defined. There is no authentication
on this level.
Also there is no flask/Web/request code on this level.

Request information and the logged_in_user need to be passed to the
functions as parameters, if they are needed.

If possible, policies are checked with policy decorators.

	14.2.1. library functions
	14.2.1.1. Users

	14.2.1.2. Token Class
	14.2.1.2.1. 4 Eyes Token

	14.2.1.2.2. Certificate Token

	14.2.1.2.3. Daplug Token

	14.2.1.2.4. Email Token

	14.2.1.2.5. HOTP Token

	14.2.1.2.6. mOTP Token

	14.2.1.2.7. OCRA Token
	14.2.1.2.7.1. Implementation

	14.2.1.2.8. Paper Token

	14.2.1.2.9. PasswordToken

	14.2.1.2.10. Questionnaire Token

	14.2.1.2.11. RADIUS Token

	14.2.1.2.12. Registration Code Token

	14.2.1.2.13. Remote Token

	14.2.1.2.14. SMS Token

	14.2.1.2.15. SPass Token

	14.2.1.2.16. SSHKey Token

	14.2.1.2.17. TiQR Token
	14.2.1.2.17.1. Enrollment

	14.2.1.2.17.2. Authentication

	14.2.1.2.17.3. Implementation

	14.2.1.2.18. TOTP Token

	14.2.1.2.19. U2F Token
	14.2.1.2.19.1. Enrollment
	14.2.1.2.19.1.1. 1. Step

	14.2.1.2.19.1.2. 2. Step

	14.2.1.2.19.2. Authentication
	14.2.1.2.19.2.1. Get the challenge

	14.2.1.2.19.2.2. Send the Response

	14.2.1.2.19.3. Implementation

	14.2.1.2.20. Yubico Token

	14.2.1.2.21. Yubikey Token

	14.2.1.3. Token Functions

	14.2.1.4. Application Class

	14.2.1.5. Policy Module
	14.2.1.5.1. realm and resolver

	14.2.1.5.2. user

	14.2.1.5.3. client

	14.2.1.5.4. time

	14.2.1.6. API Policies
	14.2.1.6.1. Pre Policies

	14.2.1.6.2. Post Policies

	14.2.1.7. Policy Decorators

	14.2.1.8. Event Handler
	14.2.1.8.1. Event Handler Base Class

	14.2.1.8.2. User Notification Event Handler

	14.2.1.9. SMS Provider
	14.2.1.9.1. HTTP SMS Provider

	14.2.1.9.2. Sipgate SMS Provider

	14.2.1.9.3. SMTP SMS Provider

	14.2.1.9.4. Base Class

	14.2.2. UserIdResolvers
	14.2.2.1. Base class

	14.2.2.2. PasswdResolver

	14.2.2.3. LDAPResolver

	14.2.3. Audit log
	14.2.3.1. Base class

	14.2.3.2. SQL Audit module

	14.2.4. Machine Resolvers
	14.2.4.1. Base class

	14.2.4.2. Hosts Machine Resolver

	14.2.5. PinHandler
	14.2.5.1. Base class

14.3. DB level

On the DB level you can simply modify all objects.

	14.3.1. The database model

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.1.1. REST API

This is the REST API for privacyidea. It lets you create the system
configuration, which is denoted in the system endpoints.

Special system configuration is the configuration of

	the resolvers

	the realms

	the defaultrealm

	the policies.

Resolvers are dynamic links to existing user sources. You can find users in
LDAP directories, SQL databases, flat files or SCIM services.
A resolver translates a loginname to a user object in the user source and
back again. It is also responsible for fetching all additional needed
information from the user source.

Realms are collections of resolvers that can be managed by administrators and
where policies can be applied.

Defaultrealm is a special endpoint to define the default realm. The default
realm is used if no user realm is specified. If a user from realm1 tries to
authenticate or is addressed, the notation user@realm1 is used.
If the @realm1 is omitted, the user is searched in the default realm.

Policies are rules how privacyidea behaves and which user and administrator
is allowed to do what.

Start to read about authentication to the API at Authentication endpoints.

Now you can take a look at the several REST endpoints.

	14.1.1.1. Audit endpoint

	14.1.1.2. Authentication endpoints

	14.1.1.3. Validate endpoints

	14.1.1.4. System endpoints

	14.1.1.5. Resolver endpoints

	14.1.1.6. Realm endpoints

	14.1.1.7. Default Realm endpoints

	14.1.1.8. Token endpoints

	14.1.1.9. User endpoints

	14.1.1.10. Policy endpoints

	14.1.1.11. Machine Resolver endpoints

	14.1.1.12. Machine endpoints

	14.1.1.13. Application endpoints

	14.1.1.14. Tokentype endpoints

	14.1.1.15. SMTP server endpoints

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

 This REST API is used to authenticate the users. A user needs to
authenticate when he wants to use the API for administrative tasks like
enrolling a token.

This API must not be confused with the validate API, which is used to check,
if a OTP value is valid. See Validate endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not
authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username
and password.

14.1.1.1. Audit endpoint

	
GET /audit/statistics

	get the statistics values from the audit log

Example request:

GET /audit/statistics HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": [
 {
 "serial_plot": "...image data...",
 }
]
 },
 "version": "privacyIDEA unknown"
 }

	
GET /audit/

	return a paginated list of audit entries.

Params can be passed as key-value-pairs.

	Httpparam timelimit:

		A timelimit, that limits the recent audit entries.
This param gets overwritten by a policy auditlog_age. Can be 1d, 1m, 1h.

Example request:

GET /audit?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": [
 {
 "serial": "....",
 "missing_line": "..."
 }
]
 },
 "version": "privacyIDEA unknown"
 }

	
GET /audit/(csvfile)

	Download the audit entry as CSV file.

Params can be passed as key-value-pairs.

Example request:

GET /audit/audit.csv?realm=realm1 HTTP/1.1
Host: example.com
Accept: text/csv

Example response:

HTTP/1.1 200 OK
Content-Type: text/csv

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": [
 {
 "serial": "....",
 "missing_line": "..."
 }
]
 },
 "version": "privacyIDEA unknown"
 }

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.2. Authentication endpoints

This REST API is used to authenticate the users. A user needs to
authenticate when he wants to use the API for administrative tasks like
enrolling a token.

This API must not be confused with the validate API, which is used to check,
if a OTP value is valid. See Validate endpoints.

Authentication of users and admins is tested in tests/test_api_roles.py

You need to authenticate for all administrative tasks. If you are not
authenticated, the API returns a 401 response.

To authenticate you need to send a POST request to /auth containing username
and password.

	
GET /auth/rights

	This returns the rights of the logged in user.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – The authorization token acquired by /auth request

	
POST /auth

	This call verifies the credentials of the user and issues an
authentication token, that is used for the later API calls. The
authentication token has a validity, that is usually 1 hour.

	JSON Parameters:

		
	username – The username of the user who wants to authenticate to
the API.

	password – The password/credentials of the user who wants to
authenticate to the API.

	Return:	A json response with an authentication token, that needs to be
used in any further request.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – in case of success

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – if authentication fails

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

username=admin
password=topsecret

Example Authentication Response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "token": "eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM"
 }
 },
 "version": "privacyIDEA unknown"
}

Response for failed authentication:

HTTP/1.1 401 UNAUTHORIZED
Content-Type: application/json
Content-Length: 203

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "error": {
 "code": -401,
 "message": "missing Authorization header"
 },
 "status": false
 },
 "version": "privacyIDEA unknown",
 "config": {
 "logout_time": 30
 }
}

Example Request:

Requests to privacyidea then should use this security token in the
Authorization field in the header.

GET /users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: eyJhbGciOiJIUz....jdpn9kIjuGRnGejmbFbM

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.3. Validate endpoints

This module contains the REST API for doing authentication.
The methods are tested in the file tests/test_api_validate.py

Authentication is either done by providing a username and a password or a
serial number and a password.

Authentication workflow

Authentication workflow is like this:

In case of authenticating a user:

	privacyidea.lib.token.check_user_pass()

	privacyidea.lib.token.check_token_list()

	privacyidea.lib.tokenclass.TokenClass.authenticate()

	privacyidea.lib.tokenclass.TokenClass.check_pin()

	privacyidea.lib.tokenclass.TokenClass.check_otp()

In case if authenitcating a serial number:

	privacyidea.lib.token.check_serial_pass()

	privacyidea.lib.token.check_token_list()

	privacyidea.lib.tokenclass.TokenClass.authenticate()

	privacyidea.lib.tokenclass.TokenClass.check_pin()

	privacyidea.lib.tokenclass.TokenClass.check_otp()

	
GET /validate/triggerchallenge

	An administrator can call this endpoint if he has the right of
triggerchallenge (scope: admin).
He can pass a user name and or a serial number.
privacyIDEA will trigger challenges for all native challenges response
tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

	Parameters:	
	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	serial – The serial number of the token.

	Return:	a json result with a “result” of the number of matching
challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
 "signature": "1939...146964",
 "detail": {"transaction_ids": ["03921966357577766962"],
 "messages": ["Enter the OTP from the SMS:"],
 "threadid": 140422378276608},
 "versionnumber": "unknown",
 "version": "privacyIDEA unknown",
 "result": {"status": true,
 "value": 1},
 "time": 1482223663.517212,
 "id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
 "threadid": 140031212377856,
 "transaction_ids": []},
 "id": 1,
 "jsonrpc": "2.0",
 "result": {"status": true,
 "value": 0},
 "signature": "205530282...54508",
 "time": 1484303812.346576,
 "version": "privacyIDEA 2.17",
 "versionnumber": "2.17"}

	Example response for a failed triggering of a challenge. In this case

	
the status will be false.

{"detail": null,
 "id": 1,
 "jsonrpc": "2.0",
 "result": {"error": {"code": 905,
 "message": "ERR905: The user can not be
 found in any resolver in this realm!"},
 "status": false},
 "signature": "14468...081555",
 "time": 1484303933.72481,
 "version": "privacyIDEA 2.17"}

	
POST /validate/triggerchallenge

	An administrator can call this endpoint if he has the right of
triggerchallenge (scope: admin).
He can pass a user name and or a serial number.
privacyIDEA will trigger challenges for all native challenges response
tokens, possessed by this user or only for the given serial number.

The request needs to contain a valid PI-Authorization header.

	Parameters:	
	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	serial – The serial number of the token.

	Return:	a json result with a “result” of the number of matching
challenge response tokens

Example response for a successful triggering of challenge:

{"jsonrpc": "2.0",
 "signature": "1939...146964",
 "detail": {"transaction_ids": ["03921966357577766962"],
 "messages": ["Enter the OTP from the SMS:"],
 "threadid": 140422378276608},
 "versionnumber": "unknown",
 "version": "privacyIDEA unknown",
 "result": {"status": true,
 "value": 1},
 "time": 1482223663.517212,
 "id": 1}

Example response for response, if the user has no challenge token:

{"detail": {"messages": [],
 "threadid": 140031212377856,
 "transaction_ids": []},
 "id": 1,
 "jsonrpc": "2.0",
 "result": {"status": true,
 "value": 0},
 "signature": "205530282...54508",
 "time": 1484303812.346576,
 "version": "privacyIDEA 2.17",
 "versionnumber": "2.17"}

	Example response for a failed triggering of a challenge. In this case

	
the status will be false.

{"detail": null,
 "id": 1,
 "jsonrpc": "2.0",
 "result": {"error": {"code": 905,
 "message": "ERR905: The user can not be
 found in any resolver in this realm!"},
 "status": false},
 "signature": "14468...081555",
 "time": 1484303933.72481,
 "version": "privacyIDEA 2.17"}

	
GET /validate/radiuscheck

	check the authentication for a user or a serial number.
Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.
In case of successful authentication it returns result->value: true.

In case /validate/radiuscheck is requested, the responses are
modified as follows: A successful authentication returns an empty HTTP
204 response. An unsuccessful authentication returns an empty HTTP
400 response. Error responses are the same responses as for the
/validate/check endpoint.

	Parameters:	
	serial – The serial number of the token, that tries to authenticate.

	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	otponly – If set to 1, only the OTP value is verified. This is used
in the management UI. Only used with the parameter serial.

	transaction_id – The transaction ID for a response to a challenge
request

	state – The state ID for a response to a challenge request

	Return:	a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

Example response for this first part of a challenge response
authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "serial": "PIEM0000AB00",
 "type": "email",
 "transaction_id": "12345678901234567890",
 "multi_challenge: [{"serial": "PIEM0000AB00",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 email"},
 {"serial": "PISM12345678",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 SMS"}
]
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

In this example two challenges are triggered, one with an email and one
with an SMS. The application and thus the user has to decide, which one
to use. They can use either.

Note

All challenge response tokens have the same transaction_id in
this case.

	
POST /validate/radiuscheck

	check the authentication for a user or a serial number.
Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.
In case of successful authentication it returns result->value: true.

In case /validate/radiuscheck is requested, the responses are
modified as follows: A successful authentication returns an empty HTTP
204 response. An unsuccessful authentication returns an empty HTTP
400 response. Error responses are the same responses as for the
/validate/check endpoint.

	Parameters:	
	serial – The serial number of the token, that tries to authenticate.

	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	otponly – If set to 1, only the OTP value is verified. This is used
in the management UI. Only used with the parameter serial.

	transaction_id – The transaction ID for a response to a challenge
request

	state – The state ID for a response to a challenge request

	Return:	a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

Example response for this first part of a challenge response
authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "serial": "PIEM0000AB00",
 "type": "email",
 "transaction_id": "12345678901234567890",
 "multi_challenge: [{"serial": "PIEM0000AB00",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 email"},
 {"serial": "PISM12345678",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 SMS"}
]
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

In this example two challenges are triggered, one with an email and one
with an SMS. The application and thus the user has to decide, which one
to use. They can use either.

Note

All challenge response tokens have the same transaction_id in
this case.

	
GET /validate/samlcheck

	Authenticate the user and return the SAML user information.

	Parameters:	
	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	Return:	a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {"attributes": {
 "username": "koelbel",
 "realm": "themis",
 "mobile": null,
 "phone": null,
 "myOwn": "/data/file/home/koelbel",
 "resolver": "themis",
 "surname": "Kölbel",
 "givenname": "Cornelius",
 "email": null},
 "auth": true}
 },
 "version": "privacyIDEA unknown"
 }

The response in value->attributes can contain additional attributes
(like “myOwn”) which you can define in the LDAP resolver in the attribute
mapping.

	
POST /validate/samlcheck

	Authenticate the user and return the SAML user information.

	Parameters:	
	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	Return:	a json result with a boolean “result”: true

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {"attributes": {
 "username": "koelbel",
 "realm": "themis",
 "mobile": null,
 "phone": null,
 "myOwn": "/data/file/home/koelbel",
 "resolver": "themis",
 "surname": "Kölbel",
 "givenname": "Cornelius",
 "email": null},
 "auth": true}
 },
 "version": "privacyIDEA unknown"
 }

The response in value->attributes can contain additional attributes
(like “myOwn”) which you can define in the LDAP resolver in the attribute
mapping.

	
GET /validate/check

	check the authentication for a user or a serial number.
Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.
In case of successful authentication it returns result->value: true.

In case /validate/radiuscheck is requested, the responses are
modified as follows: A successful authentication returns an empty HTTP
204 response. An unsuccessful authentication returns an empty HTTP
400 response. Error responses are the same responses as for the
/validate/check endpoint.

	Parameters:	
	serial – The serial number of the token, that tries to authenticate.

	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	otponly – If set to 1, only the OTP value is verified. This is used
in the management UI. Only used with the parameter serial.

	transaction_id – The transaction ID for a response to a challenge
request

	state – The state ID for a response to a challenge request

	Return:	a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

Example response for this first part of a challenge response
authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "serial": "PIEM0000AB00",
 "type": "email",
 "transaction_id": "12345678901234567890",
 "multi_challenge: [{"serial": "PIEM0000AB00",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 email"},
 {"serial": "PISM12345678",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 SMS"}
]
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

In this example two challenges are triggered, one with an email and one
with an SMS. The application and thus the user has to decide, which one
to use. They can use either.

Note

All challenge response tokens have the same transaction_id in
this case.

	
POST /validate/check

	check the authentication for a user or a serial number.
Either a serial or a user is required to authenticate.
The PIN and OTP value is sent in the parameter pass.
In case of successful authentication it returns result->value: true.

In case /validate/radiuscheck is requested, the responses are
modified as follows: A successful authentication returns an empty HTTP
204 response. An unsuccessful authentication returns an empty HTTP
400 response. Error responses are the same responses as for the
/validate/check endpoint.

	Parameters:	
	serial – The serial number of the token, that tries to authenticate.

	user – The loginname/username of the user, who tries to authenticate.

	realm – The realm of the user, who tries to authenticate. If the
realm is omitted, the user is looked up in the default realm.

	pass – The password, that consists of the OTP PIN and the OTP value.

	otponly – If set to 1, only the OTP value is verified. This is used
in the management UI. Only used with the parameter serial.

	transaction_id – The transaction ID for a response to a challenge
request

	state – The state ID for a response to a challenge request

	Return:	a json result with a boolean “result”: true

Example Validation Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=user
realm=realm1
pass=s3cret123456

Example response for a successful authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "message": "matching 1 tokens",
 "serial": "PISP0000AB00",
 "type": "spass"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

Example response for this first part of a challenge response
authentication:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "detail": {
 "serial": "PIEM0000AB00",
 "type": "email",
 "transaction_id": "12345678901234567890",
 "multi_challenge: [{"serial": "PIEM0000AB00",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 email"},
 {"serial": "PISM12345678",
 "transaction_id": "12345678901234567890",
 "message": "Please enter otp from your
 SMS"}
]
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

In this example two challenges are triggered, one with an email and one
with an SMS. The application and thus the user has to decide, which one
to use. They can use either.

Note

All challenge response tokens have the same transaction_id in
this case.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.4. System endpoints

This is the REST API for system calls to create and read system configuration.

The code of this module is tested in tests/test_api_system.py

	
GET /system/documentation

	returns an restructured text document, that describes the complete
configuration.

	
POST /system/setDefault

	define default settings for tokens. These default settings
are used when new tokens are generated. The default settings will
not affect already enrolled tokens.

	JSON Parameters:

		
	DefaultMaxFailCount – Default value for the maximum allowed
authentication failures

	DefaultSyncWindow – Default value for the synchronization window

	DefaultCountWindow – Default value for the counter window

	DefaultOtpLen – Default value for the OTP value length –
usually 6 or 8

	DefaultResetFailCount – Default value, if the FailCounter should
be reset on successful authentication [True|False]

	Return:	a json result with a boolean “result”: true

	
POST /system/setConfig

	set a configuration key or a set of configuration entries

parameter are generic keyname=value pairs.

	remark In case of key-value pairs the type information could be

	provided by an additional parameter with same keyname with the
postfix ”.type”. Value could then be ‘password’ to trigger the
storing of the value in an encrypted form

	JSON Parameters:

		
	key – configuration entry name

	value – configuration value

	type – type of the value: int or string/text or password.
password will trigger to store the encrypted value

	description – additional information for this config entry

or

	JSON Parameters:

		
	pairs (key-value) – pair of &keyname=value pairs

	Return:	a json result with a boolean “result”: true

Example request 1:

POST /system/setConfig
key=splitAtSign
value=true

Host: example.com
Accept: application/json

Example request 2:

POST /system/setConfig
BINDDN=myName
BINDPW=mySecretPassword
BINDPW.type=password

Host: example.com
Accept: application/json

	
GET /system/gpgkeys

	Returns the GPG keys in the config directory specified by PI_GNUPG_HOME.

	Return:	A json list of the public GPG keys

	
GET /system/random

	This endpoint can be used to retrieve random keys from privacyIDEA.
In certain cases the client might need random data to initialize tokens
on the client side. E.g. the command line client when initializing the
yubikey or the WebUI when creating Client API keys for the yubikey.

In this case, privacyIDEA can created the random data/keys.

	Query Parameters:

		
	len – The length of a symmetric key (byte)

	encode – The type of encoding. Can be “hex” or “b64”.

	Return:	key material

	
POST /system/hsm

	Set the password for the security module

	
GET /system/hsm

	Get the status of the security module.

	
GET /system/

	This endpoint either returns all config entries or only the value of the
one config key.

This endpoint can be called by the administrator but also by the normal
user, so that the normal user gets necessary information about the system
config

	Parameters:	
	key – The key to return.

	Return:	A json response or a single value, when queried with a key.

	Rtype:	json or scalar

	
POST /system/test/(tokentype)

	The call /system/test/email tests the configuration of the email token.

	
GET /system/(key)

	This endpoint either returns all config entries or only the value of the
one config key.

This endpoint can be called by the administrator but also by the normal
user, so that the normal user gets necessary information about the system
config

	Parameters:	
	key – The key to return.

	Return:	A json response or a single value, when queried with a key.

	Rtype:	json or scalar

	
DELETE /system/(key)

	delete a configuration key

	JSON Parameters:

		
	key – configuration key name

	Returns:	a json result with the deleted value

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.5. Resolver endpoints

The code of this module is tested in tests/test_api_system.py

	
POST /resolver/test

	

	Return:	a json result with True, if the given values can create a
working resolver and a description.

	
GET /resolver/

	returns a json list of all resolver.

	Parameters:	
	type (basestring) – Only return resolvers of type (like passwdresolver..)

	editable (basestring) – Set to “1” if only editable resolvers should be returned.

	
POST /resolver/(resolver)

	This creates a new resolver or updates an existing one.
A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters.
Parameters you do not provide are left untouched.
When updating a resolver you must not change the type!
You do not need to specify the type, but if you specify a wrong type,
it will produce an error.

	Parameters:	
	resolver (basestring) – the name of the resolver.

	type – the type of the resolver. Valid types are passwdresolver,

ldapresolver, sqlresolver, scimresolver
:type type: string
:return: a json result with the value being the database id (>0)

Additional parameters depend on the resolver type.

	LDAP:

	
	LDAPURI

	LDAPBASE

	BINDDN

	BINDPW

	TIMEOUT

	SIZELIMIT

	LOGINNAMEATTRIBUTE

	LDAPSEARCHFILTER

	LDAPFILTER

	USERINFO

	NOREFERRALS - True|False

	EDITABLE - True|False

	SQL:

	
	Database

	Driver

	Server

	Port

	User

	Password

	Table

	Map

	Passwd

	
	Filename

	
DELETE /resolver/(resolver)

	This function deletes an existing resolver.
A resolver can not be deleted, if it is contained in a realm

	Parameters:	
	resolver – the name of the resolver to delete.

	Return:	json with success or fail

	
GET /resolver/(resolver)

	This function retrieves the definition of a single resolver.

	Parameters:	
	resolver – the name of the resolver

	Return:	a json result with the configuration of a specified resolver

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.6. Realm endpoints

The realm endpoints are used to define realms.
A realm groups together many users. Administrators can manage the tokens of
the users in such a realm. Policies and tokens can be assigned to realms.

A realm consists of several resolvers. Thus you can create a realm and gather
users from LDAP and flat file source into one realm or you can pick resolvers
that collect users from different points from your vast LDAP directory and
group these users into a realm.

You will only be able to see and use user object, that are contained in a realm.

The code of this module is tested in tests/test_api_system.py

	
GET /realm/superuser

	This call returns the list of all superuser realms
as they are defined in pi.cfg.
See The Config File for more information about this.

	Return:	a json result with a list of realms

Example request:

GET /superuser HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": ["superuser",
 "realm2"]
 }
 },
 "version": "privacyIDEA unknown"
}

	
GET /realm/

	This call returns the list of all defined realms.
It takes no arguments.

	Return:	a json result with a list of realms

Example request:

GET / HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "realm1_with_resolver": {
 "default": true,
 "resolver": [
 {
 "name": "reso1_with_realm",
 "type": "passwdresolver"
 }
]
 }
 }
 },
 "version": "privacyIDEA unknown"
}

	
POST /realm/(realm)

	This call creates a new realm or reconfigures a realm.
The realm contains a list of resolvers.

In the result it returns a list of added resolvers and a list of
resolvers, that could not be added.

	Parameters:	
	realm – The unique name of the realm

	resolvers (string or list) – A comma separated list of unique resolver names or a
list object

	priority – Additional parameters priority.<resolvername> define the
priority of the resolvers within this realm.

	Return:	a json result with a list of Realms

Example request:

To create a new realm “newrealm”, that consists of the resolvers
“reso1_with_realm” and “reso2_with_realm” call:

POST /realm/newrealm HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

resolvers=reso1_with_realm, reso2_with_realm
priority.reso1_with_realm=1
priority.reso2_with_realm=2

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "added": ["reso1_with_realm", "reso2_with_realm"],
 "failed": []
 }
 }
 "version": "privacyIDEA unknown"
}

	
DELETE /realm/(realm)

	This call deletes the given realm.

	Parameters:	
	realm – The name of the realm to delete

	Return:	a json result with value=1 if deleting the realm was successful

Example request:

DELETE /realm/realm_to_delete HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": 1
 },
 "version": "privacyIDEA unknown"
 }

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.7. Default Realm endpoints

These endpoints are used to define the default realm, retrieve it and delete it.

	
DELETE /defaultrealm

	This call deletes the default realm.

	Return:	a json result with either 1 (success) or 0 (fail)

Example response:

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": 1
 },
 "version": "privacyIDEA unknown"
}

	
GET /defaultrealm

	This call returns the default realm

	Return:	a json description of the default realm with the resolvers

Example response:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "defrealm": {
 "default": true,
 "resolver": [
 {
 "name": "defresolver",
 "type": "passwdresolver"
 }
]
 }
 }
 },
 "version": "privacyIDEA unknown"
}

	
POST /defaultrealm/(realm)

	This call sets the default realm.

	Parameters:	
	realm – the name of the realm, that should be the default realm

	Return:	a json result with either 1 (success) or 0 (fail)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.8. Token endpoints

The token API can be accessed via /token.

You need to authenticate to gain access to these token
functions.
If you are authenticated as administrator, you can manage all tokens.
If you are authenticated as normal user, you can only manage your own tokens.
Some API calls are only allowed to be accessed by adminitrators.

To see how to authenticate read Authentication endpoints.

	
GET /token/challenges/

	This endpoint returns the active challenges in the database or returns
the challenges for a single token by its serial number

	Query Parameters:

		
	serial – The optional serial number of the token for which the
challenges should be returned

	sortby – sort the output by column

	sortdir – asc/desc

	page – request a certain page

	pagesize – limit the number of returned tokens

	Return:	json

	
POST /token/unassign

	Unssign a token from a user.
You can either provide “serial” as an argument to unassign this very
token or you can provide user and realm, to unassign all tokens of a user.

	Return:	In case of success it returns “value”: True.

	Rtype:	json object

	
POST /token/copyuser

	Copy the token user from one token to the other.

	JSON Parameters:

		
	from (basestring) – the serial number of the token, from where you
want to copy the pin.

	to (basestring) – the serial number of the token, from where you
want to copy the pin.

	Return:	returns value=True in case of success

	Rtype:	bool

	
POST /token/disable

	Disable a single token or all the tokens of a user either by providing
the serial number of the single token or a username and realm.

Disabled tokens can not be used to authenticate but can be enabled again.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
disable

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of disabled
tokens in “value”.

	Rtype:	json object

	
POST /token/copypin

	Copy the token PIN from one token to the other.

	JSON Parameters:

		
	from (basestring) – the serial number of the token, from where you
want to copy the pin.

	to (basestring) – the serial number of the token, from where you
want to copy the pin.

	Return:	returns value=True in case of success

	Rtype:	bool

	
POST /token/assign

	Assign a token to a user.

	JSON Parameters:

		
	serial – The token, which should be assigned to a user

	user – The username of the user

	realm – The realm of the user

	Return:	In case of success it returns “value”: True.

	Rtype:	json object

	
POST /token/revoke

	Revoke a single token or all the tokens of a user.
A revoked token will usually be locked. A locked token can not be used
anymore.
For certain token types additional actions might occur when revoking a
token.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
revoke

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of revoked
tokens in “value”.

	Rtype:	JSON object

	
POST /token/enable

	Enable a single token or all the tokens of a user.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
enable

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of enabled
tokens in “value”.

	Rtype:	json object

	
POST /token/resync

	Resync the OTP token by providing two consecutive OTP values.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	otp1 (basestring) – First OTP value

	otp2 (basestring) – Second OTP value

	Return:	In case of success it returns “value”=True

	Rtype:	json object

	
POST /token/setpin

	Set the the user pin or the SO PIN of the specific token.
Usually these are smartcard or token specific PINs.
E.g. the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single
token to reset

	userpin (basestring) – The user PIN of a smartcard

	sopin (basestring) – The SO PIN of a smartcard

	otppin (basestring) – The OTP PIN of a token

	Return:	In “value” returns the number of PINs set.

	Rtype:	json object

	
POST /token/reset

	Reset the failcounter of a single token or of all tokens of a user.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns “value”=True

	Rtype:	json object

	
POST /token/init

	create a new token.

	JSON Parameters:

		
	otpkey – required: the secret key of the token

	genkey – set to =1, if key should be generated. We either
need otpkey or genkey

	keysize – the size (byte) of the key. Either 20 or 32. Default is 20

	serial – the serial number/identifier of the token

	description – A description for the token

	pin – the pin of the token. “OTP PIN”

	user – the login user name. This user gets the token assigned

	realm – the realm of the user.

	type – the type of the token

	tokenrealm – additional realms, the token should be put into

	otplen – length of the OTP value

	hashlib – used hashlib sha1, sha256 or sha512

	validity_period_start – The beginning of the validity period

	validity_period_end – The end of the validity period

	2stepinit – set to =1 in conjunction with genkey=1 if you want
a 2 step initialization process. Additional policies have to be set
see Two Step Enrollment.

	otpkeyformat – used to supply the OTP key in alternate formats, currently
hex or base32check (see Two Step Enrollment)

	Return:	a json result with a boolean “result”: true

Depending on the token type there can be additional parameters.
In the tokenclass you can see additional parameters in the method update
when looking for getParam functions.

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 "googleurl": {
 "description": "URL for google Authenticator",
 "img": "",
 "value": "otpauth://hotp/mylabel?secret=GEZDGNBVGY3TQOJQGEZDGNBVGY3TQOJQ&counter=0"
 },
 "oathurl": {
 "description": "URL for OATH token",
 "img": "",
 "value": "oathtoken:///addToken?name=mylabel&lockdown=true&key=3132333435363738393031323334353637383930"
 },
 "otpkey": {
 "description": "OTP seed",
 "img": "",
 "value": "seed://3132333435363738393031323334353637383930"
 },
 "serial": "OATH00096020"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

2 Step Enrollment

Some tokens might need a 2 step initialization process like a smartphone
app. This way you can create a shared secret from a part generated by
the privacyIDEA server and from a second part generated by the smartphone
app/client.

The first API call would be

POST /token/init

2stepinit=1

The response would contain the otpkey generated by the server and the
serial number of the token. At this point, the token is deactivated and
marked as being in an enrollment state. The client
would also generated a component of the key and send his component to the
privacyIDEA server:

The second API call would be

POST /token/init

serial=<serial from the previous response>
otpkey=<key part generated by the client>

Each tokenclass can define its own way to generate the secret key by
overwriting the method generate_symmetric_key. The
Base Tokenclass contains an extremely simple way by concatenating the
two parts. See
generate_symmetric_key()

	
POST /token/set

	This API is only to be used by the admin!
This can be used to set token specific attributes like

	description

	count_window

	sync_window

	count_auth_max

	count_auth_success_max

	hashlib,

	max_failcount

	validity_period_start

	validity_period_end

The token is identified by the unique serial number or by the token owner.
In the later case all tokens of the owner will be modified.

The validity period needs to be provided in the format
YYYY-MM-DDThh:mm+oooo

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	user (basestring) – The username of the token owner

	realm (basestring) – The realm name of the token owner

	Return:	returns the number of attributes set in “value”

	Rtype:	json object

	
GET /token/

	Display the list of tokens. Using different parameters you can choose,
which tokens you want to get and also in which format you want to get the
information (outform).

	Query Parameters:

		
	serial – Display the token data of this single token. You can do a
not strict matching by specifying a serial like “OATH”.

	type – Display only token of type. You ca do a non strict matching by
specifying a tokentype like “otp”, to file hotp and totp tokens.

	user – display tokens of this user

	tokenrealm – takes a realm, only the tokens in this realm will be
displayed

	description (basestring) – Display token with this kind of description

	sortby – sort the output by column

	sortdir – asc/desc

	page – request a certain page

	assigned – Only return assigned (True) or not assigned (False) tokens

	pagesize – limit the number of returned tokens

	user_fields – additional user fields from the userid resolver of
the owner (user)

	outform – if set to “csv”, than the token list will be given in CSV

	Return:	a json result with the data being a list of token dictionaries:

{ "data": [{ <token1> }, { <token2> }]}

	Rtype:	json

	
POST /token/info/(serial)/(key)

	Add a specific tokeninfo entry to a token. Already existing entries
with the same key are overwritten.

	Parameters:	
	serial – the serial number/identifier of the token

	key – token info key that should be set

	Query Parameters:

		
	value – token info value that should be set

	Return:	returns value=True in case the token info could be set

	Rtype:	bool

	
DELETE /token/info/(serial)/(key)

	Delete a specific tokeninfo entry of a token.

	Parameters:	
	serial – the serial number/identifier of the token

	key – token info key that should be deleted

	Return:	returns value=True in case a matching token was found, which does not necessarily mean

that the matching token had a tokeninfo value set in the first place.
:rtype: bool

	
GET /token/challenges/(serial)

	This endpoint returns the active challenges in the database or returns
the challenges for a single token by its serial number

	Query Parameters:

		
	serial – The optional serial number of the token for which the
challenges should be returned

	sortby – sort the output by column

	sortdir – asc/desc

	page – request a certain page

	pagesize – limit the number of returned tokens

	Return:	json

	
GET /token/getserial/(otp)

	Get the serial number for a given OTP value.
If the administrator has a token, he does not know to whom it belongs,
he can type in the OTP value and gets the serial number of the token, that
generates this very OTP value.

	Query Parameters:

		
	otp – The given OTP value

	type – Limit the search to this token type

	unassigned – If set=1, only search in unassigned tokens

	assigned – If set=1, only search in assigned tokens

	count – if set=1, only return the number of tokens, that will be
searched

	serial – This can be a substring of serial numbers to search in.

	window – The number of OTP look ahead (default=10)

	Return:	The serial number of the token found

	
POST /token/disable/(serial)

	Disable a single token or all the tokens of a user either by providing
the serial number of the single token or a username and realm.

Disabled tokens can not be used to authenticate but can be enabled again.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
disable

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of disabled
tokens in “value”.

	Rtype:	json object

	
POST /token/revoke/(serial)

	Revoke a single token or all the tokens of a user.
A revoked token will usually be locked. A locked token can not be used
anymore.
For certain token types additional actions might occur when revoking a
token.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
revoke

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of revoked
tokens in “value”.

	Rtype:	JSON object

	
POST /token/enable/(serial)

	Enable a single token or all the tokens of a user.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to
enable

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns the number of enabled
tokens in “value”.

	Rtype:	json object

	
POST /token/resync/(serial)

	Resync the OTP token by providing two consecutive OTP values.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	otp1 (basestring) – First OTP value

	otp2 (basestring) – Second OTP value

	Return:	In case of success it returns “value”=True

	Rtype:	json object

	
POST /token/setpin/(serial)

	Set the the user pin or the SO PIN of the specific token.
Usually these are smartcard or token specific PINs.
E.g. the userpin is used with mOTP tokens to store the mOTP PIN.

The token is identified by the unique serial number.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single
token to reset

	userpin (basestring) – The user PIN of a smartcard

	sopin (basestring) – The SO PIN of a smartcard

	otppin (basestring) – The OTP PIN of a token

	Return:	In “value” returns the number of PINs set.

	Rtype:	json object

	
POST /token/reset/(serial)

	Reset the failcounter of a single token or of all tokens of a user.

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	user (basestring) – The login name of the user

	realm (basestring) – the realm name of the user

	Return:	In case of success it returns “value”=True

	Rtype:	json object

	
POST /token/realm/(serial)

	Set the realms of a token.
The token is identified by the unique serial number

	You can call the function like this:

	POST /token/realm?serial=<serial>&realms=<something>
POST /token/realm/<serial>?realms=<hash>

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	realms (basestring) – The realms the token should be assigned to.
Comma separated

	Return:	returns value=True in case of success

	Rtype:	bool

	
POST /token/load/(filename)

	The call imports the given file containing token definitions.
The file can be an OATH CSV file, an aladdin XML file or a Yubikey CSV file
exported from the yubikey initialization tool.

The function is called as a POST request with the file upload.

	JSON Parameters:

		
	filename – The name of the token file, that is imported

	type – The file type. Can be “aladdin-xml”,
“oathcsv” or “yubikeycsv”.

	tokenrealms – comma separated list of tokens.

	psk – Pre Shared Key, when importing PSKC

	Return:	The number of the imported tokens

	Rtype:	int

	
POST /token/lost/(serial)

	Mark the specified token as lost and create a new temporary token.
This new token gets the new serial number “lost<old-serial>” and
a certain validity period and the PIN of the lost token.

This method can be called by either the admin or the user on his own tokens.

	You can call the function like this:

	POST /token/lost/serial

	JSON Parameters:

		
	serial (basestring) – the serial number of the lost token.

	Return:	returns value=dictionary in case of success

	Rtype:	bool

	
POST /token/set/(serial)

	This API is only to be used by the admin!
This can be used to set token specific attributes like

	description

	count_window

	sync_window

	count_auth_max

	count_auth_success_max

	hashlib,

	max_failcount

	validity_period_start

	validity_period_end

The token is identified by the unique serial number or by the token owner.
In the later case all tokens of the owner will be modified.

The validity period needs to be provided in the format
YYYY-MM-DDThh:mm+oooo

	JSON Parameters:

		
	serial (basestring) – the serial number of the single token to reset

	user (basestring) – The username of the token owner

	realm (basestring) – The realm name of the token owner

	Return:	returns the number of attributes set in “value”

	Rtype:	json object

	
DELETE /token/(serial)

	Delete a token by its serial number or delete all tokens of a user.

	JSON Parameters:

		
	serial – The serial number of a single token.

	user – The username of the user, whose tokens should be deleted.

	realm – The realm of the user.

	Return:	In case of success it return the number of deleted tokens in
“value”

	Rtype:	json object

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.9. User endpoints

The user endpoints is a subset of the system endpoint.

	
GET /user/

	list the users in a realm

A normal user can call this endpoint and will get information about his
own account.

	Parameters:	
	realm – a realm that contains several resolvers. Only show users
from this realm

	resolver – a distinct resolvername

	<searchexpr> – a search expression, that depends on the ResolverClass

	Return:	json result with “result”: true and the userlist in “value”.

Example request:

GET /user?realm=realm1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": [
 {
 "description": "Cornelius K\u00f6lbel,,+49 151 2960 1417,+49 561 3166797,cornelius.koelbel@netknights.it",
 "email": "cornelius.koelbel@netknights.it",
 "givenname": "Cornelius",
 "mobile": "+49 151 2960 1417",
 "phone": "+49 561 3166797",
 "surname": "K\u00f6lbel",
 "userid": "1009",
 "username": "cornelius",
 "resolver": "name-of-resolver"
 }
]
 },
 "version": "privacyIDEA unknown"
 }

	
POST /user/

	Create a new user in the given resolver.

Example request:

POST /user
user=new_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

	
POST /user

	Create a new user in the given resolver.

Example request:

POST /user
user=new_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

	
PUT /user/

	Edit a user in the user store.
The resolver must have the flag editable, so that the user can be deleted.
Only administrators are allowed to edit users.

Example request:

PUT /user
user=existing_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

Note

Also a user can call this function to e.g. change his password.
But in this case the parameter “user” and “resolver” get overwritten
by the values of the authenticated user, even if he specifies another
username.

	
PUT /user

	Edit a user in the user store.
The resolver must have the flag editable, so that the user can be deleted.
Only administrators are allowed to edit users.

Example request:

PUT /user
user=existing_user
resolver=<resolvername>
surname=...
givenname=...
email=...
mobile=...
phone=...
password=...
description=...

Host: example.com
Accept: application/json

Note

Also a user can call this function to e.g. change his password.
But in this case the parameter “user” and “resolver” get overwritten
by the values of the authenticated user, even if he specifies another
username.

	
DELETE /user/(resolvername)/(username)

	Delete a User in the user store.
The resolver must have the flag editable, so that the user can be deleted.
Only administrators are allowed to delete users.

Delete a user object in a user store by calling

Example request:

DELETE /user/<resolvername>/<username>
Host: example.com
Accept: application/json

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

 The code of this module is tested in tests/test_api_system.py

14.1.1.10. Policy endpoints

The policy endpoints are a subset of the system endpoint.

You can read more about policies at Policies.

	
GET /policy/check

	This function checks, if the given parameters would match a defined policy
or not.

	Query Parameters:

		
	user – the name of the user

	realm – the realm of the user or the realm the administrator
want to do administrative tasks on.

	resolver – the resolver of a user

	scope – the scope of the policy

	action – the action that is done - if applicable

	client (IP_Address) – the client, from which this request would be
issued

	Return:	a json result with the keys allowed and policy in the value key

	Rtype:	json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

GET /policy/check?user=admin&realm=r1&client=172.16.1.1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "pol_update_del": {
 "action": "enroll",
 "active": true,
 "client": "172.16.0.0/16",
 "name": "pol_update_del",
 "realm": "r1",
 "resolver": "test",
 "scope": "selfservice",
 "time": "",
 "user": "admin"
 }
 }
 },
 "version": "privacyIDEA unknown"
 }

	
GET /policy/defs

	This is a helper function that returns the POSSIBLE policy
definitions, that can
be used to define your policies.

	Query Parameters:

		
	scope – if given, the function will only return policy
definitions for the given scope.

	Return:	The policy definitions of the allowed scope with the actions and
action types. The top level key is the scope.

	Rtype:	dict

	
GET /policy/

	this function is used to retrieve the policies that you
defined.
It can also be used to export the policy to a file.

	Query Parameters:

		
	name – will only return the policy with the given name

	export – The filename needs to be specified as the
third part of the URL like policy.cfg. It
will then be exported to this file.

	realm – will return all policies in the given realm

	scope – will only return the policies within the given scope

	active – Set to true or false if you only want to display
active or inactive policies.

	Return:	a json result with the configuration of the specified policies

	Rtype:	json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "pol_update_del": {
 "action": "enroll",
 "active": true,
 "client": "1.1.1.1",
 "name": "pol_update_del",
 "realm": "r1",
 "resolver": "test",
 "scope": "selfservice",
 "time": "",
 "user": "admin"
 }
 }
 },
 "version": "privacyIDEA unknown"
 }

	
POST /policy/disable/(name)

	Disable a given policy by its name.

	JSON Parameters:

		
	name – The name of the policy

	Return:	ID in the database

	
POST /policy/enable/(name)

	Enable a given policy by its name.

	JSON Parameters:

		
	name – Name of the policy

	Return:	ID in the database

	
GET /policy/export/(export)

	this function is used to retrieve the policies that you
defined.
It can also be used to export the policy to a file.

	Query Parameters:

		
	name – will only return the policy with the given name

	export – The filename needs to be specified as the
third part of the URL like policy.cfg. It
will then be exported to this file.

	realm – will return all policies in the given realm

	scope – will only return the policies within the given scope

	active – Set to true or false if you only want to display
active or inactive policies.

	Return:	a json result with the configuration of the specified policies

	Rtype:	json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "pol_update_del": {
 "action": "enroll",
 "active": true,
 "client": "1.1.1.1",
 "name": "pol_update_del",
 "realm": "r1",
 "resolver": "test",
 "scope": "selfservice",
 "time": "",
 "user": "admin"
 }
 }
 },
 "version": "privacyIDEA unknown"
 }

	
POST /policy/import/(filename)

	This function is used to import policies from a file.

	JSON Parameters:

		
	filename – The name of the file in the request

	Form Parameters:

		
	file – The uploaded file contents

	Return:	A json response with the number of imported policies.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

POST /policy/import/backup-policy.cfg HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": 2
 },
 "version": "privacyIDEA unknown"
 }

	
GET /policy/defs/(scope)

	This is a helper function that returns the POSSIBLE policy
definitions, that can
be used to define your policies.

	Query Parameters:

		
	scope – if given, the function will only return policy
definitions for the given scope.

	Return:	The policy definitions of the allowed scope with the actions and
action types. The top level key is the scope.

	Rtype:	dict

	
POST /policy/(name)

	Creates a new policy that defines access or behaviour of different
actions in privacyIDEA

	JSON Parameters:

		
	name (basestring) – name of the policy

	scope – the scope of the policy like “admin”, “system”,
“authentication” or “selfservice”

	adminrealm – Realm of the administrator. (only for admin scope)

	action – which action may be executed

	realm – For which realm this policy is valid

	resolver – This policy is valid for this resolver

	user – The policy is valid for these users.
string with wild cards or list of strings

	time – on which time does this policy hold

	client (IP address with subnet) – for which requesting client this should be

	active – bool, whether this policy is active or not

	check_all_resolvers – bool, whether all all resolvers in which
the user exists should be checked with this policy.

	Return:	a json result with success or error

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

In this example a policy “pol1” is created.

POST /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

scope=admin
realm=realm1
action=enroll, disable

Example response:

HTTP/1.0 200 OK
Content-Length: 354
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "setPolicy pol1": 1
 }
 },
 "version": "privacyIDEA unknown"
 }

	
GET /policy/(name)

	this function is used to retrieve the policies that you
defined.
It can also be used to export the policy to a file.

	Query Parameters:

		
	name – will only return the policy with the given name

	export – The filename needs to be specified as the
third part of the URL like policy.cfg. It
will then be exported to this file.

	realm – will return all policies in the given realm

	scope – will only return the policies within the given scope

	active – Set to true or false if you only want to display
active or inactive policies.

	Return:	a json result with the configuration of the specified policies

	Rtype:	json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

In this example a policy “pol1” is created.

GET /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": {
 "pol_update_del": {
 "action": "enroll",
 "active": true,
 "client": "1.1.1.1",
 "name": "pol_update_del",
 "realm": "r1",
 "resolver": "test",
 "scope": "selfservice",
 "time": "",
 "user": "admin"
 }
 }
 },
 "version": "privacyIDEA unknown"
 }

	
DELETE /policy/(name)

	This deletes the policy of the given name.

	JSON Parameters:

		
	name – the policy with the given name

	Return:	a json result about the delete success.
In case of success value > 0

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Policy created or modified.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Authentication failed

Example request:

In this example a policy “pol1” is created.

DELETE /policy/pol1 HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.0 200 OK
Content-Type: application/json

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": 1
 },
 "version": "privacyIDEA unknown"
}

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

 This endpoint is used to create, modify, list and delete Machine Resolvers.
Machine Resolvers fetch machine information from remote machine stores like a
hosts file or an Active Directory.

The code of this module is tested in tests/test_api_machineresolver.py

14.1.1.11. Machine Resolver endpoints

	
POST /machineresolver/test

	This function tests, if the given parameter will create a working
machine resolver. The Machine Resolver Class itself verifies the
functionality. This can also be network connectivity to a Machine Store.

	Return:	a json result with bool

	
GET /machineresolver/

	returns a json list of all machine resolver.

	Parameters:	
	type – Only return resolvers of type (like “hosts”...)

	
POST /machineresolver/(resolver)

	This creates a new machine resolver or updates an existing one.
A resolver is uniquely identified by its name.

If you update a resolver, you do not need to provide all parameters.
Parameters you do not provide are left untouched.
When updating a resolver you must not change the type!
You do not need to specify the type, but if you specify a wrong type,
it will produce an error.

	Parameters:	
	resolver (basestring) – the name of the resolver.

	type (string) – the type of the resolver. Valid types are... “hosts”

	Return:	a json result with the value being the database id (>0)

Additional parameters depend on the resolver type.

	hosts:

	
	filename

	
DELETE /machineresolver/(resolver)

	this function deletes an existing machine resolver

	Parameters:	
	resolver – the name of the resolver to delete.

	Return:	json with success or fail

	
GET /machineresolver/(resolver)

	This function retrieves the definition of a single machine resolver.

	Parameters:	
	resolver – the name of the resolver

	Return:	a json result with the configuration of a specified resolver

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

 This REST API is used to list machines from Machine Resolvers.

The code is tested in tests/test_api_machines

14.1.1.12. Machine endpoints

	
POST /machine/tokenoption

	This sets a Machine Token option or deletes it, if the value is empty.

	Parameters:	
	hostname – identify the machine by the hostname

	machineid – identify the machine by the machine ID and the resolver
name

	resolver – identify the machine by the machine ID and the resolver name

	serial – identify the token by the serial number

	application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

	Return:	

	
GET /machine/authitem

	This fetches the authentication items for a given application and the
given client machine.

	Parameters:	
	challenge (basestring) – A challenge for which the authentication item is
calculated. In case of the Yubikey this can be a challenge that produces
a response. The authentication item is the combination of the challenge
and the response.

	hostname (basestring) – The hostname of the machine

	Return:	dictionary with lists of authentication items

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": { "ssh": [{ "username": "....",
 "sshkey": "...."
 }
],
 "luks": [{ "slot": ".....",
 "challenge": "...",
 "response": "...",
 "partition": "..."
]
 }
 },
 "version": "privacyIDEA unknown"
 }

	
POST /machine/token

	Attach an existing token to a machine with a certain application.

	Parameters:	
	hostname – identify the machine by the hostname

	machineid – identify the machine by the machine ID and the resolver
name

	resolver – identify the machine by the machine ID and the resolver name

	serial – identify the token by the serial number

	application – the name of the application like “luks” or “ssh”.

Parameters not listed will be treated as additional options.

	Return:	json result with “result”: true and the machine list in “value”.

Example request:

POST /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
 "machienid": "12313098",
 "resolver": "machineresolver1",
 "serial": "tok123",
 "application": "luks" }

	
GET /machine/token

	Return a list of MachineTokens either for a given machine or for a given
token.

	Parameters:	
	serial – Return the MachineTokens for a the given Token

	hostname – Identify the machine by the hostname

	machineid – Identify the machine by the machine ID and the resolver
name

	resolver – Identify the machine by the machine ID and the resolver
name

	Return:	

	
GET /machine/

	List all machines that can be found in the machine resolvers.

	Parameters:	
	hostname – only show machines, that match this hostname as substring

	ip – only show machines, that exactly match this IP address

	id – filter for substring matching ids

	resolver – filter for substring matching resolvers

	any – filter for a substring either matching in “hostname”, “ip”
or “id”

	Return:	json result with “result”: true and the machine list in “value”.

Example request:

GET /hostname?hostname=on HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": [
 {
 "id": "908asljdas90ad0",
 "hostname": ["flavon.example.com", "test.example.com"],
 "ip": "1.2.3.4",
 "resolver_name": "machineresolver1"
 },
 {
 "id": "1908209x48x2183",
 "hostname": ["london.example.com"],
 "ip": "2.4.5.6",
 "resolver_name": "machineresolver1"
 }
]
 },
 "version": "privacyIDEA unknown"
 }

	
DELETE /machine/token/(serial)/(machineid)/(resolver)/(application)

	Detach a token from a machine with a certain application.

	Parameters:	
	machineid – identify the machine by the machine ID and the resolver
name

	resolver – identify the machine by the machine ID and the resolver name

	serial – identify the token by the serial number

	application – the name of the application like “luks” or “ssh”.

	Return:	json result with “result”: true and the machine list in “value”.

Example request:

DELETE /token HTTP/1.1
Host: example.com
Accept: application/json

{ "hostname": "puckel.example.com",
 "resolver": "machineresolver1",
 "application": "luks" }

	
GET /machine/authitem/(application)

	This fetches the authentication items for a given application and the
given client machine.

	Parameters:	
	challenge (basestring) – A challenge for which the authentication item is
calculated. In case of the Yubikey this can be a challenge that produces
a response. The authentication item is the combination of the challenge
and the response.

	hostname (basestring) – The hostname of the machine

	Return:	dictionary with lists of authentication items

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": { "ssh": [{ "username": "....",
 "sshkey": "...."
 }
],
 "luks": [{ "slot": ".....",
 "challenge": "...",
 "response": "...",
 "partition": "..."
]
 }
 },
 "version": "privacyIDEA unknown"
 }

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

 This endpoint is used to get the information from the server,
which application types are known and which options these applications provide.

Applications are used to attach tokens to machines.

The code of this module is tested in tests/test_api_applications.py

14.1.1.13. Application endpoints

	
GET /application/

	returns a json list of the available applications

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.14. Tokentype endpoints

This API endpoint is a generic endpoint that can be used by any token
type.

The tokentype needs to implement a classmethod api_endpoint and can then be
called by /ttype/<tokentype>.
This way, each tokentype can create its own API without the need to change
the core API.

The TiQR Token uses this API to implement its special functionalities. See
TiQR Token.

	
GET /ttype/(ttype)

	This is a special token function. Each token type can define an
additional API call, that does not need authentication on the REST API
level.

	Return:	Token Type dependent

	
POST /ttype/(ttype)

	This is a special token function. Each token type can define an
additional API call, that does not need authentication on the REST API
level.

	Return:	Token Type dependent

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.1.1. REST API »

14.1.1.15. SMTP server endpoints

This endpoint is used to create, update, list and delete SMTP
server definitions. SMTP server definitions can be used for several purposes
like
EMail-Token, SMS Token with SMTP gateway, notification like PIN handler and
registration.

The code of this module is tested in tests/test_api_smtpserver.py

	
POST /smtpserver/send_test_email

	Test the email configuration
:return:

	
GET /smtpserver/

	This call gets the list of SMTP server definitions

	
POST /smtpserver/(identifier)

	This call creates or updates an SMTP server definition.

	Parameters:	
	identifier – The unique name of the SMTP server definition

	server – The FQDN or IP of the mail server

	port – The port of the mail server

	username – The mail username for authentication at the SMTP server

	password – The password for authentication at the SMTP server

	tls – If the server should do TLS

	description – A description for the definition

	
DELETE /smtpserver/(identifier)

	This call deletes the specified SMTP server configuration

	Parameters:	
	identifier – The unique name of the SMTP server definition

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.2.1. library functions

Based on the database models, which are tested in tests/test_db_model.py,
there are different modules.

resolver.py contains functions to simply deal with resolver definitions.
On this level users and realms are not know, yet.

realm.py contains functions to deal with realm. Realms are a list of several
resolvers. So prior to bother the realm.py, the resolver.py should be
understood and working.
On this level, users are not known, yet.

user.py contains functions to deal with users. A user object is an entity
in a realm. And of course the user object itself can be found in a resolver.
But you need to have working resolver.py and realm.py to be able to
work with user.py

For further details see the following modules:

	14.2.1.1. Users

	14.2.1.2. Token Class
	14.2.1.2.1. 4 Eyes Token

	14.2.1.2.2. Certificate Token

	14.2.1.2.3. Daplug Token

	14.2.1.2.4. Email Token

	14.2.1.2.5. HOTP Token

	14.2.1.2.6. mOTP Token

	14.2.1.2.7. OCRA Token
	14.2.1.2.7.1. Implementation

	14.2.1.2.8. Paper Token

	14.2.1.2.9. PasswordToken

	14.2.1.2.10. Questionnaire Token

	14.2.1.2.11. RADIUS Token

	14.2.1.2.12. Registration Code Token

	14.2.1.2.13. Remote Token

	14.2.1.2.14. SMS Token

	14.2.1.2.15. SPass Token

	14.2.1.2.16. SSHKey Token

	14.2.1.2.17. TiQR Token
	14.2.1.2.17.1. Enrollment

	14.2.1.2.17.2. Authentication

	14.2.1.2.17.3. Implementation

	14.2.1.2.18. TOTP Token

	14.2.1.2.19. U2F Token
	14.2.1.2.19.1. Enrollment
	14.2.1.2.19.1.1. 1. Step

	14.2.1.2.19.1.2. 2. Step

	14.2.1.2.19.2. Authentication
	14.2.1.2.19.2.1. Get the challenge

	14.2.1.2.19.2.2. Send the Response

	14.2.1.2.19.3. Implementation

	14.2.1.2.20. Yubico Token

	14.2.1.2.21. Yubikey Token

	14.2.1.3. Token Functions

	14.2.1.4. Application Class

	14.2.1.5. Policy Module
	14.2.1.5.1. realm and resolver

	14.2.1.5.2. user

	14.2.1.5.3. client

	14.2.1.5.4. time

	14.2.1.6. API Policies
	14.2.1.6.1. Pre Policies

	14.2.1.6.2. Post Policies

	14.2.1.7. Policy Decorators

	14.2.1.8. Event Handler
	14.2.1.8.1. Event Handler Base Class

	14.2.1.8.2. User Notification Event Handler

	14.2.1.9. SMS Provider
	14.2.1.9.1. HTTP SMS Provider

	14.2.1.9.2. Sipgate SMS Provider

	14.2.1.9.3. SMTP SMS Provider

	14.2.1.9.4. Base Class

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.1. Users

There are the library functions for user functions.
It depends on the lib.resolver and lib.realm.

There are and must be no dependencies to the token functions (lib.token)
or to webservices!

This code is tested in tests/test_lib_user.py

	
class privacyidea.lib.user.User(login='', realm='', resolver='')[source]

	
	The user has the attributes

	login, realm and resolver.

Usually a user can be found via “login@realm”.

A user object with an empty login and realm should not exist,
whereas a user object could have an empty resolver.

	
check_password(password)[source]

	The password of the user is checked against the user source

	Parameters:	password – The clear text password

	Returns:	the username of the authenticated user.
If unsuccessful, returns None

	Return type:	string/None

	
delete()[source]

	This deletes the user in the user store. I.e. the user in the SQL
database or the LDAP gets deleted.

Returns True in case of success

	
exist()[source]

	Check if the user object exists in the user store
:return: True or False

	
get_ordererd_resolvers()[source]

	returns a list of resolvernames ordered by priority.
The resolver with the lowest priority is the first.
If resolvers have the same priority, they are ordered alphabetically.

	Returns:	list or resolvernames

	
get_search_fields()[source]

	Return the valid search fields of a user.
The search fields are defined in the UserIdResolver class.

	Returns:	searchFields with name (key) and type (value)

	Return type:	dict

	
get_user_identifiers()[source]

	This returns the UserId information from the resolver object and
the resolvertype and the resolvername
(former: getUserId)
(former: getUserResolverId)
:return: The userid, the resolver type and the resolver name

like (1000, “passwdresolver”, “resolver1”)

	Return type:	tuple

	
get_user_phone(phone_type='phone')[source]

	Returns the phone number of a user

	Parameters:	phone_type (string) – The type of the phone, i.e. either mobile or
phone (land line)

	Returns:	list with phone numbers of this user object

	
get_user_realms()[source]

	Returns a list of the realms, a user belongs to.
Usually this will only be one realm.
But if the user object has no realm but only a resolver,
than all realms, containing this resolver are returned.
This function is used for the policy module

	Returns:	realms of the user

	Return type:	list

	
info

	return the detailed information for the user

	Returns:	a dict with all the userinformation

	Return type:	dict

	
is_empty()[source]

	

	
login = ''

	

	
realm = ''

	

	
resolver = ''

	

	
update_user_info(attributes, password=None)[source]

	This updates the given attributes of a user.
The attributes can be “username”, “surname”, “givenname”, “email”,
“mobile”, “phone”, “password”

	Parameters:	
	attributes (dict) – A dictionary of the attributes to be updated

	password – The password of the user

	Returns:	True in case of success

	
privacyidea.lib.user.create_user(resolvername, attributes, password=None)[source]

	This creates a new user in the given resolver. The resolver must be
editable to do so.

The attributes is a dictionary containing the keys “username”, “email”,
“phone”,
“mobile”, “surname”, “givenname”, “password”.

We return the UID and not the user object, since the user could be located
in several realms!

	Parameters:	
	resolvername (basestring) – The name of the resolver, in which the user should
be created

	attributes (dict) – Attributes of the user

	password – The password of the user

	Returns:	The uid of the user object

	
privacyidea.lib.user.get_user_from_param(param, optionalOrRequired=True)[source]

	Find the parameters user, realm and resolver and
create a user object from these parameters.

An exception is raised, if a user in a realm is found in more
than one resolvers.

	Parameters:	param (dict) – The dictionary of request parameters

	Returns:	User as found in the parameters

	Return type:	User object

	
privacyidea.lib.user.get_user_info(userid, resolvername)[source]

	return the detailed information for a user in a resolver

	Parameters:	
	userid (string) – The id of the user in a resolver

	resolvername – The name of the resolver

	Returns:	a dict with all the userinformation

	Return type:	dict

	
privacyidea.lib.user.get_user_list(param=None, user=None)[source]

	

	
privacyidea.lib.user.get_username(userid, resolvername)[source]

	Determine the username for a given id and a resolvername.

	Parameters:	
	userid (string) – The id of the user in a resolver

	resolvername – The name of the resolver

	Returns:	the username or “” if it does not exist

	Return type:	string

	
privacyidea.lib.user.split_user(username)[source]

	Split the username of the form user@realm into the username and the realm
splitting myemail@emailprovider.com@realm is also possible and will
return (myemail@emailprovider, realm).

If for a user@domain the “domain” does not exist as realm, the name is
not split, since it might be the user@domain in the default realm

We can also split realmuser to (user, realm)

	Parameters:	username (string) – the username to split

	Returns:	username and realm

	Return type:	tuple

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.2. Token Class

The following token types are known to privacyIDEA. All are inherited from
the base tokenclass describe below.

	14.2.1.2.1. 4 Eyes Token

	14.2.1.2.2. Certificate Token

	14.2.1.2.3. Daplug Token

	14.2.1.2.4. Email Token

	14.2.1.2.5. HOTP Token

	14.2.1.2.6. mOTP Token

	14.2.1.2.7. OCRA Token
	14.2.1.2.7.1. Implementation

	14.2.1.2.8. Paper Token

	14.2.1.2.9. PasswordToken

	14.2.1.2.10. Questionnaire Token

	14.2.1.2.11. RADIUS Token

	14.2.1.2.12. Registration Code Token

	14.2.1.2.13. Remote Token

	14.2.1.2.14. SMS Token

	14.2.1.2.15. SPass Token

	14.2.1.2.16. SSHKey Token

	14.2.1.2.17. TiQR Token
	14.2.1.2.17.1. Enrollment

	14.2.1.2.17.2. Authentication

	14.2.1.2.17.3. Implementation

	14.2.1.2.18. TOTP Token

	14.2.1.2.19. U2F Token
	14.2.1.2.19.1. Enrollment
	14.2.1.2.19.1.1. 1. Step

	14.2.1.2.19.1.2. 2. Step

	14.2.1.2.19.2. Authentication
	14.2.1.2.19.2.1. Get the challenge

	14.2.1.2.19.2.2. Send the Response

	14.2.1.2.19.3. Implementation

	14.2.1.2.20. Yubico Token

	14.2.1.2.21. Yubikey Token

	
class privacyidea.lib.tokenclass.TokenClass(db_token)[source]

	
	
add_init_details(key, value)[source]

	(was addInfo)
Adds information to a volatile internal dict

	
add_tokeninfo(key, value, value_type=None)[source]

	Add a key and a value to the DB tokeninfo
:param key:
:param value:
:return:

	
classmethod api_endpoint(request, g)[source]

	This provides a function to be plugged into the API endpoint
/ttype/<tokentype> which is defined in api/ttype.py

	The method should return

	return “json”, {}

	or

	return “text”, “OK”

	Parameters:	
	request – The Flask request

	g – The Flask global object g

	Returns:	Flask Response or text

	
authenticate(passw, user=None, options=None)[source]

	High level interface which covers the check_pin and check_otp
This is the method that verifies single shot authentication like
they are done with push button tokens.

It is a high level interface to support other tokens as well, which
do not have a pin and otp separation - they could overwrite
this method

If the authentication succeeds an OTP counter needs to be increased,
i.e. the OTP value that was used for this authentication is invalidated!

	Parameters:	
	passw (string) – the password which could be pin+otp value

	user (User object) – The authenticating user

	options (dict) – dictionary of additional request parameters

	Returns:	returns tuple of
1. true or false for the pin match,
2. the otpcounter (int) and the
3. reply (dict) that will be added as

additional information in the JSON response
of /validate/check.

	Return type:	tuple

	
static challenge_janitor()[source]

	Just clean up all challenges, for which the expiration has expired.

	Returns:	None

	
check_all(message_list)[source]

	Perform all checks on the token. Returns False if the token is either:
* auth counter exceeded
* not active
* fail counter exceeded
* validity period exceeded

This is used in the function token.check_token_list

	Parameters:	message_list – A list of messages

	Returns:	False, if any of the checks fail

	
check_auth_counter()[source]

	This function checks the count_auth and the count_auth_success.
If the count_auth is less than count_auth_max
and count_auth_success is less than count_auth_success_max
it returns True. Otherwise False.

	Returns:	success if the counter is less than max

	Return type:	bool

	
check_challenge_response(user=None, passw=None, options=None)[source]

	This method verifies if there is a matching challenge for the given
passw and also verifies if the response is correct.

It then returns the new otp_counter of the token.

In case of success the otp_counter will be >= 0.

	Parameters:	
	user (User object) – the requesting user

	passw (string) – the password (pin+otp)

	options (dict) – additional arguments from the request, which could
be token specific. Usually “transactionid”

	Returns:	return otp_counter. If -1, challenge does not match

	Return type:	int

	
check_failcount()[source]

	Checks if the failcounter is exceeded. It returns True, if the
failcounter is less than maxfail
:return: True or False

	
check_last_auth_newer(last_auth)[source]

	Check if the last successful authentication with the token is newer
than the specified time delta which is passed as 10h, 7d or 1y.

It returns True, if the last authentication with this token is
newer* than the specified delta.

	Parameters:	last_auth (basestring) – 10h, 7d or 1y

	Returns:	bool

	
check_otp(otpval, counter=None, window=None, options=None)[source]

	This checks the OTP value, AFTER the upper level did
the checkPIN

In the base class we do not know, how to calculate the
OTP value. So we return -1.
In case of success, we should return >=0, the counter

	Parameters:	
	otpval – the OTP value

	counter (int) – The counter for counter based otp values

	window – a counter window

	options (dict) – additional token specific options

	Returns:	counter of the matching OTP value.

	Return type:	int

	
check_otp_exist(otp, window=None)[source]

	checks if the given OTP value is/are values of this very token.
This is used to autoassign and to determine the serial number of
a token.

	Parameters:	
	otp – the OTP value

	window (int) – The look ahead window

	Returns:	True or a value > 0 in case of success

	
check_pin(pin, user=None, options=None)[source]

	Check the PIN of the given Password.
Usually this is only dependent on the token itself,
but the user object can cause certain policies.

Each token could implement its own PIN checking behaviour.

	Parameters:	
	pin (string) – the PIN (static password component), that is to be checked.

	user (User object) – for certain PIN policies (e.g. checking against the
user store) this is the user, whose
password would be checked. But at the moment we are
checking against the userstore in the decorator
“auth_otppin”.

	options – the optional request parameters

	Returns:	If the PIN is correct, return True

	Return type:	bool

	
check_validity_period()[source]

	This checks if the datetime.datetime.now() is within the validity
period of the token.

	Returns:	success

	Return type:	bool

	
create_challenge(transactionid=None, options=None)[source]

	This method creates a challenge, which is submitted to the user.
The submitted challenge will be preserved in the challenge
database.

If no transaction id is given, the system will create a transaction
id and return it, so that the response can refer to this transaction.

	Parameters:	
	transactionid – the id of this challenge

	options (dict) – the request context parameters / data

	Returns:	tuple of (bool, message, transactionid, attributes)

	Return type:	tuple

The return tuple builds up like this:
bool if submit was successful;
message which is displayed in the JSON response;
additional attributes, which are displayed in the JSON response.

	
static decode_otpkey(otpkey, otpkeyformat)[source]

	Decode the otp key which is given in a specific format.

	Supported formats:

	
	hex, in which the otpkey is returned verbatim

	base32check, which is specified in decode_base32check

In case the OTP key is malformed or if the format is unknown,
a ParameterError is raised.

	Parameters:	
	otpkey – OTP key passed by the user

	otpkeyformat – “hex” or “base32check”

	Returns:	hex-encoded otpkey

	
del_tokeninfo(key=None)[source]

	

	
delete_token()[source]

	delete the database token

	
enable(enable=True)[source]

	

	
generate_symmetric_key(server_component, client_component, options=None)[source]

	This method generates a symmetric key, from a server component and a
client component.
This key generation could be based on HMAC, KDF or even Diffie-Hellman.

The basic key-generation is simply replacing the last n byte of the
server component with bytes of the client component.

	Parameters:	
	server_component (hex string) – The component usually generated by privacyIDEA

	client_component – The component usually generated by the
client (e.g. smartphone)

	options –

	Returns:	the new generated key as hex string

	
get_QRimage_data(response_detail)[source]

	FIXME: Do we really use this?

	
get_as_dict()[source]

	This returns the token data as a dictionary.
It is used to display the token list at /token/list.

	Returns:	The token data as dict

	Return type:	dict

	
static get_class_info(key=None, ret='all')[source]

	

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_count_auth()[source]

	Return the number of all authentication tries

	
get_count_auth_max()[source]

	Return the number of maximum allowed authentications

	
get_count_auth_success()[source]

	Return the number of successful authentications

	
get_count_auth_success_max()[source]

	Return the maximum allowed successful authentications

	
get_count_window()[source]

	

	
classmethod get_default_settings(params, logged_in_user=None, policy_object=None, client_ip=None)[source]

	This method returns a dictionary with default settings for token
enrollment.
These default settings depend on the token type and the defined
policies.

The returned dictionary is added to the parameters of the API call.
:param params: The call parameters
:type params: dict
:param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

	Parameters:	policy_object (PolicyClass) – The policy_object

	Returns:	default parameters

	
get_failcount()[source]

	

	
static get_hashlib(hLibStr)[source]

	Returns a hashlib function for a given string
:param hLibStr: the hashlib
:type hLibStr: string
:return: the hashlib
:rtype: function

	
get_init_detail(params=None, user=None)[source]

	to complete the token initialization, the response of the initialisation
should be build by this token specific method.
This method is called from api/token after the token is enrolled

get_init_detail returns additional information after an admin/init
like the QR code of an HOTP/TOTP token.
Can be anything else.

	Parameters:	
	params (dict) – The request params during token creation token/init

	user (User object) – the user, token owner

	Returns:	additional descriptions

	Return type:	dict

	
get_init_details()[source]

	return the status of the token rollout

	Returns:	return the status dict.

	Return type:	dict

	
get_max_failcount()[source]

	

	
get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)[source]

	This returns a dictionary of multiple future OTP values of a token.

	Parameters:	
	count – how many otp values should be returned

	epoch_start – time based tokens: start when

	epoch_end – time based tokens: stop when

	curTime (datetime object) – current time for TOTP token (for selftest)

	timestamp (int) – unix time, current time for TOTP token (for selftest)

	Returns:	True/False, error text, OTP dictionary

	Return type:	Tuple

	
get_otp(current_time='')[source]

	The default token does not support getting the otp value
will return a tuple of four values
a negative value is a failure.

	Returns:	something like: (1, pin, otpval, combined)

	
get_otp_count()[source]

	

	
get_otp_count_window()[source]

	

	
get_otplen()[source]

	

	
get_pin_hash_seed()[source]

	

	
get_realms()[source]

	Return a list of realms the token is assigned to
:return: realms
:rtype:l list

	
get_serial()[source]

	

	
static get_setting_type(key)[source]

	This function returns the type of the token specific config/setting.
This way a tokenclass can define settings, that can be “public” or a
“password”. If this setting is written to the database, the type of
the setting is set automatically in set_privacyidea_config

The key name needs to start with the token type.

	Parameters:	key – The token specific setting key

	Returns:	A string like “public”

	
get_sync_window()[source]

	

	
get_tokeninfo(key=None, default=None)[source]

	return the complete token info or a single key of the tokeninfo.
When returning the complete token info dictionary encrypted entries
are not decrypted.
If you want to receive a decrypted value, you need to call it
directly with the key.

	Parameters:	
	key (string) – the key to return

	default (string) – the default value, if the key does not exist

	Returns:	the value for the key

	Return type:	int or string

	
get_tokentype()[source]

	

	
get_type()[source]

	

	
get_user_displayname()[source]

	Returns a tuple of a user identifier like user@realm and the
displayname of “givenname surname”.

	Returns:	tuple

	
get_user_id()[source]

	

	
get_validity_period_end()[source]

	returns the end of validity period (if set)
if not set, “” is returned.
:return: the end of the validity period
:rtype: string

	
get_validity_period_start()[source]

	returns the start of validity period (if set)
if not set, “” is returned.
:return: the start of the validity period
:rtype: string

	
hKeyRequired = False

	

	
inc_count_auth()[source]

	Increase the counter, that counts authentications - successful and
unsuccessful

	
inc_count_auth_success()[source]

	Increase the counter, that counts successful authentications
Also increase the auth counter

	
inc_failcount()[source]

	

	
inc_otp_counter(counter=None, increment=1, reset=True)[source]

	Increase the otp counter and store the token in the database

Before increasing the token.count the token.count can be set using the
parameter counter.

	Parameters:	
	counter (int) – if given, the token counter is first set to counter and then
increased by increment

	increment (int) – increase the counter by this amount

	reset (bool) – reset the failcounter if set to True

	Returns:	the new counter value

	
is_active()[source]

	

	
is_challenge_request(passw, user=None, options=None)[source]

	This method checks, if this is a request, that triggers a challenge.

The default behaviour to trigger a challenge is,
if the passw parameter only contains the correct token pin and
the request contains a data or a challenge key i.e. if the
options parameter contains a key data or challenge.

Each token type can decide on its own under which condition a challenge
is triggered by overwriting this method.

please note: in case of pin policy == 2 (no pin is required)
the check_pin would always return true! Thus each request
containing a data or challenge would trigger a challenge!

The Challenge workflow is like this.

When an authentication request is issued, first it is checked if this is
a request which will create a new challenge (is_challenge_request) or if
this is a response to an existing challenge (is_challenge_response).
In these two cases during request processing the following functions are
called.

	is_challenge_request or is_challenge_response

	
|

V V

	create_challenge check_challenge

	
|

V V

challenge_janitor challenge_janitor

	Parameters:	
	passw (string) – password, which might be pin or pin+otp

	user (User object) – The user from the authentication request

	options (dict) – dictionary of additional request parameters

	Returns:	true or false

	Return type:	bool

	
is_challenge_response(passw, user=None, options=None)[source]

	This method checks, if this is a request, that is the response to
a previously sent challenge.

The default behaviour to check if this is the response to a
previous challenge is simply by checking if the request contains
a parameter state or transactionid i.e. checking if the
options parameter contains a key state or transactionid.

This method does not try to verify the response itself!
It only determines, if this is a response for a challenge or not.
The response is verified in check_challenge_response.

	Parameters:	
	passw (string) – password, which might be pin or pin+otp

	user (User object) – the requesting user

	options (dict) – dictionary of additional request parameters

	Returns:	true or false

	Return type:	bool

	
is_locked()[source]

	Check if the token is in a locked state
A locked token can not be modified

	Returns:	True, if the token is locked.

	
is_orphaned()[source]

	Return True is the token is orphaned.

An orphaned token means, that it has a user assigned, but the user
does not exist in the user store (anymore)
:return: True / False

	
is_pin_change(password=False)[source]

	Returns true if the pin of the token needs to be changed.
:param password: Whether the password needs to be changed.
:type password: bool

	Returns:	True or False

	
is_previous_otp(otp, window=10)[source]

	checks if a given OTP value is a previous OTP value, that lies in the
past or has a lower counter.

This is used in case of a failed authentication to return the
information, that this OTP values was used previously and is invalid.

	Parameters:	
	otp (basestring) – The OTP value.

	window (int) – A counter window, how far we should look into the past.

	Returns:	bool

	
is_revoked()[source]

	Check if the token is in the revoked state

	Returns:	True, if the token is revoked

	
mode = ['authenticate', 'challenge']

	

	
reset()[source]

	Reset the failcounter

	
resync(otp1, otp2, options=None)[source]

	

	
revoke()[source]

	This revokes the token.
By default it
1. sets the revoked-field
2. set the locked field
3. disables the token.

Some token types may revoke a token without locking it.

	
save()[source]

	Save the database token

	
set_count_auth(count)[source]

	Sets the counter for the occurred login attepms
as key “count_auth” in token info
:param count: a number
:type count: int

	
set_count_auth_max(count)[source]

	Sets the counter for the maximum allowed login attempts
as key “count_auth_max” in token info
:param count: a number
:type count: int

	
set_count_auth_success(count)[source]

	Sets the counter for the occurred successful logins
as key “count_auth_success” in token info
:param count: a number
:type count: int

	
set_count_auth_success_max(count)[source]

	Sets the counter for the maximum allowed successful logins
as key “count_auth_success_max” in token info
:param count: a number
:type count: int

	
set_count_window(countWindow)[source]

	

	
set_defaults()[source]

	Set the default values on the database level

	
set_description(description)[source]

	Set the description on the database level

	Parameters:	description (string) – description of the token

	
set_failcount(failcount)[source]

	Set the failcounter in the database

	
set_hashlib(hashlib)[source]

	

	
set_init_details(details)[source]

	

	
set_maxfail(maxFail)[source]

	

	
set_next_pin_change(diff=None, password=False)[source]

	Sets the timestamp for the next_pin_change. Provide a
difference like 90d (90 days).

Either provider the
:param diff: The time delta.
:type diff: basestring
:param password: Do no set next_pin_change but next_password_change
:return: None

	
set_otp_count(otpCount)[source]

	

	
set_otpkey(otpKey)[source]

	

	
set_otplen(otplen)[source]

	

	
set_pin(pin, encrypt=False)[source]

	set the PIN of a token.
Usually the pin is stored in a hashed way.
:param pin: the pin to be set for the token
:type pin: basestring
:param encrypt: If set to True, the pin is stored encrypted and

can be retrieved from the database again

	
set_pin_hash_seed(pinhash, seed)[source]

	

	
set_realms(realms, add=False)[source]

	Set the list of the realms of a token.
:param realms: realms the token should be assigned to
:type realms: list
:param add: if the realms should be added and not replaced
:type add: boolean

	
set_so_pin(soPin)[source]

	

	
set_sync_window(syncWindow)[source]

	

	
set_tokeninfo(info)[source]

	Set the tokeninfo field in the DB. Old values will be deleted.
:param info: dictionary with key and value
:type info: dict
:return:

	
set_type(tokentype)[source]

	Set the tokentype in this object and
also in the underlying database-Token-object.

	Parameters:	tokentype (string) – The type of the token like HOTP or TOTP

	
set_user(user, report=None)[source]

	Set the user attributes (uid, resolvername, resolvertype) of a token.

	Parameters:	
	user – a User() object, consisting of loginname and realm

	report – tbdf.

	Returns:	None

	
set_user_identifiers(uid, resolvername, resolvertype)[source]

	(was setUid)
Set the user attributes of a token
:param uid: The user id in the user source
:param resolvername: The name of the resolver
:param resolvertype: The type of the resolver
:return: None

	
set_user_pin(userPin)[source]

	

	
set_validity_period_end(end_date)[source]

	sets the end date of the validity period for a token
:param end_date: the end date in the format YYYY-MM-DDTHH:MM+OOOO

if the format is wrong, the method will
throw an exception

	
set_validity_period_start(start_date)[source]

	sets the start date of the validity period for a token
:param start_date: the start date in the format YYYY-MM-DDTHH:MM+OOOO

if the format is wrong, the method will
throw an exception

	
split_pin_pass(passw, user=None, options=None)[source]

	Split the password into the token PIN and the OTP value

take the given password and split it into the PIN and the
OTP value. The splitting can be dependent of certain policies.
The policies may depend on the user.

Each token type may define its own way to slit the PIN and
the OTP value.

	Parameters:	
	passw – the password to split

	user (User object) – The user/owner of the token

	options (dict) – can be used be the token types.

	Returns:	tuple of pin and otp value

	Returns:	tuple of (split status, pin, otp value)

	Return type:	tuple

	
status_validation_fail()[source]

	callback to enable a status change, if auth failed

	
status_validation_success()[source]

	callback to enable a status change, if auth succeeds

	
static test_config(params=None)[source]

	This method is used to test the token config. Some tokens require some
special token configuration like the SMS-Token or the Email-Token.
To test this configuration, this classmethod is used.

It takes token specific parameters and returns a tuple of a boolean
and a result description.

	Parameters:	params (dict) – token specific parameters

	Returns:	success, description

	Return type:	tuple

	
update(param, reset_failcount=True)[source]

	Update the token object

	Parameters:	param – a dictionary with different params like keysize,
description, genkey, otpkey, pin

	Type:	param: dict

	
user

	return the user (owner) of a token
If the token has no owner assigned, we return None

	Returns:	The owner of the token

	Return type:	User object

	
using_pin = True

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.1. 4 Eyes Token

	
class privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass(db_token)[source]

	The FourEyes token can be used to implement the Two Man Rule.
The FourEyes token defines how many tokens of which realms are required
like:
* 2 tokens of RealmA
* 1 token of RealmB

Then users (the owners of those tokens) need to login by everyone
entering their OTP PIN and OTP value. It does not matter, in which order
they enter the values. All their PINs and OTPs are concatenated into one
password field but need to be separated by the splitting sign.

The FourEyes token again splits the password value and tries to
authenticate each of the these passwords in the realms using the function
check_realm_pass.

The FourEyes token itself does not provide an OTP PIN.

The token is initialized using additional parameters at token/init:

Example Authentication Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=4eyes
user=cornelius
realm=realm1
4eyes=realm1:2,realm2:1
separator=%20

	
authenticate(passw, user=None, options=None)[source]

	do the authentication on base of password / otp and user and
options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

	Parameters:	
	passw – the password / otp

	user – the requesting user

	options – the additional request parameters

	Returns:	tuple of (success, otp_count - 0 or -1, reply)

	
static convert_realms(realms)[source]

	This function converts the realms as given by the API parameter to a
dictionary.

	realm1:2,realm2:1 -> {“realm1”:2,

	“realm2”:1}

	Parameters:	realms (basestring) – a serialized list of realms

	Returns:	dict of realms

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	return the token type prefix

	
static get_class_type()[source]

	return the class type identifier

	
static realms_dict_to_string(realms)[source]

	This function converts the realms - if it is a dictionary - to a string.

	{“realm1”: {“selected”: True,

	
“count”: 1 },

	“realm2”: {“selected”: True,

	“count”: 2} -> realm1:1,realm2:2

	Parameters:	realms (dict) – the realms as they are passed from the WebUI

	Returns:	realms

	Return type:	basestring

	
update(param)[source]

	This method is called during the initialization process.
:param param: parameters from the token init
:type param: dict
:return: None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.2. Certificate Token

	
class privacyidea.lib.tokens.certificatetoken.CertificateTokenClass(aToken)[source]

	Token to implement an X509 certificate.
The certificate can be enrolled by sending a CSR to the server or the
keypair is created by the server. If the server creates the keypair,
the user can download a PKCS12 file.
The OTP PIN is used as passphrase for the PKCS12 file.

privacyIDEA is capable of working with different CA connectors.

Valid parameters are request or certificate, both PEM encoded.
If you pass a request you also need to pass the ca that should be
used to sign the request. Passing a certificate just uploads the
certificate to a new token object.

A certificate token can be created by an administrative task with the
token/init api like this:

Example Initialization Request:

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
request=<PEM encoded request>
ca=<name of the ca connector>

Example Initialization Request, key generation on servers side

In this case the certificate is created on behalf of another user.

POST /auth HTTP/1.1
Host: example.com
Accept: application/json

type=certificate
user=cornelius
realm=realm1
generate=1
ca=<name of the ca connector>

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 "certificate": "...PEM..."
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

	
get_as_dict()[source]

	This returns the token data as a dictionary.
It is used to display the token list at /token/list.

The certificate token can add the PKCS12 file if it exists

	Returns:	The token data as dict

	Return type:	dict

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_init_detail(params=None, user=None)[source]

	At the end of the initialization we return the certificate and the
PKCS12 file, if the private key exists.

	
hKeyRequired = False

	

	
revoke()[source]

	This revokes the token. We need to determine the CA, which issues the
certificate, contact the connector and revoke the certificate

Some token types may revoke a token without locking it.

	
set_pin(pin, encrypt=False)[source]

	set the PIN of a token.
The PIN of the certificate token is stored encrypted. It is used as
passphrase for the PKCS12 file.

	Parameters:	
	pin (basestring) – the pin to be set for the token

	encrypt (bool) – If set to True, the pin is stored encrypted and
can be retrieved from the database again

	
update(param)[source]

	This method is called during the initialization process.
:param param: parameters from the token init
:type param: dict
:return: None

	
using_pin = False

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.3. Daplug Token

	
class privacyidea.lib.tokens.daplugtoken.DaplugTokenClass(a_token)[source]

	daplug token class implementation

	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	checkOtp - validate the token otp against a given otpvalue

	Parameters:	
	anOtpVal (string, format: efekeiebekeh) – the otpvalue to be verified

	counter (int) – the counter state, that should be verified

	window (int) – the counter +window, which should be checked

	options (dict) – the dict, which could contain token specific info

	Returns:	the counter state or -1

	Return type:	int

	
check_otp_exist(otp, window=10)[source]

	checks if the given OTP value is/are values of this very token.
This is used to autoassign and to determine the serial number of
a token.

	Parameters:	
	otp (string) – the to be verified otp value

	window (int) – the lookahead window for the counter

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or string

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)[source]

	

	
get_otp(current_time=None)[source]

	

	
resync(otp1, otp2, options=None)[source]

	resync the token based on two otp values
- external method to do the resync of the token

	Parameters:	
	otp1 (string) – the first otp value

	otp2 (string) – the second otp value

	options (dict or None) – optional token specific parameters

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
split_pin_pass(passw, user=None, options=None)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.4. Email Token

	
class privacyidea.lib.tokens.emailtoken.EmailTokenClass(aToken)[source]

	Implementation of the EMail Token Class, that sends OTP values via SMTP.
(Similar to SMSTokenClass)

	
EMAIL_ADDRESS_KEY = 'email'

	

	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	check the otpval of a token against a given counter
and the window

	Parameters:	passw (string) – the to be verified passw/pin

	Returns:	counter if found, -1 if not found

	Return type:	int

	
create_challenge(transactionid=None, options=None)[source]

	create a challenge, which is submitted to the user

	Parameters:	
	transactionid – the id of this challenge

	options – the request context parameters / data

	Returns:	tuple of (bool, message and data)
bool, if submit was successful
message is submitted to the user
data is preserved in the challenge
attributes - additional attributes, which are displayed in the

output

	
static get_class_info(key=None, ret='all')[source]

	returns all or a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

:rtype : s.o.

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	return the generic token class identifier

	
is_challenge_request(passw, user=None, options=None)[source]

	check, if the request would start a challenge

We need to define the function again, to get rid of the
is_challenge_request-decorator of the HOTP-Token

	Parameters:	
	passw – password, which might be pin or pin+otp

	options – dictionary of additional request parameters

	Returns:	returns true or false

	
classmethod test_config(params=None)[source]

	

	
update(param, reset_failcount=True)[source]

	update - process initialization parameters

	Parameters:	param (dict) – dict of initialization parameters

	Returns:	nothing

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.5. HOTP Token

	
class privacyidea.lib.tokens.hotptoken.HotpTokenClass(db_token)[source]

	hotp token class implementation

	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	check if the given OTP value is valid for this token.

	Parameters:	
	anOtpVal (string) – the to be verified otpvalue

	counter (int) – the counter state, that should be verified

	window (int) – the counter +window, which should be checked

	options (dict) – the dict, which could contain token specific info

	Returns:	the counter state or -1

	Return type:	int

	
check_otp_exist(otp, window=10, symetric=False, inc_counter=True)[source]

	checks if the given OTP value is/are values of this very token.
This is used to autoassign and to determine the serial number of
a token.

	Parameters:	
	otp (string) – the to be verified otp value

	window (int) – the lookahead window for the counter

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
generate_symmetric_key(server_component, client_component, options=None)[source]

	Generate a composite key from a server and client component
using a PBKDF2-based scheme.

	Parameters:	
	server_component (hex string) – The component usually generated by privacyIDEA

	client_component (hex string) – The component usually generated by the
client (e.g. smartphone)

	options –

	Returns:	the new generated key as hex string

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition
Is used by lib.token.get_token_info

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: oath

	
static get_class_type()[source]

	return the token type shortname

	Returns:	‘hotp’

	Return type:	string

	
classmethod get_default_settings(params, logged_in_user=None, policy_object=None, client_ip=None)[source]

	This method returns a dictionary with default settings for token
enrollment.
These default settings are defined in SCOPE.USER and are
hotp_hashlib, hotp_otplen.
If these are set, the user will only be able to enroll tokens with
these values.

The returned dictionary is added to the parameters of the API call.
:param params: The call parameters
:type params: dict
:param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

	Parameters:	
	policy_object (PolicyClass) – The policy_object

	client_ip (basestring) – The client IP address

	Returns:	default parameters

	
get_init_detail(params=None, user=None)[source]

	to complete the token initialization some additional details
should be returned, which are displayed at the end of
the token initialization.
This is the e.g. the enrollment URL for a Google Authenticator.

	
get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)[source]

	return a dictionary of multiple future OTP values of the
HOTP/HMAC token

	WARNING: the dict that is returned contains a sequence number as key.

	This it NOT the otp counter!

	Parameters:	count (int) – how many otp values should be returned

	Epoch_start:	Not used in HOTP

	Epoch_end:	Not used in HOTP

	CurTime:	Not used in HOTP

	Timestamp:	not used in HOTP

	Returns:	tuple of status: boolean, error: text and the OTP dictionary

	
get_otp(current_time=None)[source]

	return the next otp value

	Parameters:	curTime – Not Used in HOTP

	Returns:	next otp value and PIN if possible

	Return type:	tuple

	
static get_sync_timeout()[source]

	get the token sync timeout value

	Returns:	timeout value in seconds

	Return type:	int

	
hashlib

	

	
is_challenge_request(passw, user=None, options=None)[source]

	check, if the request would start a challenge

	default: if the passw contains only the pin, this request would

trigger a challenge

	in this place as well the policy for a token is checked

	Parameters:	
	passw – password, which might be pin or pin+otp

	options – dictionary of additional request parameters

	Returns:	returns true or false

	
is_previous_otp(otp, window=10)[source]

	Check if the OTP values was previously used.

	Parameters:	
	otp –

	window –

	Returns:	

	
resync(otp1, otp2, options=None)[source]

	resync the token based on two otp values

	Parameters:	
	otp1 (string) – the first otp value

	otp2 (string) – the second otp value

	options (dict or None) – optional token specific parameters

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
update(param, reset_failcount=True)[source]

	process the initialization parameters

Do we really always need an otpkey?
the otpKey is handled in the parent class
:param param: dict of initialization parameters
:type param: dict

	Returns:	nothing

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.6. mOTP Token

	
class privacyidea.lib.tokens.motptoken.MotpTokenClass(db_token)[source]

	
	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	validate the token otp against a given otpvalue

	Parameters:	
	anOtpVal (string) – the to be verified otpvalue

	counter (int) – the counter state, that should be verified

	window (int) – the counter +window, which should be checked

	options (dict) – the dict, which could contain token specific info

	Returns:	the counter state or -1

	Return type:	int

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition
Is used by lib.token.get_token_info

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

:rtype : dict or string

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_init_detail(params=None, user=None)[source]

	to complete the token normalisation, the response of the initialization
should be build by the token specific method, the getInitDetails

	
update(param, reset_failcount=True)[source]

	update - process initialization parameters

	Parameters:	param (dict) – dict of initialization parameters

	Returns:	nothing

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.7. OCRA Token

The OCRA token is the base OCRA functionality. Usually it is created by
importing a CSV or PSKC file.

This code is tested in tests/test_lib_tokens_tiqr.

14.2.1.2.7.1. Implementation

	
class privacyidea.lib.tokens.ocratoken.OcraTokenClass(db_token)[source]

	The OCRA Token Implementation

	
check_challenge_response(user=None, passw=None, options=None)[source]

	This function checks, if the challenge for the given transaction_id
was marked as answered correctly.
For this we check the otp_status of the challenge with the
transaction_id in the database.

We do not care about the password

	Parameters:	
	user (User object) – the requesting user

	passw (string) – the password (pin+otp)

	options (dict) – additional arguments from the request, which could
be token specific. Usually “transaction_id”

	Returns:	return otp_counter. If -1, challenge does not match

	Return type:	int

	
create_challenge(transactionid=None, options=None)[source]

	This method creates a challenge, which is submitted to the user.
The submitted challenge will be preserved in the challenge
database.

If no transaction id is given, the system will create a transaction
id and return it, so that the response can refer to this transaction.

	Parameters:	
	transactionid – the id of this challenge

	options (dict) – the request context parameters / data

	Returns:	tuple of (bool, message, transactionid, attributes)

	Return type:	tuple

The return tuple builds up like this:
bool if submit was successful;
message which is displayed in the JSON response;
additional attributes, which are displayed in the JSON response.

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: OCRA
:rtype: basestring

	
static get_class_type()[source]

	Returns the internal token type identifier
:return: ocra
:rtype: basestring

	
is_challenge_request(passw, user=None, options=None)[source]

	check, if the request would start a challenge
In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

	This function is not decorated with

	@challenge_response_allowed

as the OCRA token is always a challenge response token!

	Parameters:	
	passw – The PIN of the token.

	options – dictionary of additional request parameters

	Returns:	returns true or false

	
update(param)[source]

	This method is called during the initialization process.

	Parameters:	param (dict) – parameters from the token init

	Returns:	None

	
verify_response(passw=None, challenge=None)[source]

	This method verifies if the passw is the valid OCRA response to the
challenge.
In case of success we return a value > 0

	Parameters:	passw (string) – the password (pin+otp)

	Returns:	return otp_counter. If -1, challenge does not match

	Return type:	int

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.8. Paper Token

	
class privacyidea.lib.tokens.papertoken.PaperTokenClass(db_token)[source]

	The Paper Token allows to print out the next e.g. 100 OTP values.
This sheet of paper can be used to authenticate and strike out the used
OTP values.

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: PPR

	
static get_class_type()[source]

	return the token type shortname

	Returns:	‘paper’

	Return type:	string

	
update(param, reset_failcount=True)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.9. PasswordToken

	
class privacyidea.lib.tokens.passwordtoken.PasswordTokenClass(aToken)[source]

	This Token does use a fixed Password as the OTP value.
In addition, the OTP PIN can be used with this token.
This Token can be used for a scenario like losttoken

	
class SecretPassword(secObj)[source]

	
	
check_password(password)[source]

	

	
get_password()[source]

	

	
PasswordTokenClass.check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	This checks the static password

	Parameters:	anOtpVal – This contains the “OTP” value, which is the static

password
:return: result of password check, 0 in case of success, -1 if fail
:rtype: int

	
static PasswordTokenClass.get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static PasswordTokenClass.get_class_prefix()[source]

	

	
static PasswordTokenClass.get_class_type()[source]

	

	
PasswordTokenClass.set_otplen(otplen=0)[source]

	sets the OTP length to the length of the password

	Parameters:	otplen (int) – This is ignored in this class

	Result:	None

	
PasswordTokenClass.update(param)[source]

	This method is called during the initialization process.
:param param: parameters from the token init
:type param: dict
:return: None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.10. Questionnaire Token

	
class privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass(db_token)[source]

	This is a Questionnaire Token. The token stores a list of questions and
answers in the tokeninfo database table. The answers are encrypted.
During authentication a random answer is selected and presented as
challenge.
The user has to remember and pass the right answer.

	
check_answer(given_answer, challenge_object)[source]

	Check if the given answer is the answer to the sent question.
The question for this challenge response was stored in the
challenge_object.

Then we get the answer from the tokeninfo.

	Parameters:	
	given_answer – The answer given by the user

	challenge_object – The challenge object as stored in the database

	Returns:	in case of success: 1

	
check_challenge_response(user=None, passw=None, options=None)[source]

	This method verifies if there is a matching question for the given
passw and also verifies if the answer is correct.

It then returns the the otp_counter = 1

	Parameters:	
	user (User object) – the requesting user

	passw (string) – the password - in fact it is the answer to the question

	options (dict) – additional arguments from the request, which could
be token specific. Usually “transaction_id”

	Returns:	return otp_counter. If -1, challenge does not match

	Return type:	int

	
create_challenge(transactionid=None, options=None)[source]

	This method creates a challenge, which is submitted to the user.
The submitted challenge will be preserved in the challenge
database.

The challenge is a randomly selected question of the available
questions for this token.

If no transaction id is given, the system will create a transaction
id and return it, so that the response can refer to this transaction.

	Parameters:	
	transactionid – the id of this challenge

	options (dict) – the request context parameters / data

	Returns:	tuple of (bool, message, transactionid, attributes)

	Return type:	tuple

The return tuple builds up like this:
bool if submit was successful;
message which is displayed in the JSON response;
additional attributes, which are displayed in the JSON response.

	
classmethod get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: QUST
:rtype: basestring

	
static get_class_type()[source]

	Returns the internal token type identifier
:return: qust
:rtype: basestring

	
static get_setting_type(key)[source]

	The setting type of questions is public, so that the user can also
read the questions.

	Parameters:	key – The key of the setting

	Returns:	“public” string

	
is_challenge_request(passw, user=None, options=None)[source]

	The questionnaire token is always a challenge response token.
The challenge is triggered by providing the PIN as the password.

	Parameters:	
	passw (string) – password, which might be pin or pin+otp

	user (User object) – The user from the authentication request

	options (dict) – dictionary of additional request parameters

	Returns:	true or false

	Return type:	bool

	
update(param)[source]

	This method is called during the initialization process.

	Parameters:	param (dict) – parameters from the token init

	Returns:	None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.11. RADIUS Token

	
class privacyidea.lib.tokens.radiustoken.RadiusTokenClass(db_token)[source]

	
	
check_otp(otpval, counter=None, window=None, options=None)[source]

	run the RADIUS request against the RADIUS server

	Parameters:	
	otpval – the OTP value

	counter (int) – The counter for counter based otp values

	window – a counter window

	options (dict) – additional token specific options

	Returns:	counter of the matching OTP value.

	Return type:	int

	
check_pin_local

	lookup if pin should be checked locally or on radius host

	Returns:	bool

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or string

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
split_pin_pass(passw, user=None, options=None)[source]

	Split the PIN and the OTP value.
Only if it is locally checked and not remotely.

	
update(param)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.12. Registration Code Token

	
class privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass(aToken)[source]

	Token to implement a registration code.
It can be used to create a registration code or a “TAN” which can be used
once by a user to authenticate somewhere. After this registration code is
used, the token is automatically deleted.

The idea is to provide a workflow, where the user can get a registration code
by e.g. postal mail and then use this code as the initial first factor to
authenticate to the UI to enroll real tokens.

A registration code can be created by an administrative task with the
token/init api like this:

Example Authentication Request:

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=register
user=cornelius
realm=realm1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 "registrationcode": "12345808124095097608"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_init_detail(params=None, user=None)[source]

	At the end of the initialization we return the registration code.

	
inc_count_auth_success()[source]

	Increase the counter, that counts successful authentications
In case of successful authentication the token does needs to be deleted.

	
update(param)[source]

	This method is called during the initialization process.
:param param: parameters from the token init
:type param: dict
:return: None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.13. Remote Token

	
class privacyidea.lib.tokens.remotetoken.RemoteTokenClass(db_token)[source]

	The Remote token forwards an authentication request to another privacyIDEA
server. The request can be forwarded to a user on the other server or to
a serial number on the other server. The PIN can be checked on the local
privacyIDEA server or on the remote server.

Using the Remote token you can assign one physical token to many
different users.

	
authenticate(passw, user=None, options=None)[source]

	do the authentication on base of password / otp and user and
options, the request parameters.

Here we contact the other privacyIDEA server to validate the OtpVal.

	Parameters:	
	passw – the password / otp

	user – the requesting user

	options – the additional request parameters

	Returns:	tuple of (success, otp_count - 0 or -1, reply)

	
check_otp(otpval, counter=None, window=None, options=None)[source]

	run the http request against the remote host

	Parameters:	
	otpval – the OTP value

	counter (int) – The counter for counter based otp values

	window – a counter window

	options (dict) – additional token specific options

	Returns:	counter of the matching OTP value.

	Return type:	int

	
check_pin_local

	lookup if pin should be checked locally or on remote host

	Returns:	bool

	
static get_class_info(key=None, ret='all')[source]

	

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or string

	
static get_class_prefix()[source]

	return the token type prefix

	
static get_class_type()[source]

	return the class type identifier

	
is_challenge_request(passw, user=None, options=None)[source]

	This method checks, if this is a request, that triggers a challenge.
It depends on the way, the pin is checked - either locally or remote

	Parameters:	
	passw (string) – password, which might be pin or pin+otp

	user (User object) – The user from the authentication request

	options (dict) – dictionary of additional request parameters

	Returns:	true or false

	
update(param)[source]

	second phase of the init process - updates parameters

	Parameters:	param – the request parameters

	Returns:	
	nothing -

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.14. SMS Token

	
class privacyidea.lib.tokens.smstoken.SmsTokenClass(db_token)[source]

	The SMS token sends an SMS containing an OTP via some kind of
gateway. The gateways can be an SMTP or HTTP gateway or the special sipgate
protocol. The Gateways are defined in the SMSProvider Modules.

The SMS token is a challenge response token. I.e. the first request needs
to contain the correct OTP PIN. If the OTP PIN is correct, the sending of
the SMS is triggered. The second authentication must either contain the
OTP PIN and the OTP value or the transaction_id and the OTP value.

Example 1st Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 "transaction_id": "xyz"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

After this, the SMS is triggered. When the SMS is received the second part
of authentication looks like this:

Example 2nd Authentication Request:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
transaction_id=xyz
pass=otppin

Example 1st response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	check the otpval of a token against a given counter
and the window

	Parameters:	passw (string) – the to be verified passw/pin

	Returns:	counter if found, -1 if not found

	Return type:	int

	
create_challenge(transactionid=None, options=None)[source]

	create a challenge, which is submitted to the user

	Parameters:	
	transactionid – the id of this challenge

	options – the request context parameters / data

	Returns:	tuple of (bool, message and data)
bool, if submit was successful
message is submitted to the user
data is preserved in the challenge
attributes - additional attributes, which are displayed in the

output

	
static get_class_info(key=None, ret='all')[source]

	returns all or a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

:rtype : s.o.

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	return the generic token class identifier

	
is_challenge_request(passw, user=None, options=None)[source]

	check, if the request would start a challenge

We need to define the function again, to get rid of the
is_challenge_request-decorator of the HOTP-Token

	Parameters:	
	passw – password, which might be pin or pin+otp

	options – dictionary of additional request parameters

	Returns:	returns true or false

	
update(param, reset_failcount=True)[source]

	process initialization parameters

	Parameters:	param (dict) – dict of initialization parameters

	Returns:	nothing

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.15. SPass Token

	
class privacyidea.lib.tokens.spasstoken.SpassTokenClass(db_token)[source]

	This is a simple pass token.
It does have no OTP component. The OTP checking will always
succeed. Of course, an OTP PIN can be used.

	
authenticate(passw, user=None, options=None)[source]

	in case of a wrong passw, we return a bad matching pin,
so the result will be an invalid token

	
check_otp(otpval, counter=None, window=None, options=None)[source]

	As we have no otp value we always return true. (counter == 0)

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition
Is used by lib.token.get_token_info

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
static is_challenge_request(passw, user, options=None)[source]

	The spass token does not support challenge response
:param passw:
:param user:
:param options:
:return:

	
static is_challenge_response(passw, user, options=None, challenges=None)[source]

	

	
update(param)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.16. SSHKey Token

	
class privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass(db_token)[source]

	The SSHKeyTokenClass provides a TokenClass that stores the public
SSH key and can give the public SSH key via the getotp function.
This can be used to manage SSH keys and retrieve the public ssh key
to import it to authorized keys files.

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dictionary

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
get_sshkey()[source]

	returns the public SSH key

	Returns:	SSH pub key

	Return type:	string

	
mode = ['authenticate']

	

	
update(param)[source]

	The key holds the public ssh key and this is required

The key probably is of the form “ssh-rsa BASE64 comment”

	
using_pin = False

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.17. TiQR Token

The TiQR token is a special App based token, which allows easy login and
which is based on OCRA.

It generates an enrollment QR code, which contains a link with the more
detailed enrollment information.

For a description of the TiQR protocol see

	https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf

	https://github.com/SURFnet/tiqr/wiki/Protocol-documentation.

	https://tiqr.org

The TiQR token is based on the OCRA algorithm. It lets you authenticate
with your smartphone by scanning a QR code.

The TiQR token is enrolled via /token/init, but it requires no otpkey, since
the otpkey is generated on the smartphone and pushed to the privacyIDEA
server in a seconds step.

14.2.1.2.17.1. Enrollment

	Start enrollment with /token/init

	Scan the QR code in the details of the JSON result. The QR code contains
a link to /ttype/tiqr?action=metadata

	The TiQR Smartphone App will fetch this link and get more information

	The TiQR Smartphone App will push the otpkey to a
link /ttype/tiqr?action=enrollment and the token will be ready for use.

14.2.1.2.17.2. Authentication

An application that wants to use the TiQR token with privacyIDEA has to use
the token in challenge response.

	Call /validate/check?user=<user>&pass=<pin>
with the PIN of the TiQR token

	The details of the JSON response contain a QR code, that needs to
be shown to the user.
In addition the application needs to save the transaction_id in the
response.

	The user scans the QR code.

	The TiQR App communicates with privacyIDEA via the API /ttype/tiqr. In this
step the response of the App to the challenge is verified. The successful
authentication is stored in the Challenge DB table.
(No need for the application to take any action)

	Now, the application needs to poll
/validate/check?user=<user>&transaction_id=*&pass= to verifiy the
successful authentication. The pass can be empty.
If value=true is returned, the user authenticated successfully
with the TiQR token.

This code is tested in tests/test_lib_tokens_tiqr.

14.2.1.2.17.3. Implementation

	
class privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass(db_token)[source]

	The TiQR Token implementation.

	
static api_endpoint(request, g)[source]

	This provides a function to be plugged into the API endpoint
/ttype/<tokentype> which is defined in api/ttype.py
See Tokentype endpoints.

	Parameters:	
	request – The Flask request

	g – The Flask global object g

	Returns:	Flask Response or text

	
create_challenge(transactionid=None, options=None)[source]

	This method creates a challenge, which is submitted to the user.
The submitted challenge will be preserved in the challenge
database.

If no transaction id is given, the system will create a transaction
id and return it, so that the response can refer to this transaction.

	Parameters:	
	transactionid – the id of this challenge

	options (dict) – the request context parameters / data

	Returns:	tuple of (bool, message, transactionid, attributes)

	Return type:	tuple

The return tuple builds up like this:
bool if submit was successful;
message which is displayed in the JSON response;
additional attributes, which are displayed in the JSON response.

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: TiQR
:rtype: basestring

	
static get_class_type()[source]

	Returns the internal token type identifier
:return: tiqr
:rtype: basestring

	
get_init_detail(params=None, user=None)[source]

	At the end of the initialization we return the URL for the TiQR App.

	
update(param)[source]

	This method is called during the initialization process.

	Parameters:	param (dict) – parameters from the token init

	Returns:	None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.18. TOTP Token

	
class privacyidea.lib.tokens.totptoken.TotpTokenClass(db_token)[source]

	
	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	validate the token otp against a given otpvalue

	Parameters:	
	anOtpVal (string) – the to be verified otpvalue

	counter – the counter state, that should be verified. For TOTP

this is the unix system time (seconds) divided by 30/60
:type counter: int
:param window: the counter +window (sec), which should be checked
:type window: int
:param options: the dict, which could contain token specific info
:type options: dict
:return: the counter or -1
:rtype: int

	
check_otp_exist(otp, window=None, options=None, symetric=True, inc_counter=True)[source]

	checks if the given OTP value is/are values of this very token at all.
This is used to autoassign and to determine the serial number of
a token.
In fact it is a check_otp with an enhanced window.

	Parameters:	
	otp (string) – the to be verified otp value

	window (int) – the lookahead window for the counter in seconds!!!

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: TOTP

	
static get_class_type()[source]

	return the token type shortname

	Returns:	‘totp’

	Return type:	string

	
classmethod get_default_settings(params, logged_in_user=None, policy_object=None, client_ip=None)[source]

	This method returns a dictionary with default settings for token
enrollment.
These default settings are defined in SCOPE.USER and are
totp_hashlib, totp_timestep and totp_otplen.
If these are set, the user will only be able to enroll tokens with
these values.

The returned dictionary is added to the parameters of the API call.
:param params: The call parameters
:type params: dict
:param logged_in_user: The logged_in_user dictionary with “role”,

“username” and “realm”

	Parameters:	
	policy_object (PolicyClass) – The policy_object

	client_ip (basestring) – The client IP address

	Returns:	default parameters

	
get_multi_otp(count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)[source]

	return a dictionary of multiple future OTP values
of the HOTP/HMAC token

	Parameters:	
	count (int) – how many otp values should be returned

	epoch_start – not implemented

	epoch_end – not implemented

	curTime (datetime) – Simulate the servertime

	timestamp (epoch time) – Simulate the servertime

	Returns:	tuple of status: boolean, error: text and the OTP dictionary

	
get_otp(current_time=None, do_truncation=True, time_seconds=None, challenge=None)[source]

	get the next OTP value

	Parameters:	current_time – the current time, for which the OTP value

should be calculated for.
:type current_time: datetime object
:param time_seconds: the current time, for which the OTP value
should be calculated for (date +%s)
:type: time_seconds: int, unix system time seconds
:return: next otp value, and PIN, if possible
:rtype: tuple

	
static get_setting_type(key)[source]

	

	
hashlib

	

	
resync(otp1, otp2, options=None)[source]

	resync the token based on two otp values
external method to do the resync of the token

	Parameters:	
	otp1 (string) – the first otp value

	otp2 (string) – the second otp value

	options (dict or None) – optional token specific parameters

	Returns:	counter or -1 if otp does not exist

	Return type:	int

	
resyncDiffLimit = 1

	

	
timeshift

	

	
timestep

	

	
timewindow

	

	
update(param, reset_failcount=True)[source]

	This is called during initialization of the token
to add additional attributes to the token object.

	Parameters:	param (dict) – dict of initialization parameters

	Returns:	nothing

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.19. U2F Token

U2F is the “Universal 2nd Factor” specified by the FIDO Alliance.
The register and authentication process is described here:

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

But you do not need to be aware of this. privacyIDEA wraps all FIDO specific
communication, which should make it easier for you, to integrate the U2F
tokens managed by privacyIDEA into your application.

U2F Tokens can be either

	registered by administrators for users or

	registered by the users themselves.

14.2.1.2.19.1. Enrollment

The enrollment/registering can be completely performed within privacyIDEA.

But if you want to enroll the U2F token via the REST API you need to do it in
two steps:

14.2.1.2.19.1.1. 1. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=utf

This step returns a serial number.

14.2.1.2.19.1.2. 2. Step

POST /token/init HTTP/1.1
Host: example.com
Accept: application/json

type=utf
serial=U2F1234578
clientdata=<clientdata>
regdata=<regdata>

clientdata and regdata are the values returned by the U2F device.

You need to call the javascript function

u2f.register([registerRequest], [], function(u2fData) {});

and the responseHandler needs to send the clientdata and regdata back to
privacyIDEA (2. step).

14.2.1.2.19.2. Authentication

The U2F token is a challenge response token. I.e. you need to trigger a
challenge e.g. by sending the OTP PIN/Password for this token.

14.2.1.2.19.2.1. Get the challenge

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=tokenpin

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "detail": {
 "attributes": {
 "hideResponseInput": true,
 "img": ...imageUrl...
 "u2fSignRequest": {
 "challenge": "...",
 "appId": "...",
 "keyHandle": "...",
 "version": "U2F_V2"
 }
 },
 "message": "Please confirm with your U2F token (Yubico U2F EE ...)"
 "transaction_id": "02235076952647019161"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false,
 },
 "version": "privacyIDEA unknown"
 }

14.2.1.2.19.2.2. Send the Response

The application now needs to call the javascript function u2f.sign with the
u2fSignRequest from the response.

var signRequests = [error.detail.attributes.u2fSignRequest];
u2f.sign(signRequests, function(u2fResult) {});

The response handler function needs to call the /validate/check API again with
the signatureData and clientData returned by the U2F device in the u2fResult:

POST /validate/check HTTP/1.1
Host: example.com
Accept: application/json

user=cornelius
pass=
transaction_id=<transaction_id>
signaturedata=signatureData
clientdata=clientData

14.2.1.2.19.3. Implementation

	
class privacyidea.lib.tokens.u2ftoken.U2fTokenClass(db_token)[source]

	The U2F Token implementation.

	
static api_endpoint(request, g)[source]

	This provides a function to be plugged into the API endpoint
/ttype/u2f

The u2f token can return the facet list at this URL.

	Parameters:	
	request – The Flask request

	g – The Flask global object g

	Returns:	Flask Response or text

	
check_otp(otpval, counter=None, window=None, options=None)[source]

	This checks the response of a previous challenge.
:param otpval: N/A
:param counter: The authentication counter
:param window: N/A
:param options: contains “clientdata”, “signaturedata” and

“transaction_id”

	Returns:	A value > 0 in case of success

	
create_challenge(transactionid=None, options=None)[source]

	This method creates a challenge, which is submitted to the user.
The submitted challenge will be preserved in the challenge
database.

If no transaction id is given, the system will create a transaction
id and return it, so that the response can refer to this transaction.

	Parameters:	
	transactionid – the id of this challenge

	options (dict) – the request context parameters / data

	Returns:	tuple of (bool, message, transactionid, attributes)

	Return type:	tuple

The return tuple builds up like this:
bool if submit was successful;
message which is displayed in the JSON response;
additional attributes, which are displayed in the JSON response.

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or scalar

	
static get_class_prefix()[source]

	Return the prefix, that is used as a prefix for the serial numbers.
:return: U2F
:rtype: basestring

	
static get_class_type()[source]

	Returns the internal token type identifier
:return: u2f
:rtype: basestring

	
get_init_detail(params=None, user=None)[source]

	At the end of the initialization we ask the user to press the button

	
is_challenge_request(passw, user=None, options=None)[source]

	check, if the request would start a challenge
In fact every Request that is not a response needs to start a
challenge request.

At the moment we do not think of other ways to trigger a challenge.

	This function is not decorated with

	@challenge_response_allowed

as the U2F token is always a challenge response token!

	Parameters:	
	passw – The PIN of the token.

	options – dictionary of additional request parameters

	Returns:	returns true or false

	
update(param, reset_failcount=True)[source]

	This method is called during the initialization process.

	Parameters:	param (dict) – parameters from the token init

	Returns:	None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.20. Yubico Token

	
class privacyidea.lib.tokens.yubicotoken.YubicoTokenClass(db_token)[source]

	
	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	Here we contact the Yubico Cloud server to validate the OtpVal.

	
static get_class_info(key=None, ret='all')[source]

	

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	dict or string

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
update(param)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.2. Token Class »

14.2.1.2.21. Yubikey Token

	
class privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass(db_token)[source]

	The Yubikey Token in the Yubico AES mode

	
classmethod api_endpoint(request, g)[source]

	This provides a function to be plugged into the API endpoint
/ttype/yubikey which is defined in api/ttype.py

The endpoint /ttype/yubikey is used for the Yubico validate request
according to
https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html

	Parameters:	
	request – The Flask request

	g – The Flask global object g

	Returns:	Flask Response or text

Required query parameters

	Query id:	The id of the client to identify the correct shared secret

	Query otp:	The OTP from the yubikey in the yubikey mode

	Query nonce:	16-40 bytes of random data

Optional parameters h, timestamp, sl, timeout are not supported at the
moment.

	
check_otp(anOtpVal, counter=None, window=None, options=None)[source]

	validate the token otp against a given otpvalue

	Parameters:	
	anOtpVal (string) – the to be verified otpvalue

	counter (int) – the counter state. It is not used by the Yubikey
because the current counter value is sent encrypted inside the
OTP value

	window (int) – the counter +window, which is not used in the Yubikey
because the current counter value is sent encrypted inside the
OTP, allowing a simple comparison between the encrypted counter
value and the stored counter value

	options (dict) – the dict, which could contain token specific info

	Returns:	the counter state or an error code (< 0):

-1 if the OTP is old (counter < stored counter)
-2 if the private_uid sent in the OTP is wrong (different from the one stored with the token)
-3 if the CRC verification fails
:rtype: int

	
check_otp_exist(otp, window=None)[source]

	checks if the given OTP value is/are values of this very token.
This is used to autoassign and to determine the serial number of
a token.

	
static check_yubikey_pass(passw)[source]

	if the Token has set a PIN the user must also enter the PIN for
authentication!

This checks the output of a yubikey in AES mode without providing
the serial number.
The first 12 (of 44) or 16 of 48) characters are the tokenid, which is
stored in the tokeninfo yubikey.tokenid or the prefix yubikey.prefix.

	Parameters:	passw (string) – The password that consist of the static yubikey prefix and
the otp

	Returns:	True/False and the User-Object of the token owner

	Return type:	dict

	
static get_class_info(key=None, ret='all')[source]

	returns a subtree of the token definition

	Parameters:	
	key (string) – subsection identifier

	ret (user defined) – default return value, if nothing is found

	Returns:	subsection if key exists or user defined

	Return type:	s.o.

	
static get_class_prefix()[source]

	

	
static get_class_type()[source]

	

	
is_challenge_request(passw, user=None, options=None)[source]

	This method checks, if this is a request, that triggers a challenge.

	Parameters:	
	passw (string) – password, which might be pin or pin+otp

	user (User object) – The user from the authentication request

	options (dict) – dictionary of additional request parameters

	Returns:	true or false

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.3. Token Functions

This module contains all top level token functions.
It depends on the models, lib.user and lib.tokenclass (which depends on the
tokenclass implementations like lib.tokens.hotptoken)

This is the middleware/glue between the HTTP API and the database

	
privacyidea.lib.token.add_tokeninfo(serial, info, value=None, value_type=None, user=None)[source]

	Sets a token info field in the database. The info is a dict for each
token of key/value pairs.

	Parameters:	
	serial (basestring) – The serial number of the token

	info – The key of the info in the dict

	value – The value of the info

	value_type – The type of the value. If set to “password” the value

is stored encrypted
:type value_type: basestring
:param user: The owner of the tokens, that should be modified
:type user: User object
:return: the number of modified tokens
:rtype: int

	
privacyidea.lib.token.assign_token(serial, user, pin=None, encrypt_pin=False)[source]

	Assign token to a user.
If the PIN is given, the PIN is reset.

	Parameters:	
	serial (basestring) – The serial number of the token

	user (User object) – The user, to whom the token should be assigned.

	pin (basestring) – The PIN for the newly assigned token.

	encrypt_pin (bool) – Whether the PIN should be stored in an encrypted way

	Returns:	True if the token was assigned, in case of an error an exception

is thrown
:rtype: bool

	
privacyidea.lib.token.check_otp(serial, otpval)[source]

	This function checks the OTP for a given serial number
:param serial:
:param otpval:
:return:

	
privacyidea.lib.token.check_realm_pass(realm, passw, options=None)[source]

	This function checks, if the given passw matches any token in the given
realm. This can be used for the 4-eyes token.
Only tokens that are assigned are tested.

It returns the res True/False and a reply_dict, which contains the
serial number of the matching token.

	Parameters:	
	realm – The realm of the user

	passw – The password containing PIN+OTP

	options (dict) – Additional options that are passed to the tokens

	Returns:	tuple of bool and dict

	
privacyidea.lib.token.check_serial(serial)[source]

	This checks, if the given serial number can be used for a new token.
it returns a tuple (result, new_serial)
result being True if the serial does not exist, yet.
new_serial is a suggestion for a new serial number, that does not
exist, yet.

	Parameters:	serial – Seral number that is to be checked, if it can be used for

a new token.
:type serial: string
:result: bool and serial number
:rtype: tuple

	
privacyidea.lib.token.check_serial_pass(serial, passw, options=None)[source]

	This function checks the otp for a given serial

If the OTP matches, True is returned and the otp counter is increased.

The function tries to determine the user (token owner), to derive possible
additional policies from the user.

	Parameters:	
	serial (basestring) – The serial number of the token

	passw (basestring) – The password usually consisting of pin + otp

	options (dict) – Additional options. Token specific.

	Returns:	tuple of result (True, False) and additional dict

	Return type:	tuple

	
privacyidea.lib.token.check_token_list(tokenobject_list, passw, user=None, options=None)[source]

	this takes a list of token objects and tries to find the matching token
for the given passw. It also tests,
* if the token is active or
* the max fail count is reached,
* if the validity period is ok...

This function is called by check_serial_pass, check_user_pass and
check_yubikey_pass.

	Parameters:	
	tokenobject_list – list of identified tokens

	passw – the provided passw (mostly pin+otp)

	user – the identified use - as class object

	options – additional parameters, which are passed to the token

	Returns:	tuple of success and optional response

	Return type:	(bool, dict)

	
privacyidea.lib.token.check_user_pass(user, passw, options=None)[source]

	This function checks the otp for a given user.
It is called by the API /validate/check

If the OTP matches, True is returned and the otp counter is increased.

	Parameters:	
	user (User object) – The user who is trying to authenticate

	passw (basestring) – The password usually consisting of pin + otp

	options (dict) – Additional options. Token specific.

	Returns:	tuple of result (True, False) and additional dict

	Return type:	tuple

	
privacyidea.lib.token.copy_token_pin(serial_from, serial_to)[source]

	This function copies the token PIN from one token to the other token.
This can be used for workflows like lost token.

In fact the PinHash and the PinSeed are transferred

	Parameters:	
	serial_from (basestring) – The token to copy from

	serial_to (basestring) – The token to copy to

	Returns:	True. In case of an error raise an exception

	Return type:	bool

	
privacyidea.lib.token.copy_token_realms(serial_from, serial_to)[source]

	Copy the realms of one token to the other token

	Parameters:	
	serial_from – The token to copy from

	serial_to – The token to copy to

	Returns:	None

	
privacyidea.lib.token.copy_token_user(serial_from, serial_to)[source]

	This function copies the user from one token to the other token.
In fact the user_id, resolver and resolver type are transferred.

	Parameters:	
	serial_from (basestring) – The token to copy from

	serial_to (basestring) – The token to copy to

	Returns:	True. In case of an error raise an exception

	Return type:	bool

	
privacyidea.lib.token.create_tokenclass_object(db_token)[source]

	(was createTokenClassObject)
create a token class object from a given type
If a tokenclass for this type does not exist,
the function returns None.

	Parameters:	db_token (database token object) – the database referenced token

	Returns:	instance of the token class object

	Return type:	tokenclass object

	
privacyidea.lib.token.delete_tokeninfo(serial, key, user=None)[source]

	Delete a specific token info field in the database.

	Parameters:	
	serial (basestring) – The serial number of the token

	key – The key of the info in the dict

	value – The value of the info

	user (User object) – The owner of the tokens, that should be modified

	Returns:	the number of tokens matching the serial and user. This number also includes tokens that did not have

the token info key set in the first place!
:rtype: int

	
privacyidea.lib.token.enable_token(serial, enable=True, user=None)[source]

	Enable or disable a token. This can be checked with is_token_active

Enabling an already active token will return 0.

	Parameters:	
	serial (basestring) – The serial number of the token

	enable (bool) – False is the token should be disabled

	user (User object) – all tokens of the user will be enabled or disabled

	Returns:	Number of tokens that were enabled/disabled

	Return type:	

	
privacyidea.lib.token.gen_serial(tokentype=None, prefix=None)[source]

	generate a serial for a given tokentype

	Parameters:	
	tokentype – the token type prefix is done by a lookup on the tokens

	prefix – A prefix to the serial number

	Returns:	serial number

	Return type:	string

	
privacyidea.lib.token.get_all_token_users()[source]

	return a dictionary with all tokens, that are assigned to users.
This returns a dictionary with the key being the serial number of
the token and the user information as dict.

	Returns:	dictionary of serial numbers

	Return type:	dict

	
privacyidea.lib.token.get_dynamic_policy_definitions(scope=None)[source]

	This returns the dynamic policy definitions that come with the new loaded
token classes.

	Parameters:	scope – an optional scope parameter. Only return the policies of

this scope.
:return: The policy definition for the token or only for the scope.

	
privacyidea.lib.token.get_multi_otp(serial, count=0, epoch_start=0, epoch_end=0, curTime=None, timestamp=None)[source]

	This function returns a list of OTP values for the given Token.
Please note, that the tokentype needs to support this function.

	Parameters:	
	serial (basestring) – the serial number of the token

	count – number of the next otp values (to be used with event or
time based tokens)

	epoch_start – unix time start date (used with time based tokens)

	epoch_end – unix time end date (used with time based tokens)

	curTime (datetime) – Simulate the servertime

	timestamp (int) – Simulate the servertime (unix time in seconds)

	Returns:	dictionary of otp values

	Return type:	dictionary

	
privacyidea.lib.token.get_num_tokens_in_realm(realm, active=True)[source]

	This returns the number of tokens in one realm.
:param realm: The name of the realm
:type realm: basestring
:param active: If only active tokens should be taken into account
:type active: bool
:return: The number of tokens in the realm
:rtype: int

	
privacyidea.lib.token.get_otp(serial, current_time=None)[source]

	This function returns the current OTP value for a given Token.
The tokentype needs to support this function.
if the token does not support getting the OTP value, a -2 is returned.

	Parameters:	
	serial – serial number of the token

	current_time (datetime) – a fake servertime for testing of TOTP token

	Returns:	tuple with (result, pin, otpval, passw)

	Return type:	tuple

	
privacyidea.lib.token.get_realms_of_token(serial, only_first_realm=False)[source]

	This function returns a list of the realms of a token

	Parameters:	
	serial (basestring) – the serial number of the token

	only_first_realm (bool) – Wheather we should only return the first realm

	Returns:	list of the realm names

	Return type:	list

	
privacyidea.lib.token.get_serial_by_otp(token_list, otp='', window=10)[source]

	Returns the serial for a given OTP value
The tokenobject_list would be created by get_tokens()

	Parameters:	
	token_list (list of token objects) – the list of token objects to be investigated

	otp – the otp value, that needs to be found

	window (int) – the window of search

	Returns:	the serial for a given OTP value and the user

	Return type:	basestring

	
privacyidea.lib.token.get_token_by_otp(token_list, otp='', window=10)[source]

	search the token in the token_list, that creates the given OTP value.
The tokenobject_list would be created by get_tokens()

	Parameters:	
	token_list (list of token objects) – the list of token objects to be investigated

	otp (basestring) – the otp value, that needs to be found

	window (int) – the window of search

	Returns:	The token, that creates this OTP value

	Return type:	Tokenobject

	
privacyidea.lib.token.get_token_owner(serial)[source]

	returns the user object, to which the token is assigned.
the token is identified and retrieved by it’s serial number

If the token has no owner, None is returned

In case the serial number matches several tokens (like when containing a
wildcard), also None is returned.

	Parameters:	serial (basestring) – serial number of the token

	Returns:	The owner of the token

	Return type:	User object or None

	
privacyidea.lib.token.get_token_type(serial)[source]

	Returns the tokentype of a given serial number

	Parameters:	serial (string) – the serial number of the to be searched token

	Returns:	tokentype

	Return type:	string

	
privacyidea.lib.token.get_tokenclass_info(tokentype, section=None)[source]

	return the config definition of a dynamic token

	Parameters:	
	tokentype (basestring) – the tokentype of the token like “totp” or “hotp”

	section (basestring) – subsection of the token definition - optional

	Returns:	dict - if nothing found an empty dict

	Return type:	dict

	
privacyidea.lib.token.get_tokens(tokentype=None, realm=None, assigned=None, user=None, serial=None, active=None, resolver=None, rollout_state=None, count=False, revoked=None, locked=None, tokeninfo=None, maxfail=None)[source]

	(was getTokensOfType)
This function returns a list of token objects of a
* given type,
* of a realm
* or tokens with assignment or not
* for a certain serial number or
* for a User

E.g. thus you can get all assigned tokens of type totp.

	Parameters:	
	tokentype (basestring) – The type of the token. If None, all tokens are returned.

	realm (basestring) – get tokens of a realm. If None, all tokens are returned.

	assigned (bool) – Get either assigned (True) or unassigned (False) tokens.
If None get all tokens.

	user (User Object) – Filter for the Owner of the token

	serial (basestring) – The serial number of the token

	active (bool) – Whether only active (True) or inactive (False) tokens
should be returned

	resolver (basestring) – filter for the given resolver name

	rollout_state – returns a list of the tokens in the certain rollout
state. Some tokens are not enrolled in a single step but in multiple
steps. These tokens are then identified by the DB-column rollout_state.

	count (bool) – If set to True, only the number of the result and not the
list is returned.

	revoked (bool) – Only search for revoked tokens or only for not revoked
tokens

	locked (bool) – Only search for locked tokens or only for not locked tokens

	tokeninfo (dict) – Return tokens with the given tokeninfo. The tokeninfo
is a key/value dictionary

	maxfail – If only tokens should be returned, which failcounter
reached maxfail

	Returns:	A list of tokenclasses (lib.tokenclass)

	Return type:	list

	
privacyidea.lib.token.get_tokens_in_resolver(resolver)[source]

	Return a list of the token ojects, that contain this very resolver

	Parameters:	resolver (basestring) – The resolver, the tokens should be in

	Returns:	list of tokens with this resolver

	Return type:	list of token objects

	
privacyidea.lib.token.get_tokens_paginate(tokentype=None, realm=None, assigned=None, user=None, serial=None, active=None, resolver=None, rollout_state=None, sortby=<sqlalchemy.orm.attributes.InstrumentedAttribute object>, sortdir='asc', psize=15, page=1, description=None, userid=None)[source]

	This function is used to retrieve a token list, that can be displayed in
the Web UI. It supports pagination.
Each retrieved page will also contain a “next” and a “prev”, indicating
the next or previous page. If either does not exist, it is None.

	Parameters:	
	tokentype –

	realm –

	assigned (bool) – Returns assigned (True) or not assigned (False) tokens

	user (User object) – The user, whose token should be displayed

	serial –

	active –

	resolver (basestring) – A resolver name, which may contain “*” for filtering.

	userid (basestring) – A userid, which may contain “*” for filtering.

	rollout_state –

	sortby (A Token column or a string.) – Sort by a certain Token DB field. The default is
Token.serial. If a string like “serial” is provided, we try to convert
it to the DB column.

	sortdir (basestring) – Can be “asc” (default) or “desc”

	psize (int) – The size of the page

	page (int) – The number of the page to view. Starts with 1 ;-)

	Returns:	dict with tokens, prev, next and count

	Return type:	dict

	
privacyidea.lib.token.init_token(param, user=None, tokenrealms=None)[source]

	create a new token or update an existing token

	Parameters:	
	param (dict) – initialization parameters like:
serial (optional)
type (optionl, default=hotp)
otpkey

	user (User Object) – the token owner

	tokenrealms (list) – the realms, to which the token should belong

	Returns:	token object or None

	Return type:	TokenClass object

	
privacyidea.lib.token.is_token_active(serial)[source]

	Return True if the token is active, otherwise false
Returns None, if the token does not exist.

	Parameters:	serial (basestring) – The serial number of the token

	Returns:	True or False

	Return type:	bool

	
privacyidea.lib.token.is_token_owner(serial, user)[source]

	Check if the given user is the owner of the token with the given serial
number
:param serial: The serial number of the token
:type serial: str
:param user: The user that needs to be checked
:type user: User object
:return: Return True or False
:rtype: bool

	
privacyidea.lib.token.lost_token(serial, new_serial=None, password=None, validity=10, contents='Ccns', pw_len=16, options=None)[source]

	This is the workflow to handle a lost token.
The token <serial> is lost and will be disabled. A new token of type
password token will be created and assigned to the user.
The PIN of the lost token will be copied to the new token.
The new token will have a certain validity period.

	Parameters:	
	serial – Token serial number

	new_serial – new serial number

	password – new password

	validity (int) – Number of days, the new token should be valid

	contents – The contents of the generated password. “C”: upper case

characters, “c”: lower case characters, “n”: digits and “s”: special
characters
:type contents: A string like “Ccn”
:param pw_len: The length of the generated password
:type pw_len: int
:param options: optional values for the decorator passed from the upper
API level
:type options: dict

	Returns:	result dictionary

	
privacyidea.lib.token.remove_token(serial=None, user=None)[source]

	remove the token that matches the serial number or
all tokens of the given user and also remove the realm associations and
all its challenges

	Parameters:	
	user (User object) – The user, who’s tokens should be deleted.

	serial (basestring) – The serial number of the token to delete

	Returns:	The number of deleted token

	Return type:	int

	
privacyidea.lib.token.reset_token(serial, user=None)[source]

	Reset the failcounter
:param serial:
:param user:
:return: The number of tokens, that were resetted
:rtype: int

	
privacyidea.lib.token.resync_token(serial, otp1, otp2, options=None, user=None)[source]

	Resyncronize the token of the given serial number by searching the
otp1 and otp2 in the future otp values.

	Parameters:	
	serial (basestring) – token serial number

	otp1 (basestring) – first OTP value

	otp2 (basestring) – second OTP value, directly after the first

	options (dict) – additional options like the servertime for TOTP token

	Returns:	

	
privacyidea.lib.token.revoke_token(serial, user=None)[source]

	Revoke a token.

	Parameters:	
	serial (basestring) – The serial number of the token

	enable (bool) – False is the token should be disabled

	user (User object) – all tokens of the user will be enabled or disabled

	Returns:	Number of tokens that were enabled/disabled

	Return type:	

	
privacyidea.lib.token.set_count_auth(serial, count, user=None, max=False, success=False)[source]

	The auth counters are stored in the token info database field.
There are different counters, that can be set

count_auth -> max=False, success=False
count_auth_max -> max=True, success=False
count_auth_success -> max=False, success=True
count_auth_success_max -> max=True, success=True

	Parameters:	
	count (int) – The counter value

	user (User object) – The user owner of the tokens tokens to modify

	serial (basestring) – The serial number of the one token to modifiy

	max – True, if either count_auth_max or count_auth_success_max are

to be modified
:type max: bool
:param success: True, if either count_auth_success or
count_auth_success_max are to be modified
:type success: bool
:return: number of modified tokens
:rtype: int

	
privacyidea.lib.token.set_count_window(serial, countwindow=10, user=None)[source]

	The count window is used during authentication to find the matching OTP
value. This sets the count window per token.

	Parameters:	
	serial (basestring) – The serial number of the token

	countwindow (int) – the size of the window

	user (User object) – The owner of the tokens, which should be modified

	Returns:	number of modified tokens

	Return type:	int

	
privacyidea.lib.token.set_defaults(serial)[source]

	Set the default values for the token with the given serial number
:param serial: token serial
:type serial: basestring
:return: None

	
privacyidea.lib.token.set_description(serial, description, user=None)[source]

	Set the description of a token

	Parameters:	
	serial (basestring) – The serial number of the token

	description (int) – The description for the token

	user (User object) – The owner of the tokens, which should be modified

	Returns:	number of modified tokens

	Return type:	int

	
privacyidea.lib.token.set_failcounter(serial, counter, user=None)[source]

	Set the fail counter of a token.

	Parameters:	
	serial – The serial number of the token

	counter – THe counter to which the fail counter should be set

	user – An optional user

	Returns:	Number of tokens, where the fail counter was set.

	
privacyidea.lib.token.set_hashlib(serial, hashlib='sha1', user=None)[source]

	Set the hashlib in the tokeninfo.
Can be something like sha1, sha256...

	Parameters:	
	serial (basestring) – The serial number of the token

	hashlib (basestring) – The hashlib of the token

	user (User object) – The User, for who’s token the hashlib should be set

	Returns:	the number of token infos set

	Return type:	int

	
privacyidea.lib.token.set_max_failcount(serial, maxfail, user=None)[source]

	Set the maximum fail counts of tokens. This is the maximum number a
failed authentication is allowed.

	Parameters:	
	serial (basestring) – The serial number of the token

	maxfail (int) – The maximum allowed failed authentications

	user (User object) – The owner of the tokens, which should be modified

	Returns:	number of modified tokens

	Return type:	int

	
privacyidea.lib.token.set_otplen(serial, otplen=6, user=None)[source]

	Set the otp length of the token defined by serial or for all tokens of
the user.
The OTP length is usually 6 or 8.

	Parameters:	
	serial (basestring) – The serial number of the token

	otplen (int) – The length of the OTP value

	user (User object) – The owner of the tokens

	Returns:	number of modified tokens

	Return type:	int

	
privacyidea.lib.token.set_pin(serial, pin, user=None, encrypt_pin=False)[source]

	Set the token PIN of the token. This is the static part that can be used
to authenticate.

	Parameters:	
	pin (basestring) – The pin of the token

	user – If the user is specified, the pins for all tokens of this

user will be set
:type used: User object
:param serial: If the serial is specified, the PIN for this very token
will be set.
:return: The number of PINs set (usually 1)
:rtype: int

	
privacyidea.lib.token.set_pin_so(serial, so_pin, user=None)[source]

	Set the SO PIN of a smartcard. The SO Pin can be used to reset the
PIN of a smartcard. The SO PIN is stored in the database, so that it
could be used for automatic processes for User PIN resetting.

	Parameters:	
	serial (basestring) – The serial number of the token

	so_pin – The Security Officer PIN

	Returns:	The number of SO PINs set. (usually 1)

	Return type:	int

	
privacyidea.lib.token.set_pin_user(serial, user_pin, user=None)[source]

	This sets the user pin of a token. This just stores the information of
the user pin for (e.g. an eTokenNG, Smartcard) in the database

	Parameters:	
	serial (basestring) – The serial number of the token

	user_pin (basestring) – The user PIN

	Returns:	The number of PINs set (usually 1)

	Return type:	int

	
privacyidea.lib.token.set_realms(serial, realms=None, add=False)[source]

	Set all realms of a token. This sets the realms new. I.e. it does not add
realms. So realms that are not contained in the list will not be assigned
to the token anymore.

Thus, setting realms=[] clears all realms assignments.

	Parameters:	
	serial (basestring) – the serial number of the token

	realms (list) – A list of realm names

	add (bool) – if the realms should be added and not replaced

	Returns:	the number of tokens, to which realms where added. As a serial

number should be unique, this is either 1 or 0.
:rtype: int

	
privacyidea.lib.token.set_sync_window(serial, syncwindow=1000, user=None)[source]

	The sync window is the window that is used during resync of a token.
Such many OTP values are calculated ahead, to find the matching otp value
and counter.

	Parameters:	
	serial (basestring) – The serial number of the token

	syncwindow (int) – The size of the sync window

	user (User object) – The owner of the tokens, which should be modified

	Returns:	number of modified tokens

	Return type:	int

	
privacyidea.lib.token.set_validity_period_end(serial, user, end)[source]

	Set the validity period for the given token.

	Parameters:	
	serial –

	user –

	end (basestring) – Timestamp in the format DD/MM/YY HH:MM

	
privacyidea.lib.token.set_validity_period_start(serial, user, start)[source]

	Set the validity period for the given token.

	Parameters:	
	serial –

	user –

	start (basestring) – Timestamp in the format DD/MM/YY HH:MM

	
privacyidea.lib.token.token_exist(serial)[source]

	returns true if the token with the given serial number exists

	Parameters:	serial – the serial number of the token

	
privacyidea.lib.token.unassign_token(serial, user=None)[source]

	unassign the user from the token

	Parameters:	serial – The serial number of the token to unassign

	Returns:	True

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.4. Application Class

	
privacyidea.lib.applications.MachineApplicationBase

	alias of MachineApplication

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.5. Policy Module

Base function to handle the policy entries in the database.
This module only depends on the db/models.py

The functions of this module are tested in tests/test_lib_policy.py

A policy has the attributes

	name

	scope

	action

	realm

	resolver

	user

	client

	active

name is the unique identifier of a policy. scope is the area,
where this policy is meant for. This can be values like admin, selfservice,
authentication...
scope takes only one value.

active is bool and indicates, whether a policy is active or not.

action, realm, resolver, user and client can take a comma
separated list of values.

14.2.1.5.1. realm and resolver

If these are empty ‘*’, this policy matches each requested realm.

14.2.1.5.2. user

If the user is empty or ‘*’, this policy matches each user.
You can exclude users from matching this policy, by prepending a ‘-‘ or a ‘!’.
*, -admin will match for all users except the admin.

You can also use regular expressions to match the user like customer_.*
to match any user, starting with customer_.

Note

Regular expression will only work for exact machtes.
user1234 will not match user1 but only user1...

14.2.1.5.3. client

The client is identified by its IP address. A policy can contain a list of
IP addresses or subnets.
You can exclude clients from subnets by prepending the client with a ‘-‘ or
a ‘!’.
172.16.0.0/24, -172.16.0.17 will match each client in the subnet except
the 172.16.0.17.

14.2.1.5.4. time

You can specify a time in which the policy should be active.
Time formats are

<dow>-<dow>:<hh>:<mm>-<hh>:<mm>, ...
<dow>:<hh>:<mm>-<hh>:<mm>
<dow>:<hh>-<hh>

and any combination of it. “dow” being day of week Mon, Tue, Wed, Thu, Fri,
Sat, Sun.

	
class privacyidea.lib.policy.ACTION[source]

	This is the list of usual actions.

	
ADDUSER = 'adduser'

	

	
ADDUSERINRESPONSE = 'add_user_in_response'

	

	
APIKEY = 'api_key_required'

	

	
ASSIGN = 'assign'

	

	
AUDIT = 'auditlog'

	

	
AUDIT_AGE = 'auditlog_age'

	

	
AUDIT_DOWNLOAD = 'auditlog_download'

	

	
AUTHITEMS = 'fetch_authentication_items'

	

	
AUTHMAXFAIL = 'auth_max_fail'

	

	
AUTHMAXSUCCESS = 'auth_max_success'

	

	
AUTH_CACHE = 'auth_cache'

	

	
AUTOASSIGN = 'autoassignment'

	

	
CACONNECTORDELETE = 'caconnectordelete'

	

	
CACONNECTORREAD = 'caconnectorread'

	

	
CACONNECTORWRITE = 'caconnectorwrite'

	

	
CHALLENGERESPONSE = 'challenge_response'

	

	
CHANGE_PIN_EVERY = 'change_pin_every'

	

	
CHANGE_PIN_FIRST_USE = 'change_pin_on_first_use'

	

	
CLIENTTYPE = 'clienttype'

	

	
CONFIGDOCUMENTATION = 'system_documentation'

	

	
COPYTOKENPIN = 'copytokenpin'

	

	
COPYTOKENUSER = 'copytokenuser'

	

	
CUSTOM_BASELINE = 'custom_baseline'

	

	
CUSTOM_MENU = 'custom_menu'

	

	
DEFAULT_TOKENTYPE = 'default_tokentype'

	

	
DELETE = 'delete'

	

	
DELETEUSER = 'deleteuser'

	

	
DISABLE = 'disable'

	

	
EMAILCONFIG = 'smtpconfig'

	

	
ENABLE = 'enable'

	

	
ENCRYPTPIN = 'encrypt_pin'

	

	
ENROLLPIN = 'enrollpin'

	

	
EVENTHANDLINGWRITE = 'eventhandling_write'

	

	
GETCHALLENGES = 'getchallenges'

	

	
GETRANDOM = 'getrandom'

	

	
GETSERIAL = 'getserial'

	

	
HIDE_WELCOME = 'hide_welcome_info'

	

	
IMPORT = 'importtokens'

	

	
LASTAUTH = 'last_auth'

	

	
LOGINMODE = 'login_mode'

	

	
LOGOUTTIME = 'logout_time'

	

	
LOSTTOKEN = 'losttoken'

	

	
LOSTTOKENPWCONTENTS = 'losttoken_PW_contents'

	

	
LOSTTOKENPWLEN = 'losttoken_PW_length'

	

	
LOSTTOKENVALID = 'losttoken_valid'

	

	
MACHINELIST = 'machinelist'

	

	
MACHINERESOLVERDELETE = 'mresolverdelete'

	

	
MACHINERESOLVERWRITE = 'mresolverwrite'

	

	
MACHINETOKENS = 'manage_machine_tokens'

	

	
MANAGESUBSCRIPTION = 'managesubscription'

	

	
MANGLE = 'mangle'

	

	
MAXTOKENREALM = 'max_token_per_realm'

	

	
MAXTOKENUSER = 'max_token_per_user'

	

	
NODETAILFAIL = 'no_detail_on_fail'

	

	
NODETAILSUCCESS = 'no_detail_on_success'

	

	
OTPPIN = 'otppin'

	

	
OTPPINCONTENTS = 'otp_pin_contents'

	

	
OTPPINMAXLEN = 'otp_pin_maxlength'

	

	
OTPPINMINLEN = 'otp_pin_minlength'

	

	
OTPPINRANDOM = 'otp_pin_random'

	

	
PASSNOTOKEN = 'passOnNoToken'

	

	
PASSNOUSER = 'passOnNoUser'

	

	
PASSTHRU = 'passthru'

	

	
PASSWORDRESET = 'password_reset'

	

	
PINHANDLING = 'pinhandling'

	

	
POLICYDELETE = 'policydelete'

	

	
POLICYTEMPLATEURL = 'policy_template_url'

	

	
POLICYWRITE = 'policywrite'

	

	
PRIVACYIDEASERVERWRITE = 'privacyideaserver_write'

	

	
RADIUSSERVERWRITE = 'radiusserver_write'

	

	
REALM = 'realm'

	

	
REALMDROPDOWN = 'realm_dropdown'

	

	
REGISTERBODY = 'registration_body'

	

	
REMOTE_USER = 'remote_user'

	

	
REQUIREDEMAIL = 'requiredemail'

	

	
RESET = 'reset'

	

	
RESETALLTOKENS = 'reset_all_user_tokens'

	

	
RESOLVER = 'resolver'

	

	
RESOLVERDELETE = 'resolverdelete'

	

	
RESOLVERWRITE = 'resolverwrite'

	

	
RESYNC = 'resync'

	

	
REVOKE = 'revoke'

	

	
SEARCH_ON_ENTER = 'search_on_enter'

	

	
SERIAL = 'serial'

	

	
SET = 'set'

	

	
SETHSM = 'set_hsm_password'

	

	
SETPIN = 'setpin'

	

	
SETREALM = 'setrealm'

	

	
SETTOKENINFO = 'settokeninfo'

	

	
SMSGATEWAYWRITE = 'smsgateway_write'

	

	
SMTPSERVERWRITE = 'smtpserver_write'

	

	
SYSTEMDELETE = 'configdelete'

	

	
SYSTEMWRITE = 'configwrite'

	

	
TIMEOUT_ACTION = 'timeout_action'

	

	
TOKENISSUER = 'tokenissuer'

	

	
TOKENLABEL = 'tokenlabel'

	

	
TOKENPAGESIZE = 'token_page_size'

	

	
TOKENREALMS = 'tokenrealms'

	

	
TOKENTYPE = 'tokentype'

	

	
TOKENWIZARD = 'tokenwizard'

	

	
TOKENWIZARD2ND = 'tokenwizard_2nd_token'

	

	
TRIGGERCHALLENGE = 'triggerchallenge'

	

	
UNASSIGN = 'unassign'

	

	
UPDATEUSER = 'updateuser'

	

	
USERDETAILS = 'user_details'

	

	
USERLIST = 'userlist'

	

	
USERPAGESIZE = 'user_page_size'

	

	
class privacyidea.lib.policy.ACTIONVALUE[source]

	This is a list of usual action values for e.g. policy
action-values like otppin.

	
DISABLE = 'disable'

	

	
NONE = 'none'

	

	
TOKENPIN = 'tokenpin'

	

	
USERSTORE = 'userstore'

	

	
class privacyidea.lib.policy.AUTOASSIGNVALUE[source]

	This is the possible values for autoassign

	
NONE = 'any_pin'

	

	
USERSTORE = 'userstore'

	

	
class privacyidea.lib.policy.GROUP[source]

	These are the allowed policy action groups. The policies
will be grouped in the UI.

	
ENROLLMENT = 'enrollment'

	

	
GENERAL = 'general'

	

	
MACHINE = 'machine'

	

	
PIN = 'pin'

	

	
SYSTEM = 'system'

	

	
TOKEN = 'token'

	

	
TOOLS = 'tools'

	

	
USER = 'user'

	

	
class privacyidea.lib.policy.LOGINMODE[source]

	This is the list of possible values for the login mode.

	
DISABLE = 'disable'

	

	
PRIVACYIDEA = 'privacyIDEA'

	

	
USERSTORE = 'userstore'

	

	
class privacyidea.lib.policy.MAIN_MENU[source]

	These are the allowed top level menu items. These are used
to toggle the visibility of the menu items depending on the rights of the
user

	
AUDIT = 'audit'

	

	
COMPONENTS = 'components'

	

	
CONFIG = 'config'

	

	
MACHINES = 'machines'

	

	
TOKENS = 'tokens'

	

	
USERS = 'users'

	

	
class privacyidea.lib.policy.PolicyClass[source]

	The Policy_Object will contain all database policy entries for easy
filtering and mangling.
It will be created at the beginning of the request and is supposed to stay
alive unchanged during the request.

	
get_action_values(action, scope='authorization', realm=None, resolver=None, user=None, client=None, unique=False, allow_white_space_in_action=False, adminrealm=None)[source]

	
	Get the defined action values for a certain action like

	scope: authorization
action: tokentype

would return a list of the tokentypes

scope: authorization
action: serial

would return a list of allowed serials

	Parameters:	
	unique – if set, the function will raise an exception if more
than one value is returned

	allow_white_space_in_action (bool) – Some policies like emailtext
would allow entering text with whitespaces. These whitespaces
must not be used to separate action values!

	Returns:	A list of the allowed tokentypes

	Return type:	list

	
get_policies(name=None, scope=None, realm=None, active=None, resolver=None, user=None, client=None, action=None, adminrealm=None, time=None, all_times=False)[source]

	Return the policies of the given filter values

	Parameters:	
	name – The name of the policy

	scope – The scope of the policy

	realm – The realm in the policy

	active – Only active policies

	resolver – Only policies with this resolver

	user (basestring) – Only policies with this user

	client –

	action – Only policies, that contain this very action.

	adminrealm – This is the realm of the admin. This is only
evaluated in the scope admin.

	time (datetime) – The optional time, for which the policies should be
fetched. The default time is now()

	all_times (bool) – If True the time restriction of the policies is
ignored. Policies of all time ranges will be returned.

	Returns:	list of policies

	Return type:	list of dicts

	
reload_from_db()[source]

	Read the timestamp from the database. If the timestamp is newer than
the internal timestamp, then read the complete data
:return:

	
ui_get_enroll_tokentypes(client, logged_in_user)[source]

	Return a dictionary of the allowed tokentypes for the logged in user.
This used for the token enrollment UI.

It looks like this:

	{“hotp”: “HOTP: event based One Time Passwords”,

	“totp”: “TOTP: time based One Time Passwords”,
“spass”: “SPass: Simple Pass token. Static passwords”,
“motp”: “mOTP: classical mobile One Time Passwords”,
“sshkey”: “SSH Public Key: The public SSH key”,
“yubikey”: “Yubikey AES mode: One Time Passwords with Yubikey”,
“remote”: “Remote Token: Forward authentication request to another server”,
“yubico”: “Yubikey Cloud mode: Forward authentication request to YubiCloud”,
“radius”: “RADIUS: Forward authentication request to a RADIUS server”,
“email”: “EMail: Send a One Time Passwort to the users email address”,
“sms”: “SMS: Send a One Time Password to the users mobile phone”,
“certificate”: “Certificate: Enroll an x509 Certificate Token.”}

	Parameters:	
	client (basestring) – Client IP address

	logged_in_user (dict) – The Dict of the logged in user

	Returns:	list of token types, the user may enroll

	
ui_get_main_menus(logged_in_user, client=None)[source]

	Get the list of allowed main menus derived from the policies for the
given user - admin or normal user.
It fetches all policies for this user and compiles a list of allowed
menus to display or hide in the UI.

	Parameters:	
	logged_in_user – The logged in user, a dictionary with keys
“username”, “realm” and “role”.

	client – The IP address of the client

	Returns:	A list of MENUs to be displayed

	
ui_get_rights(scope, realm, username, client=None)[source]

	Get the rights derived from the policies for the given realm and user.
Works for admins and normal users.
It fetches all policies for this user and compiles a maximum list of
allowed rights, that can be used to hide certain UI elements.

	Parameters:	
	scope – Can be SCOPE.ADMIN or SCOPE.USER

	realm – Is either user users realm or the adminrealm

	username – The loginname of the user

	client – The HTTP client IP

	Returns:	A list of actions

	
class privacyidea.lib.policy.REMOTE_USER[source]

	The list of possible values for the remote_user policy.

	
ACTIVE = 'allowed'

	

	
DISABLE = 'disable'

	

	
class privacyidea.lib.policy.SCOPE[source]

	This is the list of the allowed scopes that can be used in
policy definitions.

	
ADMIN = 'admin'

	

	
AUDIT = 'audit'

	

	
AUTH = 'authentication'

	

	
AUTHZ = 'authorization'

	

	
ENROLL = 'enrollment'

	

	
GETTOKEN = 'gettoken'

	

	
REGISTER = 'register'

	

	
USER = 'user'

	

	
WEBUI = 'webui'

	

	
class privacyidea.lib.policy.TIMEOUT_ACTION[source]

	This is a list of actions values for idle users

	
LOCKSCREEN = 'lockscreen'

	

	
LOGOUT = 'logout'

	

	
privacyidea.lib.policy.delete_all_policies()[source]

	

	
privacyidea.lib.policy.delete_policy(name)[source]

	Function to delete one named policy

	Parameters:	name – the name of the policy to be deleted

	Returns:	the count of the deleted policies.

	Return type:	int

	
privacyidea.lib.policy.enable_policy(name, enable=True)[source]

	Enable or disable the policy with the given name
:param name:
:return: ID of the policy

	
privacyidea.lib.policy.export_policies(policies)[source]

	This function takes a policy list and creates an export file from it

	Parameters:	policies (list of policy dictionaries) – a policy definition

	Returns:	the contents of the file

	Return type:	string

	
privacyidea.lib.policy.get_static_policy_definitions(scope=None)[source]

	These are the static hard coded policy definitions.
They can be enhanced by token based policy definitions, that can be found
in lib.token.get_dynamic_policy_definitions.

	Parameters:	scope (basestring) – Optional the scope of the policies

	Returns:	allowed scopes with allowed actions, the type of action and a

description.
:rtype: dict

	
privacyidea.lib.policy.import_policies(file_contents)[source]

	This function imports policies from a file.
The file has a config_object format, i.e. the text file has a header

[<policy_name>]
key = value

and key value pairs.

	Parameters:	file_contents (basestring) – The contents of the file

	Returns:	number of imported policies

	Return type:	int

	
privacyidea.lib.policy.set_policy(name=None, scope=None, action=None, realm=None, resolver=None, user=None, time=None, client=None, active=True, adminrealm=None, check_all_resolvers=False)[source]

	Function to set a policy.
If the policy with this name already exists, it updates the policy.
It expects a dict of with the following keys:
:param name: The name of the policy
:param scope: The scope of the policy. Something like “admin”, “system”,
“authentication”
:param action: A scope specific action or a comma separated list of actions
:type active: basestring
:param realm: A realm, for which this policy is valid
:param resolver: A resolver, for which this policy is valid
:param user: A username or a list of usernames
:param time: N/A if type()
:param client: A client IP with optionally a subnet like 172.16.0.0/16
:param active: If the policy is active or not
:type active: bool
:param check_all_resolvers: If all the resolvers of a user should be

checked with this policy

	Returns:	The database ID od the the policy

	Return type:	int

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.6. API Policies

14.2.1.6.1. Pre Policies

These are the policy decorators as PRE conditions for the API calls.
I.e. these conditions are executed before the wrapped API call.
This module uses the policy base functions from
privacyidea.lib.policy but also components from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

	
privacyidea.api.lib.prepolicy.allowed_audit_realm(request=None, action=None)[source]

	This decorator function takes the request and adds additional parameters
to the request according to the policy
for the SCOPE.ADMIN or ACTION.AUDIT
:param request:
:param action:
:return: True

	
privacyidea.api.lib.prepolicy.api_key_required(request=None, action=None)[source]

	This is a decorator for check_user_pass and check_serial_pass.
It checks, if a policy scope=auth, action=apikeyrequired is set.
If so, the validate request will only performed, if a JWT token is passed
with role=validate.

	
privacyidea.api.lib.prepolicy.auditlog_age(request=None, action=None)[source]

	This pre condition checks for the policy auditlog_age and set the
“timelimit” parameter of the audit search API.

Check ACTION.AUDIT_AGE

The decorator can wrap GET /audit/

	Parameters:	
	request (Request Object) – The request that is intercepted during the API call

	action (basestring) – An optional Action

	Returns:	Always true. Modified the parameter request

	
privacyidea.api.lib.prepolicy.check_anonymous_user(request=None, action=None)[source]

	This decorator function takes the request and verifies the given action
for the SCOPE USER without an authenticated user but the user from the
parameters.

This is used with password_reset

	Parameters:	
	request –

	action –

	Returns:	True otherwise raises an Exception

	
privacyidea.api.lib.prepolicy.check_base_action(request=None, action=None, anonymous=False)[source]

	This decorator function takes the request and verifies the given action
for the SCOPE ADMIN or USER.
:param request:
:param action:
:param anonymous: If set to True, the user data is taken from the request

parameters.

	Returns:	True otherwise raises an Exception

	
privacyidea.api.lib.prepolicy.check_external(request=None, action='init')[source]

	This decorator is a hook to an external check function, that is called
before the token/init or token/assign API.

	Parameters:	
	request (flask Request object) – The REST request

	action (basestring) – This is either “init” or “assign”

	Returns:	either True or an Exception is raised

	
privacyidea.api.lib.prepolicy.check_max_token_realm(request=None, action=None)[source]

	Pre Policy
This checks the maximum token per realm.
Check ACTION.MAXTOKENREALM

	This decorator can wrap:

	/token/init (with a realm and user)
/token/assign
/token/tokenrealms

	Parameters:	
	req (Request Object) – The request that is intercepted during the API call

	action (basestring) – An optional Action

	Returns:	True otherwise raises an Exception

	
privacyidea.api.lib.prepolicy.check_max_token_user(request=None, action=None)[source]

	Pre Policy
This checks the maximum token per user policy.
Check ACTION.MAXTOKENUSER

	This decorator can wrap:

	/token/init (with a realm and user)
/token/assign

	Parameters:	
	req –

	action –

	Returns:	True otherwise raises an Exception

	
privacyidea.api.lib.prepolicy.check_otp_pin(request=None, action=None)[source]

	This policy function checks if the OTP PIN that is about to be set
follows the OTP PIN policies ACTION.OTPPINMAXLEN, ACTION.OTPPINMINLEN and
ACTION.OTPPINCONTENTS and token-type-specific PIN policy actions in the
SCOPE.USER or SCOPE.ADMIN. It is used to decorate the API functions.

The pin is investigated in the params as “otppin” or “pin”

In case the given OTP PIN does not match the requirements an exception is
raised.

	
privacyidea.api.lib.prepolicy.check_token_init(request=None, action=None)[source]

	This decorator function takes the request and verifies
if the requested tokentype is allowed to be enrolled in the SCOPE ADMIN
or the SCOPE USER.
:param request:
:param action:
:return: True or an Exception is raised

	
privacyidea.api.lib.prepolicy.check_token_upload(request=None, action=None)[source]

	This decorator function takes the request and verifies the given action
for scope ADMIN
:param req:
:param filename:
:return:

	
privacyidea.api.lib.prepolicy.encrypt_pin(request=None, action=None)[source]

	This policy function is to be used as a decorator for several API functions.
E.g. token/assign, token/setpin, token/init
If the policy is set to define the PIN to be encrypted,
the request.all_data is modified like this:
encryptpin = True

It uses the policy SCOPE.ENROLL, ACTION.ENCRYPTPIN

	
privacyidea.api.lib.prepolicy.enroll_pin(request=None, action=None)[source]

	This policy function is used as decorator for init token.
It checks, if the user or the admin is allowed to set a token PIN during
enrollment. If not, it deleted the PIN from the request.

	
privacyidea.api.lib.prepolicy.init_random_pin(request=None, action=None)[source]

	This policy function is to be used as a decorator in the API init function.
If the policy is set accordingly it adds a random PIN to the
request.all_data like.

It uses the policy SCOPE.ENROLL, ACTION.OTPPINRANDOM to set a random OTP
PIN during Token enrollment

	
privacyidea.api.lib.prepolicy.init_token_defaults(request=None, action=None)[source]

	This policy function is used as a decorator for the API init function.
Depending on policy settings it can add token specific default values
like totp_hashlib, hotp_hashlib, totp_otplen...

	
privacyidea.api.lib.prepolicy.init_tokenlabel(request=None, action=None)[source]

	This policy function is to be used as a decorator in the API init function.
It adds the tokenlabel definition to the params like this:
params : { “tokenlabel”: “<u>@<r>” }

In addtion it adds the tokenissuer to the params like this:
params : { “tokenissuer”: “privacyIDEA instance” }

It uses the policy SCOPE.ENROLL, ACTION.TOKENLABEL and ACTION.TOKENISSUER
to set the tokenlabel and tokenissuer
of Smartphone tokens during enrollment and this fill the details of the
response.

	
privacyidea.api.lib.prepolicy.is_remote_user_allowed(req)[source]

	Checks if the REMOTE_USER server variable is allowed to be used.

Note

This is not used as a decorator!

	Parameters:	req – The flask request, containing the remote user and the client IP

	Returns:	

	
privacyidea.api.lib.prepolicy.mangle(request=None, action=None)[source]

	This pre condition checks if either of the parameters pass, user or realm
in a validate/check request should be rewritten based on an
authentication policy with action “mangle”.
See mangle for an example.

Check ACTION.MANGLE

	This decorator should wrap

	/validate/check

	Parameters:	
	request (Request Object) – The request that is intercepted during the API call

	action (basestring) – An optional Action

	Returns:	Always true. Modified the parameter request

	
privacyidea.api.lib.prepolicy.mock_fail(req, action)[source]

	This is a mock function as an example for check_external. This function
creates a problem situation and the token/init or token/assign will show
this exception accordingly.

	
privacyidea.api.lib.prepolicy.mock_success(req, action)[source]

	This is a mock function as an example for check_external. This function
returns success and the API call will go on unmodified.

	
privacyidea.api.lib.prepolicy.papertoken_count(request=None, action=None)[source]

	This is a token specific wrapper for paper token for the endpoint
/token/init.
According to the policy scope=SCOPE.ENROLL,
action=PAPERACTION.PAPER_COUNT it sets the parameter papertoken_count to
enroll a paper token with such many OTP values.

	Parameters:	
	request –

	action –

	Returns:	

	
class privacyidea.api.lib.prepolicy.prepolicy(function, request, action=None)[source]

	This is the decorator wrapper to call a specific function before an API
call.
The prepolicy decorator is to be used in the API calls.
A prepolicy decorator then will modify the request data or raise an
exception

	
privacyidea.api.lib.prepolicy.realmadmin(request=None, action=None)[source]

	This decorator adds the first REALM to the parameters if the
administrator, calling this API is a realm admin.
This way, if the admin calls e.g. GET /user without realm parameter,
he will not see all users, but only users in one of his realms.

	TODO: If a realm admin is allowed to see more than one realm,

	this is not handled at the moment. We need to change the underlying
library functions!

	Parameters:	
	request – The HTTP reqeust

	action – The action like ACTION.USERLIST

	
privacyidea.api.lib.prepolicy.required_email(request=None, action=None)[source]

	This precondition checks if the “email” parameter matches the regular
expression in the policy scope=register, action=requiredemail.
See requiredemail.

Check ACTION.REQUIREDEMAIL

This decorator should wrap POST /register

	Parameters:	
	request – The Request Object

	action – An optional Action

	Returns:	Modifies the request parameters or raises an Exception

	
privacyidea.api.lib.prepolicy.save_client_application_type(request, action)[source]

	This decorator is used to write the client IP and the HTTP user agent (
clienttype) to the database.

In fact this is not a policy decorator, as it checks no policy. In
fact, we could however one day
define this as a policy, too.
:param req:
:return:

	
privacyidea.api.lib.prepolicy.set_realm(request=None, action=None)[source]

	Pre Policy
This pre condition gets the current realm and verifies if the realm
should be rewritten due to the policy definition.
I takes the realm from the request and - if a policy matches - replaces
this realm with the realm defined in the policy

Check ACTION.SETREALM

	This decorator should wrap

	/validate/check

	Parameters:	
	request (Request Object) – The request that is intercepted during the API call

	action (basestring) – An optional Action

	Returns:	Always true. Modified the parameter request

	
privacyidea.api.lib.prepolicy.twostep_enrollment_activation(request=None, action=None)[source]

	This policy function enables the two-step enrollment process according
to the configured policies.
It is used to decorate the /token/init endpoint.

If a <type>_2step policy matches, the 2stepinit parameter is handled according to the policy.
If no policy matches, the 2stepinit parameter is removed from the request data.

	
privacyidea.api.lib.prepolicy.twostep_enrollment_parameters(request=None, action=None)[source]

	If the 2stepinit parameter is set to true, this policy function
reads additional configuration from policies and adds it
to request.all_data, that is:

	{type}_2step_serversize is written to 2step_serversize

	{type}_2step_clientsize is written to ``2step_clientsize`

	{type}_2step_difficulty is written to 2step_difficulty

If no policy matches, the value passed by the user is kept.

This policy function is used to decorate the /token/init endpoint.

	
privacyidea.api.lib.prepolicy.u2ftoken_allowed(request, action)[source]

	
	This is a token specific wrapper for u2f token for the endpoint

	/token/init.
According to the policy scope=SCOPE.ENROLL,
action=U2FACTINO.REQ it checks, if the assertion certificate is an
allowed U2F token type.

If the token, which is enrolled contains a non allowed attestation
certificate, we bail out.

	Parameters:	
	request –

	action –

	Returns:	

14.2.1.6.2. Post Policies

These are the policy decorators as POST conditions for the API calls.
I.e. these conditions are executed after the wrapped API call.
This module uses the policy base functions from
privacyidea.lib.policy but also components from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py

	
privacyidea.api.lib.postpolicy.add_user_detail_to_response(request, response)[source]

	This policy decorated is used in the AUTHZ scope.
If the boolean value add_user_in_response is set,
the details will contain a dictionary “user” with all user details.

	Parameters:	
	request –

	response –

	Returns:	

	
privacyidea.api.lib.postpolicy.autoassign(request, response)[source]

	This decorator decorates the function /validate/check.
Depending on ACTION.AUTOASSIGN it checks if the user has no token and if
the given OTP-value matches a token in the users realm, that is not yet
assigned to any user.

If a token can be found, it assigns the token to the user also taking
into account ACTION.MAXTOKENUSER and ACTION.MAXTOKENREALM.
:return:

	
privacyidea.api.lib.postpolicy.check_serial(request, response)[source]

	This policy function is to be used in a decorator of an API function.
It checks, if the token, that was used in the API call has a serial
number that is allowed to be used.

If not, a PolicyException is raised.

	Parameters:	response (Response object) – The response of the decorated function

	Returns:	A new (maybe modified) response

	
privacyidea.api.lib.postpolicy.check_tokentype(request, response)[source]

	This policy function is to be used in a decorator of an API function.
It checks, if the token, that was used in the API call is of a type that
is allowed to be used.

If not, a PolicyException is raised.

	Parameters:	response (Response object) – The response of the decorated function

	Returns:	A new (maybe modified) response

	
privacyidea.api.lib.postpolicy.construct_radius_response(request, response)[source]

	This decorator implements the /validate/radiuscheck endpoint.
In case this URL was requested, a successful authentication
results in an empty response with a HTTP 204 status code.
An unsuccessful authentication results in an empty response
with a HTTP 400 status code.
:return:

	
privacyidea.api.lib.postpolicy.get_webui_settings(request, response)[source]

	This decorator is used in the /auth API to add configuration information
like the logout_time or the policy_template_url to the response.
:param request: flask request object
:param response: flask response object
:return: the response

	
privacyidea.api.lib.postpolicy.no_detail_on_fail(request, response)[source]

	This policy function is used with the AUTHZ scope.
If the boolean value no_detail_on_fail is set,
the details will be stripped if
the authentication request failed.

	Parameters:	
	request –

	response –

	Returns:	

	
privacyidea.api.lib.postpolicy.no_detail_on_success(request, response)[source]

	This policy function is used with the AUTHZ scope.
If the boolean value no_detail_on_success is set,
the details will be stripped if
the authentication request was successful.

	Parameters:	
	request –

	response –

	Returns:	

	
privacyidea.api.lib.postpolicy.offline_info(request, response)[source]

	This decorator is used with the function /validate/check.
It is not triggered by an ordinary policy but by a MachineToken definition.
If for the given Client and Token an offline application is defined,
the response is enhanced with the offline information - the hashes of the
OTP.

	
class privacyidea.api.lib.postpolicy.postpolicy(function, request=None)[source]

	Decorator that allows one to call a specific function after the decorated
function.
The postpolicy decorator is to be used in the API calls.

	
class privacyidea.api.lib.postpolicy.postrequest(function, request=None)[source]

	Decorator that is supposed to be used with after_request.

	
privacyidea.api.lib.postpolicy.save_pin_change(request, response, serial=None)[source]

	This policy function checks if the next_pin_change date should be
stored in the tokeninfo table.

	Check scope:enrollment and
ACTION.CHANGE_PIN_FIRST_USE.
This action is used, when the administrator enrolls a token or sets a PIN

	Check scope:enrollment and
ACTION.CHANGE_PIN_EVERY is used, if the user changes the PIN.

This function decorates /token/init and /token/setpin. The parameter
“pin” and “otppin” is investigated.

	Parameters:	
	request –

	action –

	Returns:	

	
privacyidea.api.lib.postpolicy.sign_response(request, response)[source]

	This decorator is used to sign the response. It adds the nonce from the
request, if it exist and adds the nonce and the signature to the response.

Note

This only works for JSON responses. So if we fail to decode the
JSON, we just pass on.

The usual way to use it is, to wrap the after_request, so that we can also
sign errors.

@postrequest(sign_response, request=request)
def after_request(response):

	Parameters:	
	request – The Request object

	response – The Response object

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.7. Policy Decorators

These are the policy decorator functions for internal (lib) policy decorators.
policy decorators for the API (pre/post) are defined in api/lib/policy

The functions of this module are tested in tests/test_lib_policy_decorator.py

	
privacyidea.lib.policydecorators.auth_cache(wrapped_function, user_object, passw, options=None)[source]

	Decorate lib.token:check_user_pass. Verify, if the authentication can
be found in the auth_cache.

	Parameters:	
	wrapped_function – usually “check_user_pass”

	user_object – User who tries to authenticate

	passw – The PIN and OTP

	options – Dict containing values for “g” and “clientip”.

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.auth_lastauth(wrapped_function, user_or_serial, passw, options=None)[source]

	This decorator checks the policy settings of ACTION.LASTAUTH
If the last authentication stored in tokeninfo last_auth_success of a
token is exceeded, the authentication is denied.

The wrapped function is usually token.check_user_pass, which takes the
arguments (user, passw, options={}) OR
token.check_serial_pass with the arguments (user, passw, options={})

	Parameters:	
	wrapped_function – either check_user_pass or check_serial_pass

	user_or_serial – either the User user_or_serial or a serial

	passw –

	options – Dict containing values for “g” and “clientip”

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.auth_otppin(wrapped_function, *args, **kwds)[source]

	Decorator to decorate the tokenclass.check_pin function.
Depending on the ACTION.OTPPIN it
* either simply accepts an empty pin
* checks the pin against the userstore
* or passes the request to the wrapped_function

	Parameters:	wrapped_function – In this case the wrapped function should be

tokenclass.check_ping
:param *args: args[1] is the pin
:param **kwds: kwds[“options”] contains the flask g
:return: True or False

	
privacyidea.lib.policydecorators.auth_user_does_not_exist(wrapped_function, user_object, passw, options=None)[source]

	This decorator checks, if the user does exist at all.
If the user does exist, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the
arguments (user, passw, options={})

	Parameters:	
	wrapped_function –

	user_object –

	passw –

	options – Dict containing values for “g” and “clientip”

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.auth_user_has_no_token(wrapped_function, user_object, passw, options=None)[source]

	This decorator checks if the user has a token at all.
If the user has a token, the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the
arguments (user, passw, options={})

	Parameters:	
	wrapped_function –

	user_object –

	passw –

	options – Dict containing values for “g” and “clientip”

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.auth_user_passthru(wrapped_function, user_object, passw, options=None)[source]

	This decorator checks the policy settings of ACTION.PASSTHRU.
If the authentication against the userstore is not successful,
the wrapped function is called.

The wrapped function is usually token.check_user_pass, which takes the
arguments (user, passw, options={})

	Parameters:	
	wrapped_function –

	user_object –

	passw –

	options – Dict containing values for “g” and “clientip”

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.auth_user_timelimit(wrapped_function, user_object, passw, options=None)[source]

	This decorator checks the policy settings of
ACTION.AUTHMAXSUCCESS,
ACTION.AUTHMAXFAIL
If the authentication was successful, it checks, if the number of allowed
successful authentications is exceeded (AUTHMAXSUCCESS).

If the AUTHMAXFAIL is exceed it denies even a successful authentication.

The wrapped function is usually token.check_user_pass, which takes the
arguments (user, passw, options={})

	Parameters:	
	wrapped_function –

	user_object –

	passw –

	options – Dict containing values for “g” and “clientip”

	Returns:	Tuple of True/False and reply-dictionary

	
privacyidea.lib.policydecorators.challenge_response_allowed(func)[source]

	This decorator is used to wrap tokenclass.is_challenge_request.
It checks, if a challenge response authentication is allowed for this
token type. To allow this, the policy

scope:authentication, action:challenge_response must be set.

If the tokentype is not allowed for challenge_response, this decorator
returns false.

See challenge_response.

	Parameters:	func – wrapped function

	
privacyidea.lib.policydecorators.config_lost_token(wrapped_function, *args, **kwds)[source]

	Decorator to decorate the lib.token.lost_token function.
Depending on ACTION.LOSTTOKENVALID, ACTION.LOSTTOKENPWCONTENTS,
ACTION.LOSTTOKENPWLEN it sets the check_otp parameter, to signal
how the lostToken should be generated.

	Parameters:	
	wrapped_function – Usually the function lost_token()

	args – argument “serial” as the old serial number

	kwds – keyword arguments like “validity”, “contents”, “pw_len”

kwds[“options”] contains the flask g

	Returns:	calls the original function with the modified “validity”,

“contents” and “pw_len” argument

	
class privacyidea.lib.policydecorators.libpolicy(decorator_function)[source]

	This is the decorator wrapper to call a specific function before a
library call in contrast to prepolicy and postpolicy, which are to be
called in API Calls.

The decorator expects a named parameter “options”. In this options dict
it will look for the flask global “g”.

	
privacyidea.lib.policydecorators.login_mode(wrapped_function, *args, **kwds)[source]

	Decorator to decorate the lib.auth.check_webui_user function.
Depending on ACTION.LOGINMODE it sets the check_otp parameter, to signal
that the authentication should be performed against privacyIDEA.

	Parameters:	
	wrapped_function – Usually the function check_webui_user

	args – arguments user_obj and password

	kwds – keyword arguments like options and !check_otp!

kwds[“options”] contains the flask g
:return: calls the original function with the modified “check_otp” argument

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.8. Event Handler

The following event handlers are known to privacyIDEA

	14.2.1.8.1. Event Handler Base Class

	14.2.1.8.2. User Notification Event Handler

	
class privacyidea.lib.event.EventConfiguration[source]

	This class is supposed to contain the event handling configuration during
the Request. It can be read initially (in the init method) an can be
accessed later during the request.

	
events

	

	
get_event(eventid)[source]

	Return the reduced list with the given eventid. This list should only
have one element.

	Parameters:	eventid (int) – id of the event

	Returns:	list with one element

	
get_handled_events(eventname)[source]

	Return a list of the event handling definitions for the given eventname

	Parameters:	eventname –

	Returns:	

	
privacyidea.lib.event.delete_event(event_id)[source]

	Delete the event configuration with this given ID.
:param event_id: The database ID of the event.
:type event_id: int
:return:

	
privacyidea.lib.event.enable_event(event_id, enable=True)[source]

	Enable or disable the and event
:param event_id: ID of the event
:return:

	
class privacyidea.lib.event.event(eventname, request, g)[source]

	This is the event decorator that calls the event handler in the handler
module. This event decorator can be used at any API call

	
privacyidea.lib.event.get_handler_object(handlername)[source]

	Return an event handler object based on the Name of the event handler class

	Parameters:	handlername – The identifier of the Handler Class

	Returns:	

	
privacyidea.lib.event.set_event(name, event, handlermodule, action, conditions=None, ordering=0, options=None, id=None, active=True)[source]

	Set an event handling configuration. This writes an entry to the
database eventhandler.

	Parameters:	
	name – The name of the event definition

	event (basestring) – The name of the event to react on. Can be a single event or
a comma separated list.

	handlermodule (basestring) – The identifier of the event handler module. This is
an identifier string like “UserNotification”

	action (basestring) – The action to perform. This is an action defined by the
handler module

	conditions (dict) – A condition. Only if this condition is met, the action is
performed.

	ordering (integer) – An optional ordering of the event definitions.

	options (dict) – Additional options, that are needed as parameters for the
action

	id (int) – The DB id of the event. If the id is given, the event is
updated. Otherwise a new entry is generated.

	Returns:	The id of the event.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.8. Event Handler »

14.2.1.8.1. Event Handler Base Class

	
class privacyidea.lib.eventhandler.base.BaseEventHandler[source]

	An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

	
actions

	This method returns a list of available actions, that are provided
by this event handler.
:return: dictionary of actions.

	
check_condition(options)[source]

	Check if all conditions are met and if the action should be executed.
The the conditions are met, we return “True”
:return: True

	
conditions

	The UserNotification can filter for conditions like
* type of logged in user and
* successful or failed value.success

allowed types are str, multi, text, regexp

	Returns:	dict

	
description = 'This is the base class of an EventHandler with no functionality'

	

	
do(action, options=None)[source]

	This method executes the defined action in the given event.

	Parameters:	
	action –

	options (dict) – Contains the flask parameters g and request and the
handler_def configuration

	Returns:	

	
events

	This method returns a list allowed events, that this event handler
can be bound to and which it can handle with the corresponding actions.

An eventhandler may return an asterisk [“*”] indicating, that it can
be used in all events.
:return: list of events

	
identifier = 'BaseEventHandler'

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.8. Event Handler »

14.2.1.8.2. User Notification Event Handler

	
class privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler[source]

	An Eventhandler needs to return a list of actions, which it can handle.

It also returns a list of allowed action and conditions

It returns an identifier, which can be used in the eventhandlig definitions

	
actions

	This method returns a dictionary of allowed actions and possible
options in this handler module.

	Returns:	dict with actions

	
description = 'This eventhandler notifies the user about actions on his tokens'

	

	
do(action, options=None)[source]

	This method executes the defined action in the given event.

	Parameters:	
	action –

	options (dict) – Contains the flask parameters g, request, response
and the handler_def configuration

	Returns:	

	
identifier = 'UserNotification'

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

14.2.1.9. SMS Provider

The following SMS providers are know to privacyIDEA

	14.2.1.9.1. HTTP SMS Provider

	14.2.1.9.2. Sipgate SMS Provider

	14.2.1.9.3. SMTP SMS Provider

SMSProvider is the base class for submitting SMS.
It provides 3 different imlementations:

	HTTP: submitting SMS via an HTTP gateway of an SMS provider

	SMTP: submitting SMS via an SMTP gateway of an SMS provider

	Sipgate: submitting SMS via Sipgate service

14.2.1.9.4. Base Class

	
class privacyidea.lib.smsprovider.SMSProvider.ISMSProvider(db_smsprovider_object=None, smsgateway=None)[source]

	the SMS Provider Interface - BaseClass

	
load_config(config_dict)[source]

	Load the configuration dictionary

	Parameters:	config_dict (dict) – The conifugration of the SMS provider

	Returns:	None

	
classmethod parameters()[source]

	Return a dictionary, that describes the parameters and options for the
SMS provider.
Parameters are required keys to values with defined keys,
while options can be any combination.

Each option is the key to another dict, that describes this option,
if it is required, a description and which values it can take. The
values are optional.

Additional options can not be named in advance. E.g. some provider
specific HTTP parameters of HTTP gateways are options. The HTTP
parameter for the SMS text could be “text” at one provider and “sms”
at another one.

The options can be fixed values or also take the tags {otp},
{user}, {phone}.

	Returns:	dict

	
submit_message(phone, message)[source]

	Sends the SMS. It should return a bool indicating if the SMS was
sent successfully.

In case of SMS send fail, an Exception should be raised.
:return: Success
:rtype: bool

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.9. SMS Provider »

14.2.1.9.1. HTTP SMS Provider

	
class privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider(db_smsprovider_object=None, smsgateway=None)[source]

	
	
classmethod parameters()[source]

	Return a dictionary, that describes the parameters and options for the
SMS provider.
Parameters are required keys to values.

	Returns:	dict

	
submit_message(phone, message)[source]

	send a message to a phone via an http sms gateway

	Parameters:	
	phone – the phone number

	message – the message to submit to the phone

	Returns:	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.9. SMS Provider »

14.2.1.9.2. Sipgate SMS Provider

	
class privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider(db_smsprovider_object=None, smsgateway=None)[source]

	
	
classmethod parameters()[source]

	Return a dictionary, that describes the parameters and options for the
SMS provider.
Parameters are required keys to values.

	Returns:	dict

	
submit_message(phone, message)[source]

	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

 	14.2.1. library functions »

 	14.2.1.9. SMS Provider »

14.2.1.9.3. SMTP SMS Provider

	
class privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider(db_smsprovider_object=None, smsgateway=None)[source]

	
	
classmethod parameters()[source]

	Return a dictionary, that describes the parameters and options for the
SMS provider.
Parameters are required keys to values.

	Returns:	dict

	
submit_message(phone, message)[source]

	Submits the message for phone to the email gateway.

Returns true in case of success

In case of a failure an exception is raised

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.2.2. UserIdResolvers

The useridresolver is responsible for getting userids for loginnames and vice versa.

This base module contains the base class UserIdResolver.UserIdResolver and also the
community class PasswdIdResolver.IdResolver, that is inherited from the base class.

14.2.2.1. Base class

	
class privacyidea.lib.resolvers.UserIdResolver.UserIdResolver[source]

	
	
add_user(attributes=None)[source]

	Add a new user in the useridresolver.
This is only possible, if the UserIdResolver supports this and if
we have write access to the user store.

	Parameters:	
	username (basestring) – The login name of the user

	attributes – Attributes according to the attribute mapping

	Returns:	The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

	
checkPass(uid, password)[source]

	This function checks the password for a given uid.
returns true in case of success
false if password does not match

	Parameters:	
	uid (string or int) – The uid in the resolver

	password (string) – the password to check. Usually in cleartext

	Returns:	True or False

	Return type:	bool

	
close()[source]

	Hook to close down the resolver after one request

	
delete_user(uid)[source]

	Delete a user from the useridresolver.
The user is referenced by the user id.
:param uid: The uid of the user object, that should be deleted.
:type uid: basestring
:return: Returns True in case of success
:rtype: bool

	
editable

	Return true, if the Instance! of this resolver is configured editable.
:return:

	
classmethod getResolverClassDescriptor()[source]

	return the descriptor of the resolver, which is
- the class name and
- the config description

	Returns:	resolver description dict

	Return type:	dict

	
static getResolverClassType()[source]

	provide the resolver type for registration

	
static getResolverDescriptor()[source]

	return the descriptor of the resolver, which is
- the class name and
- the config description

	Returns:	resolver description dict

	Return type:	dict

	
getResolverId()[source]

	get resolver specific information
:return: the resolver identifier string - empty string if not exist

	
static getResolverType()[source]

	getResolverType - return the type of the resolver

	Returns:	returns the string ‘ldapresolver’

	Return type:	string

	
getUserId(loginName)[source]

	The loginname is resolved to a user_id.
Depending on the resolver type the user_id can
be an ID (like in /etc/passwd) or a string (like
the DN in LDAP)

It needs to return an emptry string, if the user does
not exist.

	Parameters:	loginName (sting) – The login name of the user

	Returns:	The ID of the user

	Return type:	string or int

	
getUserInfo(userid)[source]

	This function returns all user information for a given user object
identified by UserID.
:param userid: ID of the user in the resolver
:type userid: int or string
:return: dictionary, if no object is found, the dictionary is empty
:rtype: dict

	
getUserList(searchDict=None)[source]

	This function finds the user objects,
that have the term ‘value’ in the user object field ‘key’

	Parameters:	searchDict (dict) – dict with key values of user attributes -
the key may be something like ‘loginname’ or ‘email’
the value is a regular expression.

	Returns:	list of dictionaries (each dictionary contains a
user object) or an empty string if no object is found.

	Return type:	list of dicts

	
getUsername(userid)[source]

	Returns the username/loginname for a given userid
:param userid: The userid in this resolver
:type userid: string
:return: username
:rtype: string

	
loadConfig(config)[source]

	Load the configuration from the dict into the Resolver object.
If attributes are missing, need to set default values.
If required attributes are missing, this should raise an
Exception.

	Parameters:	config (dict) – The configuration values of the resolver

	
static testconnection(param)[source]

	This function lets you test if the parameters can be used to create a
working resolver.
The implementation should try to connect to the user store and verify
if users can be retrieved.
In case of success it should return a text like
“Resolver config seems OK. 123 Users found.”

param param: The parameters that should be saved as the resolver
type param: dict
return: returns True in case of success and a descriptive text
rtype: tuple

	
update_user(uid, attributes=None)[source]

	Update an existing user.
This function is also used to update the password. Since the
attribute mapping know, which field contains the password,
this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not
modified.

	Parameters:	
	uid (basestring) – The uid of the user object in the resolver.

	attributes (dict) – Attributes to be updated.

	Returns:	True in case of success

14.2.2.2. PasswdResolver

	
class privacyidea.lib.resolvers.PasswdIdResolver.IdResolver[source]

	
	
checkPass(uid, password)[source]

	This function checks the password for a given uid.
returns true in case of success
false if password does not match

We do not support shadow passwords. so the seconds column
of the passwd file needs to contain the crypted password

If the password is a unicode object, it is encoded according
to ENCODING first.

	Parameters:	
	uid (int) – The uid of the user

	password (sting) – The password in cleartext

	Returns:	True or False

	Return type:	bool

	
checkUserId(line, pattern)[source]

	Check if a userid matches a pattern.
A pattern can be “=1000”, “>=1000”,
“<2000” or “between 1000,2000”.

	Parameters:	
	line (dict) – the dictionary of a user

	pattern (string) – match pattern with <, <=...

	Returns:	True or False

	Return type:	bool

	
checkUserName(line, pattern)[source]

	check for user name

	
classmethod getResolverClassDescriptor()[source]

	return the descriptor of the resolver, which is
- the class name and
- the config description

	Returns:	resolver description dict

	Return type:	dict

	
getResolverId()[source]

	return the resolver identifier string, which in fact is
filename, where it points to.

	
getSearchFields(searchDict=None)[source]

	show, which search fields this userIdResolver supports

TODO: implementation is not completed

	Parameters:	searchDict (dict) – fields, which can be queried

	Returns:	dict of all searchFields

	Return type:	dict

	
getUserId(LoginName)[source]

	search the user id from the login name

	Parameters:	LoginName – the login of the user (as unicode)

	Returns:	the userId

	
getUserInfo(userId, no_passwd=False)[source]

	get some info about the user
as we only have the loginId, we have to traverse the dict for the value

	Parameters:	
	userId – the to be searched user

	no_passwd – retrun no password

	Returns:	dict of user info

	
getUserList(searchDict)[source]

	get a list of all users matching the search criteria of the searchdict

	Parameters:	searchDict – dict of search expressions

	
getUsername(userId)[source]

	Returns the username/loginname for a given userid
:param userid: The userid in this resolver
:type userid: string
:return: username
:rtype: string

	
loadConfig(configDict)[source]

	The UserIdResolver could be configured
from the pylons app config - here
this could be the passwd file ,
whether it is /etc/passwd or /etc/shadow

	
loadFile()[source]

	Loads the data of the file initially.
if the self.fileName is empty, it loads /etc/passwd.
Empty lines are ignored.

	
static setup(config=None, cache_dir=None)[source]

	this setup hook is triggered, when the server
starts to serve the first request

	Parameters:	config (the privacyidea config dict) – the privacyidea config

14.2.2.3. LDAPResolver

	
class privacyidea.lib.resolvers.LDAPIdResolver.IdResolver[source]

	
	
add_user(attributes=None)[source]

	Add a new user to the LDAP directory.
The user can only be created in the LDAP using a DN.
So we have to construct the DN out of the given attributes.

attributes are these
“username”, “surname”, “givenname”, “email”,
“mobile”, “phone”, “password”

	Parameters:	attributes (dict) – Attributes according to the attribute mapping

	Returns:	The new UID of the user. The UserIdResolver needs to

determine the way how to create the UID.

	
checkPass(uid, password)[source]

	This function checks the password for a given uid.
- returns true in case of success
- false if password does not match

	
static create_connection(authtype=None, server=None, user=None, password=None, auto_bind=False, client_strategy='SYNC', check_names=True, auto_referrals=False, receive_timeout=5, start_tls=False)[source]

	Create a connection to the LDAP server.

	Parameters:	
	authtype –

	server –

	user –

	password –

	auto_bind –

	client_strategy –

	check_names –

	auto_referrals –

	receive_timeout – At the moment we do not use this,
since receive_timeout is not supported by ldap3 < 2.

	Returns:	

	
delete_user(uid)[source]

	Delete a user from the LDAP Directory.

The user is referenced by the user id.
:param uid: The uid of the user object, that should be deleted.
:type uid: basestring
:return: Returns True in case of success
:rtype: bool

	
editable

	Return true, if the instance of the resolver is configured editable
:return:

	
classmethod getResolverClassDescriptor()[source]

	return the descriptor of the resolver, which is
- the class name and
- the config description

	Returns:	resolver description dict

	Return type:	dict

	
getResolverId()[source]

	Returns the resolver Id
This should be an Identifier of the resolver, preferable the type
and the name of the resolver.

	
getUserId(LoginName)[source]

	resolve the loginname to the userid.

	Parameters:	LoginName (string) – The login name from the credentials

	Returns:	UserId as found for the LoginName

	
getUserInfo(userId)[source]

	This function returns all user info for a given userid/object.

	Parameters:	userId (string) – The userid of the object

	Returns:	A dictionary with the keys defined in self.userinfo

	Return type:	dict

	
getUserList(searchDict)[source]

	

	Parameters:	searchDict (dict) – A dictionary with search parameters

	Returns:	list of users, where each user is a dictionary

	
getUsername(user_id)[source]

	Returns the username/loginname for a given user_id
:param user_id: The user_id in this resolver
:type user_id: string
:return: username
:rtype: string

	
classmethod get_serverpool(urilist, timeout, get_info=None, tls_context=None, rounds=2, exhaust=30)[source]

	This create the serverpool for the ldap3 connection.
The URI from the LDAP resolver can contain a comma separated list of
LDAP servers. These are split and then added to the pool.

See
https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

	Parameters:	
	urilist (basestring) – The list of LDAP URIs, comma separated

	timeout (float) – The connection timeout

	get_info – The get_info type passed to the ldap3.Sever
constructor. default: ldap3.SCHEMA, should be ldap3.NONE in case
of a bind.

	tls_context – A ldap3.tls object, which defines if certificate
verification should be performed

	rounds – The number of rounds we should cycle through the server pool
before giving up

	exhaust – The seconds, for how long a non-reachable server should be
removed from the serverpool

	Returns:	Server Pool

	Return type:	LDAP3 Server Pool Instance

	
loadConfig(config)[source]

	Load the config from conf.

	Parameters:	config (dict) – The configuration from the Config Table

‘#ldap_uri’: ‘LDAPURI’,
‘#ldap_basedn’: ‘LDAPBASE’,
‘#ldap_binddn’: ‘BINDDN’,
‘#ldap_password’: ‘BINDPW’,
‘#ldap_timeout’: ‘TIMEOUT’,
‘#ldap_sizelimit’: ‘SIZELIMIT’,
‘#ldap_loginattr’: ‘LOGINNAMEATTRIBUTE’,
‘#ldap_searchfilter’: ‘LDAPSEARCHFILTER’,
‘#ldap_mapping’: ‘USERINFO’,
‘#ldap_uidtype’: ‘UIDTYPE’,
‘#ldap_noreferrals’ : ‘NOREFERRALS’,
‘#ldap_editable’ : ‘EDITABLE’,
‘#ldap_certificate’: ‘CACERTIFICATE’,

	
static split_uri(uri)[source]

	Splits LDAP URIs like:
* ldap://server
* ldaps://server
* ldap[s]://server:1234
* server
:param uri: The LDAP URI
:return: Returns a tuple of Servername, Port and SSL(bool)

	
classmethod testconnection(param)[source]

	This function lets you test the to be saved LDAP connection.

	Parameters:	param (dict) – A dictionary with all necessary parameter to test
the connection.

	Returns:	Tuple of success and a description

	Return type:	(bool, string)

	Parameters are:

	BINDDN, BINDPW, LDAPURI, TIMEOUT, LDAPBASE, LOGINNAMEATTRIBUTE,
LDAPSEARCHFILTER, USERINFO, SIZELIMIT, NOREFERRALS, CACERTIFICATE,
AUTHTYPE, TLS_VERIFY, TLS_VERSION, TLS_CA_FILE, SERVERPOOL_ROUNDS, SERVERPOOL_SKIP

	
update_user(uid, attributes=None)[source]

	Update an existing user.
This function is also used to update the password. Since the
attribute mapping know, which field contains the password,
this function can also take care for password changing.

Attributes that are not contained in the dict attributes are not
modified.

	Parameters:	
	uid (basestring) – The uid of the user object in the resolver.

	attributes (dict) – Attributes to be updated.

	Returns:	True in case of success

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.2.3. Audit log

14.2.3.1. Base class

	
class privacyidea.lib.auditmodules.base.Audit(config=None)[source]

	
	
add_to_log(param)[source]

	Add to existing log entry
:param param:
:return:

	
audit_entry_to_dict(audit_entry)[source]

	If the search_query returns an iterator with elements that are not a
dictionary, the audit module needs
to provide this function, to convert the audit entry to a dictionary.

	
csv_generator(param=None, user=None, timelimit=None)[source]

	A generator that can be used to stream the audit log

	Parameters:	param –

	Returns:	

	
finalize_log()[source]

	This method is called to finalize the audit_data. I.e. sign the data
and write it to the database.
It should hash the data and do a hash chain and sign the data

	
get_audit_id()[source]

	

	
get_count(search_dict, timedelta=None, success=None)[source]

	Returns the number of found log entries.
E.g. used for checking the timelimit.

	Parameters:	param – List of filter parameters

	Returns:	number of found entries

	
get_dataframe(start_time=datetime.datetime(2018, 1, 17, 15, 10, 11, 715452), end_time=datetime.datetime(2018, 1, 24, 15, 10, 11, 715526))[source]

	The Audit module can handle its data the best. This function is used
to return a pandas.dataframe with all audit data in the given time
frame.

This dataframe then can be used for extracting statistics.

	Parameters:	
	start_time (datetime) – The start time of the data

	end_time (datetime) – The end time of the data

	Returns:	Audit data

	Return type:	dataframe

	
get_total(param, AND=True, display_error=True)[source]

	This method returns the total number of audit entries
in the audit store

	
initialize()[source]

	

	
initialize_log(param)[source]

	This method initialized the log state.
The fact, that the log state was initialized, also needs to be logged.
Therefor the same params are passed as i the log method.

	
log(param)[source]

	This method is used to log the data.
During a request this method can be called several times to fill the
internal audit_data dictionary.

	
log_token_num(count)[source]

	Log the number of the tokens.
Can be passed like
log_token_num(get_tokens(count=True))

	Parameters:	count (int) – Number of tokens

	Returns:	

	
read_keys(pub, priv)[source]

	Set the private and public key for the audit class. This is achieved by
passing the entries.

#priv = config.get(“privacyideaAudit.key.private”)
#pub = config.get(“privacyideaAudit.key.public”)

	Parameters:	
	pub (string with filename) – Public key, used for verifying the signature

	priv (string with filename) – Private key, used to sign the audit entry

	Returns:	None

	
search(param, display_error=True, rp_dict=None, timelimit=None)[source]

	This function is used to search audit events.

param: Search parameters can be passed.

return: A pagination object

This function is deprecated.

	
search_query(search_dict, rp_dict)[source]

	This function returns the audit log as an iterator on the result

14.2.3.2. SQL Audit module

	
class privacyidea.lib.auditmodules.sqlaudit.Audit(config=None)[source]

	This is the SQLAudit module, which writes the audit entries
to an SQL database table.
It requires the configuration parameters.
PI_AUDIT_SQL_URI

	
add_to_log(param)[source]

	Add new text to an existing log entry
:param param:
:return:

	
clear()[source]

	Deletes all entries in the database table.
This is only used for test cases!
:return:

	
csv_generator(param=None, user=None, timelimit=None)[source]

	Returns the audit log as csv file.
:param config: The current flask app configuration
:type config: dict
:param param: The request parameters
:type param: dict
:param user: The user, who issued the request
:return: None. It yields results as a generator

	
finalize_log()[source]

	This method is used to log the data.
It should hash the data and do a hash chain and sign the data

	
get_dataframe(start_time=datetime.datetime(2018, 1, 17, 15, 10, 11, 809462), end_time=datetime.datetime(2018, 1, 24, 15, 10, 11, 809502))[source]

	The Audit module can handle its data the best. This function is used
to return a pandas.dataframe with all audit data in the given time
frame.

This dataframe then can be used for extracting statistics.

	Parameters:	
	start_time (datetime) – The start time of the data

	end_time (datetime) – The end time of the data

	Returns:	Audit data

	Return type:	dataframe

	
get_total(param, AND=True, display_error=True, timelimit=None)[source]

	This method returns the total number of audit entries
in the audit store

	
log(param)[source]

	Add new log details in param to the internal log data self.audit_data.

	Parameters:	param (dict) – Log data that is to be added

	Returns:	None

	
read_keys(pub, priv)[source]

	Set the private and public key for the audit class. This is achieved by
passing the entries.

#priv = config.get(“privacyideaAudit.key.private”)
#pub = config.get(“privacyideaAudit.key.public”)

	Parameters:	
	pub (string with filename) – Public key, used for verifying the signature

	priv (string with filename) – Private key, used to sign the audit entry

	Returns:	None

	
search(search_dict, page_size=15, page=1, sortorder='asc', timelimit=None)[source]

	This function returns the audit log as a Pagination object.

	Parameters:	timelimit (timedelta) – Only audit entries newer than this timedelta will
be searched

	
search_query(search_dict, page_size=15, page=1, sortorder='asc', sortname='number', timelimit=None)[source]

	This function returns the audit log as an iterator on the result

	Parameters:	timelimit (timedelta) – Only audit entries newer than this timedelta will
be searched

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.2.4. Machine Resolvers

Machine Resolvers are used to find machines in directories like LDAP, Active
Directory, puppet, salt, or the /etc/hosts file.

Machines can then be used to assign applications and tokens to those machines.

14.2.4.1. Base class

	
class privacyidea.lib.machines.base.BaseMachineResolver(name, config=None)[source]

	
	
static get_config_description()[source]

	Returns a description what config values are expected and allowed.

	Returns:	dict

	
get_machine_id(hostname=None, ip=None)[source]

	Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the
hostname matches the IP. If it can check this and hostname and IP do
not match, then an Exception must be raised.

	Parameters:	
	hostname (basestring) – The hostname of the machine

	ip (netaddr) – IP address of the machine

	Returns:	The machine ID, which depends on the resolver

	Return type:	basestring

	
get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)[source]

	Return a list of all machine objects in this resolver

	Parameters:	substring – If set to true, it will also match search_hostnames,

that only are a subnet of the machines hostname.
:type substring: bool
:param any: a substring that matches EITHER hostname, machineid or ip
:type any: basestring
:return: list of machine objects

	
load_config(config)[source]

	This loads the configuration dictionary, which contains the necessary
information for the machine resolver to find and connect to the
machine store.

	Parameters:	config (dict) – The configuration dictionary to run the machine resolver

	Returns:	None

	
static testconnection(params)[source]

	This method can test if the passed parameters would create a working
machine resolver.

	Parameters:	params –

	Returns:	tupple of success and description

	Return type:	(bool, string)

14.2.4.2. Hosts Machine Resolver

	
class privacyidea.lib.machines.hosts.HostsMachineResolver(name, config=None)[source]

	
	
get_machine_id(hostname=None, ip=None)[source]

	Returns the machine id for a given hostname or IP address.

If hostname and ip is given, the resolver should also check that the
hostname matches the IP. If it can check this and hostname and IP do
not match, then an Exception must be raised.

	Parameters:	
	hostname (basestring) – The hostname of the machine

	ip (netaddr) – IP address of the machine

	Returns:	The machine ID, which depends on the resolver

	Return type:	basestring

	
get_machines(machine_id=None, hostname=None, ip=None, any=None, substring=False)[source]

	Return matching machines.

	Parameters:	
	machine_id – can be matched as substring

	hostname – can be matched as substring

	ip – can not be matched as substring

	substring (bool) – Whether the filtering should be a substring matching

	any (basestring) – a substring that matches EITHER hostname, machineid or ip

	Returns:	list of Machine Objects

	
load_config(config)[source]

	This loads the configuration dictionary, which contains the necessary
information for the machine resolver to find and connect to the
machine store.

	Parameters:	config (dict) – The configuration dictionary to run the machine resolver

	Returns:	None

	
static testconnection(params)[source]

	Test if the given filename exists.

	Parameters:	params –

	Returns:	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.2.5. PinHandler

This module provides the PIN Handling base class.
In case of enrolling a token, a PIN Handling class can be used to
send the PIN via Email, call an external program or print a letter.

This module is not tested explicitly.
It is tested in conjunction with the policy decorator init_random_pin in
tests/test_api_lib_policy.py

14.2.5.1. Base class

	
class privacyidea.lib.pinhandling.base.PinHandler(options=None)[source]

	A PinHandler Class is responsible for handling the OTP PIN during
enrollment.

	It receives the necessary data like

	
	the PIN

	the serial number of the token

	the username

	all other user data:
	given name, surname

	email address

	telephone

	mobile (if the module would deliver via SMS)

	the administrator name (who enrolled the token)

	
send(pin, serial, user, tokentype=None, logged_in_user=None, userdata=None, options=None)[source]

	

	Parameters:	
	pin – The PIN in cleartext

	user (user object) – the owner of the token

	tokentype (basestring) – the type of the token

	logged_in_user (dict) – The logged in user, who enrolled the token

	userdata (dict) – Handler-specific user data like email, mobile...

	options (dict) – Handler-specific additional options

	Returns:	True in case of success

	Return type:	bool

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	14. Code Documentation »

14.3.1. The database model

	
class privacyidea.models.Admin(**kwargs)[source]

	The administrators for managing the system.
To manage the administrators use the command pi-manage.

In addition certain realms can be defined to be administrative realms.

	Parameters:	
	username (basestring) – The username of the admin

	password (basestring) – The password of the admin (stored using PBKDF2,
salt and pepper)

	email (basestring) – The email address of the admin (not used at the moment)

	
class privacyidea.models.Audit(action='', success=0, serial='', token_type='', user='', realm='', resolver='', administrator='', action_detail='', info='', privacyidea_server='', client='', loglevel='default', clearance_level='default')[source]

	This class stores the Audit entries

	
class privacyidea.models.CAConnector(name, catype)[source]

	The table “caconnector” contains the names and types of the defined
CA connectors. Each connector has a different configuration, that is
stored in the table “caconnectorconfig”.

	
class privacyidea.models.CAConnectorConfig(caconnector_id=None, Key=None, Value=None, caconnector=None, Type='', Description='')[source]

	Each CAConnector can have multiple configuration entries.
Each CA Connector type can have different required config values. Therefor
the configuration is stored in simple key/value pairs. If the type of a
config entry is set to “password” the value of this config entry is stored
encrypted.

The config entries are referenced by the id of the resolver.

	
class privacyidea.models.Challenge(serial, transaction_id=None, challenge=u'', data=u'', session=u'', validitytime=120)[source]

	Table for handling of the generic challenges.

	
get(timestamp=False)[source]

	return a dictionary of all vars in the challenge class

	Parameters:	timestamp (bool) – if true, the timestamp will given in a readable
format
2014-11-29 21:56:43.057293

	Returns:	dict of vars

	
get_otp_status()[source]

	This returns how many OTPs were already received for this challenge.
and if a valid OTP was received.

	Returns:	tuple of count and True/False

	Return type:	tuple

	
is_valid()[source]

	Returns true, if the expiration time has not passed, yet.
:return: True if valid
:rtype: bool

	
set_data(data)[source]

	set the internal data of the challenge
:param data: unicode data
:type data: string, length 512

	
class privacyidea.models.ClientApplication(**kwargs)[source]

	This table stores the clients, which sent an authentication request to
privacyIDEA.
This table is filled automatically by authentication requests.

	
class privacyidea.models.Config(Key, Value, Type=u'', Description=u'')[source]

	The config table holds all the system configuration in key value pairs.

Additional configuration for realms, resolvers and machine resolvers is
stored in specific tables.

	
class privacyidea.models.EventHandler(name, event, handlermodule, action, condition='', ordering=0, options=None, id=None, conditions=None, active=True)[source]

	This model holds the list of defined events and actions to this events.
A handler module can be bound to an event with the corresponding
condition and action.

	
get()[source]

	Return the serialized policy object including the options

	Returns:	complete dict

	Rytpe:	dict

	
class privacyidea.models.EventHandlerCondition(eventhandler_id, Key, Value, comparator='equal')[source]

	Each EventHandler entry can have additional conditions according to the
handler module

	
class privacyidea.models.EventHandlerOption(eventhandler_id, Key, Value, Type='', Description='')[source]

	Each EventHandler entry can have additional options according to the
handler module.

	
class privacyidea.models.MachineResolver(name, rtype)[source]

	This model holds the definition to the machinestore.
Machines could be located in flat files, LDAP directory or in puppet
services or other...

The usual MachineResolver just holds a name and a type and a reference to
its config

	
class privacyidea.models.MachineResolverConfig(resolver_id=None, Key=None, Value=None, resolver=None, Type='', Description='')[source]

	Each Machine Resolver can have multiple configuration entries.
The config entries are referenced by the id of the machine resolver

	
class privacyidea.models.MachineToken(machineresolver_id=None, machineresolver=None, machine_id=None, token_id=None, serial=None, application=None)[source]

	The MachineToken assigns a Token and an application type to a
machine.
The Machine is represented as the tuple of machineresolver.id and the
machine_id.
The machine_id is defined by the machineresolver.

This can be an n:m mapping.

	
class privacyidea.models.MachineTokenOptions(machinetoken_id, key, value)[source]

	This class holds an Option for the token assigned to
a certain client machine.
Each Token-Clientmachine-Combination can have several
options.

	
class privacyidea.models.MethodsMixin[source]

	This class mixes in some common Class table functions like
delete and save

	
class privacyidea.models.PasswordReset(recoverycode, username, realm, resolver='', email=None, timestamp=None, expiration=None, expiration_seconds=3600)[source]

	Table for handling password resets.
This table stores the recoverycodes sent to a given user

The application should save the HASH of the recovery code. Just like the
password for the Admins the appliaction shall salt and pepper the hash of
the recoverycode. A database admin will not be able to inject a rogue
recovery code.

A user can get several recoverycodes.
A recovery code has a validity period

Optional: The email to which the recoverycode was sent, can be stored.

	
class privacyidea.models.Policy(name, active=True, scope='', action='', realm='', adminrealm='', resolver='', user='', client='', time='', condition=0, check_all_resolvers=False)[source]

	The policy table contains policy definitions which control
the behaviour during

	enrollment

	authentication

	authorization

	administration

	user actions

	
get(key=None)[source]

	Either returns the complete policy entry or a single value
:param key: return the value for this key
:type key: string
:return: complete dict or single value
:rytpe: dict or value

	
class privacyidea.models.PrivacyIDEAServer(**kwargs)[source]

	This table can store remote privacyIDEA server definitions

	
class privacyidea.models.RADIUSServer(**kwargs)[source]

	This table can store configurations of RADIUS servers.
https://github.com/privacyidea/privacyidea/issues/321

It saves
* a unique name
* a description
* an IP address a
* a Port
* a secret
* timeout in seconds (default 5)
* retries (default 3)

These RADIUS server definition can be used in RADIUS tokens or in a
radius passthru policy.

	
save()[source]

	If a RADIUS server with a given name is save, then the existing
RADIUS server is updated.

	
class privacyidea.models.Realm(realm)[source]

	The realm table contains the defined realms. User Resolvers can be
grouped to realms. This very table contains just contains the names of
the realms. The linking to resolvers is stored in the table “resolverrealm”.

	
class privacyidea.models.Resolver(name, rtype)[source]

	The table “resolver” contains the names and types of the defined User
Resolvers. As each Resolver can have different required config values the
configuration of the resolvers is stored in the table “resolverconfig”.

	
class privacyidea.models.ResolverConfig(resolver_id=None, Key=None, Value=None, resolver=None, Type='', Description='')[source]

	Each Resolver can have multiple configuration entries.
Each Resolver type can have different required config values. Therefor
the configuration is stored in simple key/value pairs. If the type of a
config entry is set to “password” the value of this config entry is stored
encrypted.

The config entries are referenced by the id of the resolver.

	
class privacyidea.models.ResolverRealm(resolver_id=None, realm_id=None, resolver_name=None, realm_name=None, priority=None)[source]

	This table stores which Resolver is located in which realm
This is a N:M relation

	
class privacyidea.models.SMSGateway(identifier, providermodule, description=None, options=None)[source]

	This table stores the SMS Gateway definitions.
See
https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway

It saves the
* unique name
* a description
* the SMS provider module

All options and parameters are saved in other tables.

	
as_dict()[source]

	Return the object as a dictionary

	Returns:	complete dict

	Rytpe:	dict

	
delete()[source]

	When deleting an SMS Gateway we also delete all the options.
:return:

	
option_dict

	Return all connected options as a dictionary

	Returns:	dict

	
class privacyidea.models.SMSGatewayOption(gateway_id, Key, Value, Type=None)[source]

	This table stores the options and parameters for an SMS Gateway definition.

	
class privacyidea.models.SMTPServer(**kwargs)[source]

	This table can store configurations for SMTP servers.
Each entry represents an SMTP server.
EMail Token, SMS SMTP Gateways or Notifications like PIN handlers are
supposed to use a reference to to a server definition.
Each Machine Resolver can have multiple configuration entries.
The config entries are referenced by the id of the machine resolver

	
class privacyidea.models.Subscription(**kwargs)[source]

	This table stores the imported subscription files.

	
get()[source]

	Return the database object as dict
:return:

	
class privacyidea.models.TimestampMethodsMixin[source]

	This class mixes in the table functions including update of the timestamp

	
class privacyidea.models.Token(serial, tokentype=u'', isactive=True, otplen=6, otpkey=u'', userid=None, resolver=None, realm=None, **kwargs)[source]

	
	The table “token” contains the basic token data like

	
	serial number

	assigned user

	secret key...

while the table “tokeninfo” contains additional information that is specific
to the tokentype.

	
del_info(key=None)[source]

	Deletes tokeninfo for a given token.
If the key is omitted, all Tokeninfo is deleted.

	Parameters:	key – searches for the given key to delete the entry

	Returns:	

	
get(key=None, fallback=None, save=False)[source]

	simulate the dict behaviour to make challenge processing
easier, as this will have to deal as well with
‘dict only challenges’

	Parameters:	
	key – the attribute name - in case of key is not provided, a dict
of all class attributes are returned

	fallback – if the attribute is not found,
the fallback is returned

	save – in case of all attributes and save==True, the timestamp is
converted to a string representation

	
get_hashed_pin(pin)[source]

	calculate a hash from a pin
Fix for working with MS SQL servers
MS SQL servers sometimes return a ‘<space>’ when the
column is empty: ‘’

	
get_info()[source]

	

	Returns:	The token info as dictionary

	
get_realms()[source]

	return a list of the assigned realms
:return: realms
:rtype: list

	
get_user_pin()[source]

	return the userPin
:rtype : the PIN as a secretObject

	
set_info(info)[source]

	Set the additional token info for this token

Entries that end with ”.type” are used as type for the keys.
I.e. two entries sshkey=”XYZ” and sshkey.type=”password” will store
the key sshkey as type “password”.

	Parameters:	info (dict) – The key-values to set for this token

	
set_pin(pin, hashed=True)[source]

	set the OTP pin in a hashed way

	
set_realms(realms, add=False)[source]

	Set the list of the realms.
This is done by filling the tokenrealm table.
:param realms: realms
:type realms: list
:param add: If set, the realms are added. I.e. old realms are not

deleted

	
set_so_pin(soPin)[source]

	For smartcards this sets the security officer pin of the token

:rtype : None

	
split_pin_pass(passwd, prepend=True)[source]

	The password is split into the PIN and the OTP component.
THe token knows its length, so it can split accordingly.

	Parameters:	
	passwd – The password that is to be split

	prepend – The PIN is put in front of the OTP value

	Returns:	tuple of (res, pin, otpval)

	
update_otpkey(otpkey)[source]

	in case of a new hOtpKey we have to do some more things

	
update_type(typ)[source]

	in case the previous has been different type
we must reset the counters
But be aware, ray, this could also be upper and lower case mixing...

	
class privacyidea.models.TokenInfo(token_id, Key, Value, Type=None, Description=None)[source]

	The table “tokeninfo” is used to store additional, long information that
is specific to the tokentype.
E.g. the tokentype “TOTP” has additional entries in the tokeninfo table
for “timeStep” and “timeWindow”, which are stored in the
column “Key” and “Value”.

The tokeninfo is reference by the foreign key to the “token” table.

	
class privacyidea.models.TokenRealm(realm_id=0, token_id=0, realmname=None)[source]

	This table stored to wich realms a token is assigned. A token is in the
realm of the user it is assigned to. But a token can also be put into
many additional realms.

	
save()[source]

	We only save this, if it does not exist, yet.

	
privacyidea.models.cleanup_challenges()[source]

	Delete all challenges, that have expired.

	Returns:	None

	
privacyidea.models.get_machineresolver_id(resolvername)[source]

	Return the database ID of the machine resolver
:param resolvername:
:return:

	
privacyidea.models.get_machinetoken_id(machine_id, resolver_name, serial, application)[source]

	Returns the ID in the machinetoken table

	Parameters:	
	machine_id (basestring) – The resolverdependent machine_id

	resolver_name (basestring) – The name of the resolver

	serial (basestring) – the serial number of the token

	application (basestring) – The application type

	Returns:	The ID of the machinetoken entry

	Return type:	int

	
privacyidea.models.get_token_id(serial)[source]

	Return the database token ID for a given serial number
:param serial:
:return: token ID
:rtpye: int

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

15. Frequently Asked Questions

	15.1. Customization
	15.1.1. Templates

	15.1.2. Themes

	15.2. How can I create users in the privacyIDEA Web UI?

	15.3. So what’s the thing with all the admins?

	15.4. What are possible rollout strategies?
	15.4.1. Autoenrollment

	15.4.2. Registration Code

	15.4.3. Automatic initial synchronization

	15.5. How can I translate to my language?

	15.6. What are possible migration strategies?
	15.6.1. RADIUS token migration strategy

	15.6.2. RADIUS PASSTHRU policy migration strategy

	15.7. Setup translation

	15.8. How can I setup HA (High Availability) with privacyIDEA?
	15.8.1. HA setups
	15.8.1.1. Using one central DBMS

	15.8.1.2. Using MySQL master-master-replication

	15.9. MySQL database connect string
	15.9.1. MySQL-python
	15.9.1.1. Installation

	15.9.2. PyMySQL
	15.9.2.1. Installation

	15.10. Are there shortcuts to use the Web UI?

	15.11. How to copy a resolver definition?

	15.12. Cryptographic considerations of privacyIDEA
	15.12.1. Encryption keys

	15.12.2. Token Hash Algorithms

	15.12.3. PIN Hashing

	15.12.4. Administrator Passwords

	15.12.5. Audit Signing

	15.13. Policies
	15.13.1. How to disable policies?

	15.13.2. How do policies work anyway?
	15.13.2.1. How is this technically achieved?

	15.14. Performance considerations
	15.14.1. Processes

	15.14.2. Config caching

	15.14.3. Logging

	15.14.4. Response

	15.14.5. Clean configuration

	15.15. What happens in the tokenview?

	15.16. How to mitigate brute force and lock tokens

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.1. Customization

15.1.1. Templates

You can change the HTML views of the web UI by standard means of the
Apache webserver.

All html views are contained in:

static/components/<component>/views/<view>.html

If you want to change the look and feel of the UI, we recommend to define
rewrite rules in the webserver. You should create a directory like
/etc/privacyidea/customization/ and put your modified views in there.
This way you can avoid that your changes get overwritten by a system update.

In the Apache configuration you can add entries like:

RewriteEngine On
RewriteRule "/static/components/login/views/login.html" \
 "/etc/privacyidea/customization/mylogin.html"

and apply all required changes to the file mylogin.html.

Note

Of course - if there are functional enhancements or bug fixes in the
original templates - your template will also not be affected by these.

15.1.2. Themes

You can create your own CSS file to adapt the look and feel of the Web UI.
The default CSS is the bootstrap CSS theme. Using PI_CSS you can specify
the URL of your own CSS file.
The default CSS file url is /static/contrib/css/bootstrap-theme.css.
The file in the file system is located at privacyidea/static/contrib/css.
You might add a directory privacyidea/static/custom/css/ and add your CSS
file there.

A good stating point might be the themes at http://bootswatch.com.

Note

If you add your own CSS file, the file bootstrap-theme.css will
not be loaded anymore. So you might start with a copy of the original file.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.2. How can I create users in the privacyIDEA Web UI?

So you installed privacyIDEA and want to enroll tokens to the users and are
wondering how to create users.

privacyIDEA can read users from different existing sources like LDAP, SQL,
flat files and SCIM.

You very much likely already have an application (like your VPN or a Web
Application...) for which you want to increase the logon security. Then this
application already knows users. Either in an LDAP or in an SQL database.
Most web applications keep their users in a (My)SQL database.
And you also need to create users in this very user database for the user to
be able to use this application.

Please read the sections UserIdResolvers and Userview for more
details.

But you also can define and editable SQL resolver. I.e. you can edit and
create new users in an SQL user store.

If you do not have an existing SQL database with users, you can simple create
a new database with one table for the users and according rows.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.3. So what’s the thing with all the admins?

privacyIDEA comes with its own admins, who are stored in a database table
Admin in its own database (The database model). You can use the tool
pi-manage to
manage those admins from the command line as the system’s root user. (see
Installation)

These admin users can logon to the WebUI using the admin’s user name and the
specified password.
These admins are used to get a simple quick start.

Then you can define realms (see Realms), that should be administrative
realms. I.e. each user in this realm will have administrative rights in the
WebUI.

Note

You need to configure these realms within privacyIDEA. Only
after these realms exist, you can raise their rights to an administrative
role.

Note

Use this carefully. Imagine you defined a resolver to a specific
group in your Active Directory to be the pricacyIDEA admins. Then the Active
Directory domain admins can
simply add users to be administrator in privacyIDEA.

You define the administrative realms in the config file pi.cfg, which is
usually located at /etc/privacyidea/pi.cfg:

SUPERUSER_REALM = ["adminrealm1", "super", "boss"]

In this case all the users in the realms “adminrealm1”, “super” and “boss”
will have administrative rights in the WebUI, when they login with this realm.

As for all other users, you can use the login_mode to define,
if these administrators should login to the WebUI with their userstore password
or with an OTP token.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.4. What are possible rollout strategies?

There are different ways to enroll tokens to a big number of users.
Here are some selected high level ideas, you can do with privacyIDEA.

15.4.1. Autoenrollment

Using the autoassignment policy you can distribute physical tokens to
the users. The users just start using the tokens.

15.4.2. Registration Code

If your users are physically not available and spread around the world, you can
send a registration code to the users by postal mail. The registration code
is a special token type which can be used by the user to authenticate with 2FA.
If used once, the registration token get deleted and can not be used anymore.
While logged in, the user can enroll a token on his own.

15.4.3. Automatic initial synchronization

Hardware TOTP tokens may get out of sync due to clock shift. HOTP tokens may
get out of sync due to unused keypresses. To cope with this you can activate
autosync.

But if you are importing hardware tokens, the clock in the TOTP token may
already be out of sync and you do not want the user to authenticate twice,
where the first authentication fails.

In this case you can use the following workflow.

In the TOTP token settings you can set the timeWindow to a very high
value. Note that this timeWindow are the seconds that privacyIDEA will search
for the valid OTP value before and after the current time. E.g. you can
set this to 86400. This way you allow the clock in the TOTP token to have
drifted for a maximum of one day.

As you do not want such a big window for all authentications, you can
automatically reset the timeWindow. You can achieve this by creating an
event definition:

	event: validate_check

	handler: token

	condition:
* tokentype=TOTP
* count_auth_success=1

	action=set tokeninfo
* key=*timeWindow*
* value=*180*

This way with the first successful authentication of a TOTP token the
timeWindow of the TOTP token is set to 180 seconds.

15.5. How can I translate to my language?

The web UI can be translated into different languages. The system determines
the preferred language of you browser and displays the web UI accordingly.

At the moment “en” and “de” are available.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.6. What are possible migration strategies?

You are already running an OTP system like RSA SecurID, SafeNet or Vasco
(alphabetical order) but you would like to migrate to privacyIDEA.

There are different migration strategies using the
RADIUS token or the RADIUS passthru policy.

15.6.1. RADIUS token migration strategy

Configure your application like your VPN to authenticate against the
privacyIDEA RADIUS server and not against the old deprecated RADIUS server.

Now, you can enroll a RADIUS token for each user, who is supposed to
login to this application. Configure the RADIUS token for each user so that
the RADIUS request is forwarded to the old RADIUS server.

Now you can start to enroll tokens for the users within privacyIDEA. After
enrolling a new token in privacyIDEA you can delete the RADIUS token for this
user.

When all RADIUS tokens are deleted, you can switch off the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

15.6.2. RADIUS PASSTHRU policy migration strategy

Configure your application like your VPN to authenticate against the
privacyIDEA RADIUS server and not against the old deprecated RADIUS server.

Starting with privacyIDEA 2.11 the passthru policy was enhanced. You
can define a system wide RADIUS server. Then you can create a
authentication policy with the passthru action pointing to this RADIUS
server. This means that - as long as a user trying to authenticate - has not
token assigned, all authentication request with this very username and the
password are forwarded to this RADIUS server.

As soon as you enroll a new token for this user in privacyIDEA the user will
authenticate with this very token within privacyIDEA an his authentication
request will not be forwarded anymore.

As soon as all users have a new token within privacyIDEA, you can switch of
the old RADIUS server.

For strategies on enrolling token see What are possible rollout strategies?.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.7. Setup translation

The translation is performed using grunt. To setup the translation
environment do:

npm update -g npm
install grunt cli in system
sudo npm install -g grunt-cli

install grunt in project directory
npm install grunt --save-dev
Install grunt gettext plugin
npm install grunt-angular-gettext --save-dev

This will create a subdirectory node_modules.

To simply run the German translation do:

make translate

If you want to add a new language like Spanish do:

cd po
msginit -l es
cd ..
grunt nggettext_extract
msgmerge po/es.po po/template.pot > po/tmp.po; mv po/tmp.po po/es.po

Now you can start translating with your preferred tool:

poedit po/es.po

Finally you can add the translation to the javascript translation file
privacyidea/static/components/translation/translations.js:

grunt nggettext_compile

Note

Please ask to add this translation to the Make directive
translation or issue a pull request.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.8. How can I setup HA (High Availability) with privacyIDEA?

privacyIDEA does not track any state internally. All information is kept in
the database. Thus you can configure several privacyIDEA instances against one
DBMS [1] and have the DBMS do the high availability.

Note

The passwords and OTP key material in the database is encrypted
using the encKey. Thus it is possible to put the database onto a DBMS
that is controlled by another database administrator in another department.

15.8.1. HA setups

When running HA you need to assure to configure the pi.cfg file on all
privacyIDEA instances accordingly. You might need to adapt the
SQLALCHEMY_DATABASE_URI accordingly.

Be sure to set the same SECRET_KEY and PI_PEPPER on all instances.

Then you need to provide the same encryption key (file encKey) and the same
audit signing keys on all instances.

15.8.1.1. Using one central DBMS

[image: ../_images/ha-one-dbms.png]

If you already have a high available, redundant DBMS -
like MariaDB Galera Cluster - which might even be
addressable via one cluster IP address the configuration is fairly simple.
In such a case you can configure the same SQLALCHEMY_DATABASE_URI on all
instances.

15.8.1.2. Using MySQL master-master-replication

[image: ../_images/ha-master-master.png]

If you have no DBMS or might want to use a dedicated database server for
privacyIDEA, you can setup one MySQL server per privacyIDEA instance and
configure the MySQL servers to run in a master-master-replication.

Note

The master-master-replication only works with two MySQL
servers.

There are some good howtos out there like [2].

Footnotes

	[1]	Database management system

	[2]	https://www.digitalocean.com/community/tutorials/how-to-set-up-mysql-master-master-replication.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.9. MySQL database connect string

You can use the python package MySQL-python or PyMySQL.

PyMySQL is a pure python implementation. MySQL-python is a wrapper
for a C implementation. I.e. when installing MySQL-python your python
virtualenv, you also need to install packages like python-dev and
libmysqlclient-dev.

Depending on whether you are using MySQL-python or PyMySQL you need
to specify different connect strings in SQLALCHEMY_DATABASE_URI.

15.9.1. MySQL-python

connect string: mysql://u:p@host/db

15.9.1.1. Installation

Install a package libmysqlclient-dev from your distribution. The name may
vary depending on which distritubtion you are running:

pip install MySQL-python

15.9.2. PyMySQL

connect string: pymysql://u:p@host/db

15.9.2.1. Installation

Install in your virtualenv:

pip install pymysql-sa
pip install PyMySQL

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.10. Are there shortcuts to use the Web UI?

I do not like using the mouse. Are there hotkeys or shortcuts to use the Web UI?

With version 2.6 we started to add hotkeys to certain functions. You can use
‘?’ to get a list of the available hotkeys in the current window.

E.g. you can use alt-e to go to the Enroll Token Dialog and alt-r to
actually enroll the token.

For any further ideas about shortcuts/hotkeys please drop us a note at github
or the google group.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.11. How to copy a resolver definition?

Creating a user resolver can be a time consuming task. Especially an LDAP
resolver needs many parameters to be entered. Sometimes you need to create a
second resolver, that looks rather the same like the first resolver. So
copying or duplicating this resolver would be great.

You can create a similar second resolver by editing the exiting resolver and
entering a new resolver name. This will save this modified resolver
definition under this new name. Thus you have a resolver with the old name
and another one with the new name.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.12. Cryptographic considerations of privacyIDEA

15.12.1. Encryption keys

The encryption key is a set of 3 256bit AES keys. Usually this key is located
in a 96 byte long file “enckey” specified by PI_ENCFILE in The Config File.
The encryption key can be encrypted with a password.

The three encryption keys are used to encrypt

	data like the OTP seeds and secret keys stored in the Token table,

	password of resolvers to connect to LDAP/AD or SQL (stored in the
ResolverConfig table)

	and optional additional values.

OTP seeds and passwords are needed in clear text to calculate OTP values or
to connect to user stores. So these values need to be stored in a decryptable
way.

15.12.2. Token Hash Algorithms

OTP values according to HOTP and TOTP can be calculated using SHA1, SHA2-256
and SHA2-512.

15.12.3. PIN Hashing

Token PINs are managed by privacyIDEA as the first of the two factors. Each
token has its own token PIN. The token PIN is hashed with a seed with
SHA2-256 and stored in the Token database table.

This PIN hashing is performed in lib.crypto:hash.

15.12.4. Administrator Passwords

privacyIDEA can manage internal administrators using The pi-manage Script.
Internal administrators are stored in the database table Admin.

The password is stored using a PBKDF with SHA512 with 10023 rounds. The hash
is salted and peppered. While the salt is stored in the Admin table
created randomly for each admin password the pepper is unique for one
privacyIDEA installation and stored in the pi.cfg file.

This way a database administrator is not able to inject rogue password hashes.

The admin password hashing is performed in lib.crypto:hash_with_pepper.

15.12.5. Audit Signing

The audit log is digitally signed. (see Audit and The Config File).

The audit log can be handled by different modules. privacyIDEA comes with an
SQL Audit Module.

For signing the audit log the SQL Audit Module uses the RSA keys specified
with the values PI_AUDIT_KEY_PUBLIC and PI_AUDIT_KEY_PRIVATE in
The Config File.

By default the installer generates 2048bit RSA keys.

The audit signing is performed in lib.crypto:Sign.sign using SHA2-256 as
hash function.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.13. Policies

15.13.1. How to disable policies?

I create an evil admin policy and locked myself out. How can I disable a
policy?

You can use the pi-manage command line tool to list, enable and disable
policies. See

pi-manage policy -h

15.13.2. How do policies work anyway?

Policies are just a set of definitions. These definitions are ment to
modify the way privacyIDEA reacts on requests. Different policies have
different scopes where they act.

admin policies define, what an administrator is
allowed to do. These policies influence endpoints like /token, /realm
and all other endpoints, which are used to configure the system.
(see Admin policies)

user policies define, how the system reacts if a user is managing his own
tokens.
(see User Policies)

authentication and authorization policies influence the /validate/
endpoint (Validate endpoints).

The Authentication policies define if an authentication request would
be successful at all. So it defines how to really check the authentication
request. E.g. this is done by defining if the user has to add a specific OTP
PIN or his LDAP password (see otppin).

The Authorization policies decide, if a user, who would authentication
successfully is allowed to issue this request. I.e. a user may present the
right credentials, but he is not allowed to login from a specific IP address
or with a not secure token type (see tokentype).

15.13.2.1. How is this technically achieved?

At the beginning of a request the complete policy set is read from the
database into a policy object, which is a singleton of PolicyClass (see
Policy Module).

The logical part is performed by policy decorators. The decorators modify the
behaviour of the above mentioned endpoints.

Each policy has its own decorator. The decorator can be used on different
functions, methods, endpoints. The decorators are implemented in
api/lib/prepolicy.py and api/lib/postpolicy.py.

PrePolicy decorators are executed at the beginning of a request, PostPolicy
decoratros at the end of the request.

A policy decorator uses one of the methods get_action_value or get_policies.

get_policies is used to determine boolean actions like
passonnotoken_policy.

get_action_value is used to get the defined value of non-boolean policies
like otppin.

All policies can depend on IP address, user and time. So these values are
taken into account by the decorator when determining the defined policy.

Note

Each decorator represents one policy and defines its own logic
i.e. checking filtering for IP address and fetching the necessary policy
sets from the policy object.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.14. Performance considerations

You can test performace using the apache bench from the apache utils.
Creating a simple pass token for a user, eases the performance testing.

Then you can run

ab -l -n 200 -c 8 -s 30 ‘https://localhost/validate/check?user=yourUser&pass=yourPassword‘

The performance depends on several aspects like the connection speed to your
database and the connection speed to your user stores.

15.14.1. Processes

You should run several processes and threads. You might start with the
number of processes equal to the number of your CPU cores. But you
should evaluate, which is the best number of processes to get the
highest performance.

15.14.2. Config caching

Starting with privacyIDEA 2.15 privacyIDEA uses a Cache per instance and process to
cache system configuration, resolver, realm and policies.

As the configuration might have been changed in the database by another process
or another instance, privacyIDEA compares a cache timestamp with the timestamp in the
database. Thus at the beginning of the request privacyIDEA reads the timestamp from
the database.

You can configure how often the timestamp should be read using the pi.cfg
variable PI_CHECK_RELOAD_CONFIG. You can set this to seconds. If you use this
config value to set values higher than 0, you will improve your performance.
But: other processes or instances will learn later about configuration changes
which might lead to unexpected behaviour.

15.14.3. Logging

Choose a logging level like WARNING or ERROR. Setting the logging level to INFO or
DEBUG will produce much log output and lead to a decrease in performance.

15.14.4. Response

You can strip the authentication response, to get a slight increase in performace,
using the policy no_details_on_success.

15.14.5. Clean configuration

Remove unused resolvers and policies. Have a realm with several resolvers is
a bit slower than one realm with one resolver. Finding the user in the first
resolver is faster than in the last resolver.
Although e.g. the LDAP resolver utilizes caching.

Also see What happens in the tokenview?.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.15. What happens in the tokenview?

A question which comes up often is why you can not view hundrets of tokens in
the tokenview. Well - you are doing - you are just paging through the list ;-)

Ok, here it what happens in the tokenview.

The tokenview fetches a slice of the tokens from the token database. So, if
you configure the tokenview to display 15 tokens, only 15 tokens will be
fetched using the LIMIT and OFFSET mechanisms of SQL.

But what really influences the performance is the user resolver part.
privacyIDEA does not store username, givenname or surname of the token owner.
The token table only contains a “pointer” to the user object in the userstore.
This pointer consists of the userresolver ID and the user ID in this resolver.
This is usefull, since the username or the surname of the user may change. At
least in Germany the givenname only changes in very rare cases.

This means that privacyIDEA needs to contact the userstore, to resolve the
user ID to a username and a surname, givenname. Now you know that you will
create 100 LDAP requests, if you choose to display 100 tokens on one page.

Although we are doing some LDAP caching, this will not help with new pages.

We very much recommend using the search capabilities of the tokenview.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	privacyIDEA 2.21.1 documentation »

 	15. Frequently Asked Questions »

15.16. How to mitigate brute force and lock tokens

For each failed authentication attempt privacyIDEA will increase a fail
counter of a token. If the maximum allowed fail counter is reached,
authentication with this token is not possible anymore.
Starting with version 2.20 the administrator can define a timeout in minutes.
The the last failed authentication is more than these specified minutes ago,
a successful authentication will reset the fail counter and access will be
granted.
See Automatically clearing Failcounter.

The failcounter avoids brute force attacks which guess passwords or OTP values.
Choose a failcounter clearing timeout, which is not too long. Otherwise brute
force would also lock the token of the user forever.

Another possibility to mitigate brute force is to define an authorization
policy with the action auth_max_fail. This will check, if there are too
many failed authentication requests during the specified time period. If
there are, even a successful authentication will fail.
This technique uses the audit log, to search for failed authentication requests.
See auth_max_fail.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	privacyIDEA 2.21.1 documentation »

 HTTP Routing Table

 /application |
 /audit |
 /auth |
 /defaultrealm |
 /machine |
 /machineresolver |
 /policy |
 /radiusserver |
 /realm |
 /resolver |
 /smsgateway |
 /smtpserver |
 /system |
 /token |
 /token/(serial) |
 /token/assign |
 /token/challenges |
 /token/copypin |
 /token/copyuser |
 /token/disable |
 /token/enable |
 /token/getserial |
 /token/info |
 /token/init |
 /token/load |
 /token/lost |
 /token/realm |
 /token/reset |
 /token/resync |
 /token/revoke |
 /token/set |
 /token/setpin |
 /token/unassign |
 /ttype |
 /user |
 /validate

 		 	

 		
 /application	

 	
 	
 GET /application/	

 		 	

 		
 /audit	

 	
 	
 GET /audit/	

 	
 	
 GET /audit/(csvfile)	

 	
 	
 GET /audit/statistics	

 		 	

 		
 /auth	

 	
 	
 GET /auth/rights	

 	
 	
 POST /auth	

 		 	

 		
 /defaultrealm	

 	
 	
 GET /defaultrealm	

 	
 	
 POST /defaultrealm/(realm)	

 	
 	
 DELETE /defaultrealm	

 		 	

 		
 /machine	

 	
 	
 GET /machine/	

 	
 	
 GET /machine/authitem	

 	
 	
 GET /machine/authitem/(application)	

 	
 	
 GET /machine/token	

 	
 	
 POST /machine/token	

 	
 	
 POST /machine/tokenoption	

 	
 	
 DELETE /machine/token/(serial)/(machineid)/(resolver)/(application)	

 		 	

 		
 /machineresolver	

 	
 	
 GET /machineresolver/	

 	
 	
 GET /machineresolver/(resolver)	

 	
 	
 POST /machineresolver/(resolver)	

 	
 	
 POST /machineresolver/test	

 	
 	
 DELETE /machineresolver/(resolver)	

 		 	

 		
 /policy	

 	
 	
 GET /policy/	

 	
 	
 GET /policy/(name)	

 	
 	
 GET /policy/check	

 	
 	
 GET /policy/defs	

 	
 	
 GET /policy/defs/(scope)	

 	
 	
 GET /policy/export/(export)	

 	
 	
 POST /policy/(name)	

 	
 	
 POST /policy/disable/(name)	

 	
 	
 POST /policy/enable/(name)	

 	
 	
 POST /policy/import/(filename)	

 	
 	
 DELETE /policy/(name)	

 		 	

 		
 /radiusserver	

 	
 	
 GET /radiusserver/	

 	
 	
 POST /radiusserver/(identifier)	

 	
 	
 POST /radiusserver/test_request	

 	
 	
 DELETE /radiusserver/(identifier)	

 		 	

 		
 /realm	

 	
 	
 GET /realm/	

 	
 	
 GET /realm/superuser	

 	
 	
 POST /realm/(realm)	

 	
 	
 DELETE /realm/(realm)	

 		 	

 		
 /resolver	

 	
 	
 GET /resolver/	

 	
 	
 GET /resolver/(resolver)	

 	
 	
 POST /resolver/(resolver)	

 	
 	
 POST /resolver/test	

 	
 	
 DELETE /resolver/(resolver)	

 		 	

 		
 /smsgateway	

 	
 	
 GET /smsgateway	

 	
 	
 GET /smsgateway/(gwid)	

 	
 	
 POST /smsgateway	

 	
 	
 DELETE /smsgateway/(identifier)	

 	
 	
 DELETE /smsgateway/option/(gwid)/(option)	

 		 	

 		
 /smtpserver	

 	
 	
 GET /smtpserver/	

 	
 	
 POST /smtpserver/(identifier)	

 	
 	
 POST /smtpserver/send_test_email	

 	
 	
 DELETE /smtpserver/(identifier)	

 		 	

 		
 /system	

 	
 	
 GET /system/	

 	
 	
 GET /system/(key)	

 	
 	
 GET /system/documentation	

 	
 	
 GET /system/gpgkeys	

 	
 	
 GET /system/hsm	

 	
 	
 GET /system/random	

 	
 	
 POST /system/hsm	

 	
 	
 POST /system/setConfig	

 	
 	
 POST /system/setDefault	

 	
 	
 POST /system/test/(tokentype)	

 	
 	
 DELETE /system/(key)	

 		 	

 		
 /token	

 	
 	
 GET /token/	

 		 	

 		
 /token/(serial)	

 	
 	
 DELETE /token/(serial)	

 		 	

 		
 /token/assign	

 	
 	
 POST /token/assign	

 		 	

 		
 /token/challenges	

 	
 	
 GET /token/challenges/	

 	
 	
 GET /token/challenges/(serial)	

 		 	

 		
 /token/copypin	

 	
 	
 POST /token/copypin	

 		 	

 		
 /token/copyuser	

 	
 	
 POST /token/copyuser	

 		 	

 		
 /token/disable	

 	
 	
 POST /token/disable	

 	
 	
 POST /token/disable/(serial)	

 		 	

 		
 /token/enable	

 	
 	
 POST /token/enable	

 	
 	
 POST /token/enable/(serial)	

 		 	

 		
 /token/getserial	

 	
 	
 GET /token/getserial/(otp)	

 		 	

 		
 /token/info	

 	
 	
 POST /token/info/(serial)/(key)	

 	
 	
 DELETE /token/info/(serial)/(key)	

 		 	

 		
 /token/init	

 	
 	
 POST /token/init	

 		 	

 		
 /token/load	

 	
 	
 POST /token/load/(filename)	

 		 	

 		
 /token/lost	

 	
 	
 POST /token/lost/(serial)	

 		 	

 		
 /token/realm	

 	
 	
 POST /token/realm/(serial)	

 		 	

 		
 /token/reset	

 	
 	
 POST /token/reset	

 	
 	
 POST /token/reset/(serial)	

 		 	

 		
 /token/resync	

 	
 	
 POST /token/resync	

 	
 	
 POST /token/resync/(serial)	

 		 	

 		
 /token/revoke	

 	
 	
 POST /token/revoke	

 	
 	
 POST /token/revoke/(serial)	

 		 	

 		
 /token/set	

 	
 	
 POST /token/set	

 	
 	
 POST /token/set/(serial)	

 		 	

 		
 /token/setpin	

 	
 	
 POST /token/setpin	

 	
 	
 POST /token/setpin/(serial)	

 		 	

 		
 /token/unassign	

 	
 	
 POST /token/unassign	

 		 	

 		
 /ttype	

 	
 	
 GET /ttype/(ttype)	

 	
 	
 POST /ttype/(ttype)	

 		 	

 		
 /user	

 	
 	
 GET /user/	

 	
 	
 POST /user	

 	
 	
 POST /user/	

 	
 	
 PUT /user	

 	
 	
 PUT /user/	

 	
 	
 DELETE /user/(resolvername)/(username)	

 		 	

 		
 /validate	

 	
 	
 GET /validate/check	

 	
 	
 GET /validate/radiuscheck	

 	
 	
 GET /validate/samlcheck	

 	
 	
 GET /validate/triggerchallenge	

 	
 	
 POST /validate/check	

 	
 	
 POST /validate/radiuscheck	

 	
 	
 POST /validate/samlcheck	

 	
 	
 POST /validate/triggerchallenge	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	privacyIDEA 2.21.1 documentation »

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 privacyidea	

 	
 	
 privacyidea.api	

 	
 	
 privacyidea.api.application	

 	
 	
 privacyidea.api.auth	

 	
 	
 privacyidea.api.event	

 	
 	
 privacyidea.api.lib.postpolicy	

 	
 	
 privacyidea.api.lib.prepolicy	

 	
 	
 privacyidea.api.machine	

 	
 	
 privacyidea.api.machineresolver	

 	
 	
 privacyidea.api.policy	

 	
 	
 privacyidea.api.radiusserver	

 	
 	
 privacyidea.api.realm	

 	
 	
 privacyidea.api.resolver	

 	
 	
 privacyidea.api.smsgateway	

 	
 	
 privacyidea.api.smtpserver	

 	
 	
 privacyidea.api.system	

 	
 	
 privacyidea.api.token	

 	
 	
 privacyidea.api.ttype	

 	
 	
 privacyidea.api.user	

 	
 	
 privacyidea.api.validate	

 	
 	
 privacyidea.lib	

 	
 	
 privacyidea.lib.auditmodules	

 	
 	
 privacyidea.lib.event	

 	
 	
 privacyidea.lib.eventhandler.federationhandler	

 	
 	
 privacyidea.lib.eventhandler.tokenhandler	

 	
 	
 privacyidea.lib.eventhandler.usernotification	

 	
 	
 privacyidea.lib.machines	

 	
 	
 privacyidea.lib.pinhandling.base	

 	
 	
 privacyidea.lib.policy	

 	
 	
 privacyidea.lib.policydecorators	

 	
 	
 privacyidea.lib.resolvers	

 	
 	
 privacyidea.lib.smsprovider	

 	
 	
 privacyidea.lib.token	

 	
 	
 privacyidea.lib.tokens.ocratoken	

 	
 	
 privacyidea.lib.tokens.tiqrtoken	

 	
 	
 privacyidea.lib.tokens.u2ftoken	

 	
 	
 privacyidea.lib.user	

 	
 	
 privacyidea.models	

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	privacyIDEA 2.21.1 documentation »

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	

 	2step

 	

 	4 Eyes

A

 	

 	ACTION (class in privacyidea.lib.policy)

 	ACTION_TYPE (class in privacyidea.lib.eventhandler.federationhandler)

 	

 	(class in privacyidea.lib.eventhandler.tokenhandler)

 	Actions

 	actions (privacyidea.lib.eventhandler.base.BaseEventHandler attribute)

 	

 	(privacyidea.lib.eventhandler.federationhandler.FederationEventHandler attribute)

 	(privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler attribute)

 	(privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler attribute), [1]

 	ACTIONVALUE (class in privacyidea.lib.policy)

 	ACTIVE (privacyidea.lib.policy.REMOTE_USER attribute)

 	Active Directory, [1]

 	Add User, [1]

 	add_init_details() (privacyidea.lib.tokenclass.TokenClass method)

 	add_to_log() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	add_tokeninfo() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	add_user() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	add_user_detail_to_response() (in module privacyidea.api.lib.postpolicy)

 	ADDUSER (privacyidea.lib.policy.ACTION attribute)

 	ADDUSERINRESPONSE (privacyidea.lib.policy.ACTION attribute)

 	Admin (class in privacyidea.models)

 	ADMIN (privacyidea.lib.policy.SCOPE attribute)

 	admin accounts

 	admin policies

 	admin realm

 	ADMIN_REALM (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE attribute)

 	allowed_audit_realm() (in module privacyidea.api.lib.prepolicy)

 	API

 	api_endpoint() (privacyidea.lib.tokenclass.TokenClass class method)

 	

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass static method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass static method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass class method)

 	api_key_required() (in module privacyidea.api.lib.prepolicy)

 	APIKEY (privacyidea.lib.policy.ACTION attribute)

 	appliance

 	Application Plugins

 	as_dict() (privacyidea.models.SMSGateway method)

 	ASSIGN (privacyidea.lib.policy.ACTION attribute)

 	assign_token() (in module privacyidea.lib.token)

 	Audit

 	

 	(class in privacyidea.lib.auditmodules.base)

 	(class in privacyidea.lib.auditmodules.sqlaudit)

 	(class in privacyidea.models)

 	

 	AUDIT (privacyidea.lib.policy.ACTION attribute)

 	

 	(privacyidea.lib.policy.MAIN_MENU attribute)

 	(privacyidea.lib.policy.SCOPE attribute)

 	Audit Log Rotate

 	audit modules

 	AUDIT_AGE (privacyidea.lib.policy.ACTION attribute)

 	AUDIT_DOWNLOAD (privacyidea.lib.policy.ACTION attribute)

 	audit_entry_to_dict() (privacyidea.lib.auditmodules.base.Audit method)

 	auditlog_age() (in module privacyidea.api.lib.prepolicy)

 	AUTH (privacyidea.lib.policy.SCOPE attribute)

 	AUTH_CACHE (privacyidea.lib.policy.ACTION attribute)

 	auth_cache() (in module privacyidea.lib.policydecorators)

 	auth_lastauth() (in module privacyidea.lib.policydecorators)

 	auth_otppin() (in module privacyidea.lib.policydecorators)

 	auth_user_does_not_exist() (in module privacyidea.lib.policydecorators)

 	auth_user_has_no_token() (in module privacyidea.lib.policydecorators)

 	auth_user_passthru() (in module privacyidea.lib.policydecorators)

 	auth_user_timelimit() (in module privacyidea.lib.policydecorators)

 	AuthCache

 	authenticate() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass method)

 	authenticating client

 	Authentication Cache

 	authentication policies

 	AUTHITEMS (privacyidea.lib.policy.ACTION attribute)

 	AUTHMAXFAIL (privacyidea.lib.policy.ACTION attribute)

 	AUTHMAXSUCCESS (privacyidea.lib.policy.ACTION attribute)

 	authorization policies

 	AUTHZ (privacyidea.lib.policy.SCOPE attribute)

 	AUTOASSIGN (privacyidea.lib.policy.ACTION attribute)

 	autoassign() (in module privacyidea.api.lib.postpolicy)

 	autoassignment

 	AUTOASSIGNVALUE (class in privacyidea.lib.policy)

 	autoresync

 	autosync

B

 	

 	Backup, [1]

 	BaseEventHandler (class in privacyidea.lib.eventhandler.base)

 	

 	BaseMachineResolver (class in privacyidea.lib.machines.base)

 	brute force

C

 	

 	CA, [1]

 	caching

 	CAConnector (class in privacyidea.models)

 	CAConnectorConfig (class in privacyidea.models)

 	CACONNECTORDELETE (privacyidea.lib.policy.ACTION attribute)

 	CACONNECTORREAD (privacyidea.lib.policy.ACTION attribute)

 	caconnectors

 	CACONNECTORWRITE (privacyidea.lib.policy.ACTION attribute)

 	CentOS

 	Certificate Authority

 	Certificate Templates

 	certificate token

 	certificates

 	CertificateTokenClass (class in privacyidea.lib.tokens.certificatetoken)

 	Challenge (class in privacyidea.models)

 	challenge_janitor() (privacyidea.lib.tokenclass.TokenClass static method)

 	challenge_response_allowed() (in module privacyidea.lib.policydecorators)

 	CHALLENGERESPONSE (privacyidea.lib.policy.ACTION attribute)

 	Change PIN, [1]

 	Change User Password

 	CHANGE_PIN_EVERY (privacyidea.lib.policy.ACTION attribute)

 	CHANGE_PIN_FIRST_USE (privacyidea.lib.policy.ACTION attribute)

 	check_all() (privacyidea.lib.tokenclass.TokenClass method)

 	check_anonymous_user() (in module privacyidea.api.lib.prepolicy)

 	check_answer() (privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass method)

 	check_auth_counter() (privacyidea.lib.tokenclass.TokenClass method)

 	check_base_action() (in module privacyidea.api.lib.prepolicy)

 	check_challenge_response() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass method)

 	check_condition() (privacyidea.lib.eventhandler.base.BaseEventHandler method)

 	check_external() (in module privacyidea.api.lib.prepolicy)

 	check_failcount() (privacyidea.lib.tokenclass.TokenClass method)

 	check_last_auth_newer() (privacyidea.lib.tokenclass.TokenClass method)

 	check_max_token_realm() (in module privacyidea.api.lib.prepolicy)

 	check_max_token_user() (in module privacyidea.api.lib.prepolicy)

 	check_otp() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass method)

 	(privacyidea.lib.tokens.yubicotoken.YubicoTokenClass method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass method)

 	check_otp_exist() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass method)

 	check_otp_pin() (in module privacyidea.api.lib.prepolicy)

 	check_password() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword method)

 	

 	(privacyidea.lib.user.User method)

 	check_pin() (privacyidea.lib.tokenclass.TokenClass method)

 	check_pin_local (privacyidea.lib.tokens.radiustoken.RadiusTokenClass attribute)

 	

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass attribute)

 	check_realm_pass() (in module privacyidea.lib.token)

 	check_serial() (in module privacyidea.api.lib.postpolicy)

 	

 	(in module privacyidea.lib.token)

 	check_serial_pass() (in module privacyidea.lib.token)

 	check_token_init() (in module privacyidea.api.lib.prepolicy)

 	check_token_list() (in module privacyidea.lib.token)

 	check_token_upload() (in module privacyidea.api.lib.prepolicy)

 	check_tokentype() (in module privacyidea.api.lib.postpolicy)

 	check_user_pass() (in module privacyidea.lib.token)

 	

 	check_validity_period() (privacyidea.lib.tokenclass.TokenClass method)

 	check_yubikey_pass() (privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass static method)

 	checkPass() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	checkUserId() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	checkUserName() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	cleanup_challenges() (in module privacyidea.models)

 	clear() (privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	Clickatel

 	client

 	client certificates

 	client machines

 	client policies

 	ClientApplication (class in privacyidea.models)

 	CLIENTTYPE (privacyidea.lib.policy.ACTION attribute)

 	close() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	Components

 	COMPONENTS (privacyidea.lib.policy.MAIN_MENU attribute)

 	conditions

 	

 	(privacyidea.lib.eventhandler.base.BaseEventHandler attribute)

 	Config (class in privacyidea.models)

 	CONFIG (privacyidea.lib.policy.MAIN_MENU attribute)

 	config file

 	config_lost_token() (in module privacyidea.lib.policydecorators)

 	CONFIGDOCUMENTATION (privacyidea.lib.policy.ACTION attribute)

 	configuration

 	construct_radius_response() (in module privacyidea.api.lib.postpolicy)

 	Contao

 	convert_realms() (privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass static method)

 	copy_token_pin() (in module privacyidea.lib.token)

 	copy_token_realms() (in module privacyidea.lib.token)

 	copy_token_user() (in module privacyidea.lib.token)

 	COPYTOKENPIN (privacyidea.lib.policy.ACTION attribute)

 	COPYTOKENUSER (privacyidea.lib.policy.ACTION attribute)

 	count window

 	create_challenge() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass method)

 	create_connection() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver static method)

 	create_tokenclass_object() (in module privacyidea.lib.token)

 	create_user() (in module privacyidea.lib.user)

 	Creating Users

 	Crypto considerations

 	CSR

 	CSS

 	csv_generator() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	CUSTOM_BASELINE (privacyidea.lib.policy.ACTION attribute)

 	CUSTOM_MENU (privacyidea.lib.policy.ACTION attribute)

 	customize, [1]

 	Customize baseline

 	customize footer

 	Customize menu

D

 	

 	DaplugTokenClass (class in privacyidea.lib.tokens.daplugtoken)

 	database

 	DB2

 	debug

 	Debugging

 	decode_otpkey() (privacyidea.lib.tokenclass.TokenClass static method)

 	default realm

 	Default tokentype

 	DEFAULT_TOKENTYPE (privacyidea.lib.policy.ACTION attribute)

 	del_info() (privacyidea.models.Token method)

 	del_tokeninfo() (privacyidea.lib.tokenclass.TokenClass method)

 	DELETE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	Delete User

 	

 	delete() (privacyidea.lib.user.User method)

 	

 	(privacyidea.models.SMSGateway method)

 	delete_all_policies() (in module privacyidea.lib.policy)

 	delete_event() (in module privacyidea.lib.event)

 	delete_policy() (in module privacyidea.lib.policy)

 	delete_token() (privacyidea.lib.tokenclass.TokenClass method)

 	delete_tokeninfo() (in module privacyidea.lib.token)

 	delete_user() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	DELETEUSER (privacyidea.lib.policy.ACTION attribute)

 	description (privacyidea.lib.eventhandler.base.BaseEventHandler attribute)

 	

 	(privacyidea.lib.eventhandler.federationhandler.FederationEventHandler attribute)

 	(privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler attribute)

 	(privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler attribute), [1]

 	DISABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	(privacyidea.lib.policy.ACTIONVALUE attribute)

 	(privacyidea.lib.policy.LOGINMODE attribute)

 	(privacyidea.lib.policy.REMOTE_USER attribute)

 	Django, [1]

 	do() (privacyidea.lib.eventhandler.base.BaseEventHandler method)

 	

 	(privacyidea.lib.eventhandler.federationhandler.FederationEventHandler method)

 	(privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler method)

 	(privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler method), [1]

 	Dokuwiki

E

 	

 	Edit User, [1], [2]

 	Edit Users

 	editable (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver attribute)

 	

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver attribute)

 	Editable Resolver

 	EMAIL (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE attribute)

 	EMail policy

 	Email policy, [1]

 	Email subject

 	Email text

 	EMail token

 	Email Token

 	EMAIL_ADDRESS_KEY (privacyidea.lib.tokens.emailtoken.EmailTokenClass attribute)

 	EMAILCONFIG (privacyidea.lib.policy.ACTION attribute)

 	EmailTokenClass (class in privacyidea.lib.tokens.emailtoken)

 	ENABLE (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	enable() (privacyidea.lib.tokenclass.TokenClass method)

 	enable_event() (in module privacyidea.lib.event)

 	enable_policy() (in module privacyidea.lib.policy)

 	enable_token() (in module privacyidea.lib.token)

 	encrypt_pin() (in module privacyidea.api.lib.prepolicy)

 	Encrypted Seed File

 	

 	ENCRYPTPIN (privacyidea.lib.policy.ACTION attribute)

 	END (privacyidea.lib.eventhandler.tokenhandler.VALIDITY attribute)

 	ENROLL (privacyidea.lib.policy.SCOPE attribute)

 	enroll token

 	enroll_pin() (in module privacyidea.api.lib.prepolicy)

 	ENROLLMENT (privacyidea.lib.policy.GROUP attribute)

 	enrollment policies

 	Enrollment Wizard

 	ENROLLPIN (privacyidea.lib.policy.ACTION attribute)

 	event (class in privacyidea.lib.event)

 	Event Handler, [1], [2], [3]

 	EventConfiguration (class in privacyidea.lib.event)

 	EventHandler (class in privacyidea.models)

 	EventHandlerCondition (class in privacyidea.models)

 	EventHandlerOption (class in privacyidea.models)

 	EVENTHANDLINGWRITE (privacyidea.lib.policy.ACTION attribute)

 	events

 	

 	(privacyidea.lib.event.EventConfiguration attribute)

 	(privacyidea.lib.eventhandler.base.BaseEventHandler attribute)

 	exist() (privacyidea.lib.user.User method)

 	Expired Users

 	export_policies() (in module privacyidea.lib.policy)

 	external hook

F

 	

 	fail counter

 	failcount

 	FAQ

 	Federation Handler

 	FederationEventHandler (class in privacyidea.lib.eventhandler.federationhandler)

 	FIDO

 	finalize_log() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	

 	flatfile resolver

 	FORWARD (privacyidea.lib.eventhandler.federationhandler.ACTION_TYPE attribute)

 	Four Eyes

 	FourEyesTokenClass (class in privacyidea.lib.tokens.foureyestoken)

 	FreeIPA

 	FreeRADIUS, [1]

G

 	

 	gen_serial() (in module privacyidea.lib.token)

 	GENERAL (privacyidea.lib.policy.GROUP attribute)

 	generate_symmetric_key() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	Get Serial (Determine Serial by OTP)

 	get() (privacyidea.models.Challenge method)

 	

 	(privacyidea.models.EventHandler method)

 	(privacyidea.models.Policy method)

 	(privacyidea.models.Subscription method)

 	(privacyidea.models.Token method)

 	get_action_values() (privacyidea.lib.policy.PolicyClass method)

 	get_all_token_users() (in module privacyidea.lib.token)

 	get_as_dict() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass method)

 	get_audit_id() (privacyidea.lib.auditmodules.base.Audit method)

 	get_class_info() (privacyidea.lib.tokenclass.TokenClass static method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass static method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass static method)

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass static method)

 	(privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass static method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass static method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass static method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass static method)

 	(privacyidea.lib.tokens.papertoken.PaperTokenClass static method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass static method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass class method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass static method)

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass static method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass static method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass static method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass static method)

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass static method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass static method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass static method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass static method)

 	(privacyidea.lib.tokens.yubicotoken.YubicoTokenClass static method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass static method)

 	get_class_prefix() (privacyidea.lib.tokenclass.TokenClass static method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass static method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass static method)

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass static method)

 	(privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass static method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass static method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass static method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass static method)

 	(privacyidea.lib.tokens.papertoken.PaperTokenClass static method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass static method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass static method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass static method)

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass static method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass static method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass static method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass static method)

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass static method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass static method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass static method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass static method)

 	(privacyidea.lib.tokens.yubicotoken.YubicoTokenClass static method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass static method)

 	get_class_type() (privacyidea.lib.tokenclass.TokenClass static method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass static method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass static method)

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass static method)

 	(privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass static method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass static method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass static method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass static method)

 	(privacyidea.lib.tokens.papertoken.PaperTokenClass static method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass static method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass static method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass static method)

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass static method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass static method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass static method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass static method)

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass static method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass static method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass static method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass static method)

 	(privacyidea.lib.tokens.yubicotoken.YubicoTokenClass static method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass static method)

 	get_config_description() (privacyidea.lib.machines.base.BaseMachineResolver static method)

 	get_count() (privacyidea.lib.auditmodules.base.Audit method)

 	get_count_auth() (privacyidea.lib.tokenclass.TokenClass method)

 	get_count_auth_max() (privacyidea.lib.tokenclass.TokenClass method)

 	get_count_auth_success() (privacyidea.lib.tokenclass.TokenClass method)

 	get_count_auth_success_max() (privacyidea.lib.tokenclass.TokenClass method)

 	get_count_window() (privacyidea.lib.tokenclass.TokenClass method)

 	get_dataframe() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	get_default_settings() (privacyidea.lib.tokenclass.TokenClass class method)

 	

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass class method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass class method)

 	get_dynamic_policy_definitions() (in module privacyidea.lib.token)

 	get_event() (privacyidea.lib.event.EventConfiguration method)

 	get_failcount() (privacyidea.lib.tokenclass.TokenClass method)

 	get_handled_events() (privacyidea.lib.event.EventConfiguration method)

 	get_handler_object() (in module privacyidea.lib.event)

 	get_hashed_pin() (privacyidea.models.Token method)

 	get_hashlib() (privacyidea.lib.tokenclass.TokenClass static method)

 	get_info() (privacyidea.models.Token method)

 	get_init_detail() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass method)

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass method)

 	get_init_details() (privacyidea.lib.tokenclass.TokenClass method)

 	get_machine_id() (privacyidea.lib.machines.base.BaseMachineResolver method)

 	

 	(privacyidea.lib.machines.hosts.HostsMachineResolver method)

 	get_machineresolver_id() (in module privacyidea.models)

 	get_machines() (privacyidea.lib.machines.base.BaseMachineResolver method)

 	

 	(privacyidea.lib.machines.hosts.HostsMachineResolver method)

 	get_machinetoken_id() (in module privacyidea.models)

 	get_max_failcount() (privacyidea.lib.tokenclass.TokenClass method)

 	get_multi_otp() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	get_num_tokens_in_realm() (in module privacyidea.lib.token)

 	get_ordererd_resolvers() (privacyidea.lib.user.User method)

 	get_otp() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	get_otp_count() (privacyidea.lib.tokenclass.TokenClass method)

 	get_otp_count_window() (privacyidea.lib.tokenclass.TokenClass method)

 	get_otp_status() (privacyidea.models.Challenge method)

 	get_otplen() (privacyidea.lib.tokenclass.TokenClass method)

 	get_password() (privacyidea.lib.tokens.passwordtoken.PasswordTokenClass.SecretPassword method)

 	get_pin_hash_seed() (privacyidea.lib.tokenclass.TokenClass method)

 	get_policies() (privacyidea.lib.policy.PolicyClass method)

 	get_QRimage_data() (privacyidea.lib.tokenclass.TokenClass method)

 	get_realms() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.models.Token method)

 	get_realms_of_token() (in module privacyidea.lib.token)

 	get_search_fields() (privacyidea.lib.user.User method)

 	get_serial() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	get_serial_by_otp() (in module privacyidea.lib.token)

 	get_serverpool() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver class method)

 	get_setting_type() (privacyidea.lib.tokenclass.TokenClass static method)

 	

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass static method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass static method)

 	get_sshkey() (privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass method)

 	get_static_policy_definitions() (in module privacyidea.lib.policy)

 	get_sync_timeout() (privacyidea.lib.tokens.hotptoken.HotpTokenClass static method)

 	get_sync_window() (privacyidea.lib.tokenclass.TokenClass method)

 	get_token_by_otp() (in module privacyidea.lib.token)

 	get_token_id() (in module privacyidea.models)

 	get_token_owner() (in module privacyidea.lib.token)

 	get_token_type() (in module privacyidea.lib.token)

 	get_tokenclass_info() (in module privacyidea.lib.token)

 	get_tokeninfo() (privacyidea.lib.tokenclass.TokenClass method)

 	get_tokens() (in module privacyidea.lib.token)

 	get_tokens_in_resolver() (in module privacyidea.lib.token)

 	get_tokens_paginate() (in module privacyidea.lib.token)

 	get_tokentype() (privacyidea.lib.tokenclass.TokenClass method)

 	get_total() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	get_type() (privacyidea.lib.tokenclass.TokenClass method)

 	get_user_displayname() (privacyidea.lib.tokenclass.TokenClass method)

 	get_user_from_param() (in module privacyidea.lib.user)

 	get_user_id() (privacyidea.lib.tokenclass.TokenClass method)

 	get_user_identifiers() (privacyidea.lib.user.User method)

 	get_user_info() (in module privacyidea.lib.user)

 	get_user_list() (in module privacyidea.lib.user)

 	get_user_phone() (privacyidea.lib.user.User method)

 	get_user_pin() (privacyidea.models.Token method)

 	get_user_realms() (privacyidea.lib.user.User method)

 	get_username() (in module privacyidea.lib.user)

 	get_validity_period_end() (privacyidea.lib.tokenclass.TokenClass method)

 	get_validity_period_start() (privacyidea.lib.tokenclass.TokenClass method)

 	get_webui_settings() (in module privacyidea.api.lib.postpolicy)

 	getchallenges

 	GETCHALLENGES (privacyidea.lib.policy.ACTION attribute)

 	getrandom

 	GETRANDOM (privacyidea.lib.policy.ACTION attribute)

 	getResolverClassDescriptor() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver class method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver class method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver class method)

 	getResolverClassType() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver static method)

 	getResolverDescriptor() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver static method)

 	getResolverId() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	getResolverType() (privacyidea.lib.resolvers.UserIdResolver.UserIdResolver static method)

 	getSearchFields() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	getserial

 	GETSERIAL (privacyidea.lib.policy.ACTION attribute)

 	GETTOKEN (privacyidea.lib.policy.SCOPE attribute)

 	gettoken policies

 	getUserId() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	getUserInfo() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	getUserList() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	getUsername() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	GPG encryption

 	GROUP (class in privacyidea.lib.policy)

H

 	

 	HA

 	Handler Modules, [1], [2], [3], [4]

 	Hardware Security Module

 	Hardware Tokens

 	hashlib (privacyidea.lib.tokens.hotptoken.HotpTokenClass attribute)

 	

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass attribute)

 	help desk

 	HIDE_WELCOME (privacyidea.lib.policy.ACTION attribute)

 	hKeyRequired (privacyidea.lib.tokenclass.TokenClass attribute)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass attribute)

 	hook

 	

 	HostsMachineResolver (class in privacyidea.lib.machines.hosts)

 	HOTP Token

 	HOTP tokens

 	HotpTokenClass (class in privacyidea.lib.tokens.hotptoken)

 	HSM

 	HTML views

 	HTTP Provider

 	HttpSMSProvider (class in privacyidea.lib.smsprovider.HttpSMSProvider)

I

 	

 	identifier (privacyidea.lib.eventhandler.base.BaseEventHandler attribute)

 	

 	(privacyidea.lib.eventhandler.federationhandler.FederationEventHandler attribute)

 	(privacyidea.lib.eventhandler.tokenhandler.TokenEventHandler attribute)

 	(privacyidea.lib.eventhandler.usernotification.UserNotificationEventHandler attribute), [1]

 	IdResolver (class in privacyidea.lib.resolvers.LDAPIdResolver)

 	

 	(class in privacyidea.lib.resolvers.PasswdIdResolver)

 	import

 	IMPORT (privacyidea.lib.policy.ACTION attribute)

 	import_policies() (in module privacyidea.lib.policy)

 	inc_count_auth() (privacyidea.lib.tokenclass.TokenClass method)

 	inc_count_auth_success() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass method)

 	inc_failcount() (privacyidea.lib.tokenclass.TokenClass method)

 	inc_otp_counter() (privacyidea.lib.tokenclass.TokenClass method)

 	info (privacyidea.lib.user.User attribute)

 	INIT (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	init_random_pin() (in module privacyidea.api.lib.prepolicy)

 	init_token() (in module privacyidea.lib.token)

 	init_token_defaults() (in module privacyidea.api.lib.prepolicy)

 	init_tokenlabel() (in module privacyidea.api.lib.prepolicy)

 	initialize() (privacyidea.lib.auditmodules.base.Audit method)

 	initialize_log() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	instances

 	INTERNAL_ADMIN (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE attribute)

 	is_active() (privacyidea.lib.tokenclass.TokenClass method)

 	is_challenge_request() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass static method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass method)

 	(privacyidea.lib.tokens.yubikeytoken.YubikeyTokenClass method)

 	is_challenge_response() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass static method)

 	is_empty() (privacyidea.lib.user.User method)

 	is_locked() (privacyidea.lib.tokenclass.TokenClass method)

 	is_orphaned() (privacyidea.lib.tokenclass.TokenClass method)

 	is_pin_change() (privacyidea.lib.tokenclass.TokenClass method)

 	is_previous_otp() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	is_remote_user_allowed() (in module privacyidea.api.lib.prepolicy)

 	is_revoked() (privacyidea.lib.tokenclass.TokenClass method)

 	is_token_active() (in module privacyidea.lib.token)

 	is_token_owner() (in module privacyidea.lib.token)

 	is_valid() (privacyidea.models.Challenge method)

 	ISMSProvider (class in privacyidea.lib.smsprovider.SMSProvider)

J

 	

 	JSON Web Token

 	

 	JWT

L

 	

 	LASTAUTH (privacyidea.lib.policy.ACTION attribute)

 	LDAP

 	LDAP resolver

 	libpolicy (class in privacyidea.lib.policydecorators)

 	library

 	load_config() (privacyidea.lib.machines.base.BaseMachineResolver method)

 	

 	(privacyidea.lib.machines.hosts.HostsMachineResolver method)

 	(privacyidea.lib.smsprovider.SMSProvider.ISMSProvider method)

 	loadConfig() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	loadFile() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver method)

 	LOCKSCREEN (privacyidea.lib.policy.TIMEOUT_ACTION attribute)

 	log() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	log_token_num() (privacyidea.lib.auditmodules.base.Audit method)

 	LOGGED_IN_USER (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE attribute)

 	Logging

 	login (privacyidea.lib.user.User attribute)

 	login mode

 	

 	Login Policy

 	login_mode() (in module privacyidea.lib.policydecorators)

 	LOGINMODE (class in privacyidea.lib.policy)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	loglevel

 	LOGOUT (privacyidea.lib.policy.TIMEOUT_ACTION attribute)

 	logout time

 	LOGOUTTIME (privacyidea.lib.policy.ACTION attribute)

 	Lost token

 	lost token

 	lost_token() (in module privacyidea.lib.token)

 	LOSTTOKEN (privacyidea.lib.policy.ACTION attribute)

 	LOSTTOKENPWCONTENTS (privacyidea.lib.policy.ACTION attribute)

 	LOSTTOKENPWLEN (privacyidea.lib.policy.ACTION attribute)

 	LOSTTOKENVALID (privacyidea.lib.policy.ACTION attribute)

M

 	

 	MACHINE (privacyidea.lib.policy.GROUP attribute)

 	Machine Resolvers, [1]

 	MachineApplicationBase (in module privacyidea.lib.applications)

 	MACHINELIST (privacyidea.lib.policy.ACTION attribute)

 	MachineResolver (class in privacyidea.models)

 	MachineResolverConfig (class in privacyidea.models)

 	MACHINERESOLVERDELETE (privacyidea.lib.policy.ACTION attribute)

 	MACHINERESOLVERWRITE (privacyidea.lib.policy.ACTION attribute)

 	machines

 	MACHINES (privacyidea.lib.policy.MAIN_MENU attribute)

 	MachineToken (class in privacyidea.models)

 	MachineTokenOptions (class in privacyidea.models)

 	MACHINETOKENS (privacyidea.lib.policy.ACTION attribute)

 	MAIN_MENU (class in privacyidea.lib.policy)

 	MANAGESUBSCRIPTION (privacyidea.lib.policy.ACTION attribute)

 	MANGLE (privacyidea.lib.policy.ACTION attribute)

 	

 	Mangle authentication request

 	Mangle policy

 	mangle() (in module privacyidea.api.lib.prepolicy)

 	map client

 	maxfail

 	MAXTOKENREALM (privacyidea.lib.policy.ACTION attribute)

 	MAXTOKENUSER (privacyidea.lib.policy.ACTION attribute)

 	MethodsMixin (class in privacyidea.models)

 	Migration

 	migration, [1]

 	migration strategy

 	mock_fail() (in module privacyidea.api.lib.prepolicy)

 	mock_success() (in module privacyidea.api.lib.prepolicy)

 	mode (privacyidea.lib.tokenclass.TokenClass attribute)

 	

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass attribute)

 	MotpTokenClass (class in privacyidea.lib.tokens.motptoken)

 	MySQL

N

 	

 	no_detail_on_fail() (in module privacyidea.api.lib.postpolicy)

 	no_detail_on_success() (in module privacyidea.api.lib.postpolicy)

 	NODETAILFAIL (privacyidea.lib.policy.ACTION attribute)

 	NODETAILSUCCESS (privacyidea.lib.policy.ACTION attribute)

 	

 	NONE (privacyidea.lib.policy.ACTIONVALUE attribute)

 	

 	(privacyidea.lib.policy.AUTOASSIGNVALUE attribute)

 	NOTIFY_TYPE (class in privacyidea.lib.eventhandler.usernotification)

 	Novell eDirectory

O

 	

 	OATH CSV

 	OCRA, [1]

 	OCRA policies

 	OcraTokenClass (class in privacyidea.lib.tokens.ocratoken)

 	offline

 	offline_info() (in module privacyidea.api.lib.postpolicy)

 	OpenLDAP

 	openssl

 	OpenVPN, [1]

 	option_dict (privacyidea.models.SMSGateway attribute)

 	Oracle

 	orphaned tokens

 	

 	OTP length

 	OTPPIN (privacyidea.lib.policy.ACTION attribute)

 	OTPPINCONTENTS (privacyidea.lib.policy.ACTION attribute)

 	OTPPINMAXLEN (privacyidea.lib.policy.ACTION attribute)

 	OTPPINMINLEN (privacyidea.lib.policy.ACTION attribute)

 	OTPPINRANDOM (privacyidea.lib.policy.ACTION attribute)

 	OTRS, [1]

 	out of sync

 	Override client

 	override client

 	overview

 	ownCloud, [1]

P

 	

 	PAM, [1], [2], [3], [4]

 	pam_yubico

 	Paper Token

 	papertoken_count() (in module privacyidea.api.lib.prepolicy)

 	PaperTokenClass (class in privacyidea.lib.tokens.papertoken)

 	parameters() (privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider class method)

 	

 	(privacyidea.lib.smsprovider.SMSProvider.ISMSProvider class method)

 	(privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider class method)

 	(privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider class method)

 	PASSNOTOKEN (privacyidea.lib.policy.ACTION attribute)

 	PASSNOUSER (privacyidea.lib.policy.ACTION attribute)

 	passOnNoToken

 	passOnNoUser

 	passthru

 	PASSTHRU (privacyidea.lib.policy.ACTION attribute)

 	password reset

 	PasswordReset (class in privacyidea.models)

 	PASSWORDRESET (privacyidea.lib.policy.ACTION attribute)

 	PasswordTokenClass (class in privacyidea.lib.tokens.passwordtoken)

 	PasswordTokenClass.SecretPassword (class in privacyidea.lib.tokens.passwordtoken)

 	Penrose

 	pi-manage, [1]

 	PIN (privacyidea.lib.policy.GROUP attribute)

 	PIN policies, [1]

 	PIN policy, [1]

 	PinHandler, [1]

 	

 	(class in privacyidea.lib.pinhandling.base)

 	PINHANDLING (privacyidea.lib.policy.ACTION attribute)

 	pip install

 	policies, [1], [2]

 	Policy (class in privacyidea.models)

 	policy template URL

 	policy templates

 	PolicyClass (class in privacyidea.lib.policy)

 	POLICYDELETE (privacyidea.lib.policy.ACTION attribute)

 	POLICYTEMPLATEURL (privacyidea.lib.policy.ACTION attribute)

 	POLICYWRITE (privacyidea.lib.policy.ACTION attribute)

 	PostgreSQL

 	postpolicy (class in privacyidea.api.lib.postpolicy)

 	postrequest (class in privacyidea.api.lib.postpolicy)

 	prepolicy (class in privacyidea.api.lib.prepolicy)

 	preseeded

 	PRIVACYIDEA (privacyidea.lib.policy.LOGINMODE attribute)

 	privacyIDEA Authenticator

 	privacyidea.api (module)

 	

 	privacyidea.api.application (module)

 	privacyidea.api.auth (module), [1]

 	privacyidea.api.event (module)

 	privacyidea.api.lib.postpolicy (module)

 	privacyidea.api.lib.prepolicy (module)

 	privacyidea.api.machine (module)

 	privacyidea.api.machineresolver (module)

 	privacyidea.api.policy (module)

 	privacyidea.api.radiusserver (module)

 	privacyidea.api.realm (module)

 	privacyidea.api.resolver (module)

 	privacyidea.api.smsgateway (module)

 	privacyidea.api.smtpserver (module)

 	privacyidea.api.system (module)

 	privacyidea.api.token (module)

 	privacyidea.api.ttype (module)

 	privacyidea.api.user (module)

 	privacyidea.api.validate (module)

 	privacyidea.lib (module)

 	privacyidea.lib.auditmodules (module)

 	privacyidea.lib.event (module)

 	privacyidea.lib.eventhandler.federationhandler (module)

 	privacyidea.lib.eventhandler.tokenhandler (module)

 	privacyidea.lib.eventhandler.usernotification (module)

 	privacyidea.lib.machines (module)

 	privacyidea.lib.pinhandling.base (module)

 	privacyidea.lib.policy (module)

 	privacyidea.lib.policydecorators (module)

 	privacyidea.lib.resolvers (module)

 	privacyidea.lib.smsprovider (module)

 	privacyidea.lib.token (module)

 	privacyidea.lib.tokens.ocratoken (module)

 	privacyidea.lib.tokens.tiqrtoken (module)

 	privacyidea.lib.tokens.u2ftoken (module)

 	privacyidea.lib.user (module)

 	privacyidea.models (module)

 	PrivacyIDEAServer (class in privacyidea.models)

 	PRIVACYIDEASERVERWRITE (privacyidea.lib.policy.ACTION attribute)

 	proxies

 	PSKC

Q

 	

 	Question Token

 	Questionnaire Token

 	

 	QuestionnaireTokenClass (class in privacyidea.lib.tokens.questionnairetoken)

R

 	

 	RADIUS

 	radius migration

 	RADIUS Realms

 	RADIUS server

 	radius server

 	RADIUS token

 	RADIUSServer (class in privacyidea.models)

 	RADIUSSERVERWRITE (privacyidea.lib.policy.ACTION attribute)

 	RadiusTokenClass (class in privacyidea.lib.tokens.radiustoken)

 	read_keys() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	Realm (class in privacyidea.models)

 	REALM (privacyidea.lib.policy.ACTION attribute)

 	realm (privacyidea.lib.user.User attribute)

 	realm administrator

 	realm autocreation

 	realm edit

 	realmadmin() (in module privacyidea.api.lib.prepolicy)

 	Realmbox

 	REALMDROPDOWN (privacyidea.lib.policy.ACTION attribute)

 	Realms

 	realms

 	realms_dict_to_string() (privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass static method)

 	Red Hat

 	REGISTER (privacyidea.lib.policy.SCOPE attribute)

 	register policy

 	REGISTERBODY (privacyidea.lib.policy.ACTION attribute)

 	registration

 	RegistrationTokenClass (class in privacyidea.lib.tokens.registrationtoken)

 	reload_from_db() (privacyidea.lib.policy.PolicyClass method)

 	Remote token

 	remote_user

 	REMOTE_USER (class in privacyidea.lib.policy)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	RemoteTokenClass (class in privacyidea.lib.tokens.remotetoken)

 	

 	remove_token() (in module privacyidea.lib.token)

 	request

 	required_email() (in module privacyidea.api.lib.prepolicy)

 	REQUIREDEMAIL (privacyidea.lib.policy.ACTION attribute)

 	RESET (privacyidea.lib.policy.ACTION attribute)

 	reset password

 	reset() (privacyidea.lib.tokenclass.TokenClass method)

 	reset_token() (in module privacyidea.lib.token)

 	RESETALLTOKENS (privacyidea.lib.policy.ACTION attribute)

 	Resolver (class in privacyidea.models)

 	RESOLVER (privacyidea.lib.policy.ACTION attribute)

 	resolver (privacyidea.lib.user.User attribute)

 	resolver priority

 	ResolverConfig (class in privacyidea.models)

 	RESOLVERDELETE (privacyidea.lib.policy.ACTION attribute)

 	ResolverRealm (class in privacyidea.models)

 	RESOLVERWRITE (privacyidea.lib.policy.ACTION attribute)

 	REST

 	Restore, [1]

 	RESYNC (privacyidea.lib.policy.ACTION attribute)

 	resync token

 	resync() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	resync_token() (in module privacyidea.lib.token)

 	resyncDiffLimit (privacyidea.lib.tokens.totptoken.TotpTokenClass attribute)

 	retention time

 	REVOKE (privacyidea.lib.policy.ACTION attribute)

 	revoke() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass method)

 	revoke_token() (in module privacyidea.lib.token)

 	RFC6030

 	RHEL

 	rollout strategy

 	RPM

S

 	

 	SAML

 	SAML attributes, [1]

 	save() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.models.RADIUSServer method)

 	(privacyidea.models.TokenRealm method)

 	save_client_application_type() (in module privacyidea.api.lib.prepolicy)

 	save_pin_change() (in module privacyidea.api.lib.postpolicy)

 	SCIM resolver

 	scope

 	SCOPE (class in privacyidea.lib.policy)

 	Script Handler

 	Search on Enter

 	search() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	SEARCH_ON_ENTER (privacyidea.lib.policy.ACTION attribute)

 	search_query() (privacyidea.lib.auditmodules.base.Audit method)

 	

 	(privacyidea.lib.auditmodules.sqlaudit.Audit method)

 	Security Module

 	seedable

 	selfservice policies

 	send() (privacyidea.lib.pinhandling.base.PinHandler method)

 	SERIAL (privacyidea.lib.policy.ACTION attribute)

 	SET (privacyidea.lib.policy.ACTION attribute)

 	set_count_auth() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	set_count_auth_max() (privacyidea.lib.tokenclass.TokenClass method)

 	set_count_auth_success() (privacyidea.lib.tokenclass.TokenClass method)

 	set_count_auth_success_max() (privacyidea.lib.tokenclass.TokenClass method)

 	set_count_window() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	SET_COUNTWINDOW (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_data() (privacyidea.models.Challenge method)

 	set_defaults() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	SET_DESCRIPTION (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_description() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	set_event() (in module privacyidea.lib.event)

 	set_failcount() (privacyidea.lib.tokenclass.TokenClass method)

 	SET_FAILCOUNTER (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_failcounter() (in module privacyidea.lib.token)

 	set_hashlib() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	set_info() (privacyidea.models.Token method)

 	set_init_details() (privacyidea.lib.tokenclass.TokenClass method)

 	set_max_failcount() (in module privacyidea.lib.token)

 	set_maxfail() (privacyidea.lib.tokenclass.TokenClass method)

 	set_next_pin_change() (privacyidea.lib.tokenclass.TokenClass method)

 	set_otp_count() (privacyidea.lib.tokenclass.TokenClass method)

 	set_otpkey() (privacyidea.lib.tokenclass.TokenClass method)

 	set_otplen() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass method)

 	set_pin() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass method)

 	(privacyidea.models.Token method)

 	set_pin_hash_seed() (privacyidea.lib.tokenclass.TokenClass method)

 	set_pin_so() (in module privacyidea.lib.token)

 	set_pin_user() (in module privacyidea.lib.token)

 	set_policy() (in module privacyidea.lib.policy)

 	set_realm() (in module privacyidea.api.lib.prepolicy)

 	set_realms() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	(privacyidea.models.Token method)

 	set_so_pin() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.models.Token method)

 	set_sync_window() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	SET_TOKENINFO (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_tokeninfo() (privacyidea.lib.tokenclass.TokenClass method)

 	SET_TOKENREALM (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_type() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	set_user() (privacyidea.lib.tokenclass.TokenClass method)

 	set_user_identifiers() (privacyidea.lib.tokenclass.TokenClass method)

 	set_user_pin() (privacyidea.lib.tokenclass.TokenClass method)

 	SET_VALIDITY (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	set_validity_period_end() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	set_validity_period_start() (in module privacyidea.lib.token)

 	

 	(privacyidea.lib.tokenclass.TokenClass method)

 	SETHSM (privacyidea.lib.policy.ACTION attribute)

 	SETPIN (privacyidea.lib.policy.ACTION attribute)

 	SETREALM (privacyidea.lib.policy.ACTION attribute)

 	SETTOKENINFO (privacyidea.lib.policy.ACTION attribute)

 	setup tool

 	setup() (privacyidea.lib.resolvers.PasswdIdResolver.IdResolver static method)

 	sign_response() (in module privacyidea.api.lib.postpolicy)

 	Sipgate

 	SipgateSMSProvider (class in privacyidea.lib.smsprovider.SipgateSMSProvider)

 	SMS

 	SMS automatic resend

 	SMS Gateway, [1]

 	SMS policy

 	SMS Provider, [1]

 	SMS text

 	SMS Token

 	SMS token

 	SMSGateway (class in privacyidea.models)

 	SMSGatewayOption (class in privacyidea.models)

 	SMSGATEWAYWRITE (privacyidea.lib.policy.ACTION attribute)

 	SmsTokenClass (class in privacyidea.lib.tokens.smstoken)

 	SMTP server

 	SMTPServer (class in privacyidea.models)

 	SMTPSERVERWRITE (privacyidea.lib.policy.ACTION attribute)

 	SmtpSMSProvider (class in privacyidea.lib.smsprovider.SmtpSMSProvider)

 	Software Tokens

 	SPass token

 	SpassTokenClass (class in privacyidea.lib.tokens.spasstoken)

 	split_pin_pass() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.daplugtoken.DaplugTokenClass method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass method)

 	(privacyidea.models.Token method)

 	split_uri() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver static method)

 	split_user() (in module privacyidea.lib.user)

 	SQL resolver

 	sqlite

 	SSH Key

 	SSH keys

 	SSHkeyTokenClass (class in privacyidea.lib.tokens.sshkeytoken)

 	START (privacyidea.lib.eventhandler.tokenhandler.VALIDITY attribute)

 	status_validation_fail() (privacyidea.lib.tokenclass.TokenClass method)

 	status_validation_success() (privacyidea.lib.tokenclass.TokenClass method)

 	submit_message() (privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider method)

 	

 	(privacyidea.lib.smsprovider.SMSProvider.ISMSProvider method)

 	(privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider method)

 	(privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider method)

 	Subscription (class in privacyidea.models)

 	superuser realm

 	syncwindow

 	SYSTEM (privacyidea.lib.policy.GROUP attribute)

 	system config

 	system policies

 	SYSTEMDELETE (privacyidea.lib.policy.ACTION attribute)

 	SYSTEMWRITE (privacyidea.lib.policy.ACTION attribute)

T

 	

 	templates

 	test_config() (privacyidea.lib.tokenclass.TokenClass static method)

 	

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass class method)

 	testconnection() (privacyidea.lib.machines.base.BaseMachineResolver static method)

 	

 	(privacyidea.lib.machines.hosts.HostsMachineResolver static method)

 	(privacyidea.lib.resolvers.LDAPIdResolver.IdResolver class method)

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver static method)

 	themes

 	TIMEOUT_ACTION (class in privacyidea.lib.policy)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	timeshift (privacyidea.lib.tokens.totptoken.TotpTokenClass attribute)

 	TimestampMethodsMixin (class in privacyidea.models)

 	timestep (privacyidea.lib.tokens.totptoken.TotpTokenClass attribute)

 	timewindow (privacyidea.lib.tokens.totptoken.TotpTokenClass attribute)

 	TiQR, [1]

 	TiQR Token

 	TiqrTokenClass (class in privacyidea.lib.tokens.tiqrtoken)

 	token

 	Token (class in privacyidea.models)

 	TOKEN (privacyidea.lib.policy.GROUP attribute)

 	token configuration

 	token default settings

 	token description

 	Token Enrollment Wizard

 	Token Handler

 	Token specific PIN policy, [1]

 	token types

 	Token view page size

 	Token wizard

 	token_exist() (in module privacyidea.lib.token)

 	

 	TokenClass (class in privacyidea.lib.tokenclass)

 	TokenEventHandler (class in privacyidea.lib.eventhandler.tokenhandler)

 	TokenInfo (class in privacyidea.models)

 	TOKENISSUER (privacyidea.lib.policy.ACTION attribute)

 	TOKENLABEL (privacyidea.lib.policy.ACTION attribute)

 	TOKENOWNER (privacyidea.lib.eventhandler.usernotification.NOTIFY_TYPE attribute)

 	TOKENPAGESIZE (privacyidea.lib.policy.ACTION attribute)

 	TOKENPIN (privacyidea.lib.policy.ACTIONVALUE attribute)

 	TokenRealm (class in privacyidea.models)

 	TOKENREALMS (privacyidea.lib.policy.ACTION attribute)

 	TOKENS (privacyidea.lib.policy.MAIN_MENU attribute)

 	TOKENTYPE (privacyidea.lib.policy.ACTION attribute)

 	tokenview

 	TOKENWIZARD (privacyidea.lib.policy.ACTION attribute)

 	TOKENWIZARD2ND (privacyidea.lib.policy.ACTION attribute)

 	tools

 	TOOLS (privacyidea.lib.policy.GROUP attribute)

 	TOTP Token

 	TotpTokenClass (class in privacyidea.lib.tokens.totptoken)

 	TRIGGERCHALLENGE (privacyidea.lib.policy.ACTION attribute)

 	Two Man

 	twostep

 	twostep_enrollment_activation() (in module privacyidea.api.lib.prepolicy)

 	twostep_enrollment_parameters() (in module privacyidea.api.lib.prepolicy)

U

 	

 	U2F

 	U2F Token

 	u2ftoken_allowed() (in module privacyidea.api.lib.prepolicy)

 	U2fTokenClass (class in privacyidea.lib.tokens.u2ftoken)

 	ubuntu

 	ui_get_enroll_tokentypes() (privacyidea.lib.policy.PolicyClass method)

 	ui_get_main_menus() (privacyidea.lib.policy.PolicyClass method)

 	ui_get_rights() (privacyidea.lib.policy.PolicyClass method)

 	UNASSIGN (privacyidea.lib.eventhandler.tokenhandler.ACTION_TYPE attribute)

 	

 	(privacyidea.lib.policy.ACTION attribute)

 	unassign_token() (in module privacyidea.lib.token)

 	update() (privacyidea.lib.tokenclass.TokenClass method)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass method)

 	(privacyidea.lib.tokens.emailtoken.EmailTokenClass method)

 	(privacyidea.lib.tokens.foureyestoken.FourEyesTokenClass method)

 	(privacyidea.lib.tokens.hotptoken.HotpTokenClass method)

 	(privacyidea.lib.tokens.motptoken.MotpTokenClass method)

 	(privacyidea.lib.tokens.ocratoken.OcraTokenClass method)

 	(privacyidea.lib.tokens.papertoken.PaperTokenClass method)

 	(privacyidea.lib.tokens.passwordtoken.PasswordTokenClass method)

 	(privacyidea.lib.tokens.questionnairetoken.QuestionnaireTokenClass method)

 	(privacyidea.lib.tokens.radiustoken.RadiusTokenClass method)

 	(privacyidea.lib.tokens.registrationtoken.RegistrationTokenClass method)

 	(privacyidea.lib.tokens.remotetoken.RemoteTokenClass method)

 	(privacyidea.lib.tokens.smstoken.SmsTokenClass method)

 	(privacyidea.lib.tokens.spasstoken.SpassTokenClass method)

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass method)

 	(privacyidea.lib.tokens.tiqrtoken.TiqrTokenClass method)

 	(privacyidea.lib.tokens.totptoken.TotpTokenClass method)

 	(privacyidea.lib.tokens.u2ftoken.U2fTokenClass method)

 	(privacyidea.lib.tokens.yubicotoken.YubicoTokenClass method)

 	update_otpkey() (privacyidea.models.Token method)

 	update_type() (privacyidea.models.Token method)

 	update_user() (privacyidea.lib.resolvers.LDAPIdResolver.IdResolver method)

 	

 	(privacyidea.lib.resolvers.UserIdResolver.UserIdResolver method)

 	update_user_info() (privacyidea.lib.user.User method)

 	UPDATEUSER (privacyidea.lib.policy.ACTION attribute)

 	User (class in privacyidea.lib.user)

 	USER (privacyidea.lib.policy.GROUP attribute)

 	

 	(privacyidea.lib.policy.SCOPE attribute)

 	

 	user (privacyidea.lib.tokenclass.TokenClass attribute)

 	user cache

 	User Notification, [1]

 	user policies

 	user registration

 	User view page size

 	USERDETAILS (privacyidea.lib.policy.ACTION attribute)

 	UserIdResolver (class in privacyidea.lib.resolvers.UserIdResolver)

 	useridresolvers, [1]

 	USERLIST (privacyidea.lib.policy.ACTION attribute)

 	UserNotificationEventHandler (class in privacyidea.lib.eventhandler.usernotification), [1]

 	USERPAGESIZE (privacyidea.lib.policy.ACTION attribute)

 	Users

 	USERS (privacyidea.lib.policy.MAIN_MENU attribute)

 	USERSTORE (privacyidea.lib.policy.ACTIONVALUE attribute)

 	

 	(privacyidea.lib.policy.AUTOASSIGNVALUE attribute)

 	(privacyidea.lib.policy.LOGINMODE attribute)

 	userview

 	using_pin (privacyidea.lib.tokenclass.TokenClass attribute)

 	

 	(privacyidea.lib.tokens.certificatetoken.CertificateTokenClass attribute)

 	(privacyidea.lib.tokens.sshkeytoken.SSHkeyTokenClass attribute)

V

 	

 	VALIDITY (class in privacyidea.lib.eventhandler.tokenhandler)

 	verify_response() (privacyidea.lib.tokens.ocratoken.OcraTokenClass method)

 	

 	virtual environment

W

 	

 	WEBUI (privacyidea.lib.policy.SCOPE attribute)

 	WebUI Login

 	WebUI Policy

 	

 	Windows

 	Wizard

 	Wordpress

Y

 	

 	Yubico

 	Yubico AES mode

 	Yubico Cloud mode, [1]

 	YubicoTokenClass (class in privacyidea.lib.tokens.yubicotoken)

 	Yubikey, [1], [2]

 	

 	Yubikey AES mode

 	Yubikey CSV

 	YubikeyTokenClass (class in privacyidea.lib.tokens.yubikeytoken)

 	YUM

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

 _images/enroll-cert.png
privacylDEA | O Tokens & Users = Machines % Config Q Audit

Al tokens

@ Enroll Token

@ Import Tokens

© Get Serial
total tokens: 38

Enroll a new token

‘ Certificate: Enroll an x509 Certificate Token. v

The Certificate Token lets you enroll an X509 ceritficate by the given CA.
Token data

Generate Request Upload Certificate

CA Connector
myCA v

Certificate Signing Request (PEM)

Paste the Certificate Signing Request

Assign token to user

_images/backup3.png
Choose a backup you wish to restore...

| rivacyidea-backup-141014-225035. tgZ]

8MB Tue Oct 14 17:33:22 2014
5MB Tue Oct 14 17:32:02 2014
2MB Tue Oct 14 17:31:45 2014
8MB Tue Oct 14 17:28:23 2014
8MB Tue Oct 14 17:27:50 2014
8MB Tue Oct 14 17:27:25 2014

TTTTTT

1(+)

K <Cancel>

_images/start-screen.png
Which subject do you want to configure?

| rivacyidea)
W
F
K < Exit >

Configure privacyIDEA application stuff like administrator:

_images/backup2.png
Here you can define times, when to run a backup.

| dd new backup date}
1 daily backup job.
1 monthly backup job.

K <Cancel>

_images/manage-admins.png
You can select an existing administrator to either

delete it or change the password or create a new
admin

| dd new admin|
a

K <Cancel>

_images/token-view.png
privacylDEA | O TokenView = & UserView iEConfig Q Audit

& seriale |V types T active o descriptons | Y failcounter o user realm
@ Enroll Token OATHOO0OFBIE hotp comelius asdf
@ Import Tokens OATH0019B35 hotp root asdf
PIMO0000671B motp
total iokans: 1 SSHKOOOOFASF sshkey
TOTPOODOG7ES totp. root asdf

policies/ocra.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

OCRA policies

The scope ocra defines who is allowed to access the OCRA
methods. It controlls the access to the ocra_controller.

The following actions are available in the scope
ocra:

request

type: bool

The administrator is allowed to issue OCRA requests ocra/request.

status

type: bool

The administratpr is allowed to check the transaction status.

activationcode

type: bool

The administrator is allowed to create an activation code via
ocra/getActivationCode.

calcOTP

type: bool

The administrator is allowed to calculate OTP values via
ocra/calculateOTP.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_images/resolver2.png
privacylDEA [Tokens & Users = Machines | #Config Q Audit

=system DPolicies [Tokens SMachines =~ L Users @Reaims W CAs

Al Resolvers

New Resolvers

New Idapresolver

New sqlresolver

New scimresolver

Edit Passwd Resolver myusers

Resolver name

\ myusers| \

File name letcpassu ‘

_images/register-policy.png
Edit Policy register [E2 E229

Policy Name ~ register
f you change the name of the policy, it will create a new policy
with the new name!

Scope register ~

Action ¥

themis ‘The SMTP server configuration, that should be used to
smtpconfig send the registration email.
@ realm local Define in which realm the user should be registered.
“iresolver | jocalusers Define in which resolver the user should be registered.

User-Realm None Selected ~

User-Resolver None Selected ~

User | admin, superuser

ient 10.0.0.08, 110.0.0.124

_images/event-list.png
privacylDEA [Tokens & Users = Machines | #Config Q Audit

=system D Policies | WEvents [Tokens S Machines & Users @Realms WCAs

Create new Event Handler

Id Events Handlermodule Condition Action Options

5 [token_init'] UserNotification sendmail { "emailconfig”: "themis” }

_images/enroll_sms.png
Enroll a new token

‘ SMS: Send a One Time Password to the users mobile phone

The SMS Token sends an OTP value to the mobile phone of the user.
Token data
Phone number
Users phone number.
Description

Some nice words.

_images/CA-connectors.png
privacylDEA [Tokens & Users = Machines | #Config Q Audit

Smsystem O Policies [Tokens = Machines L Users @Reams = WCAs

All CA Connectors
New Connectors
New LOCAL CA Connector

Edit Local CA Connector myCA

Connectorname myCA
OpenSSL configfile | /home/comelius/src/privacyidealtests/testdatalcalopenssl.cf
CACertificate | /homelcomelius/srclprivacyidealteststestdatalcalcacert pem
CAKey | /homelcomelius/src/privacyidealtests/testdatalcalcakey.pem

Working Directory | /homelcomelius/srciprivacyidealtests/testdatalcal

Certificate Signing Request | /home/comelius/srelprivacyideateststestdatalcal
Directory

Certificate Directory Ihome/comelius/src/privacyidealtests/testdatalcal

_images/token-detail.png
privacyDEA | DTokenView & UserView iSConfig Q Audt

Alltokens,

Token details for OATHOOOOFB1E viewtoken in Auditiog

Type o
& Enroll Token
hetve
@ mport Tokens -]
vaxta 10
ot tokens: s
Failcountr o
orP Lengn o
count B
Gount window 10
Syne window 1000
Descrpton
o [
Reams o asar
Entr 1 OTP vae Entr sscond OTP vaue
Enter PN ortoen Enter PN again

Enter PIN and OTP to check the token.

Assgined User

Usemame comelius
Reaim asat
Resolver asat

User id 1009

_images/enroll_radius.png
Enroll a new token

RADIUS: Forward authentication request to a RADIUS server

‘The RADIUS token forwards the authentication request to another RADIUS server. You can choose if the PIN should be stripped and checked
localy.

Token data
() Check the PIN locally
RADIUS Server
your radius server:1812
‘The RADIUS server may include the port number.

RADIUS User

RADIUS Secret

_images/users.png
privacylDEA [Tokens | & Users = Machines % Config ~ Q Audit

Select Realm

realm1 v
Quick links
Edit realms

total users: 52

First | Previous 2 3 4 Next Last

username ¥ surname ¥ givenname Y email phone mobile description id
pulse daemon PulseAudio 15
hplip system user HPLIP 114
debian-spamd "7
gdm Display Manager Grome. 116
avahi mDNS daemon Avahi m
speech-dispatcher Dispatcher Speech 110
colord colour management daemon colord 13
lightdm Display Manager Light 12
nobody nobody 65534

policies/system.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

System policies

System policies are used to regulate the configuration of the system.
This is defining useridresolvers and realms, setting token defaults
and defining system configuration.

If no system policy is defined, each administrator is allowed
to do everything in the scope system.

Technically system policies controll if the administrator is able
to write to the database table Config or if the administrator
can use of the system_controller.
System policies are checked using the method getAuthorization
of the code_policy_class.

The user in the system policies refers to the administrator.

Note

System policies do not make use of realms!

Warning

Creating policies is an act of writing the
system configuration. So if you define admin policies
and do not define system policies, every administrator
can still change the policies! The recommended way is
to create your admin policies and then create the
system policies.

The following actions are available in the scope
system:

read

type: bool

The administrator is allowed to read the system configuration.
A token administrator might not be allowed to read system
configuration to avoid letting him know which realms and
userresolvers exist.

write

type: bool

The administrator is allowed to write system configuration.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_images/hotp.png
orivacylDEA 0 Tokens & Users = Machines = ##Config = Q Audit

Ssystem D Policies | [Tokens = Machines L Users @Reams M CAs

HOTP Token settings

o The HOTP Token is a event based one time password token. It is described in RFC 4226.
RADIUS Here you can define settings, that will be set as default values, when enrolling a HOTP token.
Default Hashlib
Remote
shat v
sMs

Yubico

_images/policies.png
privacyDEA O TokenView R UserView | iEConfig Q Audt

#ysem | OPolides | [Tokens Machine Resolvers & UserResolvers @ User Realms

Policy
Active Name Scope Action Realm User Resolver Cllent
Greate new Poll
v v usent user (“assign":true, disable”: tue, [asor | @ 1

“enrollHOTP": true) 1

_images/yubico.png
privacyIDEA | QTokens ~ R Users EMachines = #Config QAudit

Zsystem O Policies O Tokens =~ = Machines L Users @ Reams R cas

HOTP . .
Yubico Token settings
TOTP
The Yubico Token is a Yubikey that is registered with the YubiCloud service. The Yubikey emits a 44 character one time password. The
Uk first 12 characters are a unique ID which is used to bind the device to the user.
The authentication request is forwarded to the YubiCloud. For accessing the YubiCloud you need to enter an API Client ID and an API
RADIUS Key, which you can request here.
APl client ID
Remote
The client ID
SMs
API Key
TAR APIKey
EMall Yubico URL
Questionnaire https:/api.yubico.com/wsapi/2.0/verify

Yubico Save

Yubikey

_modules/privacyidea/lib/resolvers/PasswdIdResolver.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.resolvers.PasswdIdResolver

-*- coding: utf-8 -*-
#
#
2016-04-08 Cornelius Kölbel <cornelius@privacyidea.org>
Avoid consecutive if-statements
2014-10-03 fix getUsername function
Cornelius Kölbel <cornelius@privcyidea.org>
#
May, 08 2014 Cornelius Kölbel
http://www.privacyidea.org
#
product: LinOTP2
module: useridresolver
tool: PasswdIdResolver
edition: Comunity Edition
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
 Description: This file is part of the privacyidea service
 This module implements the communication interface
 for resolvin user info to the /etc/passwd user base

 Dependencies: -
"""

import re
import os
import logging
import crypt
import codecs

from UserIdResolver import UserIdResolver

log = logging.getLogger(__name__)
ENCODING = "utf-8"

def tokenise(r):
 def _(s):
 ret = None
 st = s.strip()
 m = re.match("^" + r, st)
 if m:
 ret = (st[:m.end()].strip(), st[m.end():].strip())
 return ret
 return _

[docs]class IdResolver (UserIdResolver):

 fields = {"username": 1, "userid": 1,
 "description": 0,
 "phone": 0, "mobile": 0, "email": 0,
 "givenname": 0, "surname": 0, "gender": 0
 }

 searchFields = {"username": "text",
 "userid": "numeric",
 "description": "text",
 "email": "text"
 }

 sF = {"username": 0,
 "cryptpass": 1,
 "userid": 2,
 "description": 4,
 "email": 4,
 }

 @staticmethod
[docs] def setup(config=None, cache_dir=None):
 """
 this setup hook is triggered, when the server
 starts to serve the first request

 :param config: the privacyidea config
 :type config: the privacyidea config dict
 """
 log.info("Setting up the PasswdResolver")
 return

 def __init__(self):
 """
 simple constructor
 """
 self.name = "etc-passwd"
 self.fileName = ""

 self.name = "P"
 self.nameDict = {}
 self.descDict = {}
 self.reversDict = {}
 self.passDict = {}
 self.officePhoneDict = {}
 self.homePhoneDict = {}
 self.surnameDict = {}
 self.givennameDict = {}
 self.emailDict = {}

[docs] def loadFile(self):

 """
 Loads the data of the file initially.
 if the self.fileName is empty, it loads /etc/passwd.
 Empty lines are ignored.
 """

 if self.fileName == "":
 self.fileName = "/etc/passwd"

 log.info('loading users from file {0!s} from within {1!r}'.format(self.fileName,
 os.getcwd()))
 with codecs.open(self.fileName, "r", ENCODING) as fileHandle:
 ID = self.sF["userid"]
 NAME = self.sF["username"]
 PASS = self.sF["cryptpass"]
 DESCRIPTION = self.sF["description"]

 for line in fileHandle:
 line = line.strip()
 if not line:
 # continue on an empty line
 continue

 fields = line.split(":", 7)
 self.nameDict[fields[NAME]] = fields[ID]

 # for speed reason - build a revers lookup
 self.reversDict[fields[ID]] = fields[NAME]

 # for full info store the line
 self.descDict[fields[ID]] = fields

 # store the crypted password
 self.passDict[fields[ID]] = fields[PASS]

 # store surname, givenname and phones
 descriptions = fields[DESCRIPTION].split(",")
 name = descriptions[0]
 names = name.split(' ', 1)
 self.givennameDict[fields[ID]] = names[0]
 self.surnameDict[fields[ID]] = ""
 self.officePhoneDict[fields[ID]] = ""
 self.homePhoneDict[fields[ID]] = ""
 self.emailDict[fields[ID]] = ""
 if len(names) >= 2:
 self.surnameDict[fields[ID]] = names[1]
 if len(descriptions) >= 4:
 self.officePhoneDict[fields[ID]] = descriptions[2]
 self.homePhoneDict[fields[ID]] = descriptions[3]
 if len(descriptions) >= 5:
 for field in descriptions[4:]:
 # very basic e-mail regex
 email_match = re.search('.+@.+\..+', field)
 if email_match:
 self.emailDict[fields[ID]] = email_match.group(0)

[docs] def checkPass(self, uid, password):
 """
 This function checks the password for a given uid.
 returns true in case of success
 false if password does not match

 We do not support shadow passwords. so the seconds column
 of the passwd file needs to contain the crypted password

 If the password is a unicode object, it is encoded according
 to ENCODING first.

 :param uid: The uid of the user
 :type uid: int
 :param password: The password in cleartext
 :type password: sting
 :return: True or False
 :rtype: bool
 """
 log.info("checking password for user uid {0!s}".format(uid))
 if isinstance(password, unicode):
 password = password.encode(ENCODING)
 cryptedpasswd = self.passDict[uid]
 log.debug("We found the crypted pass {0!s} for uid {1!s}".format(cryptedpasswd, uid))
 if cryptedpasswd:
 if cryptedpasswd in ['x', '*']:
 err = "Sorry, currently no support for shadow passwords"
 log.error("{0!s}".format(err))
 raise NotImplementedError(err)
 cp = crypt.crypt(password, cryptedpasswd)
 log.debug("crypted pass is {0!s}".format(cp))
 if crypt.crypt(password, cryptedpasswd) == cryptedpasswd:
 log.info("successfully authenticated user uid {0!s}".format(uid))
 return True
 else:
 log.warning("user uid {0!s} failed to authenticate".format(uid))
 return False
 else:
 log.warning("Failed to verify password. No crypted password "
 "found in file")
 return False

[docs] def getUserInfo(self, userId, no_passwd=False):
 """
 get some info about the user
 as we only have the loginId, we have to traverse the dict for the value

 :param userId: the to be searched user
 :param no_passwd: retrun no password
 :return: dict of user info
 """
 ret = {}

 if userId in self.reversDict:
 fields = self.descDict.get(userId)

 for key in self.sF:
 if no_passwd and key == "cryptpass":
 continue
 index = self.sF[key]
 ret[key] = fields[index]

 ret['givenname'] = self.givennameDict.get(userId)
 ret['surname'] = self.surnameDict.get(userId)
 ret['phone'] = self.homePhoneDict.get(userId)
 ret['mobile'] = self.officePhoneDict.get(userId)
 ret['email'] = self.emailDict.get(userId)

 return ret

[docs] def getUsername(self, userId):
 '''
 Returns the username/loginname for a given userid
 :param userid: The userid in this resolver
 :type userid: string
 :return: username
 :rtype: string
 '''
 fields = self.descDict.get(userId)
 index = self.sF["username"]
 return fields[index]

[docs] def getUserId(self, LoginName):
 """
 search the user id from the login name

 :param LoginName: the login of the user (as unicode)
 :return: the userId
 """
 # We do not encode the LoginName anymore, as we are
 # storing unicode in nameDict now.
 if LoginName in self.nameDict.keys():
 return self.nameDict[LoginName]
 else:
 return ""

[docs] def getSearchFields(self, searchDict=None):
 """
 show, which search fields this userIdResolver supports

 TODO: implementation is not completed

 :param searchDict: fields, which can be queried
 :type searchDict: dict
 :return: dict of all searchFields
 :rtype: dict
 """
 if searchDict is not None:
 for search in searchDict:
 pattern = searchDict[search]

 log.debug("searching for %s:%s",
 search, pattern)

 return self.searchFields

[docs] def getUserList(self, searchDict):
 """
 get a list of all users matching the search criteria of the searchdict

 :param searchDict: dict of search expressions
 """
 ret = []

 # first check if the searches are in the searchDict
 for l in self.descDict:
 line = self.descDict[l]
 ok = True

 for search in searchDict:

 if search not in self.searchFields:
 ok = False
 break

 pattern = searchDict[search]

 log.debug("searching for %s:%s", search, pattern)

 if search == "username":
 ok = self.checkUserName(line, pattern)
 elif search == "userid":
 ok = self.checkUserId(line, pattern)
 elif search == "description":
 ok = self.checkDescription(line, pattern)
 elif search == "email":
 ok = self.checkEmail(line, pattern)

 if ok is not True:
 break

 if ok is True:
 uid = line[self.sF["userid"]]
 info = self.getUserInfo(uid, no_passwd=True)
 ret.append(info)

 return ret

[docs] def checkUserName(self, line, pattern):
 """
 check for user name
 """

 username = line[self.sF["username"]]
 ret = self._stringMatch(username, pattern)
 return ret

 def checkDescription(self, line, pattern):
 description = line[self.sF["description"]]
 ret = self._stringMatch(description, pattern)
 return ret

 def checkEmail(self, line, pattern):
 email = line[self.sF["email"]]
 ret = self._stringMatch(email, pattern)
 return ret

 @staticmethod
 def _stringMatch(cString, cPattern):
 """
 internal function to match strings.

 :param cString: The string to match
 :param cPattern: the pattern
 :return: If the sting matches
 :rtype: bool
 """
 ret = False
 e = s = ""

 if type(cString) == unicode:
 cString = cString.encode(ENCODING)

 if type(cPattern) == unicode:
 cPattern = cPattern.encode(ENCODING)

 string = cString.lower()
 pattern = cPattern.lower()

 if pattern.startswith("*"):
 e = "e"
 pattern = pattern[1:]

 if pattern.endswith("*"):
 s = "s"
 pattern = pattern[:-1]

 if e == "e" and s == "s" and string.find(pattern) != -1:
 return True
 elif e == "e" and string.endswith(pattern):
 return True
 elif s == "s" and string.startswith(pattern):
 return True
 elif string == pattern:
 return True

 return ret

[docs] def checkUserId(self, line, pattern):
 """
 Check if a userid matches a pattern.
 A pattern can be "=1000", ">=1000",
 "<2000" or "between 1000,2000".

 :param line: the dictionary of a user
 :type line: dict
 :param pattern: match pattern with <, <=...
 :type pattern: string
 :return: True or False
 :rtype: bool
 """
 ret = False

 try:
 cUserId = int(line[self.sF["userid"]])
 except: # pragma: no cover
 return ret

 (op, val) = tokenise(">=|<=|>|<|=|between")(pattern)

 if op == "between":
 (lVal, hVal) = val.split(",", 2)
 try:
 ilVal = int(lVal.strip())
 ihVal = int(hVal.strip())
 if ihVal < ilVal:
 v = ihVal
 ihVal = ilVal
 ilVal = v
 except: # pragma: no cover
 return ret

 if ilVal <= cUserId <= ihVal:
 ret = True
 else:
 try:
 ival = int(val)
 except: # pragma: no cover
 return ret

 if op == "=" and cUserId == ival:
 ret = True

 elif op == ">" and cUserId > ival:
 ret = True

 elif op == ">=" and cUserId >= ival:
 ret = True

 elif op == "<" and cUserId < ival:
 ret = True

 elif op == "<=" and cUserId <= ival:
 ret = True

 return ret

###
server info methods
###
[docs] def getResolverId(self):
 """
 return the resolver identifier string, which in fact is
 filename, where it points to.
 """
 return self.fileName

 @staticmethod
 def getResolverClassType():
 return 'passwdresolver'

 @staticmethod
 def getResolverType():
 return IdResolver.getResolverClassType()

 @classmethod
[docs] def getResolverClassDescriptor(cls):
 '''
 return the descriptor of the resolver, which is
 - the class name and
 - the config description

 :return: resolver description dict
 :rtype: dict
 '''
 descriptor = {}
 typ = cls.getResolverClassType()
 descriptor['clazz'] = "useridresolver.PasswdIdResolver.IdResolver"
 descriptor['config'] = {'fileName': 'string'}
 return {typ: descriptor}

 @staticmethod
 def getResolverDescriptor():
 return IdResolver.getResolverClassDescriptor()

[docs] def loadConfig(self, config):
 """ loadConfig(configDict)
 The UserIdResolver could be configured
 from the pylons app config - here
 this could be the passwd file ,
 whether it is /etc/passwd or /etc/shadow
 """
 self.fileName = config.get("fileName", config.get("filename"))
 self.loadFile()

 return self

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/resolvers/UserIdResolver.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.resolvers.UserIdResolver

-*- coding: utf-8 -*-
#
2015-06-05 Cornelius Kölbel <cornelius@privacyidea.org>
Add interface to edit and add users
Dec 01, 2014 Cornelius Kölbel <cornelius@privacyidea.org>
Migration to flask
Adapt methods for tests
Improve comments
100% test code coverage
2014-10-03 fix getUsername function
Cornelius Kölbel <cornelius@privcyidea.org>
May, 08 2014 Cornelius Kölbel
http://www.privacyidea.org
#
product: LinOTP2
module: useridresolver
tool: UserIdResolver
edition: Comunity Edition
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This module implements the communication interface
for resolving user info to the user base

Defines the rough interface for a UserId Resolver
== a UserId Resolver is required to resolve the
 Login Name to an unique User Identifier

- for /etc/passwd this will be the uid
- for ldap this might be the DN
- for SQL the unique index (what's the right name here (tm))

"""

[docs]class UserIdResolver(object):

 fields = {"username": 1, "userid": 1,
 "description": 0,
 "phone": 0, "mobile": 0, "email": 0,
 "givenname": 0, "surname": 0, "gender": 0
 }
 name = ""
 id = "baseid"

 # If the resolver could be configured editable
 updateable = False

[docs] def close(self):
 """
 Hook to close down the resolver after one request
 """
 return

 @staticmethod
[docs] def getResolverClassType():
 """
 provide the resolver type for registration
 """
 return 'UserIdResolver'

 @staticmethod
[docs] def getResolverType():
 """
 getResolverType - return the type of the resolver

 :return: returns the string 'ldapresolver'
 :rtype: string
 """
 return 'UserIdResolver'

 @classmethod
[docs] def getResolverClassDescriptor(cls):
 """
 return the descriptor of the resolver, which is
 - the class name and
 - the config description

 :return: resolver description dict
 :rtype: dict
 """
 descriptor = {}
 typ = cls.getResolverClassType()
 descriptor['clazz'] = "useridresolver.UserIdResolver"
 descriptor['config'] = {}
 return {typ: descriptor}

 @staticmethod
[docs] def getResolverDescriptor():
 """
 return the descriptor of the resolver, which is
 - the class name and
 - the config description

 :return: resolver description dict
 :rtype: dict
 """
 return UserIdResolver.getResolverClassDescriptor()

[docs] def getUserId(self, loginName):
 """
 The loginname is resolved to a user_id.
 Depending on the resolver type the user_id can
 be an ID (like in /etc/passwd) or a string (like
 the DN in LDAP)

 It needs to return an emptry string, if the user does
 not exist.

 :param loginName: The login name of the user
 :type loginName: sting
 :return: The ID of the user
 :rtype: string or int
 """
 return "dummy_user_id"

[docs] def getUsername(self, userid):
 """
 Returns the username/loginname for a given userid
 :param userid: The userid in this resolver
 :type userid: string
 :return: username
 :rtype: string
 """
 return "dummy_user_name"

[docs] def getUserInfo(self, userid):
 """
 This function returns all user information for a given user object
 identified by UserID.
 :param userid: ID of the user in the resolver
 :type userid: int or string
 :return: dictionary, if no object is found, the dictionary is empty
 :rtype: dict
 """
 return {}

[docs] def getUserList(self, searchDict=None):
 """
 This function finds the user objects,
 that have the term 'value' in the user object field 'key'

 :param searchDict: dict with key values of user attributes -
 the key may be something like 'loginname' or 'email'
 the value is a regular expression.
 :type searchDict: dict

 :return: list of dictionaries (each dictionary contains a
 user object) or an empty string if no object is found.
 :rtype: list of dicts
 """
 searchDict = searchDict or {}
 return [{}]

[docs] def getResolverId(self):
 """
 get resolver specific information
 :return: the resolver identifier string - empty string if not exist
 """
 return self.id

[docs] def loadConfig(self, config):
 """
 Load the configuration from the dict into the Resolver object.
 If attributes are missing, need to set default values.
 If required attributes are missing, this should raise an
 Exception.

 :param config: The configuration values of the resolver
 :type config: dict
 """
 return self

[docs] def checkPass(self, uid, password):
 """
 This function checks the password for a given uid.
 returns true in case of success
 false if password does not match

 :param uid: The uid in the resolver
 :type uid: string or int
 :param password: the password to check. Usually in cleartext
 :type password: string
 :return: True or False
 :rtype: bool
 """
 return False

[docs] def add_user(self, attributes=None):
 """
 Add a new user in the useridresolver.
 This is only possible, if the UserIdResolver supports this and if
 we have write access to the user store.

 :param username: The login name of the user
 :type username: basestring
 :param attributes: Attributes according to the attribute mapping
 :return: The new UID of the user. The UserIdResolver needs to
 determine the way how to create the UID.
 """
 attributes = attributes or {}
 return None

[docs] def delete_user(self, uid):
 """
 Delete a user from the useridresolver.
 The user is referenced by the user id.
 :param uid: The uid of the user object, that should be deleted.
 :type uid: basestring
 :return: Returns True in case of success
 :rtype: bool
 """
 return None

[docs] def update_user(self, uid, attributes=None):
 """
 Update an existing user.
 This function is also used to update the password. Since the
 attribute mapping know, which field contains the password,
 this function can also take care for password changing.

 Attributes that are not contained in the dict attributes are not
 modified.

 :param uid: The uid of the user object in the resolver.
 :type uid: basestring
 :param attributes: Attributes to be updated.
 :type attributes: dict
 :return: True in case of success
 """
 attributes = attributes or {}
 return None

 @staticmethod
[docs] def testconnection(param):
 """
 This function lets you test if the parameters can be used to create a
 working resolver.
 The implementation should try to connect to the user store and verify
 if users can be retrieved.
 In case of success it should return a text like
 "Resolver config seems OK. 123 Users found."

 param param: The parameters that should be saved as the resolver
 type param: dict
 return: returns True in case of success and a descriptive text
 rtype: tuple
 """
 success = False
 desc = "Not implemented"
 return success, desc

 @property
 def editable(self):
 """
 Return true, if the Instance! of this resolver is configured editable.
 :return:
 """
 return False

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/resolvers/LDAPIdResolver.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.resolvers.LDAPIdResolver

-*- coding: utf-8 -*-
Copyright (C) 2014 Cornelius Kölbel
contact: corny@cornelinux.de
#
2017-07-20 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Fix unicode usernames
2017-01-23 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add certificate verification
2017-01-07 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Use get_info=ldap3.NONE for binds to avoid querying of subschema
Remove LDAPFILTER and self.reversefilter
2016-07-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Adding getUserId cache.
2016-04-13 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add object_classes and dn_composition to configuration
to allow flexible user_add
2016-04-10 Martin Wheldon <martin.wheldon@greenhills-it.co.uk>
Allow user accounts held in LDAP to be edited, providing
that the account they are using has permission to edit
those attributes in the LDAP directory
2016-02-22 Salvo Rapisarda
Allow objectGUID to be a users attribute
2016-02-19 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Allow objectGUID to be the uid.
2015-10-05 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Remove reverse_map, so that one LDAP field can map
to several privacyIDEA fields.
2015-04-16 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add redundancy with LDAP3 Server pools. Round Robin Strategy
2015-04-15 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Increase test coverage
2014-12-25 Cornelius Kölbel <cornelius@privacyidea.org>
Rewrite for flask migration
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """This is the resolver to find users in LDAP directories like
OpenLDAP and Active Directory.

The file is tested in tests/test_lib_resolver.py
"""

import logging
import yaml
import functools

from UserIdResolver import UserIdResolver

import ldap3
from ldap3 import MODIFY_REPLACE, MODIFY_ADD, MODIFY_DELETE
from ldap3 import Server, Tls, Connection
import ssl

import os.path

import traceback

import hashlib
import binascii
from privacyidea.lib.crypto import urandom, geturandom
from privacyidea.lib.utils import is_true
import datetime

from privacyidea.lib import _
from privacyidea.lib.utils import to_utf8, to_unicode
from privacyidea.lib.error import privacyIDEAError
import uuid
from ldap3.utils.conv import escape_bytes

CACHE = {}

log = logging.getLogger(__name__)
ENCODING = "utf-8"
The number of rounds the resolver tries to reach a responding server in the
pool
SERVERPOOL_ROUNDS = 2
The number of seconds a non-responding server is removed from the server pool
SERVERPOOL_SKIP = 30
1 sec == 10^9 nano secs == 10^7 * (100 nano secs)
MS_AD_MULTIPLYER = 10 ** 7
MS_AD_START = datetime.datetime(1601, 1, 1)

if os.path.isfile("/etc/privacyidea/ldap-ca.crt"):
 DEFAULT_CA_FILE = "/etc/privacyidea/ldap-ca.crt"
elif os.path.isfile("/etc/ssl/certs/ca-certificates.crt"):
 DEFAULT_CA_FILE = "/etc/ssl/certs/ca-certificates.crt"
elif os.path.isfile("/etc/ssl/certs/ca-bundle.crt"):
 DEFAULT_CA_FILE = "/etc/ssl/certs/ca-bundle.crt"
else:
 DEFAULT_CA_FILE = "/etc/privacyidea/ldap-ca.crt"

def get_ad_timestamp_now():
 """
 returns the current UTC time as it is used in Active Directory in the
 attribute accountExpires.
 This is 100-nano-secs since 1.1.1601

 :return: time
 :rtype: int
 """
 utc_now = datetime.datetime.utcnow()
 elapsed_time = utc_now - MS_AD_START
 total_seconds = elapsed_time.total_seconds()
 # convert this to (100 nanoseconds)
 return int(MS_AD_MULTIPLYER * total_seconds)

def trim_objectGUID(userId):
 userId = uuid.UUID(u"{{{0!s}}}".format(userId)).bytes_le
 userId = escape_bytes(userId)
 return userId

def get_info_configuration(noschemas):
 """
 Given the value of the NOSCHEMAS config option, return the value that should
 be passed as ldap3's `get_info` argument.
 :param noschemas: a boolean
 :return: one of ldap3.SCHEMA or ldap3.NONE
 """
 get_schema_info = ldap3.SCHEMA
 if noschemas:
 get_schema_info = ldap3.NONE
 log.debug("Get LDAP schema info: {0!r}".format(get_schema_info))
 return get_schema_info

def cache(func):
 """
 cache the user with his loginname, resolver and UID in a local
 dictionary cache.
 This is a per process cache.
 """
 @functools.wraps(func)
 def cache_wrapper(self, *args, **kwds):
 # If it does not exist, create the node for this instance
 resolver_id = self.getResolverId()
 if not resolver_id in CACHE:
 CACHE[resolver_id] = {"getUserId": {},
 "getUserInfo": {},
 "_getDN": {}}

 # get the portion of the cache for this very LDAP resolver
 r_cache = CACHE.get(resolver_id).get(func.func_name)
 if args[0] in r_cache and \
 datetime.datetime.now() < r_cache[args[0]][
 "timestamp"] + \
 datetime.timedelta(seconds=self.cache_timeout):
 log.debug("Reading {0!r} from cache for {1!r}".format(args[0],
 func.func_name))
 return r_cache[args[0]]["value"]

 f_result = func(self, *args, **kwds)
 # now we cache the result
 CACHE[resolver_id][func.func_name][args[0]] = {
 "value": f_result,
 "timestamp": datetime.datetime.now()}

 return f_result

 return cache_wrapper

class AUTHTYPE(object):
 SIMPLE = "Simple"
 SASL_DIGEST_MD5 = "SASL Digest-MD5"
 NTLM = "NTLM"

[docs]class IdResolver (UserIdResolver):

 # If the resolver could be configured editable
 updateable = True

 def __init__(self):
 self.i_am_bound = False
 self.uri = ""
 self.basedn = ""
 self.binddn = ""
 self.bindpw = ""
 self.object_classes = []
 self.dn_template = ""
 self.timeout = 5.0 # seconds!
 self.sizelimit = 500
 self.loginname_attribute = [""]
 self.searchfilter = u""
 self.userinfo = {}
 self.uidtype = ""
 self.noreferrals = False
 self._editable = False
 self.resolverId = self.uri
 self.scope = ldap3.SUBTREE
 self.cache_timeout = 120
 self.tls_context = None
 self.start_tls = False
 self.serverpool_rounds = SERVERPOOL_ROUNDS
 self.serverpool_skip = SERVERPOOL_SKIP

[docs] def checkPass(self, uid, password):
 """
 This function checks the password for a given uid.
 - returns true in case of success
 - false if password does not match

 """
 if self.authtype == AUTHTYPE.NTLM: # pragma: no cover
 # fetch the PreWindows 2000 Domain from the self.binddn
 # which would be of the format DOMAIN\username and compose the
 # bind_user to DOMAIN\sAMAcountName
 domain_name = self.binddn.split('\\')[0]
 uinfo = self.getUserInfo(uid)
 # In fact we need the sAMAccountName. If the username mapping is
 # another attribute than the sAMAccountName the authentication
 # will fail!
 bind_user = u"{0!s}\{1!s}".format(domain_name, uinfo.get("username"))
 else:
 bind_user = self._getDN(uid)

 server_pool = self.get_serverpool(self.uri, self.timeout,
 get_info=ldap3.NONE,
 tls_context=self.tls_context,
 rounds=self.serverpool_rounds,
 exhaust=self.serverpool_skip)

 try:
 log.debug("Authtype: {0!r}".format(self.authtype))
 log.debug("user : {0!r}".format(bind_user))
 # Whatever happens. If we have an empty bind_user, we must break
 # since we must avoid anonymous binds!
 if not bind_user or len(bind_user) < 1:
 raise Exception("No valid user. Empty bind_user.")
 l = self.create_connection(authtype=self.authtype,
 server=server_pool,
 user=bind_user,
 password=password,
 receive_timeout=self.timeout,
 auto_referrals=not self.noreferrals,
 start_tls=self.start_tls)
 r = l.bind()
 log.debug("bind result: {0!r}".format(r))
 if not r:
 raise Exception("Wrong credentials")
 log.debug("bind seems successful.")
 l.unbind()
 log.debug("unbind successful.")
 except Exception as e:
 log.warning("failed to check password for {0!r}/{1!r}: {2!r}".format(uid, bind_user, e))
 log.debug(traceback.format_exc())
 return False

 return True

 def _trim_result(self, result_list):
 """
 The resultlist can contain entries of type:searchResEntry and of
 type:searchResRef. If self.noreferrals is true, all type:searchResRef
 will be removed.

 :param result_list: The result list of a LDAP search
 :type result_list: resultlist (list of dicts)
 :return: new resultlist
 """
 if self.noreferrals:
 new_list = []
 for result in result_list:
 if result.get("type") == "searchResEntry":
 new_list.append(result)
 elif result.get("type") == "searchResRef":
 # This is a Referral
 pass
 else:
 new_list = result_list

 return new_list

 @staticmethod
 def _escape_loginname(loginname):
 """
 This function escapes the loginname according to
 https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx
 This is to avoid username guessing by trying to login as user
 a*
 ac*
 ach*
 achm*
 achme*
 achemd*

 :param loginname: The loginname
 :return: The escaped loginname
 """
 return loginname.replace("\\", "\\5c").replace("*", "\\2a").replace(
 "(", "\\28").replace(")", "\\29").replace("/", "\\2f")

 @staticmethod
 def _get_uid(entry, uidtype):
 uid = None
 if uidtype.lower() == "dn":
 uid = entry.get("dn")
 else:
 attributes = entry.get("attributes")
 if type(attributes.get(uidtype)) == list:
 uid = attributes.get(uidtype)[0]
 else:
 uid = attributes.get(uidtype)
 return uid

 def _trim_user_id(self, userId):
 """
 If we search for the objectGUID we can not search for the normal
 string representation but we need to search for the bytestring in AD.
 :param userId: The userId
 :return: the trimmed userId
 """
 if self.uidtype == "objectGUID":
 userId = trim_objectGUID(userId)
 return userId

 @cache
 def _getDN(self, userId):
 """
 This function returns the DN of a userId.
 Therefor it evaluates the self.uidtype.

 :param userId: The userid of a user
 :type userId: string

 :return: The DN of the object.
 """
 dn = ""
 if self.uidtype.lower() == "dn":
 dn = userId
 else:
 # get the DN for the Object
 self._bind()
 search_userId = self._trim_user_id(userId)
 filter = u"(&{0!s}({1!s}={2!s}))".format(self.searchfilter,
 self.uidtype,
 search_userId)
 self.l.search(search_base=self.basedn,
 search_scope=self.scope,
 search_filter=filter,
 attributes=self.userinfo.values())
 r = self.l.response
 r = self._trim_result(r)
 if len(r) > 1: # pragma: no cover
 raise Exception("Found more than one object for uid {0!r}".format(userId))
 elif len(r) == 1:
 dn = r[0].get("dn")
 else:
 log.info("The filter {0!r} returned no DN.".format(filter))

 return dn

 def _bind(self):
 if not self.i_am_bound:
 server_pool = self.get_serverpool(self.uri, self.timeout,
 get_info=self.get_info,
 tls_context=self.tls_context,
 rounds=self.serverpool_rounds,
 exhaust=self.serverpool_skip)
 self.l = self.create_connection(authtype=self.authtype,
 server=server_pool,
 user=self.binddn,
 password=self.bindpw,
 receive_timeout=self.timeout,
 auto_referrals=not
 self.noreferrals,
 start_tls=self.start_tls)
 #log.error("LDAP Server Pool States: %s" % server_pool.pool_states)
 if not self.l.bind():
 raise Exception("Wrong credentials")
 self.i_am_bound = True

 @cache
[docs] def getUserInfo(self, userId):
 """
 This function returns all user info for a given userid/object.

 :param userId: The userid of the object
 :type userId: string
 :return: A dictionary with the keys defined in self.userinfo
 :rtype: dict
 """
 ret = {}
 self._bind()

 if self.uidtype.lower() == "dn":
 # encode utf8, so that also german ulauts work in the DN
 self.l.search(search_base=to_utf8(userId),
 search_scope=self.scope,
 search_filter=u"(&" + self.searchfilter + u")",
 attributes=self.userinfo.values())
 else:
 search_userId = to_unicode(self._trim_user_id(userId))
 filter = u"(&{0!s}({1!s}={2!s}))".format(self.searchfilter,
 self.uidtype,
 search_userId)
 self.l.search(search_base=self.basedn,
 search_scope=self.scope,
 search_filter=filter,
 attributes=self.userinfo.values())

 r = self.l.response
 r = self._trim_result(r)
 if len(r) > 1: # pragma: no cover
 raise Exception("Found more than one object for uid {0!r}".format(userId))

 for entry in r:
 attributes = entry.get("attributes")
 ret = self._ldap_attributes_to_user_object(attributes)

 return ret

 def _ldap_attributes_to_user_object(self, attributes):
 """
 This helper function converts the LDAP attributes to a dictionary for
 the privacyIDEA user. The LDAP Userinfo mapping is used to do so.

 :param attributes:
 :return: dict with privacyIDEA users.
 """
 ret = {}
 for ldap_k, ldap_v in attributes.items():
 for map_k, map_v in self.userinfo.items():
 if ldap_k == map_v:
 if ldap_k == "objectGUID":
 ret[map_k] = ldap_v[0]
 elif type(ldap_v) == list and map_k not in ["mobile"]:
 # All lists (except) mobile return the first value as
 # a string. Mobile is returned as a list
 if ldap_v:
 ret[map_k] = ldap_v[0]
 else:
 ret[map_k] = ""
 else:
 ret[map_k] = ldap_v
 return ret

[docs] def getUsername(self, user_id):
 """
 Returns the username/loginname for a given user_id
 :param user_id: The user_id in this resolver
 :type user_id: string
 :return: username
 :rtype: string
 """
 info = self.getUserInfo(user_id)
 return info.get('username', "")

 @cache
[docs] def getUserId(self, LoginName):
 """
 resolve the loginname to the userid.

 :param LoginName: The login name from the credentials
 :type LoginName: string
 :return: UserId as found for the LoginName
 """
 userid = ""
 self._bind()
 LoginName = to_unicode(LoginName)
 login_name = self._escape_loginname(LoginName)

 if len(self.loginname_attribute) > 1:
 loginname_filter = u""
 for l_attribute in self.loginname_attribute:
 loginname_filter += u"({!s}={!s})".format(l_attribute.strip(),
 login_name)
 loginname_filter = u"|" + loginname_filter
 else:
 loginname_filter = u"{!s}={!s}".format(self.loginname_attribute[0],
 login_name)

 log.debug("login name filter: {!r}".format(loginname_filter))
 filter = u"(&{0!s}({1!s}))".format(self.searchfilter, loginname_filter)

 # create search attributes
 attributes = self.userinfo.values()
 if self.uidtype.lower() != "dn":
 attributes.append(str(self.uidtype))

 log.debug("Searching user {0!r} in LDAP.".format(LoginName))
 self.l.search(search_base=self.basedn,
 search_scope=self.scope,
 search_filter=filter,
 attributes=attributes)

 r = self.l.response
 r = self._trim_result(r)
 if len(r) > 1: # pragma: no cover
 raise Exception("Found more than one object for Loginname {0!r}".format(
 LoginName))

 for entry in r:
 userid = self._get_uid(entry, self.uidtype)

 return userid

[docs] def getUserList(self, searchDict):
 """
 :param searchDict: A dictionary with search parameters
 :type searchDict: dict
 :return: list of users, where each user is a dictionary
 """
 ret = []
 self._bind()
 attributes = self.userinfo.values()
 ad_timestamp = get_ad_timestamp_now()
 if self.uidtype.lower() != "dn":
 attributes.append(str(self.uidtype))

 # do the filter depending on the searchDict
 filter = u"(&" + self.searchfilter
 for search_key in searchDict.keys():
 # convert to unicode
 searchDict[search_key] = to_unicode(searchDict[search_key])
 if search_key == "accountExpires":
 comperator = ">="
 if searchDict[search_key] in ["1", 1]:
 comperator = "<="
 filter += u"(&({0!s}{1!s}{2!s})(!({3!s}=0)))".format(
 self.userinfo[search_key], comperator,
 get_ad_timestamp_now(), self.userinfo[search_key])
 else:
 filter += u"({0!s}={1!s})".format(self.userinfo[search_key],
 searchDict[search_key])
 filter += ")"

 g = self.l.extend.standard.paged_search(search_base=self.basedn,
 search_filter=filter,
 search_scope=self.scope,
 attributes=attributes,
 paged_size=100,
 size_limit=self.sizelimit,
 generator=True)
 # returns a generator of dictionaries
 for entry in g:
 # Simple fix for ignored sizelimit with Active Directory
 if len(ret) >= self.sizelimit:
 break
 try:
 attributes = entry.get("attributes")
 user = self._ldap_attributes_to_user_object(attributes)
 user['userid'] = self._get_uid(entry, self.uidtype)
 ret.append(user)
 except Exception as exx: # pragma: no cover
 log.error("Error during fetching LDAP objects: {0!r}".format(exx))
 log.debug("{0!s}".format(traceback.format_exc()))

 return ret

[docs] def getResolverId(self):
 """
 Returns the resolver Id
 This should be an Identifier of the resolver, preferable the type
 and the name of the resolver.
 """
 s = u"{0!s}{1!s}{2!s}{3!s}".format(self.uri, self.basedn,
 self.searchfilter, self.userinfo)
 r = binascii.hexlify(hashlib.sha1(s.encode("utf-8")).digest())
 return r

 @staticmethod
 def getResolverClassType():
 return 'ldapresolver'

 @staticmethod
 def getResolverDescriptor():
 return IdResolver.getResolverClassDescriptor()

 @staticmethod
 def getResolverType():
 return IdResolver.getResolverClassType()

[docs] def loadConfig(self, config):
 """
 Load the config from conf.

 :param config: The configuration from the Config Table
 :type config: dict

 '#ldap_uri': 'LDAPURI',
 '#ldap_basedn': 'LDAPBASE',
 '#ldap_binddn': 'BINDDN',
 '#ldap_password': 'BINDPW',
 '#ldap_timeout': 'TIMEOUT',
 '#ldap_sizelimit': 'SIZELIMIT',
 '#ldap_loginattr': 'LOGINNAMEATTRIBUTE',
 '#ldap_searchfilter': 'LDAPSEARCHFILTER',
 '#ldap_mapping': 'USERINFO',
 '#ldap_uidtype': 'UIDTYPE',
 '#ldap_noreferrals' : 'NOREFERRALS',
 '#ldap_editable' : 'EDITABLE',
 '#ldap_certificate': 'CACERTIFICATE',

 """
 self.uri = config.get("LDAPURI")
 self.basedn = config.get("LDAPBASE")
 self.binddn = config.get("BINDDN")
 # object_classes is a comma separated list like
 # ["top", "person", "organizationalPerson", "user", "inetOrgPerson"]
 self.object_classes = [cl.strip() for cl in config.get("OBJECT_CLASSES", "").split(",")]
 self.dn_template = config.get("DN_TEMPLATE", "")
 self.bindpw = config.get("BINDPW")
 self.timeout = float(config.get("TIMEOUT", 5))
 self.cache_timeout = int(config.get("CACHE_TIMEOUT", 120))
 self.sizelimit = int(config.get("SIZELIMIT", 500))
 self.loginname_attribute = config.get("LOGINNAMEATTRIBUTE","").split(",")
 self.searchfilter = config.get("LDAPSEARCHFILTER")
 userinfo = config.get("USERINFO", "{}")
 self.userinfo = yaml.safe_load(userinfo)
 self.userinfo["username"] = self.loginname_attribute[0]
 self.map = yaml.safe_load(userinfo)
 self.uidtype = config.get("UIDTYPE", "DN")
 self.noreferrals = is_true(config.get("NOREFERRALS", False))
 self.start_tls = is_true(config.get("START_TLS", False))
 self.get_info = get_info_configuration(is_true(config.get("NOSCHEMAS", False)))
 self._editable = config.get("EDITABLE", False)
 self.scope = config.get("SCOPE") or ldap3.SUBTREE
 self.resolverId = self.uri
 self.authtype = config.get("AUTHTYPE", AUTHTYPE.SIMPLE)
 self.tls_verify = is_true(config.get("TLS_VERIFY", False))
 # Fallback to TLSv1. (int: 3, TLSv1.1: 4, v1.2: 5)
 self.tls_version = int(config.get("TLS_VERSION") or ssl.PROTOCOL_TLSv1)

 self.tls_ca_file = config.get("TLS_CA_FILE") or DEFAULT_CA_FILE
 if self.tls_verify and (self.uri.lower().startswith("ldaps") or
 self.start_tls):
 self.tls_context = Tls(validate=ssl.CERT_REQUIRED,
 version=self.tls_version,
 ca_certs_file=self.tls_ca_file)
 else:
 self.tls_context = None
 self.serverpool_rounds = int(config.get("SERVERPOOL_ROUNDS") or SERVERPOOL_ROUNDS)
 self.serverpool_skip = int(config.get("SERVERPOOL_SKIP") or SERVERPOOL_SKIP)

 return self

 @staticmethod
[docs] def split_uri(uri):
 """
 Splits LDAP URIs like:
 * ldap://server
 * ldaps://server
 * ldap[s]://server:1234
 * server
 :param uri: The LDAP URI
 :return: Returns a tuple of Servername, Port and SSL(bool)
 """
 port = None
 ssl = False
 ldap_elems = uri.split(":")
 if len(ldap_elems) == 3:
 server = ldap_elems[1].strip("/")
 port = int(ldap_elems[2])
 if ldap_elems[0].lower() == "ldaps":
 ssl = True
 else:
 ssl = False
 elif len(ldap_elems) == 2:
 server = ldap_elems[1].strip("/")
 port = None
 if ldap_elems[0].lower() == "ldaps":
 ssl = True
 else:
 ssl = False
 else:
 server = uri

 return server, port, ssl

 @classmethod
[docs] def get_serverpool(cls, urilist, timeout, get_info=None, tls_context=None, rounds=SERVERPOOL_ROUNDS,
 exhaust=SERVERPOOL_SKIP):
 """
 This create the serverpool for the ldap3 connection.
 The URI from the LDAP resolver can contain a comma separated list of
 LDAP servers. These are split and then added to the pool.

 See
 https://github.com/cannatag/ldap3/blob/master/docs/manual/source/servers.rst#server-pool

 :param urilist: The list of LDAP URIs, comma separated
 :type urilist: basestring
 :param timeout: The connection timeout
 :type timeout: float
 :param get_info: The get_info type passed to the ldap3.Sever
 constructor. default: ldap3.SCHEMA, should be ldap3.NONE in case
 of a bind.
 :param tls_context: A ldap3.tls object, which defines if certificate
 verification should be performed
 :param rounds: The number of rounds we should cycle through the server pool
 before giving up
 :param exhaust: The seconds, for how long a non-reachable server should be
 removed from the serverpool
 :return: Server Pool
 :rtype: LDAP3 Server Pool Instance
 """
 get_info = get_info or ldap3.SCHEMA
 server_pool = ldap3.ServerPool(None, ldap3.ROUND_ROBIN,
 active=rounds,
 exhaust=exhaust)
 for uri in urilist.split(","):
 uri = uri.strip()
 host, port, ssl = cls.split_uri(uri)
 server = ldap3.Server(host, port=port,
 use_ssl=ssl,
 connect_timeout=float(timeout),
 get_info=get_info,
 tls=tls_context)
 server_pool.add(server)
 log.debug("Added {0!s}, {1!s}, {2!s} to server pool.".format(host, port, ssl))
 return server_pool

 @classmethod
[docs] def getResolverClassDescriptor(cls):
 """
 return the descriptor of the resolver, which is
 - the class name and
 - the config description

 :return: resolver description dict
 :rtype: dict
 """
 descriptor = {}
 typ = cls.getResolverType()
 descriptor['clazz'] = "useridresolver.LDAPIdResolver.IdResolver"
 descriptor['config'] = {'LDAPURI': 'string',
 'LDAPBASE': 'string',
 'BINDDN': 'string',
 'BINDPW': 'password',
 'TIMEOUT': 'int',
 'SIZELIMIT': 'int',
 'LOGINNAMEATTRIBUTE': 'string',
 'LDAPSEARCHFILTER': 'string',
 'USERINFO': 'string',
 'UIDTYPE': 'string',
 'NOREFERRALS': 'bool',
 'NOSCHEMAS': 'bool',
 'CACERTIFICATE': 'string',
 'EDITABLE': 'bool',
 'SCOPE': 'string',
 'AUTHTYPE': 'string',
 'TLS_VERIFY': 'bool',
 'TLS_VERSION': 'int',
 'TLS_CA_FILE': 'string',
 'START_TLS': 'bool',
 'CACHE_TIMEOUT': 'int',
 'SERVERPOOL_ROUNDS': 'int',
 'SERVERPOOL_SKIP': 'int',
 'OBJECT_CLASSES': 'string',
 'DN_TEMPLATE': 'string'}
 return {typ: descriptor}

 @classmethod
[docs] def testconnection(cls, param):
 """
 This function lets you test the to be saved LDAP connection.

 :param param: A dictionary with all necessary parameter to test
 the connection.
 :type param: dict

 :return: Tuple of success and a description
 :rtype: (bool, string)

 Parameters are:
 BINDDN, BINDPW, LDAPURI, TIMEOUT, LDAPBASE, LOGINNAMEATTRIBUTE,
 LDAPSEARCHFILTER, USERINFO, SIZELIMIT, NOREFERRALS, CACERTIFICATE,
 AUTHTYPE, TLS_VERIFY, TLS_VERSION, TLS_CA_FILE, SERVERPOOL_ROUNDS, SERVERPOOL_SKIP
 """
 success = False
 uidtype = param.get("UIDTYPE")
 timeout = float(param.get("TIMEOUT", 5))
 ldap_uri = param.get("LDAPURI")
 size_limit = int(param.get("SIZELIMIT", 500))
 serverpool_rounds = int(param.get("SERVERPOOL_ROUNDS") or SERVERPOOL_ROUNDS)
 serverpool_skip = int(param.get("SERVERPOOL_SKIP") or SERVERPOOL_SKIP)
 if is_true(param.get("TLS_VERIFY")) \
 and (ldap_uri.lower().startswith("ldaps") or
 param.get("START_TLS")):
 tls_version = int(param.get("TLS_VERSION") or ssl.PROTOCOL_TLSv1)
 tls_ca_file = param.get("TLS_CA_FILE") or DEFAULT_CA_FILE
 tls_context = Tls(validate=ssl.CERT_REQUIRED,
 version=tls_version,
 ca_certs_file=tls_ca_file)
 else:
 tls_context = None
 get_info = get_info_configuration(is_true(param.get("NOSCHEMAS")))
 try:
 server_pool = cls.get_serverpool(ldap_uri, timeout,
 tls_context=tls_context,
 get_info=get_info,
 rounds=serverpool_rounds,
 exhaust=serverpool_skip)
 l = cls.create_connection(authtype=param.get("AUTHTYPE",
 AUTHTYPE.SIMPLE),
 server=server_pool,
 user=param.get("BINDDN"),
 password=param.get("BINDPW"),
 receive_timeout=timeout,
 auto_referrals=not param.get(
 "NOREFERRALS"),
 start_tls=param.get("START_TLS", False))
 #log.error("LDAP Server Pool States: %s" % server_pool.pool_states)
 if not l.bind():
 raise Exception("Wrong credentials")
 # create searchattributes
 attributes = yaml.safe_load(param["USERINFO"]).values()
 if uidtype.lower() != "dn":
 attributes.append(str(uidtype))
 # search for users...
 g = l.extend.standard.paged_search(
 search_base=param["LDAPBASE"],
 search_filter=u"(&" + param["LDAPSEARCHFILTER"] + ")",
 search_scope=param.get("SCOPE") or ldap3.SUBTREE,
 attributes=attributes,
 paged_size=100,
 size_limit=size_limit,
 generator=True)
 # returns a generator of dictionaries
 count = 0
 uidtype_count = 0
 for entry in g:
 try:
 userid = cls._get_uid(entry, uidtype)
 count += 1
 if userid:
 uidtype_count += 1
 except Exception as exx: # pragma: no cover
 log.warning("Error during fetching LDAP objects:"
 " {0!r}".format(exx))
 log.debug("{0!s}".format(traceback.format_exc()))

 if uidtype_count < count: # pragma: no cover
 desc = _("Your LDAP config found %i user objects, but only %i "
 "with the specified uidtype" % (count, uidtype_count))
 else:
 desc = _("Your LDAP config seems to be OK, %i user objects "
 "found.") % count

 l.unbind()
 success = True

 except Exception as e:
 desc = "{0!r}".format(e)

 return success, desc

[docs] def add_user(self, attributes=None):
 """
 Add a new user to the LDAP directory.
 The user can only be created in the LDAP using a DN.
 So we have to construct the DN out of the given attributes.

 attributes are these
 "username", "surname", "givenname", "email",
 "mobile", "phone", "password"

 :param attributes: Attributes according to the attribute mapping
 :type attributes: dict
 :return: The new UID of the user. The UserIdResolver needs to
 determine the way how to create the UID.
 """
 # TODO: We still have some utf8 issues creating users with special characters.
 attributes = attributes or {}

 dn = self.dn_template
 dn = dn.replace("<basedn>", self.basedn)
 dn = dn.replace("<username>", attributes.get("username", ""))
 dn = dn.replace("<givenname>", attributes.get("givenname", ""))
 dn = dn.replace("<surname>", attributes.get("surname", ""))

 try:
 self._bind()
 params = self._attributes_to_ldap_attributes(attributes)
 self.l.add(dn, self.object_classes, params)

 except Exception as e:
 log.error("Error accessing LDAP server: {0!r}".format(e))
 log.debug("{0}".format(traceback.format_exc()))
 raise privacyIDEAError(e)

 if self.l.result.get('result') != 0:
 log.error("Error during adding of user {0!r}: "
 "{1!r}".format(dn, self.l.result.get('message')))
 raise privacyIDEAError(self.l.result.get('message'))

 return self.getUserId(attributes.get("username"))

[docs] def delete_user(self, uid):
 """
 Delete a user from the LDAP Directory.

 The user is referenced by the user id.
 :param uid: The uid of the user object, that should be deleted.
 :type uid: basestring
 :return: Returns True in case of success
 :rtype: bool
 """
 res = True
 try:
 self._bind()

 self.l.delete(self._getDN(uid))
 except Exception as exx:
 log.error("Error deleting user: {0!r}".format(exx))
 res = False
 return res

 def _attributes_to_ldap_attributes(self, attributes):
 """
 takes the attributes and maps them to the LDAP attributes
 :param attributes: Attributes to be updated
 :type attributes: dict
 :return: dict with attribute name as keys and values
 """
 ldap_attributes = {}
 for fieldname, value in attributes.iteritems():
 if self.map.get(fieldname):
 if fieldname == "password":
 # Variable value may be either a string or a list
 # so catch the TypeError exception if we get the wrong
 # variable type
 try:
 pw_hash = self._create_ssha(value[1][0])
 value[1][0] = pw_hash
 ldap_attributes[self.map.get(fieldname)] = value
 except TypeError as e:
 pw_hash = self._create_ssha(value)
 ldap_attributes[self.map.get(fieldname)] = pw_hash
 else:
 ldap_attributes[self.map.get(fieldname)] = value

 return ldap_attributes

 @staticmethod
 def _create_ssha(password):
 """
 Encodes the given password as a base64 SSHA hash
 :param password: string to hash
 :type password: basestring
 :return: string encoded as a base64 SSHA hash
 """

 salt = geturandom(4)

 # Hash password string and append the salt
 sha_hash = hashlib.sha1(password)
 sha_hash.update(salt)

 # Create a base64 encoded string
 digest_b64 = '{0}{1}'.format(sha_hash.digest(),
 salt).encode('base64').strip()

 # Tag it with SSHA
 tagged_digest = '{{SSHA}}{}'.format(digest_b64)

 return tagged_digest

 def _create_ldap_modify_changes(self, attributes, uid):
 """
 Identifies if an LDAP attribute already exists and if the value needs to be updated, deleted or added.

 :param attributes: Attributes to be updated
 :type attributes: dict
 :param uid: The uid of the user object in the resolver
 :type uid: basestring
 :return: dict with attribute name as keys and values
 """
 modify_changes = {}
 uinfo = self.getUserInfo(uid)

 for fieldname, value in attributes.iteritems():
 if value:
 if fieldname in uinfo:
 modify_changes[fieldname] = [MODIFY_REPLACE, [value]]
 else:
 modify_changes[fieldname] = [MODIFY_ADD, [value]]
 else:
 modify_changes[fieldname] = [MODIFY_DELETE, [value]]

 return modify_changes

[docs] def update_user(self, uid, attributes=None):
 """
 Update an existing user.
 This function is also used to update the password. Since the
 attribute mapping know, which field contains the password,
 this function can also take care for password changing.

 Attributes that are not contained in the dict attributes are not
 modified.

 :param uid: The uid of the user object in the resolver.
 :type uid: basestring
 :param attributes: Attributes to be updated.
 :type attributes: dict
 :return: True in case of success
 """
 attributes = attributes or {}
 try:
 self._bind()

 mapped = self._create_ldap_modify_changes(attributes, uid)
 params = self._attributes_to_ldap_attributes(mapped)
 self.l.modify(self._getDN(uid), params)
 except Exception as e:
 log.error("Error accessing LDAP server: {0!r}".format(e))
 log.debug("{0!s}".format(traceback.format_exc()))
 return False

 if self.l.result.get('result') != 0:
 log.error("Error during update of user {0!r}: "
 "{1!r}".format(uid, self.l.result.get("message")))
 return False

 return True

 @staticmethod
[docs] def create_connection(authtype=None, server=None, user=None,
 password=None, auto_bind=False,
 client_strategy=ldap3.SYNC,
 check_names=True,
 auto_referrals=False,
 receive_timeout=5,
 start_tls=False):
 """
 Create a connection to the LDAP server.

 :param authtype:
 :param server:
 :param user:
 :param password:
 :param auto_bind:
 :param client_strategy:
 :param check_names:
 :param auto_referrals:
 :param receive_timeout: At the moment we do not use this,
 since receive_timeout is not supported by ldap3 < 2.
 :return:
 """

 authentication = None
 if not user:
 authentication = ldap3.ANONYMOUS

 if authtype == AUTHTYPE.SIMPLE:
 if not authentication:
 authentication = ldap3.SIMPLE
 # SIMPLE works with passwords as UTF8 and unicode
 l = ldap3.Connection(server, user=user,
 password=password,
 auto_bind=auto_bind,
 client_strategy=client_strategy,
 authentication=authentication,
 check_names=check_names,
 # receive_timeout=receive_timeout,
 auto_referrals=auto_referrals)
 elif authtype == AUTHTYPE.NTLM: # pragma: no cover
 if not authentication:
 authentication = ldap3.NTLM
 # NTLM requires the password to be unicode
 l = ldap3.Connection(server,
 user=user,
 password=password,
 auto_bind=auto_bind,
 client_strategy=client_strategy,
 authentication=authentication,
 check_names=check_names,
 # receive_timeout=receive_timeout,
 auto_referrals=auto_referrals)
 elif authtype == AUTHTYPE.SASL_DIGEST_MD5: # pragma: no cover
 if not authentication:
 authentication = ldap3.SASL
 password = to_utf8(password)
 sasl_credentials = (str(user), str(password))
 l = ldap3.Connection(server,
 sasl_mechanism="DIGEST-MD5",
 sasl_credentials=sasl_credentials,
 auto_bind=auto_bind,
 client_strategy=client_strategy,
 authentication=authentication,
 check_names=check_names,
 # receive_timeout=receive_timeout,
 auto_referrals=auto_referrals)
 else:
 raise Exception("Authtype {0!s} not supported".format(authtype))

 if start_tls:
 l.open(read_server_info=False)
 log.debug("Doing start_tls")
 r = l.start_tls(read_server_info=False)

 return l

 @property
 def editable(self):
 """
 Return true, if the instance of the resolver is configured editable
 :return:
 """
 # Depending on the database this might look different
 # Usually this is "1"
 return is_true(self._editable)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/smsprovider/HttpSMSProvider.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.smsprovider.HttpSMSProvider

-*- coding: utf-8 -*-
#
E-mail: info@privacyidea.org
Contact: www.privacyidea.org
#
2018-01-10 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Fix type cast for timeout
2016-06-14 Cornelius Kölbel <cornelius@privacyidea.org>
Add properties for new SMS provider model
2016-04-08 Cornelius Kölbel <cornelius@privacyidea.org>
Remote "None" as redundant 2nd argument to get
2016-01-13 Cornelius Kölbel <cornelius@privacyidea.org>
omit data object in GET request
omit params in POST request
#
privacyIDEA is a fork of LinOTP
May 28, 2014 Cornelius Kölbel
2015-01-30 Rewrite for migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) LinOTP: 2010 - 2014 LSE Leading Security Experts GmbH
#
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU Affero General Public
License, version 3, as published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the
GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#

__doc__="""This is the SMSClass to send SMS via HTTP Gateways
It can handle HTTP/HTTPS PUT and GET requests also with Proxy support

The code is tested in tests/test_lib_smsprovider
"""

from privacyidea.lib.smsprovider.SMSProvider import (ISMSProvider, SMSError)
from privacyidea.lib import _
import requests
from urlparse import urlparse

import logging
log = logging.getLogger(__name__)

[docs]class HttpSMSProvider(ISMSProvider):

[docs] def submit_message(self, phone, message):
 """
 send a message to a phone via an http sms gateway

 :param phone: the phone number
 :param message: the message to submit to the phone
 :return:
 """
 log.debug("submitting message {0!r} to {1!s}".format(message, phone))
 parameter = {}
 if self.smsgateway:
 url = self.smsgateway.option_dict.get("URL")
 method = self.smsgateway.option_dict.get("HTTP_METHOD", "GET")
 username = self.smsgateway.option_dict.get("USERNAME")
 password = self.smsgateway.option_dict.get("PASSWORD")
 ssl_verify = self.smsgateway.option_dict.get("CHECK_SSL",
 "yes") == "yes"
 # FIXME: The Proxy option is deprecated and will be removed a version > 2.21
 proxy = self.smsgateway.option_dict.get("PROXY")
 http_proxy = self.smsgateway.option_dict.get('HTTP_PROXY')
 https_proxy = self.smsgateway.option_dict.get('HTTPS_PROXY')
 timeout = self.smsgateway.option_dict.get("TIMEOUT") or 3
 for k, v in self.smsgateway.option_dict.iteritems():
 if k not in self.parameters().get("parameters"):
 # This is an additional option
 parameter[k] = v.format(otp=message, phone=phone)
 else:
 url = self.config.get('URL')
 method = self.config.get('HTTP_Method', 'GET')
 username = self.config.get('USERNAME')
 password = self.config.get('PASSWORD')
 ssl_verify = self.config.get('CHECK_SSL', True)
 # FIXME: The Proxy option is deprecated and will be removed a version > 2.21
 proxy = self.config.get('PROXY')
 http_proxy = self.config.get('HTTP_PROXY')
 https_proxy = self.config.get('HTTPS_PROXY')
 parameter = self._get_parameters(message, phone)
 timeout = self.config.get("TIMEOUT") or 3

 if url is None:
 log.warning("can not submit message. URL is missing.")
 raise SMSError(-1, "No URL specified in the provider config.")
 basic_auth = None

 # there might be the basic authentication in the request url
 # like http://user:passw@hostname:port/path
 if password is None and username is None:
 parsed_url = urlparse(url)
 if "@" in parsed_url[1]:
 puser, server = parsed_url[1].split('@')
 username, password = puser.split(':')

 if username and password is not None:
 basic_auth = (username, password)

 proxies = {}
 if http_proxy:
 proxies["http"] = http_proxy
 if https_proxy:
 proxies["https"] = https_proxy
 if not proxies and proxy:
 # No new proxy config but only the old one.
 protocol = proxy.split(":")[0]
 proxies = {protocol: proxy}

 # url, parameter, username, password, method
 requestor = requests.get
 params = parameter
 data = {}
 if method == "POST":
 requestor = requests.post
 params = {}
 data = parameter

 log.debug("issuing request with parameters %s and method %s and "
 "authentication %s to url %s." % (parameter, method,
 basic_auth, url))
 r = requestor(url, params=params,
 data=data,
 verify=ssl_verify,
 auth=basic_auth,
 timeout=float(timeout),
 proxies=proxies)
 log.debug("queued SMS on the HTTP gateway. status code returned: {0!s}".format(
 r.status_code))

 # We assume, that all gateways return with HTTP Status Code 200,
 # 201 or 202
 if r.status_code not in [200, 201, 202]:
 raise SMSError(r.status_code, "SMS could not be "
 "sent: %s" % r.status_code)
 success = self._check_success(r)
 return success

 def _get_parameters(self, message, phone):

 urldata = {}
 # transfer the phone key
 phoneKey = self.config.get('SMS_PHONENUMBER_KEY', "phone")
 urldata[phoneKey] = phone
 # transfer the sms key
 messageKey = self.config.get('SMS_TEXT_KEY', "sms")
 urldata[messageKey] = message
 params = self.config.get('PARAMETER', {})
 urldata.update(params)
 log.debug("[getParameters] urldata: {0!s}".format(urldata))
 return urldata

 def _check_success(self, response):
 """
 Check the success according to the reply
 1. if RETURN_SUCCESS is defined
 2. if RETURN_FAIL is defined
 :response reply: A response object.
 """
 reply = response.text
 ret = False
 if self.smsgateway:
 return_success = self.smsgateway.option_dict.get("RETURN_SUCCESS")
 return_fail = self.smsgateway.option_dict.get("RETURN_FAIL")
 else:
 return_success = self.config.get("RETURN_SUCCESS")
 return_fail = self.config.get("RETURN_FAIL")

 if return_success:
 if return_success in reply:
 log.debug("sending sms success")
 ret = True
 else:
 log.warning("failed to send sms. Reply %s does not match "
 "the RETURN_SUCCESS definition" % reply)
 raise SMSError(response.status_code,
 "We received a none success reply from the "
 "SMS Gateway: {0!s} ({1!s})".format(reply,
 return_success))

 elif return_fail:
 if return_fail in reply:
 log.warning("sending sms failed. %s was not found "
 "in %s" % (return_fail, reply))
 raise SMSError(response.status_code,
 "We received the predefined error from the "
 "SMS Gateway.")
 else:
 log.debug("sending sms success")
 ret = True
 else:
 ret = True
 return ret

 @classmethod
[docs] def parameters(cls):
 """
 Return a dictionary, that describes the parameters and options for the
 SMS provider.
 Parameters are required keys to values.

 :return: dict
 """
 params = {"options_allowed": True,
 "parameters": {
 "URL": {
 "required": True,
 "description": _("The base URL of the HTTP Gateway")},
 "HTTP_METHOD": {
 "required": True,
 "description": _("Should the HTTP Gateway be "
 "connected via an HTTP GET or POST "
 "request."),
 "values": ["GET", "POST"]},
 "RETURN_SUCCESS": {
 "description": _("Specify a substring, "
 "that indicates, that the SMS was "
 "delivered successfully.")},
 "RETURN_FAIL": {
 "description": _("Specify a substring, "
 "that indicates, that the SMS "
 "failed to be delivered.")},
 "USERNAME": {
 "description": _("Username in case of basic "
 "authentication.")
 },
 "PASSWORD": {
 "description": _("Password in case of basic "
 "authentication.")
 },
 "CHECK_SSL": {
 "description": _("Should the SSL certificate be "
 "verified."),
 "values": ["yes", "no"]
 },
 "PROXY": {"description": _("An optional proxy string. DEPRECATED. Do not use"
 "this anymore. Rather use HTTP_PROXY for http connections and"
 "HTTPS_PROXY for https connection. The PROXY option will be"
 "removed in future.")},
 "HTTP_PROXY": {"description": _("Proxy setting for HTTP connections.")},
 "HTTPS_PROXY": {"description":_("Proxy setting for HTTPS connections.")},
 "TIMEOUT": {"description": _("The timeout in seconds.")}
 }
 }
 return params

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/smsprovider/SipgateSMSProvider.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.smsprovider.SipgateSMSProvider

-*- coding: utf-8 -*-
#
2016-06-15 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add allowed parameters to the SMS Provider
#
privacyIDEA
(c) 2014 Cornelius Kölbel
E-mail: info@privacyidea.org
Contact: www.privacyidea.org
#
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU Affero General Public
License, version 3, as published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the
GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
#
__doc__="""This module provides sending SMS via sipgate

The code is tested in tests/test_lib_smsprovider
"""
from privacyidea.lib.smsprovider.SMSProvider import ISMSProvider, SMSError
import logging
import requests
log = logging.getLogger(__name__)

REQUEST_XML='''<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>samurai.SessionInitiate</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>RemoteUri</name>
<value><string>sip:%s@sipgate.de</string></value>
</member>
<member>
<name>TOS</name>
<value><string>text</string></value>
</member>
<member>
<name>Content</name>
<value><string>%s</string></value>
</member>
</struct>
</value>
</param>
</params>
</methodCall>'''

URL = "https://samurai.sipgate.net/RPC2"

[docs]class SipgateSMSProvider(ISMSProvider):

 # We do not need to overwrite the __init__ and
 # the loadConfig functions!
 # They provide the self.config dictionary.

[docs] def submit_message(self, phone, message):
 if self.smsgateway:
 username = self.smsgateway.option_dict.get("USERNAME")
 password = self.smsgateway.option_dict.get("PASSWORD")
 proxy = self.smsgateway.option_dict.get("PROXY")
 else:
 username = self.config.get("USERNAME")
 password = self.config.get("PASSWORD")
 proxy = self.config.get('PROXY')
 proxies = None
 if proxy:
 protocol = proxy.split(":")[0]
 proxies = {protocol: proxy}

 r = requests.post(URL,
 data=REQUEST_XML % (phone.strip().strip("+"),
 message),
 headers={'content-type': 'text/xml'},
 auth=(username, password),
 proxies=proxies)

 log.debug("SMS submitted: {0!s}".format(r.status_code))
 log.debug("response content: {0!s}".format(r.text))

 if r.status_code != 200:
 raise SMSError(r.status_code, "SMS could not be "
 "sent: %s" % r.status_code)
 return True

 @classmethod
[docs] def parameters(cls):
 """
 Return a dictionary, that describes the parameters and options for the
 SMS provider.
 Parameters are required keys to values.

 :return: dict
 """
 from privacyidea.lib.smtpserver import get_smtpservers
 params = {"options_allowed": False,
 "parameters": {
 "USERNAME": {
 "required": True,
 "description": "The sipgate username."},
 "PASSWORD": {
 "required": True,
 "description": "The sipgate password."},
 "PROXY": {
 "description": "An optional proxy URI."
 }
 }
 }
 return params

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/smsprovider/SmtpSMSProvider.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.smsprovider.SmtpSMSProvider

-*- coding: utf-8 -*-
#
2016-06-15 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add allowed parameters to the SMS Provider
#
privacyIDEA is a fork of LinOTP
May 28, 2014 Cornelius Kölbel
E-mail: info@privacyidea.org
Contact: www.privacyidea.org
#
2015-01-30 Rewrite for flask migration
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) LinOTP: 2010 - 2014 LSE Leading Security Experts GmbH
#
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU Affero General Public
License, version 3, as published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the
GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#

__doc__="""This is the SMSClass to send SMS via SMTP Gateway.
i.e. a Mail is sent to an Gateway/Emailserver and dependig on the
address, subject and body this gateway will trigger the sending of the SMS.

The code is tested in tests/test_lib_smsprovider
"""
from privacyidea.lib.smsprovider.SMSProvider import ISMSProvider, SMSError
from privacyidea.lib.smtpserver import send_email_identifier, send_email_data
import string
import logging
log = logging.getLogger(__name__)

PHONE_TAG = "<phone>"
MSG_TAG = "<otp>"

[docs]class SmtpSMSProvider(ISMSProvider):

[docs] def submit_message(self, phone, message):
 """
 Submits the message for phone to the email gateway.

 Returns true in case of success

 In case of a failure an exception is raised
 """
 if self.smsgateway:
 identifier = self.smsgateway.option_dict.get("SMTPIDENTIFIER")
 recipient = self.smsgateway.option_dict.get("MAILTO").format(
 otp=message, phone=phone)
 subject = self.smsgateway.option_dict.get("SUBJECT",
 "{phone}").format(
 otp=message, phone=phone)
 body = self.smsgateway.option_dict.get("BODY", "{otp}").format(
 otp=message, phone=phone)
 else:
 identifier = self.config.get("IDENTIFIER")
 server = self.config.get("MAILSERVER")
 sender = self.config.get("MAILSENDER")
 recipient = self.config.get("MAILTO")
 subject = self.config.get("SUBJECT", PHONE_TAG)
 body = self.config.get("BODY", MSG_TAG)

 if not (server and recipient and sender) and not (identifier and \
 recipient):
 log.error("incomplete config: %s. MAILTO and (IDENTIFIER or "
 "MAILSERVER and MAILSENDER) needed" % self.config)
 raise SMSError(-1, "Incomplete SMS config.")

 log.debug("submitting message {0!r} to {1!s}".format(body, phone))
 recipient = string.replace(recipient, PHONE_TAG, phone)
 subject = string.replace(subject, PHONE_TAG, phone)
 subject = string.replace(subject, MSG_TAG, message)
 body = string.replace(body, PHONE_TAG, phone)
 body = string.replace(body, MSG_TAG, message)

 if identifier:
 r = send_email_identifier(identifier, recipient, subject, body)
 else:
 username = self.config.get("MAILUSER")
 password = self.config.get("MAILPASSWORD")
 r = send_email_data(server, subject, body, sender, recipient,
 username, password)
 if not r:
 raise SMSError(500, "Failed to deliver SMS to SMTP Gateway.")

 return True

 @classmethod
[docs] def parameters(cls):
 """
 Return a dictionary, that describes the parameters and options for the
 SMS provider.
 Parameters are required keys to values.

 :return: dict
 """
 from privacyidea.lib.smtpserver import get_smtpservers
 params = {"options_allowed": False,
 "parameters": {
 "MAILTO": {
 "required": True,
 "description": "The recipient of the email. "
 "Use tags {phone} and {otp}."},
 "SMTPIDENTIFIER": {
 "required": True,
 "description": "Your SMTP configuration, "
 "that should be used to send the "
 "email.",
 "values": [
 provider.config.identifier for
 provider in get_smtpservers()]},
 "SUBJECT": {
 "description": "The optional subject of the email. "
 "Use tags {phone} and {otp}."},
 "BODY": {
 "description": "The optional body of the email. "
 "Use tags {phone} and {otp}.",
 "type": "text" }
 }
 }
 return params

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/smsprovider/SMSProvider.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.smsprovider.SMSProvider

-*- coding: utf-8 -*-
#
2016-06-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Enhance the base class according to
https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway
#
#
privacyIDEA is a fork of LinOTP
May 28, 2014 Cornelius Kölbel
E-mail: info@privacyidea.org
Contact: www.privacyidea.org
#
Copyright (C) LinOTP: 2010 - 2014 LSE Leading Security Experts GmbH
#
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU Affero General Public
License, version 3, as published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the
GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__="""This is the base class for SMS Modules, that can send SMS via
different means.
The function get_sms_provider_class loads an SMS Provider Module dynamically
and returns an instance.

The code is tested in tests/test_lib_smsprovider
"""

from privacyidea.models import SMSGateway, SMSGatewayOption
import logging
log = logging.getLogger(__name__)

SMS_PROVIDERS = [
 "privacyidea.lib.smsprovider.HttpSMSProvider.HttpSMSProvider",
 "privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider",
 "privacyidea.lib.smsprovider.SmtpSMSProvider.SmtpSMSProvider"]

class SMSError(Exception):
 def __init__(self, error_id, description):
 Exception.__init__(self)
 self.error_id = error_id
 self.description = description

 def __repr__(self):
 ret = '{0!s}(error_id={1!r}, description={2!r})'.format(type(self).__name__,
 self.error_id,
 self.description)
 return ret

 def __str__(self):
 ret = '{0!s}'.format(self.description)
 return ret

[docs]class ISMSProvider(object):
 """ the SMS Provider Interface - BaseClass """
 def __init__(self, db_smsprovider_object=None, smsgateway=None):
 """
 Create a new SMS Provider object fom a DB SMS provider object

 :param db_smsprovider_object: The database object
 :param smsgateway: The SMS gateway object from the database table
 SMS gateway. The options can be accessed via
 self.smsgateway.option_dict
 :return: An SMS provider object
 """
 self.config = db_smsprovider_object or {}
 self.smsgateway = smsgateway

[docs] def submit_message(self, phone, message): # pragma: no cover
 """
 Sends the SMS. It should return a bool indicating if the SMS was
 sent successfully.

 In case of SMS send fail, an Exception should be raised.
 :return: Success
 :rtype: bool
 """
 return True

 @classmethod
[docs] def parameters(cls):
 """
 Return a dictionary, that describes the parameters and options for the
 SMS provider.
 Parameters are required keys to values with defined keys,
 while options can be any combination.

 Each option is the key to another dict, that describes this option,
 if it is required, a description and which values it can take. The
 values are optional.

 Additional options can not be named in advance. E.g. some provider
 specific HTTP parameters of HTTP gateways are options. The HTTP
 parameter for the SMS text could be "text" at one provider and "sms"
 at another one.

 The options can be fixed values or also take the tags {otp},
 {user}, {phone}.

 :return: dict
 """
 params = {"options_allowed": False,
 "parameters": {
 "PARAMETER1": {
 "required": True,
 "description": "Some parameter",
 "values": ["allowed value1", "allowed value2"]}
 },
 }
 return params

[docs] def load_config(self, config_dict):
 """
 Load the configuration dictionary

 :param config_dict: The conifugration of the SMS provider
 :type config_dict: dict
 :return: None
 """
 self.config = config_dict

def get_sms_provider_class(packageName, className):
 """
 helper method to load the SMSProvider class from a given
 package in literal:

 example:

 get_sms_provider_class("HTTPSMSProvider", "SMSProvider")()

 check:
 checks, if the submit_message method exists
 if not an error is thrown

 """
 mod = __import__(packageName, globals(), locals(), [className])
 klass = getattr(mod, className)
 if not hasattr(klass, "submit_message"):
 raise NameError("SMSProvider AttributeError: " + packageName + "." +
 className + " instance of SMSProvider has no method"
 " 'submitMessage'")
 else:
 return klass

def set_smsgateway(identifier, providermodule, description=None,
 options=None):

 """
 Set an SMS Gateway configuration

 If the identifier already exist, the SMS Gateway is updated. Otherwise a
 new one is created.

 :param identifier: The unique identifier name of the SMS Gateway
 :param providermodule: The python module of the SMS Gateway
 :type providermodule: basestring
 :param description: A description of this gateway definition
 :param options: Options and Parameter for this module
 :type options: dict
 :return: The id of the event.
 """
 smsgateway = SMSGateway(identifier, providermodule,
 description=description,
 options=options)
 return smsgateway.id

def delete_smsgateway(identifier):
 """
 Delete the SMS gateway configuration with this given ID.
 :param identifier: The name of the SMS gateway definition
 :type identifier: basestring
 :return:
 """
 r = -1
 gw = SMSGateway.query.filter_by(identifier=identifier).first()
 if gw:
 r = gw.delete()
 return r

def delete_smsgateway_option(id, option_key):
 """
 Delete the SMS gateway option

 :param id: The id of the SMS Gateway definition
 :param option_key: The identifier/key of the option
 :return: True
 """
 r = SMSGatewayOption.query.filter_by(gateway_id=id,
 Key=option_key).first().delete()
 return r

def get_smsgateway(identifier=None, id=None):
 """
 return a list of all SMS Gateway Configurations!

 :param identifier: If the identifier is specified, then we return only
 this single gateway definition
 :param id: If the id is specified, we return only this single SMS gateway
 definition
 :return: list of gateway definitions
 """
 res = []
 sqlquery = SMSGateway.query
 if id:
 try:
 id = int(id)
 sqlquery = sqlquery.filter_by(id=id)
 except Exception:
 log.info("We can not filter for smsgateway {0!s}".format(id))
 if identifier:
 sqlquery = sqlquery.filter_by(identifier=identifier)

 for gw in sqlquery.all():
 res.append(gw)
 return res

def create_sms_instance(identifier):
 """
 This function creates and instance of SMS Provider (either HTTP, Smtp,
 Sipgate) depending on the given sms gateway identifier.

 :param identifier: The name of the SMS gateway configuration
 :return: SMS Provider object
 """
 gateway_definition = get_smsgateway(identifier)[0]
 sms_klass = get_sms_provider_class(
 ".".join(gateway_definition.providermodule.split(".")[:-1]),
 gateway_definition.providermodule.split(".")[-1])
 sms_object = sms_klass(smsgateway=gateway_definition)
 return sms_object

def send_sms_identifier(identifier, phone, message):
 """
 Send an SMS using the SMS Gateway "identifier".

 :param identifier: The name of the SMS Gateway
 :param phone: The phone number
 :param message: The message to be sent
 :return: True in case of success
 """
 sms = create_sms_instance(identifier)
 return sms.submit_message(phone, message)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/machines/hosts.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.machines.hosts

-*- coding: utf-8 -*-
#
2016-04-08 Cornelius Kölbel <cornelius@privacyidea.org>
Avoid consecutive if-statements
2015-02-25 Cornelius Kölbel <cornelius@privacyidea.org>
Initial writup
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This contains the HostsMachineResolver which simply resolves
the machines in a file like /etc/hosts.
The machine id is the IP address in this case.

This file is tested in tests/test_lib_machines.py in the class
HostsMachineTestCase
"""

from .base import Machine
from .base import BaseMachineResolver
from .base import MachineResolverError

import netaddr

[docs]class HostsMachineResolver(BaseMachineResolver):

 type = "hosts"

[docs] def get_machines(self, machine_id=None, hostname=None, ip=None, any=None,
 substring=False):
 """
 Return matching machines.

 :param machine_id: can be matched as substring
 :param hostname: can be matched as substring
 :param ip: can not be matched as substring
 :param substring: Whether the filtering should be a substring matching
 :type substring: bool
 :param any: a substring that matches EITHER hostname, machineid or ip
 :type any: basestring
 :return: list of Machine Objects
 """
 machines = []

 f = open(self.filename, "r")
 try:
 for line in f:
 split_line = line.split()
 if len(split_line) < 2:
 # skip lines with less than 2 columns
 continue
 if split_line[0][0] == "#":
 # skip comments
 continue
 line_id = split_line[0]
 line_ip = netaddr.IPAddress(split_line[0])
 line_hostname = split_line[1:]
 # check if machine_id, ip or hostname matches a substring
 if (any and any not in line_id and
 len([x for x in line_hostname if any in x]) <= 0 and
 any not in "{0!s}".format(line_ip)):
 # "any" was provided but did not match either
 # hostname, ip or machine_id
 continue

 else:
 if machine_id:
 if not substring and machine_id == line_id:
 return [Machine(self.name, line_id,
 hostname=line_hostname, ip=line_ip)]
 if substring and machine_id not in line_id:
 # do not append this machine!
 continue
 if hostname:
 if substring:
 h_match = len([x for x in line_hostname if hostname in x])
 else:
 h_match = hostname in line_hostname
 if not h_match:
 # do not append this machine!
 continue

 if ip and ip != line_ip:
 # Do not append this machine!
 continue

 machines.append(Machine(self.name, line_id,
 hostname=line_hostname,
 ip=line_ip))
 finally:
 f.close()
 return machines

[docs] def get_machine_id(self, hostname=None, ip=None):
 """
 Returns the machine id for a given hostname or IP address.

 If hostname and ip is given, the resolver should also check that the
 hostname matches the IP. If it can check this and hostname and IP do
 not match, then an Exception must be raised.

 :param hostname: The hostname of the machine
 :type hostname: basestring
 :param ip: IP address of the machine
 :type ip: netaddr
 :return: The machine ID, which depends on the resolver
 :rtype: basestring
 """
 machines = self.get_machines()
 for machine in machines:
 h_match = not hostname or machine.has_hostname(hostname)
 i_match = not ip or machine.has_ip(ip)
 if h_match and i_match:
 return machine.id

 return

[docs] def load_config(self, config):
 """
 This loads the configuration dictionary, which contains the necessary
 information for the machine resolver to find and connect to the
 machine store.

 :param config: The configuration dictionary to run the machine resolver
 :type config: dict
 :return: None
 """
 self.filename = config.get("filename")
 if self.filename is None:
 raise MachineResolverError("filename is missing!")

 @classmethod
 def get_config_description(cls):
 description = {cls.type: {"config": {"filename": "string"}}}
 return description

 @staticmethod
[docs] def testconnection(params):
 """
 Test if the given filename exists.

 :param params:
 :return:
 """
 return False, "Not Implemented"

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/machines/base.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.machines.base

-*- coding: utf-8 -*-
#
2015-02-25 Cornelius Kölbel <cornelius@privacyidea.org>
Initial writup
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This contains the Base Class for Machine Resolvers. Machines
Resolvers are used to tie a Machine Object to a token and an application. To
do so a Machine Resolver can translate between a FQDN, Hostname, IP and the
machine ID.

This file is tested in tests/test_lib_machines.py
"""
import netaddr

class Machine(object):

 """
 The Machine object is returned by the resolver for a given machine_id.
 It contains data like the hostname, the ip address and additional
 information like expiry or decommission...
 """

 def __init__(self, resolver_name, machine_id, hostname=None, ip=None):
 self.id = machine_id
 self.resolver_name = resolver_name
 self.hostname = hostname
 if type(ip) in [basestring, str, unicode]:
 self.ip = netaddr.IPAddress(ip)
 else:
 self.ip = ip

 def has_hostname(self, hostname):
 """
 Checks if the machine has the given hostname.
 A machine might have more than one hostname. The hostname is then
 provided as a list
 :param hostname: The hostname searched for
 :type hostname: basestring
 :return: True or false
 """
 if type(self.hostname) == list:
 return hostname in self.hostname
 elif type(self.hostname) in [basestring, str, unicode]:
 return hostname.lower() == self.hostname.lower()

 def has_ip(self, ip):
 """
 Checks if the machine has the given IP.
 A machine might have more than one IP Address. The ip is then
 provided as a list
 :param ip: The IP address to search for
 :type ip: Netaddr IPAddress
 :return: True or false
 """
 # convert to IPAddress
 if type(ip) in [basestring, str, unicode]:
 ip = netaddr.IPAddress(ip)

 if type(self.ip) == list:
 return ip in self.ip
 elif type(self.ip) == netaddr.IPAddress:
 return ip == self.ip

 def get_dict(self):
 """
 Convert the object attributes to a dict
 :return: dict of attributes
 """
 ip = self.ip
 if type(self.ip) == list:
 ip = ["{0!s}".format(i) for i in ip]
 elif type(self.ip) == netaddr.IPAddress:
 ip = "{0!s}".format(ip)

 d = {"hostname": self.hostname,
 "ip": ip,
 "resolver_name": self.resolver_name,
 "id": self.id}
 return d

class MachineResolverError(Exception):
 pass

[docs]class BaseMachineResolver(object):

 type = "base"

 def __init__(self, name, config=None):
 """

 :param name: The identifying name of the resolver
 :param config:
 :return:
 """
 self.name = name
 if config:
 self.load_config(config)

 @classmethod
 def get_type(cls):
 return cls.type

[docs] def get_machines(self, machine_id=None, hostname=None, ip=None, any=None,
 substring=False):
 """
 Return a list of all machine objects in this resolver

 :param substring: If set to true, it will also match search_hostnames,
 that only are a subnet of the machines hostname.
 :type substring: bool
 :param any: a substring that matches EITHER hostname, machineid or ip
 :type any: basestring
 :return: list of machine objects
 """
 return []

[docs] def get_machine_id(self, hostname=None, ip=None):
 """
 Returns the machine id for a given hostname or IP address.

 If hostname and ip is given, the resolver should also check that the
 hostname matches the IP. If it can check this and hostname and IP do
 not match, then an Exception must be raised.

 :param hostname: The hostname of the machine
 :type hostname: basestring
 :param ip: IP address of the machine
 :type ip: netaddr
 :return: The machine ID, which depends on the resolver
 :rtype: basestring
 """
 return ""

[docs] def load_config(self, config):
 """
 This loads the configuration dictionary, which contains the necessary
 information for the machine resolver to find and connect to the
 machine store.

 :param config: The configuration dictionary to run the machine resolver
 :type config: dict
 :return: None
 """
 return None

 @staticmethod
[docs] def get_config_description():
 """
 Returns a description what config values are expected and allowed.

 :return: dict
 """
 return {}

 @staticmethod
[docs] def testconnection(params):
 """
 This method can test if the passed parameters would create a working
 machine resolver.

 :param params:
 :return: tupple of success and description
 :rtype: (bool, string)
 """
 return False, "Not Implemented"

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/papertoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.papertoken

-*- coding: utf-8 -*-
#
2016-12-05 Cornelisu Kölbel <cornelius.koelbel@netknights.it>
Add policy papertoken_count
#
2015-11-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
initial write
(c) 2015 Cornelius Kölbel - cornelius@privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This file contains the definition of the paper token class
It depends on the DB model, and the lib.tokenclass.
"""

import logging
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.tokens.hotptoken import HotpTokenClass
from privacyidea.lib.policy import SCOPE
from privacyidea.lib import _
from privacyidea.lib.policydecorators import libpolicy

log = logging.getLogger(__name__)
DEFAULT_COUNT = 100

class PAPERACTION(object):
 PAPERTOKEN_COUNT = "papertoken_count"

[docs]class PaperTokenClass(HotpTokenClass):

 """
 The Paper Token allows to print out the next e.g. 100 OTP values.
 This sheet of paper can be used to authenticate and strike out the used
 OTP values.
 """

 @log_with(log)
 def __init__(self, db_token):
 """
 This creates a new Paper token object from a DB token object.

 :param db_token: instance of the orm db object
 :type db_token: orm object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"paper")
 self.hKeyRequired = False

 @staticmethod
[docs] def get_class_type():
 """
 return the token type shortname

 :return: 'paper'
 :rtype: string
 """
 return "paper"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: PPR
 """
 return "PPR"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'paper',
 'title': 'Paper Token',
 'description': 'PPR: One Time Passwords printed on a sheet '
 'of paper.',
 'init': {},
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {
 SCOPE.ENROLL: {
 PAPERACTION.PAPERTOKEN_COUNT: {
 "type": "int",
 "desc": _("The number of OTP values, which are "
 "printed on the paper.")
 }
 }
 }
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param, reset_failcount=True):
 if "otpkey" not in param:
 param["genkey"] = 1
 HotpTokenClass.update(self, param, reset_failcount=reset_failcount)
 papertoken_count = int(param.get("papertoken_count") or DEFAULT_COUNT)
 # Now we calculate all the OTP values and add them to the
 # init_details. Thus they will be returned by token/init.
 otps = self.get_multi_otp(count=papertoken_count)
 self.add_init_details("otps", otps[2].get("otp", {}))

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/api/lib/prepolicy.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.api.lib.prepolicy

-*- coding: utf-8 -*-
#
2017-04-22 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add wrapper for U2F token
2017-01-18 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add token specific PIN policies based on
Quynh's pull request.
2016-11-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add timelimit for audit entries
2016-08-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add decorator to save the client type to the database
2016-07-17 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add realmadmin decorator
2016-05-18 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add resolver to check_base_action
2016-04-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add init_token_defaults to set default parameters
during token init.
2016-04-08 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Avoid "None" as redundant 2nd argument
2015-12-28 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add ACTION.REQUIREDEMAIL
2015-12-12 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Change eval to importlib
2015-11-04 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add check for REMOTE_USER
2015-04-13 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add hook for external decorator for init and assign
2015-02-06 Cornelius Kölbel <cornelius@privacyidea.org>
Create this module for enabling decorators for API calls
#
License: AGPLv3
contact: http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
These are the policy decorators as PRE conditions for the API calls.
I.e. these conditions are executed before the wrapped API call.
This module uses the policy base functions from
privacyidea.lib.policy but also components from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py
"""
import logging
log = logging.getLogger(__name__)
from privacyidea.lib.error import PolicyError, RegistrationError
from flask import g, current_app
from privacyidea.lib.policy import SCOPE, ACTION, PolicyClass
from privacyidea.lib.user import (get_user_from_param, get_default_realm,
 split_user)
from privacyidea.lib.token import (get_tokens, get_realms_of_token)
from privacyidea.lib.utils import (generate_password, get_client_ip,
 parse_timedelta, is_true)
from privacyidea.lib.auth import ROLE
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.clientapplication import save_clientapplication
from privacyidea.lib.config import (get_token_class, get_from_config, SYSCONF)
import functools
import jwt
import re
import importlib

optional = True
required = False

[docs]class prepolicy(object):
 """
 This is the decorator wrapper to call a specific function before an API
 call.
 The prepolicy decorator is to be used in the API calls.
 A prepolicy decorator then will modify the request data or raise an
 exception
 """
 def __init__(self, function, request, action=None):
 """
 :param function: This is the policy function the is to be called
 :type function: function
 :param request: The original request object, that needs to be passed
 :type request: Request Object
 """
 self.action = action
 self.request = request
 self.function = function

 def __call__(self, wrapped_function):
 """
 This decorates the given function. The prepolicy decorator is ment
 for API functions on the API level.

 If some error occur the a PolicyException is raised.

 The decorator function can modify the request data.

 :param wrapped_function: The function, that is decorated.
 :type wrapped_function: API function
 :return: None
 """
 @functools.wraps(wrapped_function)
 def policy_wrapper(*args, **kwds):
 self.function(request=self.request,
 action=self.action)
 return wrapped_function(*args, **kwds)

 return policy_wrapper

[docs]def init_random_pin(request=None, action=None):
 """
 This policy function is to be used as a decorator in the API init function.
 If the policy is set accordingly it adds a random PIN to the
 request.all_data like.

 It uses the policy SCOPE.ENROLL, ACTION.OTPPINRANDOM to set a random OTP
 PIN during Token enrollment
 """
 params = request.all_data
 policy_object = g.policy_object
 user_object = get_user_from_param(params)
 # get the length of the random PIN from the policies
 pin_pols = policy_object.get_action_values(action=ACTION.OTPPINRANDOM,
 scope=SCOPE.ENROLL,
 user=user_object.login,
 realm=user_object.realm,
 client=g.client_ip,
 unique=True)

 if len(pin_pols) == 1:
 log.debug("Creating random OTP PIN with length {0!s}".format(pin_pols[0]))
 request.all_data["pin"] = generate_password(size=int(pin_pols[0]))

 # handle the PIN
 handle_pols = policy_object.get_action_values(
 action=ACTION.PINHANDLING, scope=SCOPE.ENROLL,
 user=user_object.login, realm=user_object.realm,
 client=g.client_ip)
 # We can have more than one pin handler policy. So we can process the
 # PIN in several ways!
 for handle_pol in handle_pols:
 log.debug("Handle the random PIN with the class {0!s}".format(handle_pol))
 packageName = ".".join(handle_pol.split(".")[:-1])
 className = handle_pol.split(".")[-1:][0]
 mod = __import__(packageName, globals(), locals(), [className])
 pin_handler_class = getattr(mod, className)
 pin_handler = pin_handler_class()
 # Send the PIN
 pin_handler.send(request.all_data["pin"],
 request.all_data.get("serial", "N/A"),
 user_object,
 tokentype=request.all_data.get("type", "hotp"),
 logged_in_user=g.logged_in_user)

 return True

[docs]def realmadmin(request=None, action=None):
 """
 This decorator adds the first REALM to the parameters if the
 administrator, calling this API is a realm admin.
 This way, if the admin calls e.g. GET /user without realm parameter,
 he will not see all users, but only users in one of his realms.

 TODO: If a realm admin is allowed to see more than one realm,
 this is not handled at the moment. We need to change the underlying
 library functions!

 :param request: The HTTP reqeust
 :param action: The action like ACTION.USERLIST
 """
 # This decorator is only valid for admins
 if g.logged_in_user.get("role") == ROLE.ADMIN:
 params = request.all_data
 if not "realm" in params:
 # add the realm to params
 policy_object = g.policy_object
 po = policy_object.get_policies(
 action=action, scope=SCOPE.ADMIN,
 user=g.logged_in_user.get("username"),
 adminrealm=g.logged_in_user.get("realm"), client=g.client_ip,
 active=True)
 # TODO: fix this: there could be a list of policies with a list
 # of realms!
 if po and po[0].get("realm"):
 request.all_data["realm"] = po[0].get("realm")[0]

 return True

[docs]def check_otp_pin(request=None, action=None):
 """
 This policy function checks if the OTP PIN that is about to be set
 follows the OTP PIN policies ACTION.OTPPINMAXLEN, ACTION.OTPPINMINLEN and
 ACTION.OTPPINCONTENTS and token-type-specific PIN policy actions in the
 SCOPE.USER or SCOPE.ADMIN. It is used to decorate the API functions.

 The pin is investigated in the params as "otppin" or "pin"

 In case the given OTP PIN does not match the requirements an exception is
 raised.
 """
 params = request.all_data
 realm = params.get("realm")
 pin = params.get("otppin", "") or params.get("pin", "")
 serial = params.get("serial")
 tokentype = params.get("type")
 if not serial and action == ACTION.SETPIN:
 path_elems = request.path.split("/")
 serial = path_elems[-1]
 # Also set it for later use
 request.all_data["serial"] = serial
 if serial:
 # if this is a token, that does not use a pin, we ignore this check
 # And immediately return true
 tokensobject_list = get_tokens(serial=serial)
 if len(tokensobject_list) == 1:
 if tokensobject_list[0].using_pin is False:
 return True
 tokentype = tokensobject_list[0].token.tokentype
 # the default tokentype is still HOTP
 tokentype = tokentype or "hotp"
 policy_object = g.policy_object
 role = g.logged_in_user.get("role")
 username = g.logged_in_user.get("username")
 if role == ROLE.ADMIN:
 scope = SCOPE.ADMIN
 admin_realm = g.logged_in_user.get("realm")
 realm = params.get("realm", "")
 else:
 scope = SCOPE.USER
 realm = g.logged_in_user.get("realm")
 admin_realm = None
 # get the policies for minimum length, maximum length and PIN contents
 # first try to get a token specific policy - otherwise fall back to
 # default policy
 pol_minlen = policy_object.get_action_values(
 action="{0!s}_{1!s}".format(tokentype, ACTION.OTPPINMINLEN),
 scope=scope, user=username, realm=realm, adminrealm=admin_realm,
 client=g.client_ip, unique=True) or \
 policy_object.get_action_values(
 action=ACTION.OTPPINMINLEN, scope=scope, user=username,
 realm=realm, adminrealm=admin_realm, client=g.client_ip,
 unique=True)

 pol_maxlen = policy_object.get_action_values(
 action="{0!s}_{1!s}".format(tokentype, ACTION.OTPPINMAXLEN),
 scope=scope, user=username, realm=realm, adminrealm=admin_realm,
 client=g.client_ip, unique=True) or \
 policy_object.get_action_values(
 action=ACTION.OTPPINMAXLEN, scope=scope, user=username,
 realm=realm, adminrealm=admin_realm, client=g.client_ip,
 unique=True)

 pol_contents = policy_object.get_action_values(
 action="{0!s}_{1!s}".format(tokentype, ACTION.OTPPINCONTENTS),
 scope=scope, user=username, realm=realm, adminrealm=admin_realm,
 client=g.client_ip, unique=True) or \
 policy_object.get_action_values(
 action=ACTION.OTPPINCONTENTS, scope=scope,
 user=username, realm=realm, adminrealm=admin_realm,
 client=g.client_ip, unique=True)

 if len(pol_minlen) == 1 and len(pin) < int(pol_minlen[0]):
 # check the minimum length requirement
 raise PolicyError("The minimum OTP PIN length is {0!s}".format(
 pol_minlen[0]))

 if len(pol_maxlen) == 1 and len(pin) > int(pol_maxlen[0]):
 # check the maximum length requirement
 raise PolicyError("The maximum OTP PIN length is {0!s}".format(
 pol_maxlen[0]))

 if len(pol_contents) == 1:
 # check the contents requirement
 chars = "[a-zA-Z]" # c
 digits = "[0-9]" # n
 special = "[.:,;_<>+*!/()=?$§%&#~\^-]" # s
 no_others = False
 grouping = False

 if pol_contents[0] == "-":
 no_others = True
 pol_contents = pol_contents[1:]
 elif pol_contents[0] == "+":
 grouping = True
 pol_contents = pol_contents[1:]
 # TODO implement grouping and substraction
 if "c" in pol_contents[0] and not re.search(chars, pin):
 raise PolicyError("Missing character in PIN: {0!s}".format(chars))
 if "n" in pol_contents[0] and not re.search(digits, pin):
 raise PolicyError("Missing character in PIN: {0!s}".format(digits))
 if "s" in pol_contents[0] and not re.search(special, pin):
 raise PolicyError("Missing character in PIN: {0!s}".format(special))

 return True

[docs]def papertoken_count(request=None, action=None):
 """
 This is a token specific wrapper for paper token for the endpoint
 /token/init.
 According to the policy scope=SCOPE.ENROLL,
 action=PAPERACTION.PAPER_COUNT it sets the parameter papertoken_count to
 enroll a paper token with such many OTP values.

 :param request:
 :param action:
 :return:
 """
 from privacyidea.lib.tokens.papertoken import PAPERACTION
 user_object = request.User
 policy_object = g.policy_object
 pols = policy_object.get_action_values(
 action=PAPERACTION.PAPERTOKEN_COUNT,
 scope=SCOPE.ENROLL,
 user=user_object.login,
 resolver=user_object.resolver,
 realm=user_object.realm,
 client=g.client_ip,
 unique=True)

 if pols:
 papertoken_count = pols[0]
 request.all_data["papertoken_count"] = papertoken_count

 return True

[docs]def encrypt_pin(request=None, action=None):
 """
 This policy function is to be used as a decorator for several API functions.
 E.g. token/assign, token/setpin, token/init
 If the policy is set to define the PIN to be encrypted,
 the request.all_data is modified like this:
 encryptpin = True

 It uses the policy SCOPE.ENROLL, ACTION.ENCRYPTPIN
 """
 params = request.all_data
 policy_object = g.policy_object
 user_object = get_user_from_param(params)
 # get the length of the random PIN from the policies
 pin_pols = policy_object.get_policies(action=ACTION.ENCRYPTPIN,
 scope=SCOPE.ENROLL,
 user=user_object.login,
 realm=user_object.realm,
 client=g.client_ip,
 active=True)

 if pin_pols:
 request.all_data["encryptpin"] = "True"
 else:
 if "encryptpin" in request.all_data:
 del request.all_data["encryptpin"]

 return True

[docs]def enroll_pin(request=None, action=None):
 """
 This policy function is used as decorator for init token.
 It checks, if the user or the admin is allowed to set a token PIN during
 enrollment. If not, it deleted the PIN from the request.
 """
 policy_object = g.policy_object
 role = g.logged_in_user.get("role")
 if role == ROLE.USER:
 scope = SCOPE.USER
 username = g.logged_in_user.get("username")
 realm = g.logged_in_user.get("realm")
 adminrealm = None
 else:
 scope = SCOPE.ADMIN
 username = g.logged_in_user.get("username")
 realm = getParam(request.all_data, "realm")
 adminrealm = g.logged_in_user.get("realm")
 pin_pols = policy_object.get_policies(action=ACTION.ENROLLPIN,
 scope=scope,
 user=username,
 realm=realm,
 adminrealm=adminrealm,
 client=g.client_ip,
 active=True)
 action_at_all = policy_object.get_policies(scope=scope,
 active=True,
 all_times=True)

 if action_at_all and not pin_pols:
 # Not allowed to set a PIN during enrollment!
 if "pin" in request.all_data:
 del request.all_data["pin"]
 return True

[docs]def init_token_defaults(request=None, action=None):
 """
 This policy function is used as a decorator for the API init function.
 Depending on policy settings it can add token specific default values
 like totp_hashlib, hotp_hashlib, totp_otplen...
 """
 params = request.all_data
 ttype = params.get("type") or "hotp"
 token_class = get_token_class(ttype)
 default_settings = token_class.get_default_settings(params,
 g.logged_in_user,
 g.policy_object,
 g.client_ip)
 log.debug("Adding default settings {0!s} for token type {1!s}".format(
 default_settings, ttype))
 request.all_data.update(default_settings)
 return True

[docs]def init_tokenlabel(request=None, action=None):
 """
 This policy function is to be used as a decorator in the API init function.
 It adds the tokenlabel definition to the params like this:
 params : { "tokenlabel": "<u>@<r>" }

 In addtion it adds the tokenissuer to the params like this:
 params : { "tokenissuer": "privacyIDEA instance" }

 It uses the policy SCOPE.ENROLL, ACTION.TOKENLABEL and ACTION.TOKENISSUER
 to set the tokenlabel and tokenissuer
 of Smartphone tokens during enrollment and this fill the details of the
 response.
 """
 params = request.all_data
 policy_object = g.policy_object
 user_object = get_user_from_param(params)
 # get the serials from a policy definition
 label_pols = policy_object.get_action_values(action=ACTION.TOKENLABEL,
 scope=SCOPE.ENROLL,
 user=user_object.login,
 realm=user_object.realm,
 client=g.client_ip,
 unique=True,
 allow_white_space_in_action=True)

 if len(label_pols) == 1:
 # The policy was set, so we need to set the tokenlabel in the request.
 request.all_data["tokenlabel"] = label_pols[0]

 issuer_pols = policy_object.get_action_values(action=ACTION.TOKENISSUER,
 scope=SCOPE.ENROLL,
 user=user_object.login,
 realm=user_object.realm,
 client=g.client_ip,
 unique=True,
 allow_white_space_in_action=True)
 if len(issuer_pols) == 1:
 request.all_data["tokenissuer"] = issuer_pols[0]

 return True

[docs]def twostep_enrollment_activation(request=None, action=None):
 """
 This policy function enables the two-step enrollment process according
 to the configured policies.
 It is used to decorate the ``/token/init`` endpoint.

 If a ``<type>_2step`` policy matches, the ``2stepinit`` parameter is handled according to the policy.
 If no policy matches, the ``2stepinit`` parameter is removed from the request data.
 """
 policy_object = g.policy_object
 user_object = get_user_from_param(request.all_data)
 serial = getParam(request.all_data, "serial", optional)
 token_type = getParam(request.all_data, "type", optional, "hotp")
 token_exists = False
 if serial:
 tokensobject_list = get_tokens(serial=serial)
 if len(tokensobject_list) == 1:
 token_type = tokensobject_list[0].token.tokentype
 token_exists = True
 token_type = token_type.lower()
 role = g.logged_in_user.get("role")
 # Differentiate between an admin enrolling a token for the
 # user and a user self-enrolling a token.
 if role == ROLE.ADMIN:
 scope = SCOPE.ADMIN
 adminrealm = g.logged_in_user.get("realm")
 else:
 scope = SCOPE.USER
 adminrealm = None
 realm = user_object.realm
 # In any case, the policy's user attribute is matched against the
 # currently logged-in user (which may be the admin or the
 # self-enrolling user).
 user = g.logged_in_user.get("username")
 # Tokentypes have separate twostep actions
 action = "{}_2step".format(token_type)
 twostep_enabled_pols = policy_object.get_action_values(action=action,
 scope=scope,
 unique=True,
 user=user,
 realm=realm,
 client=g.client_ip,
 adminrealm=adminrealm)
 if twostep_enabled_pols:
 enabled_setting = twostep_enabled_pols[0]
 if enabled_setting == "allow":
 # The user is allowed to pass 2stepinit=1
 pass
 elif enabled_setting == "force":
 # We force 2stepinit to be 1 (if the token does not exist yet)
 if not token_exists:
 request.all_data["2stepinit"] = 1
 else:
 raise PolicyError("Unknown 2step policy setting: {}".format(enabled_setting))
 else:
 # If no policy matches, the user is not allowed
 # to pass 2stepinit
 # Force two-step initialization to be None
 if "2stepinit" in request.all_data:
 del request.all_data["2stepinit"]
 return True

[docs]def twostep_enrollment_parameters(request=None, action=None):
 """
 If the ``2stepinit`` parameter is set to true, this policy function
 reads additional configuration from policies and adds it
 to ``request.all_data``, that is:

 * ``{type}_2step_serversize`` is written to ``2step_serversize``
 * ``{type}_2step_clientsize`` is written to ``2step_clientsize`
 * ``{type}_2step_difficulty`` is written to ``2step_difficulty``

 If no policy matches, the value passed by the user is kept.

 This policy function is used to decorate the ``/token/init`` endpoint.
 """
 policy_object = g.policy_object
 user_object = get_user_from_param(request.all_data)
 serial = getParam(request.all_data, "serial", optional)
 token_type = getParam(request.all_data, "type", optional, "hotp")
 if serial:
 tokensobject_list = get_tokens(serial=serial)
 if len(tokensobject_list) == 1:
 token_type = tokensobject_list[0].token.tokentype
 token_type = token_type.lower()
 role = g.logged_in_user.get("role")
 # Differentiate between an admin enrolling a token for the
 # user and a user self-enrolling a token.
 if role == ROLE.ADMIN:
 adminrealm = g.logged_in_user.get("realm")
 else:
 adminrealm = None
 realm = user_object.realm
 # In any case, the policy's user attribute is matched against the
 # currently logged-in user (which may be the admin or the
 # self-enrolling user).
 user = g.logged_in_user.get("username")
 # Tokentypes have separate twostep actions
 if is_true(getParam(request.all_data, "2stepinit", optional)):
 parameters = ("2step_serversize", "2step_clientsize", "2step_difficulty")
 for parameter in parameters:
 action = u"{}_{}".format(token_type, parameter)
 action_values = policy_object.get_action_values(action=action,
 scope=SCOPE.ENROLL,
 unique=True,
 user=user,
 realm=realm,
 client=g.client_ip,
 adminrealm=adminrealm)
 if action_values:
 request.all_data[parameter] = action_values[0]

[docs]def check_max_token_user(request=None, action=None):
 """
 Pre Policy
 This checks the maximum token per user policy.
 Check ACTION.MAXTOKENUSER

 This decorator can wrap:
 /token/init (with a realm and user)
 /token/assign

 :param req:
 :param action:
 :return: True otherwise raises an Exception
 """
 ERROR = "The number of tokens for this user is limited!"
 params = request.all_data
 user_object = get_user_from_param(params)
 if user_object.login:
 policy_object = g.policy_object
 limit_list = policy_object.get_action_values(ACTION.MAXTOKENUSER,
 scope=SCOPE.ENROLL,
 realm=user_object.realm,
 user=user_object.login,
 client=g.client_ip)
 if limit_list:
 # we need to check how many tokens the user already has assigned!
 tokenobject_list = get_tokens(user=user_object)
 already_assigned_tokens = len(tokenobject_list)
 if already_assigned_tokens >= int(max(limit_list)):
 raise PolicyError(ERROR)
 return True

[docs]def check_max_token_realm(request=None, action=None):
 """
 Pre Policy
 This checks the maximum token per realm.
 Check ACTION.MAXTOKENREALM

 This decorator can wrap:
 /token/init (with a realm and user)
 /token/assign
 /token/tokenrealms

 :param req: The request that is intercepted during the API call
 :type req: Request Object
 :param action: An optional Action
 :type action: basestring
 :return: True otherwise raises an Exception
 """
 ERROR = "The number of tokens in this realm is limited!"
 params = request.all_data
 user_object = get_user_from_param(params)
 if user_object:
 realm = user_object.realm
 else: # pragma: no cover
 realm = params.get("realm")

 if realm:
 policy_object = g.policy_object
 limit_list = policy_object.get_action_values(ACTION.MAXTOKENREALM,
 scope=SCOPE.ENROLL,
 realm=realm,
 client=g.client_ip)
 if limit_list:
 # we need to check how many tokens the user already has assigned!
 tokenobject_list = get_tokens(realm=realm)
 already_assigned_tokens = len(tokenobject_list)
 if already_assigned_tokens >= int(max(limit_list)):
 raise PolicyError(ERROR)
 return True

[docs]def set_realm(request=None, action=None):
 """
 Pre Policy
 This pre condition gets the current realm and verifies if the realm
 should be rewritten due to the policy definition.
 I takes the realm from the request and - if a policy matches - replaces
 this realm with the realm defined in the policy

 Check ACTION.SETREALM

 This decorator should wrap
 /validate/check

 :param request: The request that is intercepted during the API call
 :type request: Request Object
 :param action: An optional Action
 :type action: basestring
 :returns: Always true. Modified the parameter request
 """
 #user_object = get_user_from_param(request.all_data)
 user_object = request.User
 # At the moment a realm parameter with no user parameter returns a user
 # object like "@realm". If this is changed one day, we need to also fetch
 # the realm
 if user_object:
 realm = user_object.realm
 username = user_object.login
 else: # pragma: no cover
 realm = request.all_data.get("realm")
 username = None

 policy_object = g.policy_object
 new_realm = policy_object.get_action_values(ACTION.SETREALM,
 scope=SCOPE.AUTHZ,
 user=username,
 realm=realm,
 client=g.client_ip)
 if len(new_realm) > 1:
 raise PolicyError("I do not know, to which realm I should set the "
 "new realm. Conflicting policies exist.")
 elif len(new_realm) == 1:
 # There is one specific realm, which we set in the request
 request.all_data["realm"] = new_realm[0]

 return True

[docs]def required_email(request=None, action=None):
 """
 This precondition checks if the "email" parameter matches the regular
 expression in the policy scope=register, action=requiredemail.
 See :ref:`policy_requiredemail`.

 Check ACTION.REQUIREDEMAIL

 This decorator should wrap POST /register

 :param request: The Request Object
 :param action: An optional Action
 :return: Modifies the request parameters or raises an Exception
 """
 email = getParam(request.all_data, "email")
 email_found = False
 email_pols = g.policy_object.\
 get_action_values(ACTION.REQUIREDEMAIL, scope=SCOPE.REGISTER,
 client=g.client_ip)
 if email and email_pols:
 for email_pol in email_pols:
 # The policy is only "/regularexpr/".
 search = email_pol.strip("/")
 if re.findall(search, email):
 email_found = True
 if not email_found:
 raise RegistrationError("This email address is not allowed to "
 "register!")

 return True

[docs]def auditlog_age(request=None, action=None):
 """
 This pre condition checks for the policy auditlog_age and set the
 "timelimit" parameter of the audit search API.

 Check ACTION.AUDIT_AGE

 The decorator can wrap GET /audit/

 :param request: The request that is intercepted during the API call
 :type request: Request Object
 :param action: An optional Action
 :type action: basestring
 :returns: Always true. Modified the parameter request
 """
 user_object = request.User
 policy_object = g.policy_object
 role = g.logged_in_user.get("role")
 if role == ROLE.ADMIN:
 scope = SCOPE.ADMIN
 adminrealm = g.logged_in_user.get("realm")
 user = g.logged_in_user.get("username")
 realm = user_object.realm
 else:
 scope = SCOPE.USER
 adminrealm = None
 user = user_object.login
 realm = user_object.realm

 audit_age = policy_object.get_action_values(ACTION.AUDIT_AGE,
 scope=scope,
 adminrealm=adminrealm,
 realm=realm,
 user=user,
 client=g.client_ip,
 unique=True)
 timelimit = None
 timelimit_s = None
 for aa in audit_age:
 if not timelimit:
 timelimit_s = aa
 timelimit = parse_timedelta(timelimit_s)
 else:
 # We will use the longest allowed timelimit
 if parse_timedelta(aa) > timelimit:
 timelimit_s = aa
 timelimit = parse_timedelta(timelimit_s)

 log.debug("auditlog_age: {0!s}".format(timelimit_s))
 request.all_data["timelimit"] = timelimit_s

 return True

[docs]def mangle(request=None, action=None):
 """
 This pre condition checks if either of the parameters pass, user or realm
 in a validate/check request should be rewritten based on an
 authentication policy with action "mangle".
 See :ref:`policy_mangle` for an example.

 Check ACTION.MANGLE

 This decorator should wrap
 /validate/check

 :param request: The request that is intercepted during the API call
 :type request: Request Object
 :param action: An optional Action
 :type action: basestring
 :returns: Always true. Modified the parameter request
 """
 user_object = request.User

 policy_object = g.policy_object
 mangle_pols = policy_object.get_action_values(ACTION.MANGLE,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 user=user_object.login,
 client=g.client_ip)
 # We can have several mangle policies! One for user, one for realm and
 # one for pass. So we do no checking here.
 for mangle_pol_action in mangle_pols:
 # mangle_pol_action looks like this:
 # keyword/search/replace/. Where "keyword" can be "user", "pass" or
 # "realm".
 mangle_key, search, replace, _rest = mangle_pol_action.split("/", 3)
 mangle_value = request.all_data.get(mangle_key)
 if mangle_value:
 log.debug("mangling authentication data: {0!s}".format(mangle_key))
 request.all_data[mangle_key] = re.sub(search, replace,
 mangle_value)
 if mangle_key in ["user", "realm"]:
 request.User = get_user_from_param(request.all_data)
 return True

[docs]def check_anonymous_user(request=None, action=None):
 """
 This decorator function takes the request and verifies the given action
 for the SCOPE USER without an authenticated user but the user from the
 parameters.

 This is used with password_reset

 :param request:
 :param action:
 :return: True otherwise raises an Exception
 """
 ERROR = "User actions are defined, but this action is not allowed!"
 params = request.all_data
 policy_object = g.policy_object
 scope = SCOPE.USER
 user_obj = get_user_from_param(params)
 username = user_obj.login
 realm = user_obj.realm

 action = policy_object.get_policies(action=action,
 user=username,
 realm=realm,
 scope=scope,
 client=g.client_ip,
 adminrealm=None,
 active=True)
 action_at_all = policy_object.get_policies(scope=scope,
 active=True,
 all_times=True)
 if action_at_all and len(action) == 0:
 raise PolicyError(ERROR)
 return True

[docs]def check_base_action(request=None, action=None, anonymous=False):
 """
 This decorator function takes the request and verifies the given action
 for the SCOPE ADMIN or USER.
 :param request:
 :param action:
 :param anonymous: If set to True, the user data is taken from the request
 parameters.
 :return: True otherwise raises an Exception
 """
 ERROR = {"user": "User actions are defined, but the action %s is not "
 "allowed!" % action,
 "admin": "Admin actions are defined, but the action %s is not "
 "allowed!" % action}
 params = request.all_data
 policy_object = g.policy_object
 username = g.logged_in_user.get("username")
 role = g.logged_in_user.get("role")
 scope = SCOPE.ADMIN
 admin_realm = g.logged_in_user.get("realm")
 realm = None
 resolver = None

 if role == ROLE.USER:
 scope = SCOPE.USER
 # Reset the admin realm
 admin_realm = None
 realm = realm or g.logged_in_user.get("realm")

 # In certain cases we can not resolve the user by the serial!
 if action not in [ACTION.AUDIT]:
 realm = params.get("realm")
 if type(realm) == list and len(realm) == 1:
 realm = realm[0]
 resolver = params.get("resolver")
 # get the realm by the serial:
 if not realm and params.get("serial"):
 realm = get_realms_of_token(params.get("serial"),
 only_first_realm=True)

 # get the realm by the serial, while the serial is part of the URL like
 # DELETE /token/serial
 if not realm and request.view_args and request.view_args.get("serial"):
 realm = get_realms_of_token(request.view_args.get("serial"),
 only_first_realm=True)

 action = policy_object.get_policies(action=action,
 user=username,
 realm=realm,
 scope=scope,
 resolver=resolver,
 client=g.client_ip,
 adminrealm=admin_realm,
 active=True)
 action_at_all = policy_object.get_policies(scope=scope,
 active=True,
 all_times=True)
 if action_at_all and len(action) == 0:
 raise PolicyError(ERROR.get(role))
 return True

[docs]def check_token_upload(request=None, action=None):
 """
 This decorator function takes the request and verifies the given action
 for scope ADMIN
 :param req:
 :param filename:
 :return:
 """
 params = request.all_data
 policy_object = g.policy_object
 username = g.logged_in_user.get("username")
 admin_realm = g.logged_in_user.get("realm")
 action = policy_object.get_policies(action=ACTION.IMPORT,
 user=username,
 realm=params.get("realm"),
 scope=SCOPE.ADMIN,
 client=g.client_ip,
 adminrealm=admin_realm,
 active=True)
 action_at_all = policy_object.get_policies(scope=SCOPE.ADMIN,
 active=True, all_times=True)
 if action_at_all and len(action) == 0:
 raise PolicyError("Admin actions are defined, but you are not allowed"
 " to upload token files.")
 return True

[docs]def check_token_init(request=None, action=None):
 """
 This decorator function takes the request and verifies
 if the requested tokentype is allowed to be enrolled in the SCOPE ADMIN
 or the SCOPE USER.
 :param request:
 :param action:
 :return: True or an Exception is raised
 """
 ERROR = {"user": "User actions are defined, you are not allowed to "
 "enroll this token type!",
 "admin": "Admin actions are defined, but you are not allowed to "
 "enroll this token type!"}
 params = request.all_data
 policy_object = g.policy_object
 username = g.logged_in_user.get("username")
 role = g.logged_in_user.get("role")
 admin_realm = g.logged_in_user.get("realm")
 scope = SCOPE.ADMIN
 if role == ROLE.USER:
 scope = SCOPE.USER
 admin_realm = None
 tokentype = params.get("type", "HOTP")
 action = "enroll{0!s}".format(tokentype.upper())
 action = policy_object.get_policies(action=action,
 user=username,
 realm=params.get("realm"),
 scope=scope,
 client=g.client_ip,
 adminrealm=admin_realm,
 active=True)
 action_at_all = policy_object.get_policies(scope=scope, active=True,
 all_times=True)
 if action_at_all and len(action) == 0:
 raise PolicyError(ERROR.get(role))
 return True

[docs]def check_external(request=None, action="init"):
 """
 This decorator is a hook to an external check function, that is called
 before the token/init or token/assign API.

 :param request: The REST request
 :type request: flask Request object
 :param action: This is either "init" or "assign"
 :type action: basestring
 :return: either True or an Exception is raised
 """
 function_name = None
 module = None
 try:
 module_func = current_app.config.get("PI_INIT_CHECK_HOOK")
 if module_func:
 module_name = ".".join(module_func.split(".")[:-1])
 module = importlib.import_module(module_name)
 function_name = module_func.split(".")[-1]
 except Exception as exx:
 log.error("Error importing external check function: {0!s}".format(exx))

 # Import of function was successful
 if function_name:
 external_func = getattr(module, function_name)
 external_func(request, action)
 return True

[docs]def api_key_required(request=None, action=None):
 """
 This is a decorator for check_user_pass and check_serial_pass.
 It checks, if a policy scope=auth, action=apikeyrequired is set.
 If so, the validate request will only performed, if a JWT token is passed
 with role=validate.
 """
 ERROR = "The policy requires an API key to authenticate, " \
 "but no key was passed."
 params = request.all_data
 policy_object = g.policy_object
 #user_object = get_user_from_param(params)
 user_object = request.User

 # Get the policies
 action = policy_object.get_policies(action=ACTION.APIKEY,
 user=user_object.login,
 realm=user_object.realm,
 scope=SCOPE.AUTHZ,
 client=g.client_ip,
 active=True)
 # Do we have a policy?
 if action:
 # check if we were passed a correct JWT
 # Get the Authorization token from the header
 auth_token = request.headers.get('PI-Authorization')
 if not auth_token:
 auth_token = request.headers.get('Authorization')
 try:
 r = jwt.decode(auth_token, current_app.secret_key)
 g.logged_in_user = {"username": r.get("username", ""),
 "realm": r.get("realm", ""),
 "role": r.get("role", "")}
 except AttributeError:
 raise PolicyError("No valid API key was passed.")

 role = g.logged_in_user.get("role")
 if role != ROLE.VALIDATE:
 raise PolicyError("A correct JWT was passed, but it was no API "
 "key.")

 # If everything went fine, we call the original function
 return True

[docs]def mock_success(req, action):
 """
 This is a mock function as an example for check_external. This function
 returns success and the API call will go on unmodified.
 """
 return True

[docs]def mock_fail(req, action):
 """
 This is a mock function as an example for check_external. This function
 creates a problem situation and the token/init or token/assign will show
 this exception accordingly.
 """
 raise Exception("This is an Exception in an external check function")

[docs]def is_remote_user_allowed(req):
 """
 Checks if the REMOTE_USER server variable is allowed to be used.

 .. note:: This is not used as a decorator!

 :param req: The flask request, containing the remote user and the client IP
 :return:
 """
 res = False
 if req.remote_user:
 loginname, realm = split_user(req.remote_user)
 realm = realm or get_default_realm()

 # Check if the remote user is allowed
 if "client_ip" not in g:
 g.client_ip = get_client_ip(req,
 get_from_config(SYSCONF.OVERRIDECLIENT))
 if "policy_object" not in g:
 g.policy_object = PolicyClass()
 ruser_active = g.policy_object.get_action_values(ACTION.REMOTE_USER,
 scope=SCOPE.WEBUI,
 user=loginname,
 realm=realm,
 client=g.client_ip)

 res = ruser_active

 return res

[docs]def save_client_application_type(request, action):
 """
 This decorator is used to write the client IP and the HTTP user agent (
 clienttype) to the database.

 In fact this is not a **policy** decorator, as it checks no policy. In
 fact, we could however one day
 define this as a policy, too.
 :param req:
 :return:
 """
 # retrieve the IP. This will also be the mapped IP!
 client_ip = g.client_ip or "0.0.0.0"
 # ...and the user agent.
 ua = request.user_agent
 save_clientapplication(client_ip, "{0!s}".format(ua) or "unknown")
 return True

[docs]def u2ftoken_allowed(request, action):
 """
 This is a token specific wrapper for u2f token for the endpoint
 /token/init.
 According to the policy scope=SCOPE.ENROLL,
 action=U2FACTINO.REQ it checks, if the assertion certificate is an
 allowed U2F token type.

 If the token, which is enrolled contains a non allowed attestation
 certificate, we bail out.

 :param request:
 :param action:
 :return:
 """
 from privacyidea.lib.tokens.u2ftoken import (U2FACTION,
 parse_registration_data)
 from privacyidea.lib.tokens.u2f import x509name_to_string
 policy_object = g.policy_object
 # Get the registration data of the 2nd step of enrolling a U2F device
 reg_data = request.all_data.get("regdata")
 if reg_data:
 # We have a registered u2f device!
 serial = request.all_data.get("serial")
 user_object = request.User

 attestation_cert, user_pub_key, key_handle, \
 signature, description = parse_registration_data(reg_data)

 cert_info = {
 "attestation_issuer":
 x509name_to_string(attestation_cert.get_issuer()),
 "attestation_serial": "{!s}".format(
 attestation_cert.get_serial_number()),
 "attestation_subject": x509name_to_string(
 attestation_cert.get_subject())}

 if user_object:
 token_user = user_object.login
 token_realm = user_object.realm
 token_resolver = user_object.resolver
 else:
 token_realm = token_resolver = token_user = None

 allowed_certs_pols = policy_object.get_action_values(
 U2FACTION.REQ,
 scope=SCOPE.ENROLL,
 realm=token_realm,
 user=token_user,
 resolver=token_resolver,
 client=g.client_ip)
 for allowed_cert in allowed_certs_pols:
 tag, matching, _rest = allowed_cert.split("/", 3)
 tag_value = cert_info.get("attestation_{0!s}".format(tag))
 # if we do not get a match, we bail out
 m = re.search(matching, tag_value)
 if not m:
 log.warning("The U2F device {0!s} is not "
 "allowed to be registered due to policy "
 "restriction".format(
 serial))
 raise PolicyError("The U2F device is not allowed "
 "to be registered due to policy "
 "restriction.")
 # TODO: Maybe we should delete the token, as it is a not
 # usable U2F token, now.

 return True

[docs]def allowed_audit_realm(request=None, action=None):
 """
 This decorator function takes the request and adds additional parameters
 to the request according to the policy
 for the SCOPE.ADMIN or ACTION.AUDIT
 :param request:
 :param action:
 :return: True
 """
 admin_user = g.logged_in_user
 policy_object = g.policy_object
 pols = policy_object.get_policies(
 action=ACTION.AUDIT,
 scope=SCOPE.ADMIN,
 user=admin_user.get("username"),
 client=g.client_ip,
 active=True)

 if pols:
 # get all values in realm:
 allowed_audit_realms = []
 for pol in pols:
 if pol.get("realm"):
 allowed_audit_realms += pol.get("realm")
 request.all_data["allowed_audit_realm"] = list(set(
 allowed_audit_realms))

 return True

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/models.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.models

-*- coding: utf-8 -*-
#
2017-10-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add timeout and retries to radiuserver
2017-08-24 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Remote privacyIDEA Server
2017-08-11 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add AuthCache
2017-04-19 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add support for multiple challenge response token
2016-02-19 Cornelius Kölbel <cornelius@privacyidea.org>
Add radiusserver table
2015-08-27 Cornelius Kölbel <cornelius@privacyidea.org>
Add revocation of token
Nov 11, 2014 Cornelius Kölbel, info@privacyidea.org
http://www.privacyidea.org
#
privacyIDEA is a fork of LinOTP. This model definition
is based on the LinOTP model.
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import binascii
import logging
from datetime import datetime, timedelta
from json import loads, dumps
from flask_sqlalchemy import SQLAlchemy
from .lib.crypto import (encrypt,
 encryptPin,
 decryptPin,
 geturandom,
 hash,
 SecretObj,
 get_rand_digit_str)

from sqlalchemy import and_
from sqlalchemy.schema import Sequence
from .lib.log import log_with
log = logging.getLogger(__name__)

#
After changing the database model do not forget to run
./pi-manage db migrate
and edit the autogenerated script.
#

implicit_returning = True
PRIVACYIDEA_TIMESTAMP = "__timestamp__"

db = SQLAlchemy()

[docs]class MethodsMixin(object):
 """
 This class mixes in some common Class table functions like
 delete and save
 """

 def save(self):
 db.session.add(self)
 db.session.commit()
 return self.id

 def delete(self):
 ret = self.id
 db.session.delete(self)
 db.session.commit()
 return ret

def save_config_timestamp():
 c1 = Config.query.filter_by(Key=PRIVACYIDEA_TIMESTAMP).first()
 if c1:
 c1.Value = datetime.now().strftime("%s")
 else:
 new_timestamp = Config(PRIVACYIDEA_TIMESTAMP,
 datetime.now().strftime("%s"),
 Description="config timestamp. last changed.")
 db.session.add(new_timestamp)

[docs]class TimestampMethodsMixin(object):
 """
 This class mixes in the table functions including update of the timestamp
 """

 def save(self):
 db.session.add(self)
 save_config_timestamp()
 db.session.commit()
 return self.id

 def delete(self):
 ret = self.id
 db.session.delete(self)
 save_config_timestamp()
 db.session.commit()
 return ret

[docs]class Token(MethodsMixin, db.Model):
 """
 The table "token" contains the basic token data like
 * serial number
 * assigned user
 * secret key...
 while the table "tokeninfo" contains additional information that is specific
 to the tokentype.
 """
 __tablename__ = 'token'
 id = db.Column(db.Integer, Sequence("token_seq"),
 primary_key=True,
 nullable=False)
 description = db.Column(db.Unicode(80), default=u'')
 serial = db.Column(db.Unicode(40), default=u'',
 unique=True,
 nullable=False,
 index=True)
 tokentype = db.Column(db.Unicode(30),
 default=u'HOTP',
 index=True)
 user_pin = db.Column(db.Unicode(512),
 default=u'') # encrypt
 user_pin_iv = db.Column(db.Unicode(32),
 default=u'') # encrypt
 so_pin = db.Column(db.Unicode(512),
 default=u'') # encrypt
 so_pin_iv = db.Column(db.Unicode(32),
 default=u'') # encrypt
 resolver = db.Column(db.Unicode(120), default=u'',
 index=True)
 resolver_type = db.Column(db.Unicode(120), default=u'')
 user_id = db.Column(db.Unicode(320),
 default=u'', index=True)
 pin_seed = db.Column(db.Unicode(32),
 default=u'')
 otplen = db.Column(db.Integer(),
 default=6)
 pin_hash = db.Column(db.Unicode(512),
 default=u'') # hashed
 key_enc = db.Column(db.Unicode(1024),
 default=u'') # encrypt
 key_iv = db.Column(db.Unicode(32),
 default=u'')
 maxfail = db.Column(db.Integer(),
 default=10)
 active = db.Column(db.Boolean(),
 nullable=False,
 default=True)
 revoked = db.Column(db.Boolean(),
 default=False)
 locked = db.Column(db.Boolean(),
 default=False)
 failcount = db.Column(db.Integer(),
 default=0)
 count = db.Column(db.Integer(),
 default=0)
 count_window = db.Column(db.Integer(),
 default=10)
 sync_window = db.Column(db.Integer(),
 default=1000)
 rollout_state = db.Column(db.Unicode(10),
 default=u'')
 info = db.relationship('TokenInfo',
 lazy='dynamic',
 backref='info')

 def __init__(self, serial, tokentype=u"",
 isactive=True, otplen=6,
 otpkey=u"",
 userid=None, resolver=None, realm=None,
 **kwargs):
 super(Token, self).__init__(**kwargs)
 self.serial = u'' + serial
 self.tokentype = tokentype
 self.count = 0
 self.failcount = 0
 self.maxfail = 10
 self.active = isactive
 self.revoked = False
 self.locked = False
 self.count_window = 10
 self.otplen = otplen
 self.pin_seed = u""
 self.set_otpkey(otpkey)
 self.resolver = None
 self.resolver_type = None
 self.user_id = None

 # also create the user assignment
 if userid and resolver and realm:
 # get type of resolver
 res_type = Resolver.query.filter_by(name=resolver).first().rtype
 self.resolver = resolver
 self.resolver_type = res_type
 self.user_id = userid
 # We can not create the tokenrealm-connection, yet
 # since we need to token_id.
 token_id = self.save()
 realm_id = Realm.query.filter_by(name=realm).first().id
 tr = TokenRealm(realm_id=realm_id, token_id=token_id)
 if tr:
 db.session.add(tr)
 db.session.commit()

 @log_with(log)
 def delete(self):
 # some DBs (eg. DB2) run in deadlock, if the TokenRealm entry
 # is deleted via key relation
 # so we delete it explicit
 ret = self.id
 db.session.query(TokenRealm)\
 .filter(TokenRealm.token_id == self.id)\
 .delete()
 db.session.query(TokenInfo)\
 .filter(TokenInfo.token_id == self.id)\
 .delete()
 db.session.delete(self)
 db.session.commit()
 return ret

 @staticmethod
 def _fix_spaces(data):
 """
 On MS SQL server empty fields ("") like the info
 are returned as a string with a space (" ").
 This functions helps fixing this.
 Also avoids running into errors, if the data is a None Type.

 :param data: a string from the database
 :type data: usually a string
 :return: a stripped string
 """
 if data:
 data = data.strip()

 return data

 @log_with(log)
 def set_otpkey(self, otpkey, reset_failcount=True):
 iv = geturandom(16)
 enc_otp_key = encrypt(otpkey, iv)
 self.key_enc = unicode(binascii.hexlify(enc_otp_key))
 length = len(self.key_enc)
 if length > Token.key_enc.property.columns[0].type.length:
 log.error("Key {0!s} exceeds database field {1:d}!".format(self.serial,
 length))
 self.key_iv = unicode(binascii.hexlify(iv))
 self.count = 0
 if reset_failcount is True:
 self.failcount = 0

[docs] def set_realms(self, realms, add=False):
 """
 Set the list of the realms.
 This is done by filling the tokenrealm table.
 :param realms: realms
 :type realms: list
 :param add: If set, the realms are added. I.e. old realms are not
 deleted
 :type add: boolean
 """
 # delete old TokenRealms
 if not add:
 db.session.query(TokenRealm)\
 .filter(TokenRealm.token_id == self.id)\
 .delete()
 # add new TokenRealms
 # We must not set the same realm more than once...
 # uniquify: realms -> set(realms)
 for realm in set(realms):
 # Get the id of the realm to add
 r = Realm.query.filter_by(name=realm).first()
 if r:
 # Check if tokenrealm already exists
 tr = TokenRealm.query.filter_by(token_id=self.id,
 realm_id=r.id).first()
 if not tr:
 # If the realm is not yet attached to the token
 Tr = TokenRealm(token_id=self.id, realm_id=r.id)
 db.session.add(Tr)
 db.session.commit()

[docs] def get_realms(self):
 """
 return a list of the assigned realms
 :return: realms
 :rtype: list
 """
 realms = []
 for tokenrealm in self.realm_list:
 realms.append(tokenrealm.realm.name)
 return realms

 @log_with(log)
 def set_user_pin(self, userPin):
 iv = geturandom(16)
 enc_userPin = encrypt(userPin, iv)
 self.user_pin = unicode(binascii.hexlify(enc_userPin))
 self.user_pin_iv = unicode(binascii.hexlify(iv))

 @log_with(log)
 def get_otpkey(self):
 key = binascii.unhexlify(self.key_enc)
 iv = binascii.unhexlify(self.key_iv)
 secret = SecretObj(key, iv)
 return secret

 @log_with(log)
[docs] def get_user_pin(self):
 """
 return the userPin
 :rtype : the PIN as a secretObject
 """
 pu = self.user_pin or ''
 puiv = self.user_pin_iv or ''
 key = binascii.unhexlify(pu)
 iv = binascii.unhexlify(puiv)
 secret = SecretObj(key, iv)
 return secret

 def set_hashed_pin(self, pin):
 seed = geturandom(16)
 self.pin_seed = unicode(binascii.hexlify(seed))
 self.pin_hash = unicode(binascii.hexlify(hash(pin, seed)))
 return self.pin_hash

[docs] def get_hashed_pin(self, pin):
 """
 calculate a hash from a pin
 Fix for working with MS SQL servers
 MS SQL servers sometimes return a '<space>' when the
 column is empty: ''
 """
 seed_str = self._fix_spaces(self.pin_seed)
 seed = binascii.unhexlify(seed_str)
 hPin = hash(pin, seed)
 log.debug("hPin: {0!s}, pin: {1!r}, seed: {2!s}".format(
 binascii.hexlify(hPin),
 pin,
 self.pin_seed))
 return binascii.hexlify(hPin)

 def check_hashed_pin(self, pin):
 hp = self.get_hashed_pin(pin)
 return hp == self.pin_hash

 @log_with(log)
 def set_description(self, desc):
 if desc is None:
 desc = ""
 self.description = unicode(desc)
 return self.description

[docs] def set_pin(self, pin, hashed=True):
 """
 set the OTP pin in a hashed way
 """
 upin = ""
 if pin != "" and pin is not None:
 upin = pin
 if hashed is True:
 self.set_hashed_pin(upin)
 log.debug("setPin(HASH:{0!r})".format(self.pin_hash))
 elif hashed is False:
 self.pin_hash = "@@" + encryptPin(upin)
 log.debug("setPin(ENCR:{0!r})".format(self.pin_hash))
 return self.pin_hash

 def check_pin(self, pin):
 res = False
 # check for a valid input
 if pin is not None:
 if self.is_pin_encrypted() is True:
 log.debug("we got an encrypted PIN!")
 tokenPin = self.pin_hash[2:]
 decryptTokenPin = decryptPin(tokenPin)
 if (decryptTokenPin == pin):
 res = True
 else:
 log.debug("we got a hashed PIN!")
 if self.pin_hash:
 mypHash = self.get_hashed_pin(pin)
 else:
 mypHash = pin
 if (mypHash == self.pin_hash):
 res = True

 return res

[docs] def split_pin_pass(self, passwd, prepend=True):
 """
 The password is split into the PIN and the OTP component.
 THe token knows its length, so it can split accordingly.

 :param passwd: The password that is to be split
 :param prepend: The PIN is put in front of the OTP value
 :return: tuple of (res, pin, otpval)
 """
 if prepend:
 pin = passwd[:-self.otplen]
 otp = passwd[-self.otplen:]
 else:
 otp = passwd[:self.otplen]
 pin = passwd[self.otplen:]
 return(True, pin, otp)

 def is_pin_encrypted(self, pin=None):
 ret = False
 if pin is None:
 pin = self.pin_hash
 if (pin.startswith("@@") is True):
 ret = True
 return ret

 def get_pin(self):
 ret = -1
 if self.is_pin_encrypted() is True:
 tokenPin = self.pin_hash[2:]
 ret = decryptPin(tokenPin)
 return ret

[docs] def set_so_pin(self, soPin):
 """
 For smartcards this sets the security officer pin of the token

 :rtype : None
 """
 iv = geturandom(16)
 enc_soPin = encrypt(soPin, iv)
 self.so_pin = unicode(binascii.hexlify(enc_soPin))
 self.so_pin_iv = unicode(binascii.hexlify(iv))
 return (self.so_pin, self.so_pin_iv)

 def __unicode__(self):
 return self.serial

 @log_with(log)
[docs] def get(self, key=None, fallback=None, save=False):
 """
 simulate the dict behaviour to make challenge processing
 easier, as this will have to deal as well with
 'dict only challenges'

 :param key: the attribute name - in case of key is not provided, a dict
 of all class attributes are returned
 :param fallback: if the attribute is not found,
 the fallback is returned
 :param save: in case of all attributes and save==True, the timestamp is
 converted to a string representation
 """
 if key is None:
 return self.get_vars(save=save)

 if hasattr(self, key):
 return getattr(self, key)
 else:
 return fallback

 @log_with(log)
 def get_vars(self, save=False):
 log.debug('get_vars()')

 ret = {}
 ret['id'] = self.id
 ret['description'] = self.description
 ret['serial'] = self.serial
 ret['tokentype'] = self.tokentype
 ret['info'] = self.get_info()

 ret['resolver'] = self.resolver
 ret['resolver_type'] = self.resolver_type
 ret['user_id'] = self.user_id
 ret['otplen'] = self.otplen

 ret['maxfail'] = self.maxfail
 ret['active'] = self.active
 ret['revoked'] = self.revoked
 ret['locked'] = self.locked
 ret['failcount'] = self.failcount
 ret['count'] = self.count
 ret['count_window'] = self.count_window
 ret['sync_window'] = self.sync_window
 ret['rollout_state'] = self.rollout_state
 # list of Realm names
 realm_list = []
 for realm_entry in self.realm_list:
 realm_list.append(realm_entry.realm.name)
 ret['realms'] = realm_list
 return ret

 __str__ = __unicode__

 def __repr__(self):
 '''
 return the token state as text

 :return: token state as string representation
 :rtype: string
 '''
 ldict = {}
 for attr in self.__dict__:
 key = "{0!r}".format(attr)
 val = "{0!r}".format(getattr(self, attr))
 ldict[key] = val
 res = "<{0!r} {1!r}>".format(self.__class__, ldict)
 return res

[docs] def set_info(self, info):
 """
 Set the additional token info for this token

 Entries that end with ".type" are used as type for the keys.
 I.e. two entries sshkey="XYZ" and sshkey.type="password" will store
 the key sshkey as type "password".

 :param info: The key-values to set for this token
 :type info: dict
 """
 if not self.id:
 # If there is no ID to reference the token, we need to save the
 # token
 self.save()
 types = {}
 for k, v in info.items():
 if k.endswith(".type"):
 types[".".join(k.split(".")[:-1])] = v
 for k, v in info.items():
 if not k.endswith(".type"):
 TokenInfo(self.id, k, v,
 Type=types.get(k)).save(persistent=False)
 db.session.commit()

[docs] def del_info(self, key=None):
 """
 Deletes tokeninfo for a given token.
 If the key is omitted, all Tokeninfo is deleted.

 :param key: searches for the given key to delete the entry
 :return:
 """
 if key:
 tokeninfos = TokenInfo.query.filter_by(token_id=self.id, Key=key)
 else:
 tokeninfos = TokenInfo.query.filter_by(token_id=self.id)
 for ti in tokeninfos:
 ti.delete()

[docs] def get_info(self):
 """

 :return: The token info as dictionary
 """
 ret = {}
 for ti in self.info_list:
 if ti.Type:
 ret[ti.Key + ".type"] = ti.Type
 ret[ti.Key] = ti.Value
 return ret

[docs] def update_type(self, typ):
 """
 in case the previous has been different type
 we must reset the counters
 But be aware, ray, this could also be upper and lower case mixing...
 """
 if self.tokentype.lower() != typ.lower():
 self.count = 0
 self.failcount = 0

 self.tokentype = typ
 return

[docs] def update_otpkey(self, otpkey):
 """
 in case of a new hOtpKey we have to do some more things
 """
 if otpkey is not None:
 secretObj = self.get_otpkey()
 if secretObj.compare(otpkey) is False:
 log.debug('update token OtpKey - counter reset')
 self.set_otpkey(otpkey)

 def update_token(self, description=None, otpkey=None, pin=None):
 if description is not None:
 self.set_description(description)
 if pin is not None:
 self.set_pin(pin)
 if otpkey is not None:
 self.update_otpkey(otpkey)

[docs]class TokenInfo(MethodsMixin, db.Model):
 """
 The table "tokeninfo" is used to store additional, long information that
 is specific to the tokentype.
 E.g. the tokentype "TOTP" has additional entries in the tokeninfo table
 for "timeStep" and "timeWindow", which are stored in the
 column "Key" and "Value".

 The tokeninfo is reference by the foreign key to the "token" table.
 """
 __tablename__ = 'tokeninfo'
 id = db.Column(db.Integer, Sequence("tokeninfo_seq"), primary_key=True)
 Key = db.Column(db.Unicode(255),
 nullable=False)
 Value = db.Column(db.UnicodeText(), default=u'')
 Type = db.Column(db.Unicode(100), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')
 token_id = db.Column(db.Integer(),
 db.ForeignKey('token.id'), index=True)
 token = db.relationship('Token',
 lazy='joined',
 backref='info_list')
 __table_args__ = (db.UniqueConstraint('token_id',
 'Key',
 name='tiix_2'), {})

 def __init__(self, token_id, Key, Value,
 Type= None,
 Description=None):
 """
 Create a new tokeninfo for a given token_id
 """
 self.token_id = token_id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.Description = Description

 def save(self, persistent=True):
 ti = TokenInfo.query.filter_by(token_id=self.token_id,
 Key=self.Key).first()
 if ti is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 TokenInfo.query.filter_by(token_id=self.token_id,
 Key=self.Key
).update({'Value': self.Value,
 'Descrip'
 'tion': self.Description,
 'Type': self.Type})
 ret = ti.id
 if persistent:
 db.session.commit()
 return ret

[docs]class Admin(db.Model):
 """
 The administrators for managing the system.
 To manage the administrators use the command pi-manage.

 In addition certain realms can be defined to be administrative realms.

 :param username: The username of the admin
 :type username: basestring
 :param password: The password of the admin (stored using PBKDF2,
 salt and pepper)
 :type password: basestring
 :param email: The email address of the admin (not used at the moment)
 :type email: basestring
 """
 __tablename__ = "admin"
 username = db.Column(db.Unicode(120),
 primary_key=True,
 nullable=False)
 password = db.Column(db.Unicode(255))
 email = db.Column(db.Unicode(255))

 def save(self):
 c = Admin.query.filter_by(username=self.username).first()
 if c is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.username
 else:
 # update
 update_dict = {}
 if self.email:
 update_dict["email"] = self.email
 if self.password:
 update_dict["password"] = self.password
 Admin.query.filter_by(username=self.username)\
 .update(update_dict)
 ret = c.username
 db.session.commit()
 return ret

 def delete(self):
 db.session.delete(self)
 db.session.commit()

[docs]class Config(TimestampMethodsMixin, db.Model):
 """
 The config table holds all the system configuration in key value pairs.

 Additional configuration for realms, resolvers and machine resolvers is
 stored in specific tables.
 """
 __tablename__ = "config"
 Key = db.Column(db.Unicode(255),
 primary_key=True,
 nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 Type = db.Column(db.Unicode(2000), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')

 @log_with(log)
 def __init__(self, Key, Value, Type=u'', Description=u''):
 self.Key = unicode(Key)
 self.Value = unicode(Value)
 self.Type = unicode(Type)
 self.Description = unicode(Description)

 def __unicode__(self):
 return "<{0!s} ({1!s})>".format(self.Key, self.Type)

 def save(self):
 db.session.add(self)
 save_config_timestamp()
 db.session.commit()
 return self.Key

 def delete(self):
 ret = self.Key
 db.session.delete(self)
 save_config_timestamp()
 db.session.commit()
 return ret

[docs]class Realm(TimestampMethodsMixin, db.Model):
 """
 The realm table contains the defined realms. User Resolvers can be
 grouped to realms. This very table contains just contains the names of
 the realms. The linking to resolvers is stored in the table "resolverrealm".
 """
 __tablename__ = 'realm'
 id = db.Column(db.Integer, Sequence("realm_seq"), primary_key=True,
 nullable=False)
 name = db.Column(db.Unicode(255), default=u'',
 unique=True, nullable=False)
 default = db.Column(db.Boolean(), default=False)
 option = db.Column(db.Unicode(40), default=u'')

 @log_with(log)
 def __init__(self, realm):
 self.name = realm

 def delete(self):
 ret = self.id
 # delete all TokenRealm
 db.session.query(TokenRealm)\
 .filter(TokenRealm.realm_id == ret)\
 .delete()
 # delete all ResolverRealms
 db.session.query(ResolverRealm)\
 .filter(ResolverRealm.realm_id == ret)\
 .delete()
 # delete the realm
 db.session.delete(self)
 save_config_timestamp()
 db.session.commit()
 return ret

[docs]class CAConnector(MethodsMixin, db.Model):
 """
 The table "caconnector" contains the names and types of the defined
 CA connectors. Each connector has a different configuration, that is
 stored in the table "caconnectorconfig".
 """
 __tablename__ = 'caconnector'
 id = db.Column(db.Integer, Sequence("caconnector_seq"), primary_key=True,
 nullable=False)
 name = db.Column(db.Unicode(255), default=u"",
 unique=True, nullable=False)
 catype = db.Column(db.Unicode(255), default=u"",
 nullable=False)
 caconfig = db.relationship('CAConnectorConfig',
 lazy='dynamic',
 backref='caconnector')

 def __init__(self, name, catype):
 self.name = name
 self.catype = catype

 def delete(self):
 ret = self.id
 db.session.delete(self)
 # delete all CAConnectorConfig
 # FIXME: Sometimes not all entries are deleted.
 db.session.query(CAConnectorConfig)\
 .filter(CAConnectorConfig.caconnector_id == ret)\
 .delete()
 db.session.commit()
 return ret

[docs]class CAConnectorConfig(db.Model):
 """
 Each CAConnector can have multiple configuration entries.
 Each CA Connector type can have different required config values. Therefor
 the configuration is stored in simple key/value pairs. If the type of a
 config entry is set to "password" the value of this config entry is stored
 encrypted.

 The config entries are referenced by the id of the resolver.
 """
 __tablename__ = 'caconnectorconfig'
 id = db.Column(db.Integer, Sequence("caconfig_seq"), primary_key=True)
 caconnector_id = db.Column(db.Integer,
 db.ForeignKey('caconnector.id'))
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 Type = db.Column(db.Unicode(2000), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')
 cacon = db.relationship('CAConnector',
 lazy='joined',
 backref='config_list')
 __table_args__ = (db.UniqueConstraint('caconnector_id',
 'Key',
 name='ccix_2'), {})

 def __init__(self, caconnector_id=None,
 Key=None, Value=None,
 caconnector=None,
 Type="", Description=""):
 if caconnector_id:
 self.caconnector_id = caconnector_id
 elif caconnector:
 self.caconnector_id = CAConnector.query\
 .filter_by(name=caconnector)\
 .first()\
 .id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.Description = Description

 def save(self):
 c = CAConnectorConfig.query.filter_by(caconnector_id=self.caconnector_id,
 Key=self.Key).first()
 if c is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 CAConnectorConfig.query.filter_by(caconnector_id=self.caconnector_id,
 Key=self.Key
).update({'Value': self.Value,
 'Type': self.Type,
 'Descrip'
 'tion': self.Description})
 ret = c.id
 db.session.commit()
 return ret

[docs]class Resolver(TimestampMethodsMixin, db.Model):
 """
 The table "resolver" contains the names and types of the defined User
 Resolvers. As each Resolver can have different required config values the
 configuration of the resolvers is stored in the table "resolverconfig".
 """
 __tablename__ = 'resolver'
 id = db.Column(db.Integer, Sequence("resolver_seq"), primary_key=True,
 nullable=False)
 name = db.Column(db.Unicode(255), default=u"",
 unique=True, nullable=False)
 rtype = db.Column(db.Unicode(255), default=u"",
 nullable=False)
 rconfig = db.relationship('ResolverConfig',
 lazy='joined',
 backref='resolver')

 def __init__(self, name, rtype):
 self.name = name
 self.rtype = rtype

 def delete(self):
 ret = self.id
 db.session.delete(self)
 # delete all ResolverConfig
 db.session.query(ResolverConfig)\
 .filter(ResolverConfig.resolver_id == ret)\
 .delete()
 save_config_timestamp()
 db.session.commit()
 return ret

[docs]class ResolverConfig(TimestampMethodsMixin, db.Model):
 """
 Each Resolver can have multiple configuration entries.
 Each Resolver type can have different required config values. Therefor
 the configuration is stored in simple key/value pairs. If the type of a
 config entry is set to "password" the value of this config entry is stored
 encrypted.

 The config entries are referenced by the id of the resolver.
 """
 __tablename__ = 'resolverconfig'
 id = db.Column(db.Integer, Sequence("resolverconf_seq"), primary_key=True)
 resolver_id = db.Column(db.Integer,
 db.ForeignKey('resolver.id'))
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 Type = db.Column(db.Unicode(2000), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')
 reso = db.relationship('Resolver',
 lazy='joined',
 backref='config_list')
 __table_args__ = (db.UniqueConstraint('resolver_id',
 'Key',
 name='rcix_2'), {})

 def __init__(self, resolver_id=None,
 Key=None, Value=None,
 resolver=None,
 Type="", Description=""):
 if resolver_id:
 self.resolver_id = resolver_id
 elif resolver:
 self.resolver_id = Resolver.query\
 .filter_by(name=resolver)\
 .first()\
 .id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.Description = Description

 def save(self):
 c = ResolverConfig.query.filter_by(resolver_id=self.resolver_id,
 Key=self.Key).first()
 if c is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 ResolverConfig.query.filter_by(resolver_id=self.resolver_id,
 Key=self.Key
).update({'Value': self.Value,
 'Type': self.Type,
 'Descrip'
 'tion': self.Description})
 ret = c.id
 save_config_timestamp()
 db.session.commit()
 return ret

[docs]class ResolverRealm(TimestampMethodsMixin, db.Model):
 """
 This table stores which Resolver is located in which realm
 This is a N:M relation
 """
 __tablename__ = 'resolverrealm'
 id = db.Column(db.Integer, Sequence("resolverrealm_seq"), primary_key=True)
 resolver_id = db.Column(db.Integer, db.ForeignKey("resolver.id"))
 realm_id = db.Column(db.Integer, db.ForeignKey("realm.id"))
 # If there are several resolvers in a realm, the priority is used the
 # find a user first in a resolver with a higher priority (i.e. lower number)
 priority = db.Column(db.Integer)
 # this will create a "realm_list" in the resolver object
 resolver = db.relationship(Resolver,
 lazy="joined",
 foreign_keys="ResolverRealm.resolver_id",
 backref="realm_list")
 # this will create a "resolver list" in the realm object
 realm = db.relationship(Realm,
 lazy="joined",
 foreign_keys="ResolverRealm.realm_id",
 backref="resolver_list")
 __table_args__ = (db.UniqueConstraint('resolver_id',
 'realm_id',
 name='rrix_2'), {})

 def __init__(self, resolver_id=None, realm_id=None,
 resolver_name=None,
 realm_name=None,
 priority=None):
 self.resolver_id = None
 self.realm_id = None
 if priority:
 self.priority = priority
 if resolver_id:
 self.resolver_id = resolver_id
 elif resolver_name:
 self.resolver_id = Resolver.query\
 .filter_by(name=resolver_name)\
 .first().id
 if realm_id:
 self.realm_id = realm_id
 elif realm_name:
 self.realm_id = Realm.query\
 .filter_by(name=realm_name)\
 .first().id

[docs]class TokenRealm(MethodsMixin, db.Model):
 """
 This table stored to wich realms a token is assigned. A token is in the
 realm of the user it is assigned to. But a token can also be put into
 many additional realms.
 """
 __tablename__ = 'tokenrealm'
 id = db.Column(db.Integer(), Sequence("tokenrealm_seq"), primary_key=True,
 nullable=True)
 token_id = db.Column(db.Integer(),
 db.ForeignKey('token.id'))
 realm_id = db.Column(db.Integer(),
 db.ForeignKey('realm.id'))
 token = db.relationship('Token',
 lazy='joined',
 backref='realm_list')
 realm = db.relationship('Realm',
 lazy='joined',
 backref='token_list')
 __table_args__ = (db.UniqueConstraint('token_id',
 'realm_id',
 name='trix_2'), {})

 def __init__(self, realm_id=0, token_id=0, realmname=None):
 """
 Create a new TokenRealm entry.
 :param realm_id: The id of the realm
 :param token_id: The id of the token
 """
 log.debug("setting realm_id to {0:d}".format(realm_id))
 if realmname:
 r = Realm.query.filter_by(name=realmname).first()
 self.realm_id = r.id
 if realm_id:
 self.realm_id = realm_id
 self.token_id = token_id

[docs] def save(self):
 """
 We only save this, if it does not exist, yet.
 """
 tr = TokenRealm.query.filter_by(realm_id=self.realm_id,
 token_id=self.token_id).first()
 if tr is None:
 # create a new one
 db.session.add(self)
 db.session.commit()

 ret = self.id
 return ret

[docs]class PasswordReset(MethodsMixin, db.Model):
 """
 Table for handling password resets.
 This table stores the recoverycodes sent to a given user

 The application should save the HASH of the recovery code. Just like the
 password for the Admins the appliaction shall salt and pepper the hash of
 the recoverycode. A database admin will not be able to inject a rogue
 recovery code.

 A user can get several recoverycodes.
 A recovery code has a validity period

 Optional: The email to which the recoverycode was sent, can be stored.
 """
 __tablename__ = "passwordreset"
 id = db.Column(db.Integer(), Sequence("pwreset_seq"), primary_key=True,
 nullable=False)
 recoverycode = db.Column(db.Unicode(255), nullable=False)
 username = db.Column(db.Unicode(64), nullable=False, index=True)
 realm = db.Column(db.Unicode(64), nullable=False, index=True)
 resolver = db.Column(db.Unicode(64))
 email = db.Column(db.Unicode(255))
 timestamp = db.Column(db.DateTime, default=datetime.now())
 expiration = db.Column(db.DateTime)

 @log_with(log)
 def __init__(self, recoverycode, username, realm, resolver="", email=None,
 timestamp=None, expiration=None, expiration_seconds=3600):
 # The default expiration time is 60 minutes
 self.recoverycode = recoverycode
 self.username = username
 self.realm = realm
 self.resolver = resolver
 self.email = email
 self.timestamp = timestamp or datetime.now()
 self.expiration = expiration or datetime.now() + \
 timedelta(seconds=expiration_seconds)

[docs]class Challenge(MethodsMixin, db.Model):
 """
 Table for handling of the generic challenges.
 """
 __tablename__ = "challenge"
 id = db.Column(db.Integer(), Sequence("challenge_seq"), primary_key=True,
 nullable=False)
 transaction_id = db.Column(db.Unicode(64), nullable=False, index=True)
 data = db.Column(db.Unicode(512), default=u'')
 challenge = db.Column(db.Unicode(512), default=u'')
 session = db.Column(db.Unicode(512), default=u'', quote=True, name="session")
 # The token serial number
 serial = db.Column(db.Unicode(40), default=u'', index=True)
 timestamp = db.Column(db.DateTime, default=datetime.now())
 expiration = db.Column(db.DateTime)
 received_count = db.Column(db.Integer(), default=0)
 otp_valid = db.Column(db.Boolean, default=False)

 @log_with(log)
 def __init__(self, serial, transaction_id=None,
 challenge=u'', data=u'', session=u'', validitytime=120):

 self.transaction_id = transaction_id or self.create_transaction_id()
 self.challenge = challenge
 self.serial = serial
 self.data = data
 self.timestamp = datetime.now()
 self.session = session
 self.received_count = 0
 self.otp_valid = False
 self.expiration = datetime.now() + timedelta(seconds=validitytime)

 @staticmethod
 def create_transaction_id(length=20):
 return get_rand_digit_str(length)

[docs] def is_valid(self):
 """
 Returns true, if the expiration time has not passed, yet.
 :return: True if valid
 :rtype: bool
 """
 ret = False
 c_now = datetime.now()
 if c_now < self.expiration:
 ret = True
 return ret

[docs] def set_data(self, data):
 """
 set the internal data of the challenge
 :param data: unicode data
 :type data: string, length 512
 """
 if type(data) in [dict, list]:
 self.data = dumps(data)
 else:
 self.data = unicode(data)

 def get_data(self):
 data = {}
 try:
 data = loads(self.data)
 except:
 data = self.data
 return data

 def get_session(self):
 return self.session

 def set_session(self, session):
 self.session = unicode(session)

 def set_challenge(self, challenge):
 self.challenge = unicode(challenge)

 def get_challenge(self):
 return self.challenge

 def set_otp_status(self, valid=False):
 self.received_count += 1
 self.otp_valid = valid

[docs] def get_otp_status(self):
 """
 This returns how many OTPs were already received for this challenge.
 and if a valid OTP was received.

 :return: tuple of count and True/False
 :rtype: tuple
 """
 return self.received_count, self.otp_valid

 def get_transaction_id(self):
 return self.transaction_id

[docs] def get(self, timestamp=False):
 """
 return a dictionary of all vars in the challenge class

 :param timestamp: if true, the timestamp will given in a readable
 format
 2014-11-29 21:56:43.057293
 :type timestamp: bool
 :return: dict of vars
 """
 descr = {}
 descr['id'] = self.id
 descr['transaction_id'] = self.transaction_id
 descr['challenge'] = self.challenge
 descr['serial'] = self.serial
 descr['data'] = self.get_data()
 if timestamp is True:
 descr['timestamp'] = "{0!s}".format(self.timestamp)
 else:
 descr['timestamp'] = self.timestamp
 descr['otp_received'] = self.received_count > 0
 descr['received_count'] = self.received_count
 descr['otp_valid'] = self.otp_valid
 descr['expiration'] = self.expiration
 return descr

 def __unicode__(self):
 descr = self.get()
 return "{0!s}".format(unicode(descr))

 __str__ = __unicode__

[docs]def cleanup_challenges():
 """
 Delete all challenges, that have expired.

 :return: None
 """
 c_now = datetime.now()
 Challenge.query.filter(Challenge.expiration < c_now).delete()
 db.session.commit()

#
POLICY
#

[docs]class Policy(TimestampMethodsMixin, db.Model):
 """
 The policy table contains policy definitions which control
 the behaviour during
 * enrollment
 * authentication
 * authorization
 * administration
 * user actions
 """
 __tablename__ = "policy"
 id = db.Column(db.Integer, Sequence("policy_seq"), primary_key=True)
 active = db.Column(db.Boolean, default=True)
 check_all_resolvers = db.Column(db.Boolean, default=False)
 name = db.Column(db.Unicode(64), unique=True, nullable=False)
 scope = db.Column(db.Unicode(32), nullable=False)
 action = db.Column(db.Unicode(2000), default=u"")
 realm = db.Column(db.Unicode(256), default=u"")
 adminrealm = db.Column(db.Unicode(256), default=u"")
 resolver = db.Column(db.Unicode(256), default=u"")
 user = db.Column(db.Unicode(256), default=u"")
 client = db.Column(db.Unicode(256), default=u"")
 time = db.Column(db.Unicode(64), default=u"")
 condition = db.Column(db.Integer, default=0, nullable=False)

 def __init__(self, name,
 active=True, scope="", action="", realm="", adminrealm="",
 resolver="", user="", client="", time="", condition=0,
 check_all_resolvers=False):
 if type(active) in [str, unicode]:
 if active.lower() in ["true", "1"]:
 active = True
 else:
 active = False
 self.name = name
 self.action = action
 self.scope = scope
 self.active = active
 self.realm = realm
 self.adminrealm = adminrealm
 self.resolver = resolver
 self.user = user
 self.client = client
 self.time = time
 self.condition = condition
 self.check_all_resolvers = check_all_resolvers

 @staticmethod
 def _split_string(value):
 """
 Split the value at the "," and returns an array.
 If value is empty, it returns an empty array.
 The normal split would return an array with an empty string.

 :param value: The string to be splitted
 :type value: basestring
 :return: list
 """
 ret = [r.strip() for r in (value or "").split(",")]
 if ret == ['']:
 ret = []
 return ret

[docs] def get(self, key=None):
 """
 Either returns the complete policy entry or a single value
 :param key: return the value for this key
 :type key: string
 :return: complete dict or single value
 :rytpe: dict or value
 """
 d = {"name": self.name,
 "active": self.active,
 "scope": self.scope,
 "realm": self._split_string(self.realm),
 "adminrealm": self._split_string(self.adminrealm),
 "resolver": self._split_string(self.resolver),
 "check_all_resolvers": self.check_all_resolvers,
 "user": self._split_string(self.user),
 "client": self._split_string(self.client),
 "time": self.time,
 "condition": self.condition}
 action_list = [x.strip().split("=") for x in (self.action or "").split(
 ",")]
 action_dict = {}
 for a in action_list:
 if len(a) > 1:
 action_dict[a[0]] = a[1]
 else:
 action_dict[a[0]] = True
 d["action"] = action_dict
 if key:
 ret = d.get(key)
 else:
 ret = d
 return ret

--
#
Machines
#

[docs]class MachineToken(MethodsMixin, db.Model):
 """
 The MachineToken assigns a Token and an application type to a
 machine.
 The Machine is represented as the tuple of machineresolver.id and the
 machine_id.
 The machine_id is defined by the machineresolver.

 This can be an n:m mapping.
 """
 __tablename__ = 'machinetoken'
 id = db.Column(db.Integer(), Sequence("machinetoken_seq"),
 primary_key=True, nullable=False)
 token_id = db.Column(db.Integer(),
 db.ForeignKey('token.id'))
 machineresolver_id = db.Column(db.Integer(), nullable=False)
 machine_id = db.Column(db.Unicode(255), nullable=False)
 application = db.Column(db.Unicode(64))
 # This connects the machine with the token and makes the machines visible
 # in the token as "machine_list".
 token = db.relationship('Token',
 lazy='joined',
 backref='machine_list')

 @log_with(log)
 def __init__(self, machineresolver_id=None,
 machineresolver=None, machine_id=None, token_id=None,
 serial=None, application=None):

 if machineresolver_id:
 self.machineresolver_id = machineresolver_id
 elif machineresolver:
 # determine the machineresolver_id:
 self.machineresolver_id = MachineResolver.query.filter(
 MachineResolver.name == machineresolver).first().id
 if token_id:
 self.token_id = token_id
 elif serial:
 # determine token_id
 self.token_id = Token.query.filter_by(serial=serial).first().id
 self.machine_id = machine_id
 self.application = application

"""
class MachineUser(db.Model):
 '''
 The MachineUser maps a user to a client and
 an application on this client

 The tuple of (machine, USER, application) is unique.

 This can be an n:m mapping.
 '''
 __tablename__ = "machineuser"
 id = db.Column(db.Integer(), primary_key=True, nullable=False)
 resolver = db.Column(db.Unicode(120), default=u'', index=True)
 resclass = db.Column(db.Unicode(120), default=u'')
 user_id = db.Column(db.Unicode(120), default=u'', index=True)
 machine_id = db.Column(db.Integer(),
 db.ForeignKey('clientmachine.id'))
 application = db.Column(db.Unicode(64))

 __table_args__ = (db.UniqueConstraint('resolver', 'resclass',
 'user_id', 'machine_id',
 'application', name='uixu_1'),
 {})

 @log_with(log)
 def __init__(self, machine_id,
 resolver,
 resclass,
 user_id,
 application):
 log.debug("setting machine_id to %r" % machine_id)
 self.machine_id = machine_id
 self.resolver = resolver
 self.resclass = resclass
 self.user_id = user_id
 self.application = application

 @log_with(log)
 def store(self):
 db.session.add(self)
 db.session.commit()
 return True

 def to_json(self):
 machinename = ""
 ip = ""
 if self.machine:
 machinename = self.machine.cm_name
 ip = self.machine.cm_ip
 return {'id': self.id,
 'user_id': self.user_id,
 'resolver': self.resolver,
 'resclass': self.resclass,
 'machine_id': self.machine_id,
 'machinename': machinename,
 'ip': ip,
 'application': self.application}
"""

[docs]class MachineTokenOptions(db.Model):
 """
 This class holds an Option for the token assigned to
 a certain client machine.
 Each Token-Clientmachine-Combination can have several
 options.
 """
 __tablename__ = 'machinetokenoptions'
 id = db.Column(db.Integer(), Sequence("machtokenopt_seq"),
 primary_key=True, nullable=False)
 machinetoken_id = db.Column(db.Integer(),
 db.ForeignKey('machinetoken.id'))
 mt_key = db.Column(db.Unicode(64), nullable=False)
 mt_value = db.Column(db.Unicode(64), nullable=False)
 # This connects the MachineTokenOption with the MachineToken and makes the
 # options visible in the MachineToken as "option_list".
 machinetoken = db.relationship('MachineToken',
 lazy='joined',
 backref='option_list')

 def __init__(self, machinetoken_id, key, value):
 log.debug("setting {0!r} to {1!r} for MachineToken {2!s}".format(key,
 value,
 machinetoken_id))
 self.machinetoken_id = machinetoken_id
 self.mt_key = key
 self.mt_value = value

 # if the combination machinetoken_id / mt_key already exist,
 # we need to update
 c = MachineTokenOptions.query.filter_by(
 machinetoken_id=self.machinetoken_id,
 mt_key=self.mt_key).first()
 if c is None:
 # create a new one
 db.session.add(self)
 else:
 # update
 MachineTokenOptions.query.filter_by(
 machinetoken_id=self.machinetoken_id,
 mt_key=self.mt_key).update({'mt_value': self.mt_value})
 db.session.commit()

"""
class MachineUserOptions(db.Model):
 '''
 This class holds an Option for the Users assigned to
 a certain client machine.
 Each User-Clientmachine-Combination can have several
 options.
 '''
 __tablename__ = 'machineuseroptions'
 id = db.Column(db.Integer(), primary_key=True, nullable=False)
 machineuser_id = db.Column(db.Integer(), db.ForeignKey('machineuser.id'))
 mu_key = db.Column(db.Unicode(64), nullable=False)
 mu_value = db.Column(db.Unicode(64), nullable=False)

 def __init__(self, machineuser_id, key, value):
 log.debug("setting %r to %r for MachineUser %s" % (key,
 value,
 machineuser_id))
 self.machineuser_id = machineuser_id
 self.mu_key = key
 self.mu_value = value
 db.session.add(self)
 db.session.commit()

"""

[docs]class EventHandler(MethodsMixin, db.Model):
 """
 This model holds the list of defined events and actions to this events.
 A handler module can be bound to an event with the corresponding
 condition and action.
 """
 __tablename__ = 'eventhandler'
 id = db.Column(db.Integer, Sequence("eventhandler_seq"), primary_key=True,
 nullable=False)
 # in fact the name is a description
 name = db.Column(db.Unicode(64), unique=False, nullable=True)
 active = db.Column(db.Boolean, default=True)
 ordering = db.Column(db.Integer, nullable=False, default=0)
 # This is the name of the event in the code
 event = db.Column(db.Unicode(255), nullable=False)
 # This is the identifier of an event handler module
 handlermodule = db.Column(db.Unicode(255), nullable=False)
 condition = db.Column(db.Unicode(1024), default=u"")
 action = db.Column(db.Unicode(1024), default=u"")
 options = db.relationship('EventHandlerOption',
 lazy='dynamic',
 backref='eventhandler')
 conditions = db.relationship('EventHandlerCondition',
 lazy='dynamic',
 backref='eventhandler')

 def __init__(self, name, event, handlermodule, action, condition="",
 ordering=0, options=None, id=None, conditions=None,
 active=True):
 self.name = name
 self.ordering = ordering
 self.event = event
 self.handlermodule = handlermodule
 self.condition = condition
 self.action = action
 self.active = active
 if id == "":
 id = None
 self.id = id
 self.save()
 # add the options to the event handler
 options = options or {}
 for k, v in options.iteritems():
 EventHandlerOption(eventhandler_id=self.id, Key=k, Value=v).save()
 conditions = conditions or {}
 for k, v in conditions.iteritems():
 EventHandlerCondition(eventhandler_id=self.id, Key=k, Value=v).save()
 # Delete event handler conditions, that ar not used anymore.
 ev_conditions = EventHandlerCondition.query.filter_by(
 eventhandler_id=self.id).all()
 for cond in ev_conditions:
 if cond.Key not in conditions.keys():
 EventHandlerCondition.query.filter_by(
 eventhandler_id=self.id, Key=cond.Key).delete()
 db.session.commit()

 def save(self):
 if self.id is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 else:
 # update
 EventHandler.query.filter_by(id=self.id).update({
 "ordering": self.ordering or 0,
 "event": self.event,
 "active": self.active,
 "name": self.name,
 "handlermodule": self.handlermodule,
 "condition": self.condition,
 "action": self.action
 })
 db.session.commit()
 return self.id

 def delete(self):
 ret = self.id
 db.session.delete(self)
 # delete all EventHandlerOptions
 db.session.query(EventHandlerOption) \
 .filter(EventHandlerOption.eventhandler_id == ret) \
 .delete()
 # delete all Conditions
 db.session.query(EventHandlerCondition) \
 .filter(EventHandlerCondition.eventhandler_id == ret) \
 .delete()
 db.session.commit()
 return ret

[docs] def get(self):
 """
 Return the serialized policy object including the options

 :return: complete dict
 :rytpe: dict
 """
 d = {"active": self.active,
 "name": self.name,
 "handlermodule": self.handlermodule,
 "id": self.id,
 "ordering": self.ordering,
 "action": self.action,
 "condition": self.condition}
 event_list = [x.strip() for x in self.event.split(",")]
 d["event"] = event_list
 option_dict = {}
 for option in self.options:
 option_dict[option.Key] = option.Value
 d["options"] = option_dict
 condition_dict = {}
 for cond in self.conditions:
 condition_dict[cond.Key] = cond.Value
 d["conditions"] = condition_dict
 return d

[docs]class EventHandlerCondition(db.Model):
 """
 Each EventHandler entry can have additional conditions according to the
 handler module
 """
 __tablename__ = "eventhandlercondition"
 id = db.Column(db.Integer, Sequence("eventhandlercond_seq"),
 primary_key=True)
 eventhandler_id = db.Column(db.Integer,
 db.ForeignKey('eventhandler.id'))
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 comparator = db.Column(db.Unicode(255), default=u'equal')
 evhdl = db.relationship('EventHandler',
 lazy='joined',
 backref='condition_list')
 __table_args__ = (db.UniqueConstraint('eventhandler_id',
 'Key',
 name='ehcix_1'), {})

 def __init__(self, eventhandler_id, Key, Value, comparator="equal"):
 self.eventhandler_id = eventhandler_id
 self.Key = Key
 self.Value = Value
 self.comparator = comparator
 self.save()

 def save(self):
 ehc = EventHandlerCondition.query.filter_by(
 eventhandler_id=self.eventhandler_id, Key=self.Key).first()
 if ehc is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 EventHandlerCondition.query.filter_by(
 eventhandler_id=self.eventhandler_id, Key=self.Key) \
 .update({'Value': self.Value,
 'comparator': self.comparator})
 ret = ehc.id
 db.session.commit()
 return ret

[docs]class EventHandlerOption(db.Model):
 """
 Each EventHandler entry can have additional options according to the
 handler module.
 """
 __tablename__ = 'eventhandleroption'
 id = db.Column(db.Integer, Sequence("eventhandleropt_seq"),
 primary_key=True)
 eventhandler_id = db.Column(db.Integer,
 db.ForeignKey('eventhandler.id'))
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 Type = db.Column(db.Unicode(2000), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')
 evhdl = db.relationship('EventHandler',
 lazy='joined',
 backref='option_list')
 __table_args__ = (db.UniqueConstraint('eventhandler_id',
 'Key',
 name='ehoix_1'), {})

 def __init__(self, eventhandler_id, Key, Value, Type="", Description=""):
 self.eventhandler_id = eventhandler_id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.Description = Description
 self.save()

 def save(self):
 eho = EventHandlerOption.query.filter_by(
 eventhandler_id=self.eventhandler_id, Key=self.Key).first()
 if eho is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 EventHandlerOption.query.filter_by(
 eventhandler_id=self.eventhandler_id, Key=self.Key) \
 .update({'Value': self.Value,
 'Type': self.Type,
 'Description': self.Description})
 ret = eho.id
 db.session.commit()
 return ret

[docs]class MachineResolver(MethodsMixin, db.Model):
 """
 This model holds the definition to the machinestore.
 Machines could be located in flat files, LDAP directory or in puppet
 services or other...

 The usual MachineResolver just holds a name and a type and a reference to
 its config
 """
 __tablename__ = 'machineresolver'
 id = db.Column(db.Integer, Sequence("machineresolver_seq"),
 primary_key=True, nullable=False)
 name = db.Column(db.Unicode(255), default=u"",
 unique=True, nullable=False)
 rtype = db.Column(db.Unicode(255), default=u"",
 nullable=False)
 rconfig = db.relationship('MachineResolverConfig',
 lazy='dynamic',
 backref='machineresolver')

 def __init__(self, name, rtype):
 self.name = name
 self.rtype = rtype

 def delete(self):
 ret = self.id
 db.session.delete(self)
 # delete all MachineResolverConfig
 db.session.query(MachineResolverConfig)\
 .filter(MachineResolverConfig.resolver_id == ret)\
 .delete()
 db.session.commit()
 return ret

[docs]class MachineResolverConfig(db.Model):
 """
 Each Machine Resolver can have multiple configuration entries.
 The config entries are referenced by the id of the machine resolver
 """
 __tablename__ = 'machineresolverconfig'
 id = db.Column(db.Integer, Sequence("machineresolverconf_seq"),
 primary_key=True)
 resolver_id = db.Column(db.Integer,
 db.ForeignKey('machineresolver.id'))
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.Unicode(2000), default=u'')
 Type = db.Column(db.Unicode(2000), default=u'')
 Description = db.Column(db.Unicode(2000), default=u'')
 reso = db.relationship('MachineResolver',
 lazy='joined',
 backref='config_list')
 __table_args__ = (db.UniqueConstraint('resolver_id',
 'Key',
 name='mrcix_2'), {})

 def __init__(self, resolver_id=None, Key=None, Value=None, resolver=None,
 Type="", Description=""):
 if resolver_id:
 self.resolver_id = resolver_id
 elif resolver:
 self.resolver_id = MachineResolver.query\
 .filter_by(name=resolver)\
 .first()\
 .id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.Description = Description

 def save(self):
 c = MachineResolverConfig.query.filter_by(
 resolver_id=self.resolver_id, Key=self.Key).first()
 if c is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 MachineResolverConfig.query.filter_by(
 resolver_id=self.resolver_id, Key=self.Key)\
 .update({'Value': self.Value,
 'Type': self.Type,
 'Description': self.Description})
 ret = c.id
 db.session.commit()
 return ret

[docs]def get_token_id(serial):
 """
 Return the database token ID for a given serial number
 :param serial:
 :return: token ID
 :rtpye: int
 """
 token = Token.query.filter(Token.serial == serial).first()
 return token.id

[docs]def get_machineresolver_id(resolvername):
 """
 Return the database ID of the machine resolver
 :param resolvername:
 :return:
 """
 mr = MachineResolver.query.filter(MachineResolver.name ==
 resolvername).first()
 return mr.id

[docs]def get_machinetoken_id(machine_id, resolver_name, serial, application):
 """
 Returns the ID in the machinetoken table

 :param machine_id: The resolverdependent machine_id
 :type machine_id: basestring
 :param resolver_name: The name of the resolver
 :type resolver_name: basestring
 :param serial: the serial number of the token
 :type serial: basestring
 :param application: The application type
 :type application: basestring
 :return: The ID of the machinetoken entry
 :rtype: int
 """
 ret = None
 token_id = get_token_id(serial)
 resolver = MachineResolver.query.filter(MachineResolver.name ==
 resolver_name).first()

 mt = MachineToken.query.filter(and_(MachineToken.token_id == token_id,
 MachineToken.machineresolver_id ==
 resolver.id,
 MachineToken.machine_id == machine_id,
 MachineToken.application ==
 application)).first()
 if mt:
 ret = mt.id
 return ret

[docs]class SMSGateway(MethodsMixin, db.Model):
 """
 This table stores the SMS Gateway definitions.
 See
 https://github.com/privacyidea/privacyidea/wiki/concept:-Delivery-Gateway

 It saves the
 * unique name
 * a description
 * the SMS provider module

 All options and parameters are saved in other tables.
 """
 __tablename__ = 'smsgateway'
 id = db.Column(db.Integer, Sequence("smsgateway_seq"), primary_key=True)
 identifier = db.Column(db.Unicode(255), nullable=False, unique=True)
 description = db.Column(db.Unicode(1024), default=u"")
 providermodule = db.Column(db.Unicode(1024), nullable=False)
 options = db.relationship('SMSGatewayOption',
 lazy='dynamic',
 backref='ref_smsgateway')

 def __init__(self, identifier, providermodule, description=None,
 options=None):

 options = options or {}
 sql = SMSGateway.query.filter_by(identifier=identifier).first()
 if sql:
 self.id = sql.id
 self.identifier = identifier
 self.providermodule = providermodule
 self.description = description
 self.save()
 # delete non existing options in case of update
 if sql:
 for option in sql.option_dict.keys():
 # iterate through all existing options
 if option not in options:
 # if the option is not contained anymore
 SMSGatewayOption.query.filter_by(gateway_id=self.id,
 Key=option).delete()
 # add the options to the SMS Gateway
 for k, v in options.iteritems():
 SMSGatewayOption(gateway_id=self.id, Key=k, Value=v).save()

 def save(self):
 if self.id is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 else:
 # update
 SMSGateway.query.filter_by(id=self.id).update({
 "identifier": self.identifier,
 "providermodule": self.providermodule,
 "description": self.description
 })
 db.session.commit()
 return self.id

[docs] def delete(self):
 """
 When deleting an SMS Gateway we also delete all the options.
 :return:
 """
 ret = self.id
 db.session.delete(self)
 # delete all SMSGatewayOptions
 db.session.query(SMSGatewayOption)\
 .filter(SMSGatewayOption.gateway_id == ret)\
 .delete()
 db.session.commit()
 return ret

 @property
 def option_dict(self):
 """
 Return all connected options as a dictionary

 :return: dict
 """
 res = {}
 for option in self.ref_option_list:
 res[option.Key] = option.Value
 return res

[docs] def as_dict(self):
 """
 Return the object as a dictionary

 :return: complete dict
 :rytpe: dict
 """
 d = {"id": self.id,
 "name": self.identifier,
 "providermodule": self.providermodule,
 "description": self.description,
 "options": self.option_dict}

 return d

[docs]class SMSGatewayOption(MethodsMixin, db.Model):
 """
 This table stores the options and parameters for an SMS Gateway definition.
 """
 __tablename__ = 'smsgatewayoption'
 id = db.Column(db.Integer, Sequence("smsgwoption_seq"), primary_key=True)
 Key = db.Column(db.Unicode(255), nullable=False)
 Value = db.Column(db.UnicodeText(), default=u'')
 Type = db.Column(db.Unicode(100), default=u'')
 gateway_id = db.Column(db.Integer(),
 db.ForeignKey('smsgateway.id'), index=True)
 smsgw = db.relationship('SMSGateway',
 lazy='joined',
 backref='ref_option_list')
 __table_args__ = (db.UniqueConstraint('gateway_id',
 'Key',
 name='sgix_1'), {})

 def __init__(self, gateway_id, Key, Value, Type=None):

 """
 Create a new gateway_option for the gateway_id
 """
 self.gateway_id = gateway_id
 self.Key = Key
 self.Value = Value
 self.Type = Type
 self.save()

 def save(self):
 # See, if there is this option for this this gateway
 go = SMSGatewayOption.query.filter_by(gateway_id=self.gateway_id,
 Key=self.Key).first()
 if go is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 SMSGatewayOption.query.filter_by(gateway_id=self.gateway_id,
 Key=self.Key
).update({'Value': self.Value,
 'Type': self.Type})
 ret = go.id
 db.session.commit()
 return ret

[docs]class PrivacyIDEAServer(MethodsMixin, db.Model):
 """
 This table can store remote privacyIDEA server definitions
 """
 __tablename__ = 'privacyideaserver'
 id = db.Column(db.Integer, Sequence("privacyideaserver_seq"),
 primary_key=True)
 # This is a name to refer to
 identifier = db.Column(db.Unicode(255), nullable=False, unique=True)
 # This is the FQDN or the IP address
 url = db.Column(db.Unicode(255), nullable=False)
 tls = db.Column(db.Boolean, default=False)
 description = db.Column(db.Unicode(2000), default=u'')

 def save(self):
 pi = PrivacyIDEAServer.query.filter(PrivacyIDEAServer.identifier ==
 self.identifier).first()
 if pi is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 values = {"url": self.url}
 if self.tls is not None:
 values["tls"] = self.tls
 if self.description is not None:
 values["description"] = self.description
 PrivacyIDEAServer.query.filter(PrivacyIDEAServer.identifier ==
 self.identifier).update(values)
 ret = pi.id
 db.session.commit()
 return ret

[docs]class RADIUSServer(MethodsMixin, db.Model):
 """
 This table can store configurations of RADIUS servers.
 https://github.com/privacyidea/privacyidea/issues/321

 It saves
 * a unique name
 * a description
 * an IP address a
 * a Port
 * a secret
 * timeout in seconds (default 5)
 * retries (default 3)

 These RADIUS server definition can be used in RADIUS tokens or in a
 radius passthru policy.
 """
 __tablename__ = 'radiusserver'
 id = db.Column(db.Integer, Sequence("radiusserver_seq"), primary_key=True)
 # This is a name to refer to
 identifier = db.Column(db.Unicode(255), nullable=False, unique=True)
 # This is the FQDN or the IP address
 server = db.Column(db.Unicode(255), nullable=False)
 port = db.Column(db.Integer, default=25)
 secret = db.Column(db.Unicode(255), default=u"")
 dictionary = db.Column(db.Unicode(255),
 default=u"/etc/privacyidea/dictionary")
 description = db.Column(db.Unicode(2000), default=u'')
 timeout = db.Column(db.Integer, default=5)
 retries = db.Column(db.Integer, default=3)

[docs] def save(self):
 """
 If a RADIUS server with a given name is save, then the existing
 RADIUS server is updated.
 """
 radius = RADIUSServer.query.filter(RADIUSServer.identifier ==
 self.identifier).first()
 if radius is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 values = {"server": self.server}
 if self.port is not None:
 values["port"] = self.port
 if self.secret is not None:
 values["secret"] = self.secret
 if self.dictionary is not None:
 values["dictionary"] = self.dictionary
 if self.description is not None:
 values["description"] = self.description
 if self.timeout is not None:
 values["timeout"] = int(self.timeout)
 if self.retries is not None:
 values["retries"] = int(self.retries)
 RADIUSServer.query.filter(RADIUSServer.identifier ==
 self.identifier).update(values)
 ret = radius.id
 db.session.commit()
 return ret

[docs]class SMTPServer(MethodsMixin, db.Model):
 """
 This table can store configurations for SMTP servers.
 Each entry represents an SMTP server.
 EMail Token, SMS SMTP Gateways or Notifications like PIN handlers are
 supposed to use a reference to to a server definition.
 Each Machine Resolver can have multiple configuration entries.
 The config entries are referenced by the id of the machine resolver
 """
 __tablename__ = 'smtpserver'
 id = db.Column(db.Integer, Sequence("smtpserver_seq"),primary_key=True)
 # This is a name to refer to
 identifier = db.Column(db.Unicode(255), nullable=False)
 # This is the FQDN or the IP address
 server = db.Column(db.Unicode(255), nullable=False)
 port = db.Column(db.Integer, default=25)
 username = db.Column(db.Unicode(255), default=u"")
 password = db.Column(db.Unicode(255), default=u"")
 sender = db.Column(db.Unicode(255), default=u"")
 tls = db.Column(db.Boolean, default=False)
 description = db.Column(db.Unicode(2000), default=u'')

 def save(self):
 smtp = SMTPServer.query.filter(SMTPServer.identifier ==
 self.identifier).first()
 if smtp is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 values = {"server": self.server}
 if self.port is not None:
 values["port"] = self.port
 if self.username is not None:
 values["username"] = self.username
 if self.password is not None:
 values["password"] = self.password
 if self.sender is not None:
 values["sender"] = self.sender
 if self.tls is not None:
 values["tls"] = self.tls
 if self.description is not None:
 values["description"] = self.description
 SMTPServer.query.filter(SMTPServer.identifier ==
 self.identifier).update(values)
 ret = smtp.id
 db.session.commit()
 return ret

[docs]class ClientApplication(MethodsMixin, db.Model):
 """
 This table stores the clients, which sent an authentication request to
 privacyIDEA.
 This table is filled automatically by authentication requests.
 """
 __tablename__ = 'clientapplication'
 id = db.Column(db.Integer, Sequence("clientapp_seq"), primary_key=True)
 ip = db.Column(db.Unicode(255), nullable=False, index=True)
 hostname = db.Column(db.Unicode(255))
 clienttype = db.Column(db.Unicode(255), nullable=False, index=True)
 lastseen = db.Column(db.DateTime)
 __table_args__ = (db.UniqueConstraint('ip',
 'clienttype',
 name='caix'), {})

 def save(self):
 clientapp = ClientApplication.query.filter(
 ClientApplication.ip == self.ip,
 ClientApplication.clienttype == self.clienttype).first()
 self.lastseen = datetime.now()
 if clientapp is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 values = {"lastseen": self.lastseen}
 if self.hostname is not None:
 values["hostname"] = self.hostname
 ClientApplication.query.filter(
 ClientApplication.id == clientapp.id).update(values)
 ret = clientapp.id
 db.session.commit()
 return ret

 def __repr__(self):
 return "<ClientApplication [{0!s}][{1!s}:{2!s}]>".format(
 self.id, self.ip, self.clienttype)

[docs]class Subscription(MethodsMixin, db.Model):
 """
 This table stores the imported subscription files.
 """
 __tablename__ = 'subscription'
 id = db.Column(db.Integer, Sequence("subscription_seq"), primary_key=True)
 application = db.Column(db.Unicode(80), index=True)
 for_name = db.Column(db.Unicode(80), nullable=False)
 for_address = db.Column(db.Unicode(128))
 for_email = db.Column(db.Unicode(128), nullable=False)
 for_phone = db.Column(db.Unicode(50), nullable=False)
 for_url = db.Column(db.Unicode(80))
 for_comment = db.Column(db.Unicode(255))
 by_name = db.Column(db.Unicode(50), nullable=False)
 by_email = db.Column(db.Unicode(128), nullable=False)
 by_address = db.Column(db.Unicode(128))
 by_phone = db.Column(db.Unicode(50))
 by_url = db.Column(db.Unicode(80))
 date_from = db.Column(db.DateTime)
 date_till = db.Column(db.DateTime)
 num_users = db.Column(db.Integer)
 num_tokens = db.Column(db.Integer)
 num_clients = db.Column(db.Integer)
 level = db.Column(db.Unicode(80))
 signature = db.Column(db.Unicode(640))

 def save(self):
 subscription = Subscription.query.filter(
 Subscription.application == self.application).first()
 if subscription is None:
 # create a new one
 db.session.add(self)
 db.session.commit()
 ret = self.id
 else:
 # update
 values = self.get()
 Subscription.query.filter(
 Subscription.id == subscription.id).update(values)
 ret = subscription.id
 db.session.commit()
 return ret

 def __repr__(self):
 return "<Subscription [{0!s}][{1!s}:{2!s}:{3!s}]>".format(
 self.id, self.application, self.for_name, self.by_name)

[docs] def get(self):
 """
 Return the database object as dict
 :return:
 """
 d = {}
 for attr in Subscription.__table__.columns.keys():
 if getattr(self, attr) is not None:
 d[attr] = getattr(self, attr)
 return d

Audit

audit_column_length = {"signature": 620,
 "action": 50,
 "serial": 20,
 "token_type": 12,
 "user": 20,
 "realm": 20,
 "resolver": 50,
 "administrator": 20,
 "action_detail": 50,
 "info": 50,
 "privacyidea_server": 255,
 "client": 50,
 "loglevel": 12,
 "clearance_level": 12}
AUDIT_TABLE_NAME = 'pidea_audit'

[docs]class Audit(MethodsMixin, db.Model):
 """
 This class stores the Audit entries
 """
 __tablename__ = AUDIT_TABLE_NAME
 id = db.Column(db.Integer, Sequence("audit_seq"), primary_key=True)
 date = db.Column(db.DateTime)
 signature = db.Column(db.String(audit_column_length.get("signature")))
 action = db.Column(db.String(audit_column_length.get("action")))
 success = db.Column(db.Integer)
 serial = db.Column(db.String(audit_column_length.get("serial")))
 token_type = db.Column(db.String(audit_column_length.get("token_type")))
 user = db.Column(db.String(audit_column_length.get("user")), index=True)
 realm = db.Column(db.String(audit_column_length.get("realm")))
 resolver = db.Column(db.String(audit_column_length.get("resolver")))
 administrator = db.Column(
 db.String(audit_column_length.get("administrator")))
 action_detail = db.Column(
 db.String(audit_column_length.get("action_detail")))
 info = db.Column(db.String(audit_column_length.get("info")))
 privacyidea_server = db.Column(
 db.String(audit_column_length.get("privacyidea_server")))
 client = db.Column(db.String(audit_column_length.get("client")))
 loglevel = db.Column(db.String(audit_column_length.get("loglevel")))
 clearance_level = db.Column(db.String(audit_column_length.get(
 "clearance_level")))

 def __init__(self,
 action="",
 success=0,
 serial="",
 token_type="",
 user="",
 realm="",
 resolver="",
 administrator="",
 action_detail="",
 info="",
 privacyidea_server="",
 client="",
 loglevel="default",
 clearance_level="default"
):
 self.signature = ""
 self.date = datetime.now()
 self.action = action
 self.success = success
 self.serial = serial
 self.token_type = token_type
 self.user = user
 self.realm = realm
 self.resolver = resolver
 self.administrator = administrator
 self.action_detail = action_detail
 self.info = info
 self.privacyidea_server = privacyidea_server
 self.client = client
 self.loglevel = loglevel
 self.clearance_level = clearance_level

User Cache

class UserCache(MethodsMixin, db.Model):
 __tablename__ = 'usercache'
 id = db.Column(db.Integer, Sequence("usercache_seq"), primary_key=True)
 username = db.Column(db.Unicode(64), default=u"", index=True)
 resolver = db.Column(db.Unicode(120), default=u'')
 user_id = db.Column(db.Unicode(320), default=u'', index=True)
 timestamp = db.Column(db.DateTime)

 def __init__(self, username, resolver, user_id, timestamp):
 self.username = username
 self.resolver = resolver
 self.user_id = user_id
 self.timestamp = timestamp

class AuthCache(MethodsMixin, db.Model):
 __tablename__ = 'authcache'
 id = db.Column(db.Integer, Sequence("usercache_seq"), primary_key=True)
 first_auth = db.Column(db.DateTime)
 last_auth = db.Column(db.DateTime)
 username = db.Column(db.Unicode(64), default=u"", index=True)
 resolver = db.Column(db.Unicode(120), default=u'', index=True)
 realm = db.Column(db.Unicode(120), default=u'', index=True)
 client_ip = db.Column(db.Unicode(40), default=u"")
 user_agent = db.Column(db.Unicode(120), default=u"")
 # We can hash the password like this:
 # binascii.hexlify(hashlib.sha256("secret123456").digest())
 authentication = db.Column(db.Unicode(64), default=u"")

 def __init__(self, username, realm, resolver, authentication,
 first_auth=None, last_auth=None):
 self.username = username
 self.realm = realm
 self.resolver = resolver
 self.authentication = authentication
 self.first_auth = first_auth
 self.last_auth = last_auth

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/policy.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.policy

-*- coding: utf-8 -*-
#
2017-11-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add policy action for customization of menu and baseline
2017-01-22 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add policy action groups
2016-12-19 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add check_all_resolvers logic
2016-11-20 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add audit log age functionality
2016-08-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add registration body
2016-06-21 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Change PIN policies
2016-05-07 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add realm dropdown
2016-04-06 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add time dependency in policy
2016-02-22 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add RADIUS passthru policy
2016-02-05 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add tokenwizard in scope UI
2015-12-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add password reset policy
2015-12-28 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add registration policy
2015-12-16 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add tokenissuer policy
2015-11-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add getchallenges policy
2015-10-31 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add last_auth policy.
2015-10-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Display user details in token list
2015-10-26 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add default token type for enrollment
2015-10-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add auth_max_success and auth_max_fail actions to
scope authorization
2015-10-09 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add token_page_size and user_page_size policy
2015-09-06 Cornelius Kölbel <cornelius.koelbel@netkngihts.it>
Add challenge_response authentication policy
2015-06-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add the OTP PIN handling
2015-06-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add the mangle policy
2015-04-03 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add WebUI logout time.
2015-03-27 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add PIN policies in USER scope
2015-02-06 Cornelius Kölbel <cornelius@privacyidea.org>
Rewrite for flask migration.
Policies are not handled by decorators as
1. precondition for API calls
2. internal modifications of LIB-functions
3. postcondition for API calls
#
Jul 07, 2014 add check_machine_policy, Cornelius Kölbel
May 08, 2014 Cornelius Kölbel
#
License: AGPLv3
contact: http://www.privacyidea.org
#
privacyIDEA is a fork of LinOTP
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Base function to handle the policy entries in the database.
This module only depends on the db/models.py

The functions of this module are tested in tests/test_lib_policy.py

A policy has the attributes

 * name
 * scope
 * action
 * realm
 * resolver
 * user
 * client
 * active

``name`` is the unique identifier of a policy. ``scope`` is the area,
where this policy is meant for. This can be values like admin, selfservice,
authentication...
``scope`` takes only one value.

``active`` is bool and indicates, whether a policy is active or not.

``action``, ``realm``, ``resolver``, ``user`` and ``client`` can take a comma
separated list of values.

realm and resolver

If these are empty '*', this policy matches each requested realm.

user

If the user is empty or '*', this policy matches each user.
You can exclude users from matching this policy, by prepending a '-' or a '!'.
``*, -admin`` will match for all users except the admin.

You can also use regular expressions to match the user like ``customer_.*``
to match any user, starting with *customer_*.

.. note:: Regular expression will only work for exact machtes.
 user1234 will not match *user1* but only *user1...*

client

The client is identified by its IP address. A policy can contain a list of
IP addresses or subnets.
You can exclude clients from subnets by prepending the client with a '-' or
a '!'.
``172.16.0.0/24, -172.16.0.17`` will match each client in the subnet except
the 172.16.0.17.

time

You can specify a time in which the policy should be active.
Time formats are

<dow>-<dow>:<hh>:<mm>-<hh>:<mm>, ...
<dow>:<hh>:<mm>-<hh>:<mm>
<dow>:<hh>-<hh>

and any combination of it. "dow" being day of week Mon, Tue, Wed, Thu, Fri,
Sat, Sun.
"""

from .log import log_with
from configobj import ConfigObj

from netaddr import IPAddress
from netaddr import IPNetwork
import logging
from ..models import (Policy, Config, PRIVACYIDEA_TIMESTAMP, db,
 save_config_timestamp)
from flask import current_app
from privacyidea.lib.config import (get_token_classes, get_token_types,
 Singleton)
from privacyidea.lib.error import ParameterError, PolicyError
from privacyidea.lib.realm import get_realms
from privacyidea.lib.resolver import get_resolver_list
from privacyidea.lib.smtpserver import get_smtpservers
from privacyidea.lib.radiusserver import get_radiusservers
from privacyidea.lib.utils import check_time_in_range, reload_db
from privacyidea.lib.user import User
from privacyidea.lib import _
import datetime
import re
import ast

log = logging.getLogger(__name__)

optional = True
required = False

[docs]class SCOPE(object):
 __doc__ = """This is the list of the allowed scopes that can be used in
 policy definitions.
 """
 AUTHZ = "authorization"
 ADMIN = "admin"
 AUTH = "authentication"
 AUDIT = "audit"
 USER = "user" # was selfservice
 ENROLL = "enrollment"
 GETTOKEN = "gettoken"
 WEBUI = "webui"
 REGISTER = "register"

[docs]class ACTION(object):
 __doc__ = """This is the list of usual actions."""
 ASSIGN = "assign"
 AUDIT = "auditlog"
 AUDIT_AGE = "auditlog_age"
 AUDIT_DOWNLOAD = "auditlog_download"
 AUTHITEMS = "fetch_authentication_items"
 AUTHMAXSUCCESS = "auth_max_success"
 AUTHMAXFAIL = "auth_max_fail"
 AUTOASSIGN = "autoassignment"
 CACONNECTORREAD = "caconnectorread"
 CACONNECTORWRITE = "caconnectorwrite"
 CACONNECTORDELETE = "caconnectordelete"
 CHALLENGERESPONSE = "challenge_response"
 GETCHALLENGES = "getchallenges"
 COPYTOKENPIN = "copytokenpin"
 COPYTOKENUSER = "copytokenuser"
 DEFAULT_TOKENTYPE = "default_tokentype"
 DELETE = "delete"
 DISABLE = "disable"
 EMAILCONFIG = "smtpconfig"
 ENABLE = "enable"
 ENCRYPTPIN = "encrypt_pin"
 GETSERIAL = "getserial"
 GETRANDOM = "getrandom"
 IMPORT = "importtokens"
 LASTAUTH = "last_auth"
 LOGINMODE = "login_mode"
 LOGOUTTIME = "logout_time"
 LOSTTOKEN = 'losttoken'
 LOSTTOKENPWLEN = "losttoken_PW_length"
 LOSTTOKENPWCONTENTS = "losttoken_PW_contents"
 LOSTTOKENVALID = "losttoken_valid"
 MACHINERESOLVERWRITE = "mresolverwrite"
 MACHINERESOLVERDELETE = "mresolverdelete"
 MACHINELIST = "machinelist"
 MACHINETOKENS = "manage_machine_tokens"
 MANGLE = "mangle"
 MAXTOKENREALM = "max_token_per_realm"
 MAXTOKENUSER = "max_token_per_user"
 NODETAILSUCCESS = "no_detail_on_success"
 ADDUSERINRESPONSE = "add_user_in_response"
 NODETAILFAIL = "no_detail_on_fail"
 OTPPIN = "otppin"
 OTPPINRANDOM = "otp_pin_random"
 OTPPINMAXLEN = 'otp_pin_maxlength'
 OTPPINMINLEN = 'otp_pin_minlength'
 OTPPINCONTENTS = 'otp_pin_contents'
 PASSNOTOKEN = "passOnNoToken"
 PASSNOUSER = "passOnNoUser"
 PASSTHRU = "passthru"
 PASSWORDRESET = "password_reset"
 PINHANDLING = "pinhandling"
 POLICYDELETE = "policydelete"
 POLICYWRITE = "policywrite"
 POLICYTEMPLATEURL = "policy_template_url"
 REALM = "realm"
 REMOTE_USER = "remote_user"
 REQUIREDEMAIL = "requiredemail"
 RESET = "reset"
 RESOLVERDELETE = "resolverdelete"
 RESOLVERWRITE = "resolverwrite"
 RESOLVER = "resolver"
 RESYNC = "resync"
 REVOKE = "revoke"
 SET = "set"
 SETPIN = "setpin"
 SETREALM = "setrealm"
 SERIAL = "serial"
 SYSTEMDELETE = "configdelete"
 SYSTEMWRITE = "configwrite"
 CONFIGDOCUMENTATION = "system_documentation"
 SETTOKENINFO = "settokeninfo"
 TOKENISSUER = "tokenissuer"
 TOKENLABEL = "tokenlabel"
 TOKENPAGESIZE = "token_page_size"
 TOKENREALMS = "tokenrealms"
 TOKENTYPE = "tokentype"
 TOKENWIZARD = "tokenwizard"
 TOKENWIZARD2ND = "tokenwizard_2nd_token"
 TRIGGERCHALLENGE = "triggerchallenge"
 UNASSIGN = "unassign"
 USERLIST = "userlist"
 USERPAGESIZE = "user_page_size"
 ADDUSER = "adduser"
 DELETEUSER = "deleteuser"
 UPDATEUSER = "updateuser"
 USERDETAILS = "user_details"
 APIKEY = "api_key_required"
 SETHSM = "set_hsm_password"
 SMTPSERVERWRITE = "smtpserver_write"
 RADIUSSERVERWRITE = "radiusserver_write"
 PRIVACYIDEASERVERWRITE = "privacyideaserver_write"
 REALMDROPDOWN = "realm_dropdown"
 EVENTHANDLINGWRITE = "eventhandling_write"
 SMSGATEWAYWRITE = "smsgateway_write"
 CHANGE_PIN_FIRST_USE = "change_pin_on_first_use"
 CHANGE_PIN_EVERY = "change_pin_every"
 CLIENTTYPE = "clienttype"
 REGISTERBODY = "registration_body"
 RESETALLTOKENS = "reset_all_user_tokens"
 ENROLLPIN = "enrollpin"
 MANAGESUBSCRIPTION = "managesubscription"
 SEARCH_ON_ENTER = "search_on_enter"
 TIMEOUT_ACTION = "timeout_action"
 AUTH_CACHE = "auth_cache"
 HIDE_WELCOME = "hide_welcome_info"
 CUSTOM_MENU = "custom_menu"
 CUSTOM_BASELINE = "custom_baseline"

[docs]class GROUP(object):
 __doc__ = """These are the allowed policy action groups. The policies
 will be grouped in the UI."""
 TOOLS = "tools"
 SYSTEM = "system"
 TOKEN = "token"
 ENROLLMENT = "enrollment"
 GENERAL = "general"
 MACHINE = "machine"
 USER = "user"
 PIN = "pin"

[docs]class MAIN_MENU(object):
 __doc__ = """These are the allowed top level menu items. These are used
 to toggle the visibility of the menu items depending on the rights of the
 user"""
 TOKENS = "tokens"
 USERS = "users"
 MACHINES = "machines"
 CONFIG = "config"
 AUDIT = "audit"
 COMPONENTS = "components"

[docs]class LOGINMODE(object):
 __doc__ = """This is the list of possible values for the login mode."""
 USERSTORE = "userstore"
 PRIVACYIDEA = "privacyIDEA"
 DISABLE = "disable"

[docs]class REMOTE_USER(object):
 __doc__ = """The list of possible values for the remote_user policy."""
 DISABLE = "disable"
 ACTIVE = "allowed"

[docs]class ACTIONVALUE(object):
 __doc__ = """This is a list of usual action values for e.g. policy
 action-values like otppin."""
 TOKENPIN = "tokenpin"
 USERSTORE = "userstore"
 DISABLE = "disable"
 NONE = "none"

[docs]class AUTOASSIGNVALUE(object):
 __doc__ = """This is the possible values for autoassign"""
 USERSTORE = "userstore"
 NONE = "any_pin"

[docs]class TIMEOUT_ACTION(object):
 __doc__ = """This is a list of actions values for idle users"""
 LOGOUT = "logout"
 LOCKSCREEN = 'lockscreen'

[docs]class PolicyClass(object):

 """
 The Policy_Object will contain all database policy entries for easy
 filtering and mangling.
 It will be created at the beginning of the request and is supposed to stay
 alive unchanged during the request.
 """
 __metaclass__ = Singleton

 def __init__(self):
 """
 Create the Policy_Object from the database table

 """
 self.policies = []
 self.timestamp = None
 # read the policies from the database and store it in the object
 self.reload_from_db()

[docs] def reload_from_db(self):
 """
 Read the timestamp from the database. If the timestamp is newer than
 the internal timestamp, then read the complete data
 :return:
 """
 if not self.timestamp or self.timestamp + datetime.timedelta(
 seconds=current_app.config.get(
 "PI_CHECK_RELOAD_CONFIG", 0)) < datetime.datetime.now():
 db_ts = Config.query.filter_by(Key=PRIVACYIDEA_TIMESTAMP).first()
 if reload_db(self.timestamp, db_ts):
 self.policies = []
 policies = Policy.query.all()
 for pol in policies:
 # read each policy
 self.policies.append(pol.get())
 self.timestamp = datetime.datetime.now()

 @classmethod
 def _search_value(cls, policy_attributes, searchvalue):
 """
 Searches a given value in a policy attribute. The policy_attribute is
 a list like searching the resolver name "resolver1" in the given
 resolvers of a policy:

 policy.get("resolver") = ["resolver1", "resolver2"]

 It returns a tuple of booleans if the searched value is
 contained/found or excluded.

 :param policy_attributes:
 :param searchvalue:
 :return: tuple of value_found and value_excluded
 """
 value_found = False
 value_excluded = False
 for value in policy_attributes:
 if value and value[0] in ["!", "-"] and \
 searchvalue == value[1:]:
 value_excluded = True
 elif type(searchvalue) == list and value in \
 searchvalue + ["*"]:
 value_found = True
 elif value in [searchvalue, "*"]:
 value_found = True
 elif type(searchvalue) != list:
 # Do not do this search style for resolvers, which come as a
 # list
 # check regular expression only for exact matches
 # avoid matching user1234 -> user1
 if re.search(u"^{0!s}$".format(value), searchvalue):
 value_found = True

 return value_found, value_excluded

 @log_with(log)
[docs] def get_policies(self, name=None, scope=None, realm=None, active=None,
 resolver=None, user=None, client=None, action=None,
 adminrealm=None, time=None, all_times=False):
 """
 Return the policies of the given filter values

 :param name: The name of the policy
 :param scope: The scope of the policy
 :param realm: The realm in the policy
 :param active: Only active policies
 :param resolver: Only policies with this resolver
 :param user: Only policies with this user
 :type user: basestring
 :param client:
 :param action: Only policies, that contain this very action.
 :param adminrealm: This is the realm of the admin. This is only
 evaluated in the scope admin.
 :param time: The optional time, for which the policies should be
 fetched. The default time is now()
 :type time: datetime
 :param all_times: If True the time restriction of the policies is
 ignored. Policies of all time ranges will be returned.
 :type all_times: bool
 :return: list of policies
 :rtype: list of dicts
 """
 reduced_policies = self.policies

 # filter policy for time. If no time is set or is a time is set and
 # it matches the time_range, then we add this policy
 if not all_times:
 reduced_policies = [policy for policy in reduced_policies if
 (policy.get("time") and
 check_time_in_range(policy.get("time"), time))
 or not policy.get("time")]
 log.debug("Policies after matching time: {0!s}".format(
 reduced_policies))

 # Do exact matches for "name", "active" and "scope", as these fields
 # can only contain one entry
 p = [("name", name), ("active", active), ("scope", scope)]
 for searchkey, searchvalue in p:
 if searchvalue is not None:
 reduced_policies = [policy for policy in reduced_policies if
 policy.get(searchkey) == searchvalue]
 log.debug("Policies after matching {1!s}: {0!s}".format(
 reduced_policies, searchkey))

 p = [("action", action), ("user", user), ("realm", realm)]
 # If this is an admin-policy, we also do check the adminrealm
 if scope == "admin":
 p.append(("adminrealm", adminrealm))
 for searchkey, searchvalue in p:
 if searchvalue is not None:
 new_policies = []
 # first we find policies, that really match!
 # Either with the real value or with a "*"
 # values can be excluded by a leading "!" or "-"
 for policy in reduced_policies:
 if not policy.get(searchkey):
 # We also find the policies with no distinct information
 # about the request value
 new_policies.append(policy)
 else:
 value_found, value_excluded = self._search_value(
 policy.get(searchkey), searchvalue)
 if value_found and not value_excluded:
 new_policies.append(policy)
 reduced_policies = new_policies
 log.debug("Policies after matching {1!s}: {0!s}".format(
 reduced_policies, searchkey))

 # We need to act individually on the resolver key word
 # We either match the resolver exactly or we match another resolver (
 # which is not the first resolver) of the user, but only if the
 # check_all_resolvers flag in the policy is set.
 if resolver is not None:
 new_policies = []
 user_resolvers = []
 for policy in reduced_policies:
 if policy.get("check_all_resolvers"):
 if realm and user:
 # We have a realm and a user and can get all resolvers
 # of this user in the realm
 if not user_resolvers:
 user_resolvers = User(user,
 realm=realm).get_ordererd_resolvers()
 for reso in user_resolvers:
 value_found, _v_ex = self._search_value(
 policy.get("resolver"), reso)
 if value_found:
 new_policies.append(policy)
 break
 elif not policy.get("resolver"):
 # We also find the policies with no distinct information
 # about the request value
 new_policies.append(policy)
 else:
 value_found, _v_ex = self._search_value(
 policy.get("resolver"), resolver)
 if value_found:
 new_policies.append(policy)

 reduced_policies = new_policies
 log.debug("Policies after matching resolver: {0!s}".format(
 reduced_policies))

 # Match the client IP.
 # Client IPs may be direct match, may be located in subnets or may
 # be excluded by a leading "-" or "!" sign.
 # The client definition in the policy may ba a comma separated list.
 # It may start with a "-" or a "!" to exclude the client
 # from a subnet.
 # Thus a client 10.0.0.2 matches a policy "10.0.0.0/8, -10.0.0.1" but
 # the client 10.0.0.1 does not match the policy "10.0.0.0/8, -10.0.0.1".
 # An empty client definition in the policy matches all clients.
 if client is not None:
 new_policies = []
 for policy in reduced_policies:
 client_found = False
 client_excluded = False
 for polclient in policy.get("client"):
 if polclient[0] in ['-', '!']:
 # exclude the client?
 if IPAddress(client) in IPNetwork(polclient[1:]):
 log.debug("the client %s is excluded by %s in "
 "policy %s" % (client, polclient, policy))
 client_excluded = True
 elif IPAddress(client) in IPNetwork(polclient):
 client_found = True
 if client_found and not client_excluded:
 # The client was contained in the defined subnets and was
 # not excluded
 new_policies.append(policy)

 # If there is a policy without any client, we also add it to the
 # accepted list.
 for policy in reduced_policies:
 if not policy.get("client"):
 new_policies.append(policy)
 reduced_policies = new_policies
 log.debug("Policies after matching client".format(
 reduced_policies))

 return reduced_policies

 @log_with(log)
[docs] def get_action_values(self, action, scope=SCOPE.AUTHZ, realm=None,
 resolver=None, user=None, client=None, unique=False,
 allow_white_space_in_action=False, adminrealm=None):
 """
 Get the defined action values for a certain action like
 scope: authorization
 action: tokentype
 would return a list of the tokentypes

 scope: authorization
 action: serial
 would return a list of allowed serials

 :param unique: if set, the function will raise an exception if more
 than one value is returned
 :param allow_white_space_in_action: Some policies like emailtext
 would allow entering text with whitespaces. These whitespaces
 must not be used to separate action values!
 :type allow_white_space_in_action: bool
 :return: A list of the allowed tokentypes
 :rtype: list
 """
 action_values = []
 policies = self.get_policies(scope=scope, adminrealm=adminrealm,
 action=action, active=True,
 realm=realm, resolver=resolver, user=user,
 client=client)
 for pol in policies:
 action_dict = pol.get("action", {})
 action_value = action_dict.get(action, "")
 """
 We must distinguish actions like:
 tokentype=totp hotp motp,
 where the string represents a list divided by spaces, and
 smstext='your otp is <otp>'
 where the spaces are part of the string.
 """
 if action_value.startswith("'") and action_value.endswith("'"):
 action_values.append(action_dict.get(action)[1:-1])
 elif allow_white_space_in_action:
 action_values.append(action_dict.get(action))
 else:
 action_values.extend(action_dict.get(action, "").split())

 # reduce the entries to unique entries
 action_values = list(set(action_values))
 if unique:
 if len(action_values) > 1:
 raise PolicyError("There are conflicting %s"
 " definitions!" % action)
 return action_values

 @log_with(log)
[docs] def ui_get_main_menus(self, logged_in_user, client=None):
 """
 Get the list of allowed main menus derived from the policies for the
 given user - admin or normal user.
 It fetches all policies for this user and compiles a list of allowed
 menus to display or hide in the UI.

 :param logged_in_user: The logged in user, a dictionary with keys
 "username", "realm" and "role".
 :param client: The IP address of the client
 :return: A list of MENUs to be displayed
 """
 from privacyidea.lib.token import get_dynamic_policy_definitions
 role = logged_in_user.get("role")
 user_rights = self.ui_get_rights(role,
 logged_in_user.get("realm"),
 logged_in_user.get("username"),
 client)
 main_menus = []
 static_rights = get_static_policy_definitions(role)
 enroll_rights = get_dynamic_policy_definitions(role)
 static_rights.update(enroll_rights)
 for r in user_rights:
 menus = static_rights.get(r, {}).get("mainmenu", [])
 main_menus.extend(menus)

 main_menus = list(set(main_menus))
 return main_menus

 @log_with(log)
[docs] def ui_get_rights(self, scope, realm, username, client=None):
 """
 Get the rights derived from the policies for the given realm and user.
 Works for admins and normal users.
 It fetches all policies for this user and compiles a maximum list of
 allowed rights, that can be used to hide certain UI elements.

 :param scope: Can be SCOPE.ADMIN or SCOPE.USER
 :param realm: Is either user users realm or the adminrealm
 :param username: The loginname of the user
 :param client: The HTTP client IP
 :return: A list of actions
 """
 from privacyidea.lib.auth import ROLE
 from privacyidea.lib.token import get_dynamic_policy_definitions
 rights = []
 userrealm = None
 adminrealm = None
 logged_in_user = {"username": username,
 "realm": realm}
 if scope == SCOPE.ADMIN:
 adminrealm = realm
 logged_in_user["role"] = ROLE.ADMIN
 elif scope == SCOPE.USER:
 userrealm = realm
 logged_in_user["role"] = ROLE.USER
 pols = self.get_policies(scope=scope,
 adminrealm=adminrealm,
 realm=userrealm,
 user=username, active=True,
 client=client)
 for pol in pols:
 for action, action_value in pol.get("action").items():
 if action_value:
 rights.append(action)
 # if the action has an actual non-boolean value, return it
 if isinstance(action_value, basestring):
 rights.append(u"{}={}".format(action, action_value))
 # check if we have policies at all:
 pols = self.get_policies(scope=scope, active=True)
 if not pols:
 # We do not have any policies in this scope, so we return all
 # possible actions in this scope.
 log.debug("No policies defined, so we set all rights.")
 static_rights = get_static_policy_definitions(scope).keys()
 enroll_rights = get_dynamic_policy_definitions(scope).keys()
 rights = static_rights + enroll_rights
 # reduce the list
 rights = list(set(rights))
 log.debug("returning the admin rights: {0!s}".format(rights))
 return rights

 @log_with(log)
[docs] def ui_get_enroll_tokentypes(self, client, logged_in_user):
 """
 Return a dictionary of the allowed tokentypes for the logged in user.
 This used for the token enrollment UI.

 It looks like this:

 {"hotp": "HOTP: event based One Time Passwords",
 "totp": "TOTP: time based One Time Passwords",
 "spass": "SPass: Simple Pass token. Static passwords",
 "motp": "mOTP: classical mobile One Time Passwords",
 "sshkey": "SSH Public Key: The public SSH key",
 "yubikey": "Yubikey AES mode: One Time Passwords with Yubikey",
 "remote": "Remote Token: Forward authentication request to another server",
 "yubico": "Yubikey Cloud mode: Forward authentication request to YubiCloud",
 "radius": "RADIUS: Forward authentication request to a RADIUS server",
 "email": "EMail: Send a One Time Passwort to the users email address",
 "sms": "SMS: Send a One Time Password to the users mobile phone",
 "certificate": "Certificate: Enroll an x509 Certificate Token."}

 :param client: Client IP address
 :type client: basestring
 :param logged_in_user: The Dict of the logged in user
 :type logged_in_user: dict
 :return: list of token types, the user may enroll
 """
 from privacyidea.lib.auth import ROLE
 enroll_types = {}
 role = logged_in_user.get("role")
 if role == ROLE.ADMIN:
 admin_realm = logged_in_user.get("realm")
 user_realm = None
 else:
 admin_realm = None
 user_realm = logged_in_user.get("realm")
 # check, if we have a policy definition at all.
 pols = self.get_policies(scope=role, active=True)
 tokenclasses = get_token_classes()
 for tokenclass in tokenclasses:
 # Check if the tokenclass is ui enrollable for "user" or "admin"
 if role in tokenclass.get_class_info("ui_enroll"):
 enroll_types[tokenclass.get_class_type()] = \
 tokenclass.get_class_info("description")

 if pols:
 # admin policies or user policies are set, so we need to
 # test, which tokens are allowed to be enrolled for this user
 for tokentype in enroll_types.keys():
 # determine, if there is a enrollment policy for this very type
 typepols = self.get_policies(scope=role, client=client,
 user=logged_in_user.get("username"),
 realm=user_realm,
 active=True,
 action="enroll"+tokentype.upper(),
 adminrealm=admin_realm)
 if not typepols:
 # If there is no policy allowing the enrollment of this
 # tokentype, it is deleted.
 del(enroll_types[tokentype])

 return enroll_types

--
#
NEW STUFF
#
#

@log_with(log)
[docs]def set_policy(name=None, scope=None, action=None, realm=None, resolver=None,
 user=None, time=None, client=None, active=True,
 adminrealm=None, check_all_resolvers=False):
 """
 Function to set a policy.
 If the policy with this name already exists, it updates the policy.
 It expects a dict of with the following keys:
 :param name: The name of the policy
 :param scope: The scope of the policy. Something like "admin", "system",
 "authentication"
 :param action: A scope specific action or a comma separated list of actions
 :type active: basestring
 :param realm: A realm, for which this policy is valid
 :param resolver: A resolver, for which this policy is valid
 :param user: A username or a list of usernames
 :param time: N/A if type()
 :param client: A client IP with optionally a subnet like 172.16.0.0/16
 :param active: If the policy is active or not
 :type active: bool
 :param check_all_resolvers: If all the resolvers of a user should be
 checked with this policy
 :type check_all_resolvers: bool
 :return: The database ID od the the policy
 :rtype: int
 """
 if type(active) in [str, unicode]:
 active = active.lower() == "true"
 if type(check_all_resolvers) in [str, unicode]:
 check_all_resolvers = check_all_resolvers.lower() == "true"
 if type(action) == dict:
 action_list = []
 for k, v in action.items():
 if v is not True:
 # value key
 action_list.append("{0!s}={1!s}".format(k, v))
 else:
 # simple boolean value
 action_list.append(k)
 action = ", ".join(action_list)
 if type(action) == list:
 action = ", ".join(action)
 if type(realm) == list:
 realm = ", ".join(realm)
 if type(adminrealm) == list:
 adminrealm = ", ".join(adminrealm)
 if type(user) == list:
 user = ", ".join(user)
 if type(resolver) == list:
 resolver = ", ".join(resolver)
 if type(client) == list:
 client = ", ".join(client)
 p1 = Policy.query.filter_by(name=name).first()
 if p1:
 # The policy already exist, we need to update
 if action is not None:
 p1.action = action
 if scope is not None:
 p1.scope = scope
 if realm is not None:
 p1.realm = realm
 if adminrealm is not None:
 p1.adminrealm = adminrealm
 if resolver is not None:
 p1.resolver = resolver
 if user is not None:
 p1.user = user
 if client is not None:
 p1.client = client
 if time is not None:
 p1.time = time
 p1.active = active
 p1.check_all_resolvers = check_all_resolvers
 save_config_timestamp()
 db.session.commit()
 ret = p1.id
 else:
 # Create a new policy
 ret = Policy(name, action=action, scope=scope, realm=realm,
 user=user, time=time, client=client, active=active,
 resolver=resolver, adminrealm=adminrealm,
 check_all_resolvers=check_all_resolvers).save()
 return ret

@log_with(log)
[docs]def enable_policy(name, enable=True):
 """
 Enable or disable the policy with the given name
 :param name:
 :return: ID of the policy
 """
 if not Policy.query.filter(Policy.name == name).first():
 raise ParameterError("The policy with name '{0!s}' does not exist".format(name))

 # Update the policy
 p = set_policy(name=name, active=enable)
 return p

@log_with(log)
[docs]def delete_policy(name):
 """
 Function to delete one named policy

 :param name: the name of the policy to be deleted
 :return: the count of the deleted policies.
 :rtype: int
 """
 res = False
 p = Policy.query.filter_by(name=name).first()
 if p:
 res = p.delete()
 return res

@log_with(log)
[docs]def delete_all_policies():
 policies = Policy.query.all()
 for p in policies:
 p.delete()

@log_with(log)
[docs]def export_policies(policies):
 """
 This function takes a policy list and creates an export file from it

 :param policies: a policy definition
 :type policies: list of policy dictionaries
 :return: the contents of the file
 :rtype: string
 """
 file_contents = ""
 if policies:
 for policy in policies:
 file_contents += "[{0!s}]\n".format(policy.get("name"))
 for key, value in policy.items():
 file_contents += "{0!s} = {1!s}\n".format(key, value)
 file_contents += "\n"

 return file_contents

@log_with(log)
[docs]def import_policies(file_contents):
 """
 This function imports policies from a file.
 The file has a config_object format, i.e. the text file has a header
 [<policy_name>]
 key = value
 and key value pairs.

 :param file_contents: The contents of the file
 :type file_contents: basestring
 :return: number of imported policies
 :rtype: int
 """
 policies = ConfigObj(file_contents.split('\n'), encoding="UTF-8")
 res = 0
 for policy_name, policy in policies.iteritems():
 ret = set_policy(name=policy_name,
 action=ast.literal_eval(policy.get("action")),
 scope=policy.get("scope"),
 realm=ast.literal_eval(policy.get("realm", "[]")),
 user=ast.literal_eval(policy.get("user", "[]")),
 resolver=ast.literal_eval(policy.get("resolver", "[]")),
 client=ast.literal_eval(policy.get("client", "[]")),
 time=policy.get("time", "")
)
 if ret > 0:
 log.debug("import policy {0!s}: {1!s}".format(policy_name, ret))
 res += 1
 return res

@log_with(log)
[docs]def get_static_policy_definitions(scope=None):
 """
 These are the static hard coded policy definitions.
 They can be enhanced by token based policy definitions, that can be found
 in lib.token.get_dynamic_policy_definitions.

 :param scope: Optional the scope of the policies
 :type scope: basestring
 :return: allowed scopes with allowed actions, the type of action and a
 description.
 :rtype: dict
 """
 resolvers = get_resolver_list().keys()
 realms = get_realms().keys()
 smtpconfigs = [server.config.identifier for server in get_smtpservers()]
 radiusconfigs = [radius.config.identifier for radius in
 get_radiusservers()]
 radiusconfigs.insert(0, "userstore")
 # "type": allowed values str, bool, int
 # "desc": description of this action
 # "value": list of allowed values of this action, works with int and str. A
 # dropdown box will be displayed
 # "group": ment to be used for grouping actions for better finding
 # "mainmenu": list of enabled Menus. If this action is set, this menu
 # is visible in the WebUI
 pol = {
 SCOPE.REGISTER: {
 ACTION.RESOLVER: {'type': 'str',
 'value': resolvers,
 'desc': _('Define in which resolver the user '
 'should be registered.')},
 ACTION.REALM: {'type': 'str',
 'value': realms,
 'desc': _('Define in which realm the user should '
 'be registered.')},
 ACTION.EMAILCONFIG: {'type': 'str',
 'value': smtpconfigs,
 'desc': _('The SMTP server configuration, '
 'that should be used to send the '
 'registration email.')},
 ACTION.REQUIREDEMAIL: {'type': 'str',
 'desc': _('Only users with this email '
 'address are allowed to '
 'register. This is a regular '
 'expression.')},
 ACTION.REGISTERBODY: {'type': 'text',
 'desc': _("The body of the registration "
 "email. Use '{regkey}' as tag"
 "for the registration key.")}
 },
 SCOPE.ADMIN: {
 ACTION.ENABLE: {'type': 'bool',
 'desc': _('Admin is allowed to enable tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.DISABLE: {'type': 'bool',
 'desc': _('Admin is allowed to disable tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.SET: {'type': 'bool',
 'desc': _(
 'Admin is allowed to set token properties.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.SETPIN: {'type': 'bool',
 'desc': _(
 'Admin is allowed to set the OTP PIN of '
 'tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.SETTOKENINFO: {'type': 'bool',
 'desc': _('Admin is allowed to manually set and delete token info.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.ENROLLPIN: {'type': 'bool',
 "desc": _("Admin is allowed to set the OTP "
 "PIN during enrollment."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.ENROLLMENT},
 ACTION.RESYNC: {'type': 'bool',
 'desc': _('Admin is allowed to resync tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.RESET: {'type': 'bool',
 'desc': _(
 'Admin is allowed to reset the Failcounter of '
 'a token.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.REVOKE: {'tpye': 'bool',
 'desc': _("Admin is allowed to revoke a token"),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.ASSIGN: {'type': 'bool',
 'desc': _(
 'Admin is allowed to assign a token to a '
 'user.'),
 'mainmenu': [MAIN_MENU.TOKENS, MAIN_MENU.USERS],
 'group': GROUP.TOKEN},
 ACTION.UNASSIGN: {'type': 'bool',
 'desc': _(
 'Admin is allowed to remove the token from '
 'a user, '
 'i.e. unassign a token.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.IMPORT: {'type': 'bool',
 'desc': _(
 'Admin is allowed to import token files.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.SYSTEM},
 ACTION.DELETE: {'type': 'bool',
 'desc': _(
 'Admin is allowed to remove tokens from the '
 'database.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.USERLIST: {'type': 'bool',
 'desc': _(
 'Admin is allowed to view the list of the '
 'users.'),
 'mainmenu': [MAIN_MENU.USERS],
 'group': GROUP.GENERAL},
 ACTION.MACHINELIST: {'type': 'bool',
 'desc': _('The Admin is allowed to list '
 'the machines.'),
 'mainmenu': [MAIN_MENU.MACHINES],
 'group': GROUP.MACHINE},
 ACTION.MACHINETOKENS: {'type': 'bool',
 'desc': _('The Admin is allowed to attach '
 'and detach tokens to '
 'machines.'),
 'mainmenu': [MAIN_MENU.TOKENS,
 MAIN_MENU.MACHINES],
 'group': GROUP.MACHINE},
 ACTION.AUTHITEMS: {'type': 'bool',
 'desc': _('The Admin is allowed to fetch '
 'authentication items of tokens '
 'assigned to machines.'),
 'group': GROUP.GENERAL},
 ACTION.TOKENREALMS: {'type': 'bool',
 'desc': _('Admin is allowed to manage the '
 'realms of a token.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.GETSERIAL: {'type': 'bool',
 'desc': _('Admin is allowed to retrieve a serial'
 ' for a given OTP value.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 "group": GROUP.TOOLS},
 ACTION.GETRANDOM: {'type': 'bool',
 'desc': _('Admin is allowed to retrieve '
 'random keys from privacyIDEA.'),
 'group': GROUP.TOOLS},
 ACTION.COPYTOKENPIN: {'type': 'bool',
 'desc': _(
 'Admin is allowed to copy the PIN of '
 'one token '
 'to another token.'),
 "group": GROUP.TOOLS},
 ACTION.COPYTOKENUSER: {'type': 'bool',
 'desc': _(
 'Admin is allowed to copy the assigned '
 'user to another'
 ' token, i.e. assign a user ot '
 'another token.'),
 "group": GROUP.TOOLS},
 ACTION.LOSTTOKEN: {'type': 'bool',
 'desc': _('Admin is allowed to trigger the '
 'lost token workflow.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOOLS},

 ACTION.SYSTEMWRITE: {'type': 'bool',
 "desc": _("Admin is allowed to write and "
 "modify the system configuration."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.SYSTEMDELETE: {'type': 'bool',
 "desc": _("Admin is allowed to delete "
 "keys in the system "
 "configuration."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.CONFIGDOCUMENTATION: {'type': 'bool',
 'desc': _('Admin is allowed to '
 'export a documentation '
 'of the complete '
 'configuration including '
 'resolvers and realm.'),
 'group': GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.POLICYWRITE: {'type': 'bool',
 "desc": _("Admin is allowed to write and "
 "modify the policies."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.POLICYDELETE: {'type': 'bool',
 "desc": _("Admin is allowed to delete "
 "policies."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.RESOLVERWRITE: {'type': 'bool',
 "desc": _("Admin is allowed to write and "
 "modify the "
 "resolver and realm "
 "configuration."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.RESOLVERDELETE: {'type': 'bool',
 "desc": _("Admin is allowed to delete "
 "resolvers and realms."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.CACONNECTORWRITE: {'type': 'bool',
 "desc": _("Admin is allowed to create new"
 " CA Connector definitions "
 "and modify existing ones."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.CACONNECTORDELETE: {'type': 'bool',
 "desc": _("Admin is allowed to delete "
 "CA Connector definitions."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.MACHINERESOLVERWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to "
 "write and modify the "
 "machine resolvers."),
 'group': GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.MACHINERESOLVERDELETE: {'type': 'bool',
 'desc': _("Admin is allowed to "
 "delete "
 "machine resolvers."),
 'group': GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.CONFIG]},
 ACTION.OTPPINMAXLEN: {'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the maximum allowed length "
 "of the OTP PIN."),
 'group': GROUP.PIN},
 ACTION.OTPPINMINLEN: {'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the minimum required length "
 "of the OTP PIN."),
 'group': GROUP.PIN},
 ACTION.OTPPINCONTENTS: {'type': 'str',
 "desc": _("Specifiy the required "
 "contents of the OTP PIN. "
 "(c)haracters, (n)umeric, "
 "(s)pecial, (o)thers. [+/-]!"),
 'group': GROUP.PIN},
 ACTION.AUDIT: {'type': 'bool',
 "desc": _("Admin is allowed to view the Audit log."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.AUDIT]},
 ACTION.AUDIT_AGE: {'type': 'str',
 "desc": _("The admin will only see audit "
 "entries of the last 10d, 3m or 2y."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.AUDIT]},
 ACTION.AUDIT_DOWNLOAD: {'type': 'bool',
 "desc": _("The admin is allowed to download "
 "the complete auditlog."),
 "group": GROUP.SYSTEM,
 'mainmenu': [MAIN_MENU.AUDIT]},
 ACTION.ADDUSER: {'type': 'bool',
 "desc": _("Admin is allowed to add users in a "
 "userstore/UserIdResolver."),
 "group": GROUP.USER,
 'mainmenu': [MAIN_MENU.USERS]},
 ACTION.UPDATEUSER: {'type': 'bool',
 "desc": _("Admin is allowed to update the "
 "users data in a userstore."),
 "group": GROUP.USER,
 'mainmenu': [MAIN_MENU.USERS]},
 ACTION.DELETEUSER: {'type': 'bool',
 "desc": _("Admin is allowed to delete a user "
 "object in a userstore."),
 'mainmenu': [MAIN_MENU.USERS],
 'group': GROUP.USER},
 ACTION.SETHSM: {'type': 'bool',
 'desc': _("Admin is allowed to set the password "
 "of the HSM/Security Module."),
 'group': GROUP.SYSTEM},
 ACTION.GETCHALLENGES: {'type': 'bool',
 'desc': _("Admin is allowed to retrieve "
 "the list of active "
 "challenges."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.GENERAL},
 ACTION.SMTPSERVERWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to write new "
 "SMTP server definitions."),
 'mainmenu': [MAIN_MENU.CONFIG],
 'group': GROUP.SYSTEM},
 ACTION.RADIUSSERVERWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to write "
 "new RADIUS server "
 "definitions."),
 'mainmenu': [MAIN_MENU.CONFIG],
 'group': GROUP.SYSTEM},
 ACTION.PRIVACYIDEASERVERWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to "
 "write remote "
 "privacyIDEA server "
 "definitions."),
 'mainmenu': [MAIN_MENU.CONFIG],
 'group': GROUP.SYSTEM},
 ACTION.EVENTHANDLINGWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to write "
 "and modify the event "
 "handling configuration."),
 'mainmenu': [MAIN_MENU.CONFIG],
 'group': GROUP.SYSTEM},
 ACTION.SMSGATEWAYWRITE: {'type': 'bool',
 'desc': _("Admin is allowed to write "
 "and modify SMS gateway "
 "definitions."),
 'mainmenu': [MAIN_MENU.CONFIG],
 'group': GROUP.SYSTEM},
 ACTION.CLIENTTYPE: {'type': 'bool',
 'desc': _("Admin is allowed to get the list "
 "of authenticated clients and their "
 "types."),
 'mainmenu': [MAIN_MENU.COMPONENTS],
 'group': GROUP.SYSTEM},
 ACTION.MANAGESUBSCRIPTION: {
 'type': 'bool',
 'desc': _("Admin is allowed to add and delete component "
 "subscriptions."),
 'mainmenu': [MAIN_MENU.COMPONENTS],
 'group': GROUP.SYSTEM},
 ACTION.TRIGGERCHALLENGE: {
 'type': 'bool',
 'desc': _("The Admin is allowed to trigger a challenge for "
 "e.g. SMS OTP token."),
 'mainmenu': [],
 'group': GROUP.GENERAL
 }
 },

 SCOPE.USER: {
 ACTION.ASSIGN: {
 'type': 'bool',
 'desc': _("The user is allowed to assign an existing token"
 " that is not yet assigned"
 " using the token serial number."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.DISABLE: {'type': 'bool',
 'desc': _(
 'The user is allowed to disable his own '
 'tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.ENABLE: {'type': 'bool',
 'desc': _(
 "The user is allowed to enable his own "
 "tokens."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.DELETE: {'type': 'bool',
 "desc": _(
 "The user is allowed to delete his own "
 "tokens."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.UNASSIGN: {'type': 'bool',
 "desc": _("The user is allowed to unassign his "
 "own tokens."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.RESYNC: {'type': 'bool',
 "desc": _("The user is allowed to resyncronize his "
 "tokens."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.REVOKE: {'type': 'bool',
 'desc': _("The user is allowed to revoke a "
 "token"),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.RESET: {'type': 'bool',
 'desc': _('The user is allowed to reset the '
 'failcounter of his tokens.'),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.TOKEN},
 ACTION.SETPIN: {'type': 'bool',
 "desc": _("The user is allowed to set the OTP "
 "PIN of his tokens."),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.PIN},
 ACTION.ENROLLPIN: {'type': 'bool',
 "desc": _("The user is allowed to set the OTP "
 "PIN during enrollment."),
 'group': GROUP.PIN},
 ACTION.OTPPINMAXLEN: {'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the maximum allowed length "
 "of the OTP PIN."),
 'group': GROUP.PIN},
 ACTION.OTPPINMINLEN: {'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the minimum required length "
 "of the OTP PIN."),
 'group': GROUP.PIN},
 ACTION.OTPPINCONTENTS: {'type': 'str',
 "desc": _("Specifiy the required "
 "contents of the OTP PIN. "
 "(c)haracters, (n)umeric, "
 "(s)pecial, (o)thers. [+/-]!"),
 'group': GROUP.PIN},

 ACTION.AUDIT: {
 'type': 'bool',
 'desc': _('Allow the user to view his own token history.'),
 'mainmenu': [MAIN_MENU.AUDIT]},
 ACTION.AUDIT_AGE: {'type': 'str',
 "desc": _("The user will only see audit "
 "entries of the last 10d, 3m or 2y."),
 'mainmenu': [MAIN_MENU.AUDIT]},
 ACTION.USERLIST: {'type': 'bool',
 'desc': _("The user is allowed to view his "
 "own user information."),
 'mainmenu': [MAIN_MENU.USERS]},
 ACTION.UPDATEUSER: {'type': 'bool',
 'desc': _("The user is allowed to update his "
 "own user information, like changing "
 "his password."),
 'mainmenu': [MAIN_MENU.USERS]},
 ACTION.PASSWORDRESET: {'type': 'bool',
 'desc': _("The user is allowed to do a "
 "password reset in an editable "
 "UserIdResolver."),
 'mainmenu': []}

 },
 SCOPE.ENROLL: {
 ACTION.MAXTOKENREALM: {
 'type': 'int',
 'desc': _('Limit the number of allowed tokens in a realm.'),
 'group': GROUP.TOKEN},
 ACTION.MAXTOKENUSER: {
 'type': 'int',
 'desc': _('Limit the number of tokens a user may have '
 'assigned.'),
 'group': GROUP.TOKEN},
 ACTION.OTPPINRANDOM: {
 'type': 'int',
 'value': range(0, 32),
 "desc": _("Set a random OTP PIN with this length for a "
 "token."),
 'group': GROUP.PIN},
 ACTION.PINHANDLING: {
 'type': 'str',
 'desc': _('In case of a random OTP PIN use this python '
 'module to process the PIN.'),
 'group': GROUP.PIN},
 ACTION.CHANGE_PIN_FIRST_USE: {
 'type': 'bool',
 'desc': _("If the administrator sets the OTP PIN during "
 "enrollment or later, the user will have to change "
 "the PIN during first use."),
 'group': GROUP.PIN
 },
 ACTION.CHANGE_PIN_EVERY: {
 'type': 'str',
 'desc': _("The user needs to change his PIN on a regular "
 "basis. To change the PIN every 180 days, "
 "enter '180d'."),
 'group': GROUP.PIN
 },
 ACTION.ENCRYPTPIN: {
 'type': 'bool',
 "desc": _("The OTP PIN can be hashed or encrypted. Hashing "
 "the PIN is the default behaviour."),
 'group': GROUP.PIN},
 ACTION.TOKENLABEL: {
 'type': 'str',
 'desc': _("Set label for a new enrolled Google Authenticator. "
 "Possible tags are <u> (user), <r> ("
 "realm), <s> (serial)."),
 'group': GROUP.TOKEN},
 ACTION.TOKENISSUER: {
 'type': 'str',
 'desc': _("This is the issuer label for new enrolled Google "
 "Authenticators."),
 'group': GROUP.TOKEN
 },
 ACTION.AUTOASSIGN: {
 'type': 'str',
 'value': [AUTOASSIGNVALUE.NONE, AUTOASSIGNVALUE.USERSTORE],
 'desc': _("Users can assign a token just by using the "
 "unassigned token to authenticate."),
 'group': GROUP.TOKEN},
 ACTION.LOSTTOKENPWLEN: {
 'type': 'int',
 'value': range(1, 32),
 'desc': _('The length of the password in case of '
 'temporary token (lost token).')},
 ACTION.LOSTTOKENPWCONTENTS: {
 'type': 'str',
 'desc': _('The contents of the temporary password, '
 'described by the characters C, c, n, s.')},
 ACTION.LOSTTOKENVALID: {
 'type': 'int',
 'value': range(1, 61),
 'desc': _('The length of the validity for the temporary '
 'token (in days).')},
 },
 SCOPE.AUTH: {
 ACTION.OTPPIN: {
 'type': 'str',
 'value': [ACTIONVALUE.TOKENPIN, ACTIONVALUE.USERSTORE,
 ACTIONVALUE.NONE],
 'desc': _('Either use the Token PIN , use the Userstore '
 'Password or use no fixed password '
 'component.')},
 ACTION.CHALLENGERESPONSE: {
 'type': 'str',
 'desc': _('This is a whitespace separated list of tokentypes, '
 'that can be used with challenge response.')
 },
 ACTION.PASSTHRU: {
 'type': 'str',
 'value': radiusconfigs,
 'desc': _('If set, the user in this realm will be '
 'authenticated against the userstore or against the '
 'given RADIUS config,'
 ' if the user has no tokens assigned.')
 },
 ACTION.PASSNOTOKEN: {
 'type': 'bool',
 'desc': _('If the user has no token, the authentication '
 'request for this user will always be true.')
 },
 ACTION.PASSNOUSER: {
 'type': 'bool',
 'desc': _('If the user user does not exist, '
 'the authentication request for this '
 'non-existing user will always be true.')
 },
 ACTION.MANGLE: {
 'type': 'str',
 'desc': _('Can be used to modify the parameters pass, '
 'user and realm in an authentication request. See '
 'the documentation for an example.')
 },
 ACTION.RESETALLTOKENS: {
 'type': 'bool',
 'desc': _('If a user authenticates successfully reset the '
 'failcounter of all of his tokens.')
 },
 ACTION.AUTH_CACHE: {
 'type': 'str',
 'desc': _('Cache the password used for authentication and '
 'allow authentication with the same credentials for a '
 'certain amount of time. '
 'Specify timeout like 4h or 4h/5m.')
 }
 },
 SCOPE.AUTHZ: {
 ACTION.AUTHMAXSUCCESS: {
 'type': 'str',
 'desc': _("You can specify how many successful authentication "
 "requests a user is allowed to do in a given time. "
 "Specify like 1/5s, 2/10m, 10/1h - s, m, h being "
 "second, minute and hour.")
 },
 ACTION.AUTHMAXFAIL: {
 'type': 'str',
 'desc': _("You can specify how many failed authentication "
 "requests a user is allowed to do in a given time. "
 "Specify like 1/5s, 2/10m, 10/1h - s, m, h being "
 "second, minute and hour.")
 },
 ACTION.LASTAUTH: {
 'type': 'str',
 'desc': _("You can specify in which time frame the user needs "
 "to authenticate again with this token. If the user "
 "authenticates later, authentication will fail. "
 "Specify like 30h, 7d or 1y.")
 },
 ACTION.TOKENTYPE: {
 'type': 'str',
 'desc': _('The user will only be authenticated with this '
 'very tokentype.')},
 ACTION.SERIAL: {
 'type': 'str',
 'desc': _('The user will only be authenticated if the serial '
 'number of the token matches this regexp.')},
 ACTION.SETREALM: {
 'type': 'str',
 'value': realms,
 'desc': _('The Realm of the user is set to this very realm. '
 'This is important if the user is not contained in '
 'the default realm and can not pass his realm.')},
 ACTION.NODETAILSUCCESS: {
 'type': 'bool',
 'desc': _('In case of successful authentication additional '
 'no detail information will be returned.')},
 ACTION.NODETAILFAIL: {
 'type': 'bool',
 'desc': _('In case of failed authentication additional '
 'no detail information will be returned.')},
 ACTION.ADDUSERINRESPONSE: {
 'type': 'bool',
 'desc': _('In case of successful authentication user data '
 'will be added in the detail branch of the '
 'authentication response.')},
 ACTION.APIKEY: {
 'type': 'bool',
 'desc': _('The sending of an API Auth Key is required during'
 'authentication. This avoids rogue authenticate '
 'requests against the /validate/check interface.')
 }
 },

 SCOPE.WEBUI: {
 ACTION.LOGINMODE: {
 'type': 'str',
 'desc': _(
 'If set to "privacyIDEA" the users and admins need to '
 'authenticate against privacyIDEA when they log in '
 'to the Web UI. Defaults to "userstore"'),
 'value': [LOGINMODE.USERSTORE, LOGINMODE.PRIVACYIDEA,
 LOGINMODE.DISABLE],
 },
 ACTION.SEARCH_ON_ENTER: {
 'type': 'bool',
 'desc': _('When searching in the user list, the search will '
 'only performed when pressing enter.')
 },
 ACTION.TIMEOUT_ACTION: {
 'type': 'str',
 'desc': _('The action taken when a user is idle '
 'beyond the logout_time limit. '
 'Defaults to "lockscreen".'),
 'value': [TIMEOUT_ACTION.LOGOUT, TIMEOUT_ACTION.LOCKSCREEN],
 },
 ACTION.REMOTE_USER: {
 'type': 'str',
 'value': [REMOTE_USER.ACTIVE, REMOTE_USER.DISABLE],
 'desc': _('The REMOTE_USER set by the webserver can be used '
 'to login to privacyIDEA or it will be ignored. '
 'Defaults to "disable".')
 },
 ACTION.LOGOUTTIME: {
 'type': 'int',
 'desc': _("Set the time in seconds after which the user will "
 "be logged out from the WebUI. Default: 120")
 },
 ACTION.TOKENPAGESIZE: {
 'type': 'int',
 'desc': _("Set how many tokens should be displayed in the "
 "token view on one page.")
 },
 ACTION.USERPAGESIZE: {
 'type': 'int',
 'desc': _("Set how many users should be displayed in the user "
 "view on one page.")
 },
 ACTION.CUSTOM_MENU: {
 'type': 'str',
 'desc': _("Use your own html template for the web UI menu.")
 },
 ACTION.CUSTOM_BASELINE: {
 'type': 'str',
 'desc': _("Use your own html template for the web UI baseline/footer.")
 },
 ACTION.USERDETAILS: {
 'type': 'bool',
 'desc': _("Whether the user ID and the resolver should be "
 "displayed in the token list.")
 },
 ACTION.POLICYTEMPLATEURL: {
 'type': 'str',
 'desc': _("The URL of a repository, where the policy "
 "templates can be found. (Default "
 "https: //raw.githubusercontent.com/ privacyidea/"
 "policy-templates /master/templates/)")
 },
 ACTION.TOKENWIZARD: {
 'type': 'bool',
 'desc': _("As long as a user has no token, he will only see"
 " a token wizard in the UI.")
 },
 ACTION.TOKENWIZARD2ND: {
 'type': 'bool',
 'desc': _("The tokenwizard will be displayed in the token "
 "menu, even if the user already has a token.")
 },
 ACTION.DEFAULT_TOKENTYPE: {
 'type': 'str',
 'desc': _("This is the default token type in the token "
 "enrollment dialog."),
 'value': get_token_types()
 },
 ACTION.REALMDROPDOWN: {
 'type': 'str',
 'desc': _("A comma separated list of realm names, which are "
 "displayed in a drop down menu in the WebUI login "
 "screen.")
 },
 ACTION.HIDE_WELCOME: {
 'type': 'bool',
 'desc': _("If this checked, the administrator will not see "
 "the welcome dialog anymore.")
 }
 }

 }
 if scope:
 ret = pol.get(scope, {})
 else:
 ret = pol
 return ret

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/api/lib/postpolicy.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.api.lib.postpolicy

-*- coding: utf-8 -*-
#
2016-02-07 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add tokenwizard
2015-10-25 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add default token type for tokenenrollment
2015-09-20 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add decorator to sign a response
2015-04-03 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add logout time config
2015-03-31 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add postpolicy for offline information
2015-02-06 Cornelius Kölbel <cornelius@privacyidea.org>
Create this module for enabling decorators for API calls
#
License: AGPLv3
contact: http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
These are the policy decorators as POST conditions for the API calls.
I.e. these conditions are executed after the wrapped API call.
This module uses the policy base functions from
privacyidea.lib.policy but also components from flask like g.

Wrapping the functions in a decorator class enables easy modular testing.

The functions of this module are tested in tests/test_api_lib_policy.py
"""
import datetime
import logging
log = logging.getLogger(__name__)
from privacyidea.lib.error import PolicyError
from flask import g, current_app, make_response
from privacyidea.lib.policy import SCOPE, ACTION, AUTOASSIGNVALUE
from privacyidea.lib.user import get_user_from_param
from privacyidea.lib.token import get_tokens, assign_token, get_realms_of_token
from privacyidea.lib.machine import get_hostname, get_auth_items
from .prepolicy import check_max_token_user, check_max_token_realm
import functools
import json
import re
import netaddr
from privacyidea.lib.crypto import Sign
from privacyidea.api.lib.utils import get_all_params, getParam
from privacyidea.lib.auth import ROLE
from privacyidea.lib.user import (split_user, User)
from privacyidea.lib.realm import get_default_realm
from privacyidea.lib.subscriptions import subscription_status

optional = True
required = False
DEFAULT_LOGOUT_TIME = 120
DEFAULT_PAGE_SIZE = 15
DEFAULT_TOKENTYPE = "hotp"
DEFAULT_TIMEOUT_ACTION = "lockscreeen"
DEFAULT_POLICY_TEMPLATE_URL = "https://raw.githubusercontent.com/privacyidea/" \
 "policy-templates/master/templates/"

[docs]class postpolicy(object):
 """
 Decorator that allows one to call a specific function after the decorated
 function.
 The postpolicy decorator is to be used in the API calls.
 """
 def __init__(self, function, request=None):
 """
 :param function: This is the policy function the is to be called
 :type function: function
 :param request: The original request object, that needs to be passed
 :type request: Request Object
 """
 self.request = request
 self.function = function

 def __call__(self, wrapped_function):
 """
 This decorates the given function. The postpolicy decorator is ment
 for API functions on the API level.
 The wrapped_function should return a response object.

 :param wrapped_function: The function, that is decorated.
 :type wrapped_function: API function
 :return: Response object
 """
 @functools.wraps(wrapped_function)
 def policy_wrapper(*args, **kwds):
 response = wrapped_function(*args, **kwds)
 return self.function(self.request, response, *args, **kwds)

 return policy_wrapper

[docs]class postrequest(object):
 """
 Decorator that is supposed to be used with after_request.
 """
 def __init__(self, function, request=None):
 """
 :param function: This is the policy function the is to be called
 :type function: function
 :param request: The original request object, that needs to be passed
 :type request: Request Object
 """
 self.request = request
 self.function = function

 def __call__(self, wrapped_function):
 @functools.wraps(wrapped_function)
 def policy_wrapper(*args, **kwds):
 response = wrapped_function(*args, **kwds)
 return self.function(self.request, response, **kwds)

 return policy_wrapper

[docs]def sign_response(request, response):
 """
 This decorator is used to sign the response. It adds the nonce from the
 request, if it exist and adds the nonce and the signature to the response.

 .. note:: This only works for JSON responses. So if we fail to decode the
 JSON, we just pass on.

 The usual way to use it is, to wrap the after_request, so that we can also
 sign errors.

 @postrequest(sign_response, request=request)
 def after_request(response):

 :param request: The Request object
 :param response: The Response object
 """
 if current_app.config.get("PI_NO_RESPONSE_SIGN"):
 return response

 priv_file = current_app.config.get("PI_AUDIT_KEY_PRIVATE")
 pub_file = current_app.config.get("PI_AUDIT_KEY_PUBLIC")
 sign_object = Sign(priv_file, pub_file)
 request.all_data = get_all_params(request.values, request.data)
 # response can be either a Response object or a Tuple (Response, ErrorID)
 response_value = 200
 response_is_tuple = False
 if type(response).__name__ == "tuple":
 response_is_tuple = True
 response_value = response[1]
 response_object = response[0]
 else:
 response_object = response
 try:
 content = json.loads(response_object.data)
 nonce = request.all_data.get("nonce")
 if nonce:
 content["nonce"] = nonce

 content["signature"] = sign_object.sign(json.dumps(content))
 response_object.data = json.dumps(content)
 except ValueError:
 # The response.data is no JSON (but CSV or policy export)
 # We do no signing in this case.
 log.info("We only sign JSON response data.")

 if response_is_tuple:
 resp = (response_object, response_value)
 else:
 resp = response_object
 return resp

[docs]def check_tokentype(request, response):
 """
 This policy function is to be used in a decorator of an API function.
 It checks, if the token, that was used in the API call is of a type that
 is allowed to be used.

 If not, a PolicyException is raised.

 :param response: The response of the decorated function
 :type response: Response object
 :return: A new (maybe modified) response
 """
 content = json.loads(response.data)
 tokentype = content.get("detail", {}).get("type")
 policy_object = g.policy_object
 user_object = request.User
 allowed_tokentypes = policy_object.get_action_values(
 "tokentype",
 scope=SCOPE.AUTHZ,
 user=user_object.login,
 resolver=user_object.resolver,
 realm=user_object.realm,
 client=g.client_ip)
 if tokentype and allowed_tokentypes and tokentype not in allowed_tokentypes:
 # If we have tokentype policies, but
 # the tokentype is not allowed, we raise an exception
 g.audit_object.log({"success": False,
 'action_detail': "Tokentype {0!r} not allowed for "
 "authentication".format(tokentype)})
 raise PolicyError("Tokentype not allowed for authentication!")
 return response

[docs]def check_serial(request, response):
 """
 This policy function is to be used in a decorator of an API function.
 It checks, if the token, that was used in the API call has a serial
 number that is allowed to be used.

 If not, a PolicyException is raised.

 :param response: The response of the decorated function
 :type response: Response object
 :return: A new (maybe modified) response
 """
 content = json.loads(response.data)
 policy_object = g.policy_object
 serial = content.get("detail", {}).get("serial")
 # get the serials from a policy definition
 allowed_serials = policy_object.get_action_values("serial",
 scope=SCOPE.AUTHZ,
 client=g.client_ip)

 # If we can compare a serial and if we do serial matching!
 if serial and allowed_serials:
 serial_matches = False
 for allowed_serial in allowed_serials:
 if re.search(allowed_serial, serial):
 serial_matches = True
 break
 if serial_matches is False:
 g.audit_object.log({"action_detail": "Serial is not allowed for "
 "authentication!"})
 raise PolicyError("Serial is not allowed for authentication!")
 return response

[docs]def no_detail_on_success(request, response):
 """
 This policy function is used with the AUTHZ scope.
 If the boolean value no_detail_on_success is set,
 the details will be stripped if
 the authentication request was successful.

 :param request:
 :param response:
 :return:
 """
 content = json.loads(response.data)
 policy_object = g.policy_object

 # get the serials from a policy definition
 detailPol = policy_object.get_policies(action=ACTION.NODETAILSUCCESS,
 scope=SCOPE.AUTHZ,
 client=g.client_ip,
 active=True)

 if detailPol and content.get("result", {}).get("value"):
 # The policy was set, we need to strip the details, if the
 # authentication was successful. (value=true)
 del content["detail"]
 response.data = json.dumps(content)

 return response

[docs]def add_user_detail_to_response(request, response):
 """
 This policy decorated is used in the AUTHZ scope.
 If the boolean value add_user_in_response is set,
 the details will contain a dictionary "user" with all user details.

 :param request:
 :param response:
 :return:
 """
 content = json.loads(response.data)
 policy_object = g.policy_object

 detail_pol = policy_object.get_policies(action=ACTION.ADDUSERINRESPONSE,
 scope=SCOPE.AUTHZ,
 client=g.client_ip,
 active=True)

 if detail_pol and content.get("result", {}).get("value") and request.User:
 # The policy was set, we need to add the user
 # details
 ui = request.User.info
 ui["password"] = ""
 for key, value in ui.iteritems():
 if type(value) == datetime.datetime:
 ui[key] = str(value)
 content["detail"]["user"] = ui
 response.data = json.dumps(content)

 return response

[docs]def no_detail_on_fail(request, response):
 """
 This policy function is used with the AUTHZ scope.
 If the boolean value no_detail_on_fail is set,
 the details will be stripped if
 the authentication request failed.

 :param request:
 :param response:
 :return:
 """
 content = json.loads(response.data)
 policy_object = g.policy_object

 # get the serials from a policy definition
 detailPol = policy_object.get_policies(action=ACTION.NODETAILFAIL,
 scope=SCOPE.AUTHZ,
 client=g.client_ip,
 active=True)

 if detailPol and content.get("result", {}).get("value") is False:
 # The policy was set, we need to strip the details, if the
 # authentication was successful. (value=true)
 del content["detail"]
 response.data = json.dumps(content)

 return response

[docs]def save_pin_change(request, response, serial=None):
 """
 This policy function checks if the next_pin_change date should be
 stored in the tokeninfo table.

 1. Check scope:enrollment and
 ACTION.CHANGE_PIN_FIRST_USE.
 This action is used, when the administrator enrolls a token or sets a PIN

 2. Check scope:enrollment and
 ACTION.CHANGE_PIN_EVERY is used, if the user changes the PIN.

 This function decorates /token/init and /token/setpin. The parameter
 "pin" and "otppin" is investigated.

 :param request:
 :param action:
 :return:
 """
 content = json.loads(response.data)
 policy_object = g.policy_object
 serial = serial or request.all_data.get("serial")
 if not serial:
 # No serial in request, so we look into the response
 serial = content.get("detail", {}).get("serial")
 if not serial:
 log.error("Can not determine serial number. Have no idea of any "
 "realm!")
 else:
 # Determine the realm by the serial
 realm = get_realms_of_token(serial, only_first_realm=True)
 realm = realm or get_default_realm()

 if g.logged_in_user.get("role") == ROLE.ADMIN:
 pinpol = policy_object.get_policies(action=ACTION.CHANGE_PIN_FIRST_USE,
 scope=SCOPE.ENROLL, realm=realm,
 client=g.client_ip, active=True)
 if pinpol:
 token = get_tokens(serial=serial)[0]
 token.set_next_pin_change(diff="0d")

 elif g.logged_in_user.get("role") == ROLE.USER:
 # Check for parameter "pin" or "otppin".
 otppin = request.all_data.get("otppin")
 pin = request.all_data.get("pin")
 # The user sets a pin or enrolls a token. -> delete the pin_change
 if otppin or pin:
 token = get_tokens(serial=serial)[0]
 token.del_tokeninfo("next_pin_change")

 # If there is a change_pin_every policy, we need to set the PIN
 # anew.
 pinpol = policy_object.get_action_values(
 ACTION.CHANGE_PIN_EVERY, scope=SCOPE.ENROLL,
 realm=realm, client=g.client_ip, unique=True)
 if pinpol:
 token = get_tokens(serial=serial)[0]
 token.set_next_pin_change(diff=pinpol[0])

 # we do not modify the response!
 return response

[docs]def offline_info(request, response):
 """
 This decorator is used with the function /validate/check.
 It is not triggered by an ordinary policy but by a MachineToken definition.
 If for the given Client and Token an offline application is defined,
 the response is enhanced with the offline information - the hashes of the
 OTP.

 """
 content = json.loads(response.data)
 # check if the authentication was successful
 if content.get("result").get("value") is True and g.client_ip:
 # If there is no remote address, we can not determine
 # offline information
 client_ip = netaddr.IPAddress(g.client_ip)
 # check if there is a MachineToken definition
 detail = content.get("detail", {})
 serial = detail.get("serial")
 try:
 # if the hostname can not be identified, there might be no
 # offline definition!
 hostname = get_hostname(ip=client_ip)
 auth_items = get_auth_items(hostname=hostname, ip=client_ip,
 serial=serial, application="offline",
 challenge=request.all_data.get("pass"))
 if auth_items:
 content["auth_items"] = auth_items
 response.data = json.dumps(content)
 except Exception as exx:
 log.info(exx)
 return response

[docs]def get_webui_settings(request, response):
 """
 This decorator is used in the /auth API to add configuration information
 like the logout_time or the policy_template_url to the response.
 :param request: flask request object
 :param response: flask response object
 :return: the response
 """
 content = json.loads(response.data)
 # check, if the authentication was successful, then we need to do nothing
 if content.get("result").get("status") is True:
 role = content.get("result").get("value").get("role")
 loginname = content.get("result").get("value").get("username")
 realm = content.get("result").get("value").get("realm")
 realm = realm or get_default_realm()

 policy_object = g.policy_object
 try:
 client = g.client_ip
 except Exception:
 client = None
 logout_time_pol = policy_object.get_action_values(
 action=ACTION.LOGOUTTIME,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 unique=True)
 timeout_action_pol = policy_object.get_action_values(
 action=ACTION.TIMEOUT_ACTION,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 unique=True
)
 token_page_size_pol = policy_object.get_action_values(
 action=ACTION.TOKENPAGESIZE,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 unique=True
)
 user_page_size_pol = policy_object.get_action_values(
 action=ACTION.USERPAGESIZE,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 unique=True
)
 token_wizard_2nd = bool(role == ROLE.USER and
 policy_object.get_policies(action=ACTION.TOKENWIZARD2ND,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 active=True))
 token_wizard = False
 if role == ROLE.USER:
 token_wizard_pol = policy_object.get_policies(
 action=ACTION.TOKENWIZARD,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 active=True
)

 # We also need to check, if the user has not tokens assigned.
 # If the user has no tokens, we run the wizard. If the user
 # already has tokens, we do not run the wizard.
 if token_wizard_pol:
 token_wizard = get_tokens(user=User(loginname, realm),
 count=True) == 0
 user_details_pol = policy_object.get_policies(
 action=ACTION.USERDETAILS,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 active=True
)
 search_on_enter = policy_object.get_policies(
 action=ACTION.SEARCH_ON_ENTER,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 active=True
)
 hide_welcome = policy_object.get_policies(
 action=ACTION.HIDE_WELCOME,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 active=True
)
 hide_welcome = bool(hide_welcome)
 default_tokentype_pol = policy_object.get_action_values(
 action=ACTION.DEFAULT_TOKENTYPE,
 scope=SCOPE.WEBUI,
 realm=realm,
 client=client,
 unique=True
)

 token_page_size = DEFAULT_PAGE_SIZE
 user_page_size = DEFAULT_PAGE_SIZE
 default_tokentype = DEFAULT_TOKENTYPE
 if len(token_page_size_pol) == 1:
 token_page_size = int(token_page_size_pol[0])
 if len(user_page_size_pol) == 1:
 user_page_size = int(user_page_size_pol[0])
 if len(default_tokentype_pol) == 1:
 default_tokentype = default_tokentype_pol[0]

 logout_time = DEFAULT_LOGOUT_TIME
 if len(logout_time_pol) == 1:
 logout_time = int(logout_time_pol[0])

 timeout_action = DEFAULT_TIMEOUT_ACTION
 if len(timeout_action_pol) == 1:
 timeout_action = timeout_action_pol[0]

 policy_template_url_pol = policy_object.get_action_values(
 action=ACTION.POLICYTEMPLATEURL,
 scope=SCOPE.WEBUI,
 client=client,
 unique=True)

 policy_template_url = DEFAULT_POLICY_TEMPLATE_URL
 if len(policy_template_url_pol) == 1:
 policy_template_url = policy_template_url_pol[0]

 content["result"]["value"]["logout_time"] = logout_time
 content["result"]["value"]["token_page_size"] = token_page_size
 content["result"]["value"]["user_page_size"] = user_page_size
 content["result"]["value"]["policy_template_url"] = policy_template_url
 content["result"]["value"]["default_tokentype"] = default_tokentype
 content["result"]["value"]["user_details"] = len(user_details_pol) > 0
 content["result"]["value"]["token_wizard"] = token_wizard
 content["result"]["value"]["token_wizard_2nd"] = token_wizard_2nd
 content["result"]["value"]["search_on_enter"] = len(search_on_enter) > 0
 content["result"]["value"]["timeout_action"] = timeout_action
 content["result"]["value"]["hide_welcome"] = hide_welcome
 content["result"]["value"]["subscription_status"] = subscription_status()
 response.data = json.dumps(content)
 return response

[docs]def autoassign(request, response):
 """
 This decorator decorates the function /validate/check.
 Depending on ACTION.AUTOASSIGN it checks if the user has no token and if
 the given OTP-value matches a token in the users realm, that is not yet
 assigned to any user.

 If a token can be found, it assigns the token to the user also taking
 into account ACTION.MAXTOKENUSER and ACTION.MAXTOKENREALM.
 :return:
 """
 content = json.loads(response.data)
 # check, if the authentication was successful, then we need to do nothing
 if content.get("result").get("value") is False:
 user_obj = request.User
 #user_obj = get_user_from_param(request.all_data)
 password = request.all_data.get("pass", "")
 if user_obj.login and user_obj.realm:
 # If there is no user in the request (because it is a serial
 # authentication request) we immediately bail out
 # check if the policy is defined
 policy_object = g.policy_object

 autoassign_values = policy_object.\
 get_action_values(action=ACTION.AUTOASSIGN,
 scope=SCOPE.ENROLL,
 user=user_obj.login,
 resolver=user_obj.resolver,
 realm=user_obj.realm,
 client=g.client_ip)

 if len(autoassign_values) > 1:
 raise PolicyError("Contradicting Autoassign policies.")
 # check if the user has no token
 if autoassign_values and get_tokens(user=user_obj, count=True) == 0:
 # Check is the token would match
 # get all unassigned tokens in the realm and look for
 # a matching OTP:
 realm_tokens = get_tokens(realm=user_obj.realm,
 assigned=False)

 for token_obj in realm_tokens:
 (res, pin, otp) = token_obj.split_pin_pass(password)
 if res:
 pin_check = True
 if autoassign_values[0] == \
 AUTOASSIGNVALUE.USERSTORE:
 # If the autoassign policy is set to userstore,
 # we need to check against the userstore.
 pin_check = user_obj.check_password(pin)
 if pin_check:
 otp_check = token_obj.check_otp(otp)
 if otp_check >= 0:
 # we found a matching token
 # check MAXTOKENUSER and MAXTOKENREALM
 check_max_token_user(request=request)
 check_max_token_realm(request=request)
 # Assign token
 assign_token(serial=token_obj.token.serial,
 user=user_obj, pin=pin)
 # Set the response to true
 content.get("result")["value"] = True
 # Set the serial number
 if not content.get("detail"):
 content["detail"] = {}
 content.get("detail")["serial"] = \
 token_obj.token.serial
 content.get("detail")["otplen"] = \
 token_obj.token.otplen
 content.get("detail")["type"] = token_obj.type
 content.get("detail")["message"] = "Token " \
 "assigned to " \
 "user via " \
 "Autoassignment"
 response.data = json.dumps(content)

 g.audit_object.log(
 {"success": True,
 "action_info":
 "Token assigned via auto assignment",
 "serial": token_obj.token.serial})
 break

 return response

[docs]def construct_radius_response(request, response):
 """
 This decorator implements the /validate/radiuscheck endpoint.
 In case this URL was requested, a successful authentication
 results in an empty response with a HTTP 204 status code.
 An unsuccessful authentication results in an empty response
 with a HTTP 400 status code.
 :return:
 """
 if request.url_rule.rule == '/validate/radiuscheck':
 return_code = 400 # generic 400 error by default
 content = json.loads(response.data)
 if content['result']['status']:
 if content['result']['value']:
 # user was successfully authenticated
 return_code = 204
 # send empty body
 return make_response('', return_code)
 else:
 return response

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/policydecorators.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.policydecorators

-*- coding: utf-8 -*-
#
2017-08-11 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add authcache decorator
2017-07-20 Cornelius Kölbel <cornelius.koelbel@netknights.it>
add resolver dependent policy for lastauth, otppin, passthru,
timelimit, losttoken
2015-10-31 Cornelius Kölbel <cornelius@privacyidea.org>
Added time_limit and last_auth
2015-03-15 Cornelius Kölbel <cornelius@privacyidea.org>
Add decorator for losttoken
2015-02-06 Cornelius Kölbel <cornelius@privacyidea.org>
Rewrite for flask migration.
Policies handled by decorators as
1. precondition for API calls
2. internal modifications of LIB-functions
3. postcondition for API calls
#
Jul 07, 2014 add check_machine_policy, Cornelius Kölbel
May 08, 2014 Cornelius Kölbel
#
License: AGPLv3
contact: http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNE7SS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
These are the policy decorator functions for internal (lib) policy decorators.
policy decorators for the API (pre/post) are defined in api/lib/policy

The functions of this module are tested in tests/test_lib_policy_decorator.py
"""
import logging
from privacyidea.lib.error import PolicyError, privacyIDEAError
import functools
from privacyidea.lib.policy import ACTION, SCOPE, ACTIONVALUE, LOGINMODE
from privacyidea.lib.user import User
from privacyidea.lib.utils import parse_timelimit, parse_timedelta
from privacyidea.lib.authcache import verify_in_cache
import datetime
from dateutil.tz import tzlocal
from privacyidea.lib.radiusserver import get_radius

log = logging.getLogger(__name__)

[docs]class libpolicy(object):
 """
 This is the decorator wrapper to call a specific function before a
 library call in contrast to prepolicy and postpolicy, which are to be
 called in API Calls.

 The decorator expects a named parameter "options". In this options dict
 it will look for the flask global "g".
 """
 def __init__(self, decorator_function):
 """
 :param decorator_function: This is the policy function that is to be
 called
 :type decorator_function: function
 """
 self.decorator_function = decorator_function

 def __call__(self, wrapped_function):
 """
 This decorates the given function.
 If some error occur the a PolicyException is raised.

 The decorator function takes the options parameter and can modify
 the behaviour of the original function.

 :param wrapped_function: The function, that is decorated.
 :type wrapped_function: API function
 :return: None
 """
 @functools.wraps(wrapped_function)
 def policy_wrapper(*args, **kwds):
 return self.decorator_function(wrapped_function, *args, **kwds)

 return policy_wrapper

[docs]def challenge_response_allowed(func):
 """
 This decorator is used to wrap tokenclass.is_challenge_request.
 It checks, if a challenge response authentication is allowed for this
 token type. To allow this, the policy

 scope:authentication, action:challenge_response must be set.

 If the tokentype is not allowed for challenge_response, this decorator
 returns false.

 See :ref:`policy_challenge_response`.

 :param func: wrapped function
 """
 @functools.wraps(func)
 def challenge_response_wrapper(*args, **kwds):
 options = kwds.get("options", {})
 g = options.get("g")
 token = args[0]
 passw = args[1]
 clientip = options.get("clientip")
 user_object = kwds.get("user") or User()
 if g:
 policy_object = g.policy_object
 allowed_tokentypes = policy_object.get_action_values(
 action=ACTION.CHALLENGERESPONSE,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip)
 log.debug("Found these allowed tokentypes: {0!s}".format(allowed_tokentypes))

 # allowed_tokentypes is a list of actions from several policies. I
 # could look like this:
 # ["tiqr hotp totp", "tiqr motp"]
 # We need to create a upper case list of pure tokentypes.
 token_list = " ".join(allowed_tokentypes)
 token_list = token_list.split(" ")
 # uniquify
 token_list = list(set(token_list))
 # uppercase
 token_list = [x.upper() for x in token_list]
 if token.get_tokentype().upper() not in token_list:
 # The chal resp is not defined for this tokentype
 # This is no challenge response request!
 return False

 f_result = func(*args, **kwds)
 return f_result

 return challenge_response_wrapper

[docs]def auth_cache(wrapped_function, user_object, passw, options=None):
 """
 Decorate lib.token:check_user_pass. Verify, if the authentication can
 be found in the auth_cache.

 :param wrapped_function: usually "check_user_pass"
 :param user_object: User who tries to authenticate
 :param passw: The PIN and OTP
 :param options: Dict containing values for "g" and "clientip".
 :return: Tuple of True/False and reply-dictionary
 """
 options = options or {}
 g = options.get("g")
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 auth_cache = policy_object.get_action_values(
 action=ACTION.AUTH_CACHE,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip,
 unique=True)
 if auth_cache:
 # verify in cache and return an early success
 auth_times = auth_cache[0].split("/")
 # determine first_auth from policy!
 first_offset = parse_timedelta(auth_times[0])

 if len(auth_times) == 2:
 # Determine last_auth from policy
 last_offset = parse_timedelta(auth_times[1])
 else:
 # If there is no last_auth, it is equal to first_auth
 last_offset = first_offset

 first_auth = datetime.datetime.utcnow() - first_offset
 last_auth = datetime.datetime.utcnow() - last_offset
 result = verify_in_cache(user_object.login, user_object.realm,
 user_object.resolver, passw,
 first_auth=first_auth,
 last_auth=last_auth)
 if result:
 return True, {"message": "Authenticated by AuthCache."}

 # If nothing else returned, we return the wrapped function
 return wrapped_function(user_object, passw, options)

[docs]def auth_user_has_no_token(wrapped_function, user_object, passw,
 options=None):
 """
 This decorator checks if the user has a token at all.
 If the user has a token, the wrapped function is called.

 The wrapped function is usually token.check_user_pass, which takes the
 arguments (user, passw, options={})

 :param wrapped_function:
 :param user_object:
 :param passw:
 :param options: Dict containing values for "g" and "clientip"
 :return: Tuple of True/False and reply-dictionary
 """
 from privacyidea.lib.token import get_tokens
 options = options or {}
 g = options.get("g")
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 pass_no_token = policy_object.get_policies(action=ACTION.PASSNOTOKEN,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip, active=True)
 if pass_no_token:
 # Now we need to check, if the user really has no token.
 tokencount = get_tokens(user=user_object, count=True)
 if tokencount == 0:
 return True, {"message": "The user has no token, but is "
 "accepted due to policy '%s'." %
 pass_no_token[0].get("name")}

 # If nothing else returned, we return the wrapped function
 return wrapped_function(user_object, passw, options)

[docs]def auth_user_does_not_exist(wrapped_function, user_object, passw,
 options=None):
 """
 This decorator checks, if the user does exist at all.
 If the user does exist, the wrapped function is called.

 The wrapped function is usually token.check_user_pass, which takes the
 arguments (user, passw, options={})

 :param wrapped_function:
 :param user_object:
 :param passw:
 :param options: Dict containing values for "g" and "clientip"
 :return: Tuple of True/False and reply-dictionary
 """
 options = options or {}
 g = options.get("g")
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 pass_no_user = policy_object.get_policies(action=ACTION.PASSNOUSER,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip,
 active=True)
 if pass_no_user:
 # Check if user object exists
 if not user_object.exist():
 return True, {"message": "The user does not exist, but is "
 "accepted due to policy '%s'." %
 pass_no_user[0].get("name")}

 # If nothing else returned, we return the wrapped function
 return wrapped_function(user_object, passw, options)

[docs]def auth_user_passthru(wrapped_function, user_object, passw, options=None):
 """
 This decorator checks the policy settings of ACTION.PASSTHRU.
 If the authentication against the userstore is not successful,
 the wrapped function is called.

 The wrapped function is usually token.check_user_pass, which takes the
 arguments (user, passw, options={})

 :param wrapped_function:
 :param user_object:
 :param passw:
 :param options: Dict containing values for "g" and "clientip"
 :return: Tuple of True/False and reply-dictionary
 """

 from privacyidea.lib.token import get_tokens
 options = options or {}
 g = options.get("g")
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 pass_thru = policy_object.get_policies(action=ACTION.PASSTHRU,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip, active=True)
 if len(pass_thru) > 1:
 raise PolicyError("Contradicting passthru policies.")
 if pass_thru and get_tokens(user=user_object, count=True) == 0:
 # If the user has NO Token, authenticate against the user store
 # Now we need to check the userstore password
 pass_thru_action = pass_thru[0].get("action").get("passthru")
 policy_name = pass_thru[0].get("name")
 if pass_thru_action in ["userstore", True]:
 if user_object.check_password(passw):
 return True, {"message": "The user authenticated against "
 "his userstore according to "
 "policy '%s'." % policy_name}
 else:
 # We are doing RADIUS passthru
 log.info("Forwarding the authentication request to the radius "
 "server %s" % pass_thru_action)
 radius = get_radius(pass_thru_action)
 r = radius.request(radius.config, user_object.login, passw)
 if r:
 return True, {'message': "The user authenticated against "
 "the RADIUS server %s according "
 "to policy '%s'." %
 (pass_thru_action, policy_name)}

 # If nothing else returned, we return the wrapped function
 return wrapped_function(user_object, passw, options)

[docs]def auth_user_timelimit(wrapped_function, user_object, passw, options=None):
 """
 This decorator checks the policy settings of
 ACTION.AUTHMAXSUCCESS,
 ACTION.AUTHMAXFAIL
 If the authentication was successful, it checks, if the number of allowed
 successful authentications is exceeded (AUTHMAXSUCCESS).

 If the AUTHMAXFAIL is exceed it denies even a successful authentication.

 The wrapped function is usually token.check_user_pass, which takes the
 arguments (user, passw, options={})

 :param wrapped_function:
 :param user_object:
 :param passw:
 :param options: Dict containing values for "g" and "clientip"
 :return: Tuple of True/False and reply-dictionary
 """
 # First we call the wrapped function
 res, reply_dict = wrapped_function(user_object, passw, options)

 options = options or {}
 g = options.get("g")
 if g:

 clientip = options.get("clientip")
 policy_object = g.policy_object

 max_success = policy_object.get_action_values(action=ACTION.AUTHMAXSUCCESS,
 scope=SCOPE.AUTHZ,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip)
 max_fail = policy_object.get_action_values(
 action=ACTION.AUTHMAXFAIL,
 scope=SCOPE.AUTHZ,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip)
 # Check for maximum failed authentications
 # Always - also in case of unsuccessful authentication
 if len(max_fail) > 1:
 raise PolicyError("Contradicting policies for {0!s}".format(
 ACTION.AUTHMAXFAIL))
 if len(max_fail) == 1:
 policy_count, tdelta = parse_timelimit(max_fail[0])
 fail_c = g.audit_object.get_count({"user": user_object.login,
 "realm": user_object.realm,
 "action":
 "%/validate/check"},
 success=False,
 timedelta=tdelta)
 log.debug("Checking users timelimit %s: %s "
 "failed authentications" %
 (max_fail[0], fail_c))
 if fail_c >= policy_count:
 res = False
 reply_dict["message"] = ("Only %s failed authentications "
 "per %s" % (policy_count, tdelta))

 if res:
 # Check for maximum successful authentications
 # Only in case of a successful authentication
 if len(max_success) > 1:
 raise PolicyError("Contradicting policies for {0!s}".format(
 ACTION.AUTHMAXSUCCESS))

 if len(max_success) == 1:
 policy_count, tdelta = parse_timelimit(max_success[0])
 # check the successful authentications for this user
 succ_c = g.audit_object.get_count({"user": user_object.login,
 "realm": user_object.realm,
 "action":
 "%/validate/check"},
 success=True,
 timedelta=tdelta)
 log.debug("Checking users timelimit %s: %s "
 "succesful authentications" %
 (max_success[0], succ_c))
 if succ_c >= policy_count:
 res = False
 reply_dict["message"] = ("Only %s successfull "
 "authentications per %s"
 % (policy_count, tdelta))

 return res, reply_dict

[docs]def auth_lastauth(wrapped_function, user_or_serial, passw, options=None):
 """
 This decorator checks the policy settings of ACTION.LASTAUTH
 If the last authentication stored in tokeninfo last_auth_success of a
 token is exceeded, the authentication is denied.

 The wrapped function is usually token.check_user_pass, which takes the
 arguments (user, passw, options={}) OR
 token.check_serial_pass with the arguments (user, passw, options={})

 :param wrapped_function: either check_user_pass or check_serial_pass
 :param user_or_serial: either the User user_or_serial or a serial
 :param passw:
 :param options: Dict containing values for "g" and "clientip"
 :return: Tuple of True/False and reply-dictionary
 """
 # First we call the wrapped function
 res, reply_dict = wrapped_function(user_or_serial, passw, options)

 options = options or {}
 g = options.get("g")
 if g and res:
 clientip = options.get("clientip")
 policy_object = g.policy_object

 # in case of a serial:
 realm = None
 login = None
 serial = user_or_serial
 try:
 # Assume we have a user
 realm = user_or_serial.realm
 resolver = user_or_serial.resolver
 login = user_or_serial.login
 serial = reply_dict.get("serial")
 except Exception:
 # in case of a serial:
 realm = None
 resolver = None
 login = None
 serial = user_or_serial

 # In case of a passthru policy we have no serial in the response
 # So we may only continue, if we have a serial.
 if serial:
 from privacyidea.lib.token import get_tokens
 try:
 token = get_tokens(serial=serial)[0]
 except IndexError:
 # In the special case of a registration token,
 # the token does not exist anymore. So we immediately return
 return res, reply_dict

 last_auth = policy_object.get_action_values(
 action=ACTION.LASTAUTH,
 scope=SCOPE.AUTHZ,
 realm=realm,
 resolver=resolver,
 user=login,
 client=clientip, unique=True)

 if len(last_auth) == 1:
 res = token.check_last_auth_newer(last_auth[0])
 if not res:
 reply_dict["message"] = "The last successful " \
 "authentication was %s. " \
 "It is to long ago." % \
 token.get_tokeninfo(ACTION.LASTAUTH)

 # set the last successful authentication, if res still true
 if res:
 token.add_tokeninfo(ACTION.LASTAUTH,
 datetime.datetime.now(tzlocal()))

 return res, reply_dict

[docs]def login_mode(wrapped_function, *args, **kwds):
 """
 Decorator to decorate the lib.auth.check_webui_user function.
 Depending on ACTION.LOGINMODE it sets the check_otp parameter, to signal
 that the authentication should be performed against privacyIDEA.

 :param wrapped_function: Usually the function check_webui_user
 :param args: arguments user_obj and password
 :param kwds: keyword arguments like options and !check_otp!
 kwds["options"] contains the flask g
 :return: calls the original function with the modified "check_otp" argument
 """
 ERROR = "There are contradicting policies for the action {0!s}!".format(\
 ACTION.LOGINMODE)
 # if tokenclass.check_pin is called in any other way, options may be None
 # or it might have no element "g".
 options = kwds.get("options") or {}
 g = options.get("g")
 if g:
 # We need the user but we do not need the password
 user_object = args[0]
 clientip = options.get("clientip")
 # get the policy
 policy_object = g.policy_object
 login_mode_list = policy_object.get_action_values(ACTION.LOGINMODE,
 scope=SCOPE.WEBUI,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip)

 if login_mode_list:
 # There is a login mode policy
 if len(login_mode_list) > 1: # pragma: no cover
 # We can not decide how to handle the request, so we raise an
 # exception
 raise PolicyError(ERROR)

 if login_mode_list[0] == LOGINMODE.PRIVACYIDEA:
 # The original function should check against privacyidea!
 kwds["check_otp"] = True

 if login_mode_list[0] == LOGINMODE.DISABLE:
 # The login to the webui is disabled
 raise PolicyError("The login for this user is disabled.")

 return wrapped_function(*args, **kwds)

[docs]def auth_otppin(wrapped_function, *args, **kwds):
 """
 Decorator to decorate the tokenclass.check_pin function.
 Depending on the ACTION.OTPPIN it
 * either simply accepts an empty pin
 * checks the pin against the userstore
 * or passes the request to the wrapped_function

 :param wrapped_function: In this case the wrapped function should be
 tokenclass.check_ping
 :param *args: args[1] is the pin
 :param **kwds: kwds["options"] contains the flask g
 :return: True or False
 """
 ERROR = "There are contradicting policies for the action {0!s}!".format(\
 ACTION.OTPPIN)
 # if tokenclass.check_pin is called in any other way, options may be None
 # or it might have no element "g".
 options = kwds.get("options") or {}
 g = options.get("g")
 if g:
 token = args[0]
 pin = args[1]
 clientip = options.get("clientip")
 user_object = kwds.get("user")
 if not user_object:
 # No user in the parameters, so we need to determine the owner of
 # the token
 user_object = token.user
 realms = token.get_realms()
 if not user_object and len(realms):
 # if the token has not owner, we take a realm.
 user_object = User("", realm=realms[0])
 if not user_object:
 # If we still have no user and no tokenrealm, we create an empty
 # user object.
 user_object=User("", realm="")
 # get the policy
 policy_object = g.policy_object
 otppin_list = policy_object.get_action_values(ACTION.OTPPIN,
 scope=SCOPE.AUTH,
 realm=user_object.realm,
 resolver=user_object.resolver,
 user=user_object.login,
 client=clientip)
 if otppin_list:
 # There is an otppin policy
 if len(otppin_list) > 1:
 # We can not decide how to handle the request, so we raise an
 # exception
 raise PolicyError(ERROR)

 if otppin_list[0] == ACTIONVALUE.NONE:
 if pin == "":
 # No PIN checking, we expect an empty PIN!
 return True
 else:
 return False

 if otppin_list[0] == ACTIONVALUE.USERSTORE:
 rv = user_object.check_password(pin)
 return rv is not None

 # call and return the original check_pin function
 return wrapped_function(*args, **kwds)

[docs]def config_lost_token(wrapped_function, *args, **kwds):
 """
 Decorator to decorate the lib.token.lost_token function.
 Depending on ACTION.LOSTTOKENVALID, ACTION.LOSTTOKENPWCONTENTS,
 ACTION.LOSTTOKENPWLEN it sets the check_otp parameter, to signal
 how the lostToken should be generated.

 :param wrapped_function: Usually the function lost_token()
 :param args: argument "serial" as the old serial number
 :param kwds: keyword arguments like "validity", "contents", "pw_len"
 kwds["options"] contains the flask g

 :return: calls the original function with the modified "validity",
 "contents" and "pw_len" argument
 """
 # if called in any other way, options may be None
 # or it might have no element "g".
 from privacyidea.lib.token import get_tokens
 options = kwds.get("options") or {}
 g = options.get("g")
 if g:
 # We need the old serial number, to determine the user - if it exist.
 serial = args[0]
 toks = get_tokens(serial=serial)
 if len(toks) == 1:
 username = None
 realm = None
 resolver = None
 user_object = toks[0].user
 if user_object:
 username = user_object.login
 realm = user_object.realm
 resolver = user_object.resolver
 clientip = options.get("clientip")
 # get the policy
 policy_object = g.policy_object
 contents_list = policy_object.get_action_values(
 ACTION.LOSTTOKENPWCONTENTS,
 scope=SCOPE.ENROLL,
 realm=realm,
 resolver=resolver,
 user=username,
 client=clientip)
 validity_list = policy_object.get_action_values(
 ACTION.LOSTTOKENVALID,
 scope=SCOPE.ENROLL,
 realm=realm,
 resolver=resolver,
 user=username,
 client=clientip)
 pw_len_list = policy_object.get_action_values(
 ACTION.LOSTTOKENPWLEN,
 scope=SCOPE.ENROLL,
 realm=realm,
 resolver=resolver,
 user=username,
 client=clientip)

 if contents_list:
 if len(contents_list) > 1: # pragma: no cover
 # We can not decide how to handle the request, so we raise an
 # exception
 raise PolicyError("There are contradicting policies for the "
 "action %s" % ACTION.LOSTTOKENPWCONTENTS)
 kwds["contents"] = contents_list[0]

 if validity_list:
 if len(validity_list) > 1: # pragma: no cover
 # We can not decide how to handle the request, so we raise an
 # exception
 raise PolicyError("There are contradicting policies for the "
 "action %s" % ACTION.LOSTTOKENVALID)
 kwds["validity"] = int(validity_list[0])

 if pw_len_list:
 if len(pw_len_list) > 1: # pragma: no cover
 # We can not decide how to handle the request, so we raise an
 # exception
 raise PolicyError("There are contradicting policies for the "
 "action %s" % ACTION.LOSTTOKENPWLEN)
 kwds["pw_len"] = int(pw_len_list[0])

 return wrapped_function(*args, **kwds)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/token.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.token

-*- coding: utf-8 -*-
privacyIDEA is a fork of LinOTP
#
2017-08-11 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add auth_cache
2017-04-19 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add support for multiple challenge response token
2016-08-31 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Reset failcounter of all user tokens.
2016-06-21 Cornelius Kölbel <cornelius@privacyidea.org>
Add next pin change response
2016-06-13 Cornelius Kölbel <cornelius@privacyidea.org>
Add otp length to detail response
2015-10-14 Cornelius Kölbel <cornelius@privacyidea.org>
Add timelimit to user auth.
2015-08-31 Cornelius Kölbel <cornelius@privacyidea.org>
Add check_realm_pass for 4-eyes policy
2015-03-20 Cornelius Kölbel, <cornelius@privacyidea.org>
Add policy decorator for encryption
2015-03-15 Cornelius Kölbel, <cornelius@privacyidea.org>
Add policy decorator for lost_token password
2014-12-08 Cornelius Kölbel, <cornelius@privacyidea.org>
Rewrite the module for operation with flask
assure >95% code coverage
2014-07-02 Cornelius Kölbel, <cornelius@privacyidea.org>
remove references to machines, when a token is deleted
2014-05-08 Cornelius Kölbel, <cornelius@privacyidea.org>
#
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This module contains all top level token functions.
It depends on the models, lib.user and lib.tokenclass (which depends on the
tokenclass implementations like lib.tokens.hotptoken)

This is the middleware/glue between the HTTP API and the database
"""

import traceback
import string
import datetime
import binascii
import os
import logging

from sqlalchemy import (and_, func)
from privacyidea.lib.error import (TokenAdminError,
 ParameterError,
 privacyIDEAError)
from privacyidea.lib.decorators import (check_user_or_serial,
 check_copy_serials)
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.utils import generate_password
from privacyidea.lib.log import log_with
from privacyidea.models import (Token, Realm, TokenRealm, Challenge,
 MachineToken, TokenInfo)
from privacyidea.lib.config import get_from_config
from privacyidea.lib.config import (get_token_class, get_token_prefix,
 get_token_types,
 get_inc_fail_count_on_false_pin)
from privacyidea.lib.user import get_user_info
from privacyidea.lib import _
from privacyidea.lib.realm import realm_is_defined
from privacyidea.lib.resolver import get_resolver_object
from privacyidea.lib.policy import ACTION, SCOPE
from privacyidea.lib.policydecorators import (libpolicy,
 auth_user_does_not_exist,
 auth_user_has_no_token,
 auth_user_passthru,
 auth_user_timelimit,
 auth_lastauth,
 auth_cache,
 config_lost_token)
from privacyidea.lib.tokenclass import DATE_FORMAT
from dateutil.tz import tzlocal

log = logging.getLogger(__name__)

optional = True
required = False

ENCODING = "utf-8"

@log_with(log)
[docs]def create_tokenclass_object(db_token):
 """
 (was createTokenClassObject)
 create a token class object from a given type
 If a tokenclass for this type does not exist,
 the function returns None.

 :param db_token: the database referenced token
 :type db_token: database token object
 :return: instance of the token class object
 :rtype: tokenclass object
 """
 # We use the tokentype from the database
 tokentype = db_token.tokentype.lower()
 token_object = None
 token_class = get_token_class(tokentype)
 if token_class:
 try:
 token_object = token_class(db_token)
 except Exception as e: # pragma: no cover
 raise TokenAdminError("create_tokenclass_object failed: {0!r}".format(e),
 id=1609)
 else:
 log.error('type {0!r} not found in tokenclasses'.format(tokentype))

 return token_object

def _create_token_query(tokentype=None, realm=None, assigned=None, user=None,
 serial=None, active=None, resolver=None,
 rollout_state=None, description=None, revoked=None,
 locked=None, userid=None, tokeninfo=None, maxfail=None):
 """
 This function create the sql query for getting tokens. It is used by
 get_tokens and get_tokens_paginate.
 :return: An SQLAlchemy sql query
 """
 sql_query = Token.query
 if user is not None and not user.is_empty():
 # extract the realm from the user object:
 realm = user.realm

 if tokentype is not None and tokentype.strip("*"):
 # filter for type
 if "*" in tokentype:
 # match with "like"
 sql_query = sql_query.filter(Token.tokentype.like(
 tokentype.lower().replace("*", "%")))
 else:
 # exact match
 sql_query = sql_query.filter(func.lower(Token.tokentype) ==
 tokentype.lower())

 if description is not None and description.strip("*"):
 # filter for Description
 if "*" in description:
 # match with "like"
 sql_query = sql_query.filter(func.lower(Token.description).like(
 description.lower().replace("*", "%")))
 else:
 # exact match
 sql_query = sql_query.filter(func.lower(Token.description) ==
 description.lower())

 if assigned is not None:
 # filter if assigned or not
 if assigned is False:
 sql_query = sql_query.filter(Token.user_id == "")
 elif assigned is True:
 sql_query = sql_query.filter(Token.user_id != "")
 else:
 log.warning("assigned value not in [True, False] {0!r}".format(assigned))

 if realm is not None:
 # filter for the realm
 sql_query = sql_query.filter(and_(func.lower(Realm.name) ==
 realm.lower(),
 TokenRealm.realm_id == Realm.id,
 TokenRealm.token_id ==
 Token.id)).distinct()

 if resolver is not None and resolver.strip("*"):
 # filter for given resolver
 if "*" in resolver:
 # match with "like"
 sql_query = sql_query.filter(Token.resolver.like(resolver.replace(
 "*", "%")))
 else:
 sql_query = sql_query.filter(Token.resolver == resolver)

 if userid is not None and userid.strip("*"):
 # filter for given userid
 if "*" in userid:
 # match with "like"
 sql_query = sql_query.filter(Token.user_id.like(userid.replace(
 "*", "%")))
 else:
 sql_query = sql_query.filter(Token.user_id == userid)

 if serial is not None and serial.strip("*"):
 # filter for serial
 if "*" in serial:
 # match with "like"
 sql_query = sql_query.filter(Token.serial.like(serial.replace(
 "*", "%")))
 else:
 # exact match
 sql_query = sql_query.filter(Token.serial == serial)

 if user is not None and not user.is_empty():
 # filter for the rest of the user.
 if user.resolver:
 sql_query = sql_query.filter(Token.resolver == user.resolver)
 (uid, _rtype, _resolver) = user.get_user_identifiers()
 if uid:
 sql_query = sql_query.filter(Token.user_id == uid)

 if active is not None:
 # Filter active or inactive tokens
 if active is True:
 sql_query = sql_query.filter(Token.active == True)
 else:
 sql_query = sql_query.filter(Token.active == False)

 if revoked is not None:
 # Filter revoked or not revoked tokens
 if revoked is True:
 sql_query = sql_query.filter(Token.revoked == True)
 else:
 sql_query = sql_query.filter(Token.revoked == False)

 if locked is not None:
 # Filter revoked or not revoked tokens
 if locked is True:
 sql_query = sql_query.filter(Token.locked == True)
 else:
 sql_query = sql_query.filter(Token.locked == False)

 if maxfail is not None:
 # Filter tokens, that reached maxfail
 if maxfail is True:
 sql_query = sql_query.filter(Token.maxfail <= Token.failcount)
 else:
 sql_query = sql_query.filter(Token.maxfail > Token.failcount)

 if rollout_state is not None:
 # Filter for tokens with the given rollout state
 sql_query = sql_query.filter(Token.rollout_state == rollout_state)

 if tokeninfo is not None:
 # Filter for tokens with token token.info.<key> and token.info.<value>
 if len(tokeninfo) != 1:
 raise privacyIDEAError("I can only create SQL filters from "
 "tokeninfo of length 1.")
 sql_query = sql_query.filter(TokenInfo.Key == tokeninfo.keys()[0])
 sql_query = sql_query.filter(TokenInfo.Value == tokeninfo.values()[0])
 sql_query = sql_query.filter(TokenInfo.token_id == Token.id)

 return sql_query

@log_with(log)
#@cache.memoize(10)
[docs]def get_tokens(tokentype=None, realm=None, assigned=None, user=None,
 serial=None, active=None, resolver=None, rollout_state=None,
 count=False, revoked=None, locked=None, tokeninfo=None,
 maxfail=None):
 """
 (was getTokensOfType)
 This function returns a list of token objects of a
 * given type,
 * of a realm
 * or tokens with assignment or not
 * for a certain serial number or
 * for a User

 E.g. thus you can get all assigned tokens of type totp.

 :param tokentype: The type of the token. If None, all tokens are returned.
 :type tokentype: basestring
 :param realm: get tokens of a realm. If None, all tokens are returned.
 :type realm: basestring
 :param assigned: Get either assigned (True) or unassigned (False) tokens.
 If None get all tokens.
 :type assigned: bool
 :param user: Filter for the Owner of the token
 :type user: User Object
 :param serial: The serial number of the token
 :type serial: basestring
 :param active: Whether only active (True) or inactive (False) tokens
 should be returned
 :type active: bool
 :param resolver: filter for the given resolver name
 :type resolver: basestring
 :param rollout_state: returns a list of the tokens in the certain rollout
 state. Some tokens are not enrolled in a single step but in multiple
 steps. These tokens are then identified by the DB-column rollout_state.
 :param count: If set to True, only the number of the result and not the
 list is returned.
 :type count: bool
 :param revoked: Only search for revoked tokens or only for not revoked
 tokens
 :type revoked: bool
 :param locked: Only search for locked tokens or only for not locked tokens
 :type locked: bool
 :param tokeninfo: Return tokens with the given tokeninfo. The tokeninfo
 is a key/value dictionary
 :type tokeninfo: dict
 :param maxfail: If only tokens should be returned, which failcounter
 reached maxfail

 :return: A list of tokenclasses (lib.tokenclass)
 :rtype: list
 """
 token_list = []
 sql_query = _create_token_query(tokentype=tokentype, realm=realm,
 assigned=assigned, user=user,
 serial=serial, active=active,
 resolver=resolver,
 rollout_state=rollout_state,
 revoked=revoked, locked=locked,
 tokeninfo=tokeninfo, maxfail=maxfail)

 # Decide, what we are supposed to return
 if count is True:
 ret = sql_query.count()
 else:
 # Return a simple, flat list of tokenobjects
 for token in sql_query.all():
 # the token is the database object, but we want an instance of the
 # tokenclass!
 tokenobject = create_tokenclass_object(token)
 if isinstance(tokenobject, TokenClass):
 # A database token, that has a non existing type, will
 # return None, and not a TokenClass. We do not want to
 # add None to our list
 token_list.append(tokenobject)
 ret = token_list

 return ret

@log_with(log)
[docs]def get_tokens_paginate(tokentype=None, realm=None, assigned=None, user=None,
 serial=None, active=None, resolver=None, rollout_state=None,
 sortby=Token.serial, sortdir="asc", psize=15,
 page=1, description=None, userid=None):
 """
 This function is used to retrieve a token list, that can be displayed in
 the Web UI. It supports pagination.
 Each retrieved page will also contain a "next" and a "prev", indicating
 the next or previous page. If either does not exist, it is None.

 :param tokentype:
 :param realm:
 :param assigned: Returns assigned (True) or not assigned (False) tokens
 :type assigned: bool
 :param user: The user, whose token should be displayed
 :type user: User object
 :param serial:
 :param active:
 :param resolver: A resolver name, which may contain "*" for filtering.
 :type resolver: basestring
 :param userid: A userid, which may contain "*" for filtering.
 :type userid: basestring
 :param rollout_state:
 :param sortby: Sort by a certain Token DB field. The default is
 Token.serial. If a string like "serial" is provided, we try to convert
 it to the DB column.
 :type sortby: A Token column or a string.
 :param sortdir: Can be "asc" (default) or "desc"
 :type sortdir: basestring
 :param psize: The size of the page
 :type psize: int
 :param page: The number of the page to view. Starts with 1 ;-)
 :type page: int
 :return: dict with tokens, prev, next and count
 :rtype: dict
 """
 sql_query = _create_token_query(tokentype=tokentype, realm=realm,
 assigned=assigned, user=user,
 serial=serial, active=active,
 resolver=resolver,
 rollout_state=rollout_state,
 description=description, userid=userid)

 if type(sortby) in [str, unicode]:
 # convert the string to a Token column
 cols = Token.__table__.columns
 sortby = cols.get(sortby)

 if sortdir == "desc":
 sql_query = sql_query.order_by(sortby.desc())
 else:
 sql_query = sql_query.order_by(sortby.asc())

 pagination = sql_query.paginate(page, per_page=psize,
 error_out=False)
 tokens = pagination.items
 prev = None
 if pagination.has_prev:
 prev = page-1
 next = None
 if pagination.has_next:
 next = page + 1
 token_list = []
 for token in tokens:
 tokenobject = create_tokenclass_object(token)
 if isinstance(tokenobject, TokenClass):
 token_dict = tokenobject.get_as_dict()
 # add user information
 # In certain cases the LDAP or SQL server might not be reachable.
 # Then an exception is raised
 token_dict["username"] = ""
 token_dict["user_realm"] = ""
 try:
 userobject = tokenobject.user
 if userobject:
 token_dict["username"] = userobject.login
 token_dict["user_realm"] = userobject.realm
 token_dict["user_editable"] = get_resolver_object(
 userobject.resolver).editable
 except Exception as exx:
 log.error("User information can not be retrieved: {0!s}".format(exx))
 log.debug(traceback.format_exc())
 token_dict["username"] = "**resolver error**"

 token_list.append(token_dict)

 ret = {"tokens": token_list,
 "prev": prev,
 "next": next,
 "current": page,
 "count": pagination.total}
 return ret

@log_with(log)
[docs]def get_token_type(serial):
 """
 Returns the tokentype of a given serial number

 :param serial: the serial number of the to be searched token
 :type serial: string
 :return: tokentype
 :rtype: string
 """
 tokenobject_list = get_tokens(serial=serial)

 tokentype = ""
 for tokenobject in tokenobject_list:
 tokentype = tokenobject.type

 return tokentype

@log_with(log)
[docs]def check_serial(serial):
 """
 This checks, if the given serial number can be used for a new token.
 it returns a tuple (result, new_serial)
 result being True if the serial does not exist, yet.
 new_serial is a suggestion for a new serial number, that does not
 exist, yet.

 :param serial: Seral number that is to be checked, if it can be used for
 a new token.
 :type serial: string
 :result: bool and serial number
 :rtype: tuple
 """
 # serial does not exist, yet
 result = True
 new_serial = serial

 i = 0
 while get_tokens(serial=new_serial):
 # as long as we find a token, modify the serial:
 i += 1
 result = False
 new_serial = "{0!s}_{1:02d}".format(serial, i)

 return result, new_serial

@log_with(log)
[docs]def get_num_tokens_in_realm(realm, active=True):
 """
 This returns the number of tokens in one realm.
 :param realm: The name of the realm
 :type realm: basestring
 :param active: If only active tokens should be taken into account
 :type active: bool
 :return: The number of tokens in the realm
 :rtype: int
 """
 return get_tokens(realm=realm, active=active, count=True)

@log_with(log)
[docs]def get_realms_of_token(serial, only_first_realm=False):
 """
 This function returns a list of the realms of a token

 :param serial: the serial number of the token
 :type serial: basestring

 :param only_first_realm: Wheather we should only return the first realm
 :type only_first_realm: bool

 :return: list of the realm names
 :rtype: list
 """
 tokenobject_list = get_tokens(serial=serial)

 realms = []
 for tokenobject in tokenobject_list:
 realms = tokenobject.get_realms()

 if realms > 1:
 log.debug(
 "Token {0!s} in more than one realm: {1!s}".format(serial, realms))

 if only_first_realm:
 if realms:
 realms = realms[0]
 else:
 realms = None

 return realms

@log_with(log)
[docs]def token_exist(serial):
 """
 returns true if the token with the given serial number exists

 :param serial: the serial number of the token
 """
 if serial:
 return get_tokens(serial=serial, count=True) > 0
 else:
 # If we have no serial we return false anyway!
 return False

@log_with(log)
[docs]def get_token_owner(serial):
 """
 returns the user object, to which the token is assigned.
 the token is identified and retrieved by it's serial number

 If the token has no owner, None is returned

 In case the serial number matches several tokens (like when containing a
 wildcard), also None is returned.

 :param serial: serial number of the token
 :type serial: basestring

 :return: The owner of the token
 :rtype: User object or None
 """
 user = None

 tokenobject_list = get_tokens(serial=serial)

 if len(tokenobject_list) == 1:
 tokenobject = tokenobject_list[0]
 user = tokenobject.user

 return user

@log_with(log)
[docs]def is_token_owner(serial, user):
 """
 Check if the given user is the owner of the token with the given serial
 number
 :param serial: The serial number of the token
 :type serial: str
 :param user: The user that needs to be checked
 :type user: User object
 :return: Return True or False
 :rtype: bool
 """
 ret = False
 token_owner = get_token_owner(serial)
 if token_owner is not None:
 ret = token_owner == user
 return ret

@log_with(log)
[docs]def get_tokens_in_resolver(resolver):
 """
 Return a list of the token ojects, that contain this very resolver

 :param resolver: The resolver, the tokens should be in
 :type resolver: basestring

 :return: list of tokens with this resolver
 :rtype: list of token objects
 """
 ret = get_tokens(resolver=resolver)
 return ret

@log_with(log)
[docs]def get_tokenclass_info(tokentype, section=None):
 """
 return the config definition of a dynamic token

 :param tokentype: the tokentype of the token like "totp" or "hotp"
 :type tokentype: basestring
 :param section: subsection of the token definition - optional
 :type section: basestring

 :return: dict - if nothing found an empty dict
 :rtype: dict
 """
 res = {}
 Tokenclass = get_token_class(tokentype)
 if Tokenclass:
 res = Tokenclass.get_class_info(section)

 return res

@log_with(log)
[docs]def get_all_token_users():
 """
 return a dictionary with all tokens, that are assigned to users.
 This returns a dictionary with the key being the serial number of
 the token and the user information as dict.

 :return: dictionary of serial numbers
 :rtype: dict
 """
 tokens = {}
 tokenobject_list = get_tokens(assigned=True)

 for tokenobject in tokenobject_list:
 user_info = {}
 if tokenobject.token.user_id and tokenobject.token.resolver:
 user_info = get_user_info(tokenobject.token.user_id,
 tokenobject.token.resolver)

 if tokenobject.token.user_id and len(user_info) == 0:
 user_info['username'] = u'/:no user info:/'

 if user_info:
 tokens[tokenobject.token.serial] = user_info

 return tokens

@log_with(log)
[docs]def get_otp(serial, current_time=None):
 """
 This function returns the current OTP value for a given Token.
 The tokentype needs to support this function.
 if the token does not support getting the OTP value, a -2 is returned.

 :param serial: serial number of the token
 :param current_time: a fake servertime for testing of TOTP token
 :type current_time: datetime
 :return: tuple with (result, pin, otpval, passw)
 :rtype: tuple
 """
 tokenobject_list = get_tokens(serial=serial)

 if not tokenobject_list:
 log.warning("there is no token with serial {0!r}".format(serial))
 return -1, "", "", ""

 tokenobject = tokenobject_list[0]

 return tokenobject.get_otp(current_time=current_time)

@log_with(log)
[docs]def get_multi_otp(serial, count=0, epoch_start=0, epoch_end=0,
 curTime=None,
 timestamp=None):
 """
 This function returns a list of OTP values for the given Token.
 Please note, that the tokentype needs to support this function.

 :param serial: the serial number of the token
 :type serial: basestring
 :param count: number of the next otp values (to be used with event or
 time based tokens)
 :param epoch_start: unix time start date (used with time based tokens)
 :param epoch_end: unix time end date (used with time based tokens)
 :param curTime: Simulate the servertime
 :type curTime: datetime
 :param timestamp: Simulate the servertime (unix time in seconds)
 :type timestamp: int

 :return: dictionary of otp values
 :rtype: dictionary
 """
 ret = {"result": False}
 tokenobject_list = get_tokens(serial=serial)
 if not tokenobject_list:
 log.warning("there is no token with serial {0!r}".format(serial))
 ret["error"] = "No token with serial {0!s} found.".format(serial)

 else:
 tokenobject = tokenobject_list[0]
 log.debug("getting multiple otp values for token {0!r}. curTime={1!r}".format(tokenobject, curTime))

 res, error, otp_dict = tokenobject.\
 get_multi_otp(count=count,
 epoch_start=epoch_start,
 epoch_end=epoch_end,
 curTime=curTime,
 timestamp=timestamp)
 log.debug("received {0!r}, {1!r}, and {2!r} otp values".format(res, error,
 len(otp_dict)))

 if res is True:
 ret = otp_dict
 ret["result"] = True
 else:
 ret["error"] = error

 return ret

@log_with(log)
[docs]def get_token_by_otp(token_list, otp="", window=10):
 """
 search the token in the token_list, that creates the given OTP value.
 The tokenobject_list would be created by get_tokens()

 :param token_list: the list of token objects to be investigated
 :type token_list: list of token objects
 :param otp: the otp value, that needs to be found
 :type otp: basestring
 :param window: the window of search
 :type window: int

 :return: The token, that creates this OTP value
 :rtype: Tokenobject
 """
 result_token = None
 result_list = []

 for token in token_list:
 log.debug("checking token {0!r}".format(token.get_serial()))
 try:
 r = token.check_otp_exist(otp=otp, window=window)
 log.debug("result = {0:d}".format(int(r)))
 if r >= 0:
 result_list.append(token)
 except Exception as err:
 # A flaw in a single token should not stop privacyidea from finding
 # the right token
 log.warning("error in calculating OTP for token {0!s}: "
 "{1!s}".format(token.token.serial, err))

 if len(result_list) == 1:
 result_token = result_list[0]
 elif result_list:
 raise TokenAdminError('multiple tokens are matching this OTP value!',
 id=1200)

 return result_token

@log_with(log)
[docs]def get_serial_by_otp(token_list, otp="", window=10):
 """
 Returns the serial for a given OTP value
 The tokenobject_list would be created by get_tokens()

 :param token_list: the list of token objects to be investigated
 :type token_list: list of token objects
 :param otp: the otp value, that needs to be found
 :param window: the window of search
 :type window: int

 :return: the serial for a given OTP value and the user
 :rtype: basestring
 """
 serial = None
 token = get_token_by_otp(token_list, otp=otp, window=window)

 if token is not None:
 serial = token.get_serial()

 return serial

@log_with(log)
[docs]def gen_serial(tokentype=None, prefix=None):
 """
 generate a serial for a given tokentype

 :param tokentype: the token type prefix is done by a lookup on the tokens
 :param prefix: A prefix to the serial number
 :return: serial number
 :rtype: string
 """
 serial_len = int(get_from_config("SerialLength") or 8)

 def _gen_serial(_prefix, _tokennum):
 h_serial = ''
 num_str = '{:04d}'.format(_tokennum)
 h_len = serial_len - len(num_str)
 if h_len > 0:
 h_serial = binascii.hexlify(os.urandom(h_len)).upper()[0:h_len]
 return "{0!s}{1!s}{2!s}".format(_prefix, num_str, h_serial)

 if not tokentype:
 tokentype = 'PIUN'
 if not prefix:
 prefix = get_token_prefix(tokentype.lower(), tokentype.upper())

 # now search the number of tokens of tokenytype in the token database
 tokennum = Token.query.filter(Token.tokentype == u'' + tokentype).count()

 # Now create the serial
 serial = _gen_serial(prefix, tokennum)

 # now test if serial already exists
 while True:
 numtokens = Token.query.filter(Token.serial == u'' + serial).count()
 if numtokens == 0:
 # ok, there is no such token, so we're done
 break
 serial = _gen_serial(prefix, tokennum + numtokens) # pragma: no cover

 return serial

@log_with(log)
[docs]def init_token(param, user=None, tokenrealms=None):
 """
 create a new token or update an existing token

 :param param: initialization parameters like:
 serial (optional)
 type (optionl, default=hotp)
 otpkey
 :type param: dict
 :param user: the token owner
 :type user: User Object
 :param tokenrealms: the realms, to which the token should belong
 :type tokenrealms: list

 :return: token object or None
 :rtype: TokenClass object
 """
 db_token = None
 tokenobject = None

 tokentype = param.get("type") or "hotp"
 serial = param.get("serial") or gen_serial(tokentype, param.get("prefix"))
 realms = []

 # unsupported tokentype
 tokentypes = get_token_types()
 if tokentype.lower() not in tokentypes:
 log.error('type {0!r} not found in tokentypes: {1!r}'.format(tokentype, tokentypes))
 raise TokenAdminError("init token failed: unknown token type {0!r}".format(tokentype), id=1610)

 # Check, if a token with this serial already exist
 # create a list of the found tokens
 tokenobject_list = get_tokens(serial=serial)
 token_count = len(tokenobject_list)
 if token_count == 0:
 # A token with the serial was not found, so we create a new one
 db_token = Token(serial, tokentype=tokentype.lower())

 else:
 # The token already exist, so we update the token
 db_token = tokenobject_list[0].token
 # prevent from changing the token type
 old_typ = db_token.tokentype
 if old_typ.lower() != tokentype.lower():
 msg = ('token %r already exist with type %r. '
 'Can not initialize token with new type %r' % (serial,
 old_typ,
 tokentype))
 log.error(msg)
 raise TokenAdminError("initToken failed: {0!s}".format(msg))

 # if there is a realm as parameter (and the realm is not empty), but no
 # user, we assign the token to this realm.
 if param.get("realm") and 'user' not in param:
 realms.append(param.get("realm"))
 # Assign the token to all tokenrealms
 if tokenrealms and isinstance(tokenrealms, list):
 realms.extend(tokenrealms)
 # and to the user realm
 if user and user.realm:
 realms.append(user.realm)
 if realms:
 # We need to save the token to the DB, otherwise the Token
 # has no id!
 db_token.save()
 db_token.set_realms(realms)

 # the tokenclass object is created
 tokenobject = create_tokenclass_object(db_token)

 if token_count == 0:
 # if this token is a newly created one, we have to setup the defaults,
 # which later might be overwritten by the tokenobject.update(param)
 tokenobject.set_defaults()

 # Set the user of the token
 if user is not None and user.login != "":
 tokenobject.set_user(user)

 upd_params = param
 tokenobject.update(upd_params)

 try:
 # Save the token to the database
 db_token.save()

 except Exception as e: # pragma: no cover
 log.error('token create failed!')
 log.debug("{0!s}".format(traceback.format_exc()))
 raise TokenAdminError("token create failed {0!r}".format(e), id=1112)

 # Set the validity period
 validity_period_start = param.get("validity_period_start")
 validity_period_end = param.get("validity_period_end")
 if validity_period_end:
 set_validity_period_end(serial, user, validity_period_end)
 if validity_period_start:
 set_validity_period_start(serial, user, validity_period_start)

 return tokenobject

@log_with(log)
@check_user_or_serial
[docs]def remove_token(serial=None, user=None):
 """
 remove the token that matches the serial number or
 all tokens of the given user and also remove the realm associations and
 all its challenges

 :param user: The user, who's tokens should be deleted.
 :type user: User object
 :param serial: The serial number of the token to delete
 :type serial: basestring
 :return: The number of deleted token
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)
 token_count = len(tokenobject_list)

 # Delete challenges of such a token
 for tokenobject in tokenobject_list:
 # delete the challenge
 Challenge.query.filter(Challenge.serial == tokenobject.get_serial(

)).delete()

 # due to legacy SQLAlchemy it could happen that the
 # foreign key relation could not be deleted
 # so we do this manualy

 # delete references to client machines
 MachineToken.query.filter(MachineToken.token_id ==
 tokenobject.token.id).delete()
 TokenRealm.query.filter(TokenRealm.token_id ==
 tokenobject.token.id).delete()

 tokenobject.token.delete()

 return token_count

@log_with(log)
[docs]def set_realms(serial, realms=None, add=False):
 """
 Set all realms of a token. This sets the realms new. I.e. it does not add
 realms. So realms that are not contained in the list will not be assigned
 to the token anymore.

 Thus, setting realms=[] clears all realms assignments.

 :param serial: the serial number of the token
 :type serial: basestring
 :param realms: A list of realm names
 :type realms: list
 :param add: if the realms should be added and not replaced
 :type add: bool
 :return: the number of tokens, to which realms where added. As a serial
 number should be unique, this is either 1 or 0.
 :rtype: int
 """
 realms = realms or []
 corrected_realms = []

 # get rid of non-defined realms
 for realm in realms:
 if realm_is_defined(realm):
 corrected_realms.append(realm)

 tokenobject_list = get_tokens(serial=serial)

 for tokenobject in tokenobject_list:
 tokenobject.set_realms(corrected_realms, add=add)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
[docs]def set_defaults(serial):
 """
 Set the default values for the token with the given serial number
 :param serial: token serial
 :type serial: basestring
 :return: None
 """
 tokenobject_list = get_tokens(serial=serial)
 if tokenobject_list:
 db_token = tokenobject_list[0].token
 db_token.otplen = int(get_from_config("DefaultOtpLen", 6))
 db_token.count_window = int(get_from_config("DefaultCountWindow", 15))
 db_token.maxfail = int(get_from_config("DefaultMaxFailCount", 15))
 db_token.sync_window = int(get_from_config("DefaultSyncWindow", 1000))
 db_token.tokentype = u"hotp"
 db_token.save()

@log_with(log)
[docs]def assign_token(serial, user, pin=None, encrypt_pin=False):
 """
 Assign token to a user.
 If the PIN is given, the PIN is reset.

 :param serial: The serial number of the token
 :type serial: basestring
 :param user: The user, to whom the token should be assigned.
 :type user: User object
 :param pin: The PIN for the newly assigned token.
 :type pin: basestring
 :param encrypt_pin: Whether the PIN should be stored in an encrypted way
 :type encrypt_pin: bool

 :return: True if the token was assigned, in case of an error an exception
 is thrown
 :rtype: bool
 """
 tokenobject_list = get_tokens(serial=serial)

 if not tokenobject_list:
 log.warning("no tokens found with serial: {0!r}".format(serial))
 raise TokenAdminError("no token found!", id=1102)

 tokenobject = tokenobject_list[0]

 # Check if the token already belongs to another user
 old_user = tokenobject.user
 if old_user:
 log.warning("token already assigned to user: {0!r}".format(old_user))
 raise TokenAdminError("Token already assigned to user {0!r}".format(
 old_user), id=1103)

 tokenobject.set_user(user)
 if pin is not None:
 tokenobject.set_pin(pin, encrypt=encrypt_pin)

 # reset the OtpFailCounter
 tokenobject.set_failcount(0)

 try:
 tokenobject.save()
 except Exception as e: # pragma: no cover
 log.error('update Token DB failed')
 raise TokenAdminError("Token assign failed for {0!r}/{1!s} : {2!r}".format(user, serial, e), id=1105)

 log.debug("successfully assigned token with serial "
 "%r to user %r" % (serial, user))
 return True

@log_with(log)
@check_user_or_serial
[docs]def unassign_token(serial, user=None):
 """
 unassign the user from the token

 :param serial: The serial number of the token to unassign
 :return: True
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 if not tokenobject_list:
 log.warning("no tokens found with serial: {0!r}".format(serial))
 raise TokenAdminError("no token found!", id=1102)

 tokenobject = tokenobject_list[0]
 tokenobject.token.user_id = ""
 tokenobject.token.resolver = ""
 tokenobject.token.resolver_type = ""
 tokenobject.set_pin("")
 tokenobject.set_failcount(0)

 try:
 tokenobject.save()
 except Exception as e: # pragma: no cover
 log.error('update token DB failed')
 raise TokenAdminError("Token unassign failed for {0!r}: {1!r}".format(serial, e), id=1105)

 log.debug("successfully unassigned token with serial {0!r}".format(serial))
 return True

@log_with(log)
[docs]def resync_token(serial, otp1, otp2, options=None, user=None):
 """
 Resyncronize the token of the given serial number by searching the
 otp1 and otp2 in the future otp values.

 :param serial: token serial number
 :type serial: basestring
 :param otp1: first OTP value
 :type otp1: basestring
 :param otp2: second OTP value, directly after the first
 :type otp2: basestring
 :param options: additional options like the servertime for TOTP token
 :type options: dict
 :return:
 """
 ret = False

 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 ret = tokenobject.resync(otp1, otp2, options)
 tokenobject.save()

 return ret

@log_with(log)
@check_user_or_serial
[docs]def reset_token(serial, user=None):
 """
 Reset the failcounter
 :param serial:
 :param user:
 :return: The number of tokens, that were resetted
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.reset()
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_pin(serial, pin, user=None, encrypt_pin=False):
 """
 Set the token PIN of the token. This is the static part that can be used
 to authenticate.

 :param pin: The pin of the token
 :type pin: basestring
 :param user: If the user is specified, the pins for all tokens of this
 user will be set
 :type used: User object
 :param serial: If the serial is specified, the PIN for this very token
 will be set.
 :return: The number of PINs set (usually 1)
 :rtype: int
 """
 if isinstance(user, basestring):
 # check if by accident the wrong parameter (like PIN)
 # is put into the user attribute
 log.warning("Parameter user must not be a string: {0!r}".format(user))
 raise ParameterError("Parameter user must not be a string: {0!r}".format(
 user), id=1212)

 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_pin(pin, encrypt=encrypt_pin)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
[docs]def set_pin_user(serial, user_pin, user=None):
 """
 This sets the user pin of a token. This just stores the information of
 the user pin for (e.g. an eTokenNG, Smartcard) in the database

 :param serial: The serial number of the token
 :type serial: basestring
 :param user_pin: The user PIN
 :type user_pin: basestring
 :return: The number of PINs set (usually 1)
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_user_pin(user_pin)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
[docs]def set_pin_so(serial, so_pin, user=None):
 """
 Set the SO PIN of a smartcard. The SO Pin can be used to reset the
 PIN of a smartcard. The SO PIN is stored in the database, so that it
 could be used for automatic processes for User PIN resetting.

 :param serial: The serial number of the token
 :type serial: basestring
 :param so_pin: The Security Officer PIN
 :type so_ping: basestring
 :return: The number of SO PINs set. (usually 1)
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_so_pin(so_pin)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def revoke_token(serial, user=None):
 """
 Revoke a token.

 :param serial: The serial number of the token
 :type serial: basestring
 :param enable: False is the token should be disabled
 :type enable: bool
 :param user: all tokens of the user will be enabled or disabled
 :type user: User object
 :return: Number of tokens that were enabled/disabled
 :rtype:
 """
 tokenobject_list = get_tokens(user=user, serial=serial)

 for tokenobject in tokenobject_list:
 tokenobject.revoke()
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def enable_token(serial, enable=True, user=None):
 """
 Enable or disable a token. This can be checked with is_token_active

 Enabling an already active token will return 0.

 :param serial: The serial number of the token
 :type serial: basestring
 :param enable: False is the token should be disabled
 :type enable: bool
 :param user: all tokens of the user will be enabled or disabled
 :type user: User object
 :return: Number of tokens that were enabled/disabled
 :rtype:
 """
 # We only search for those tokens, that need action.
 # Tokens that are already active, do not need to be enabled, tokens
 # that are inactive do not need to be disabled.
 tokenobject_list = get_tokens(user=user, serial=serial, active=not enable)

 for tokenobject in tokenobject_list:
 tokenobject.enable(enable)
 tokenobject.save()

 return len(tokenobject_list)

[docs]def is_token_active(serial):
 """
 Return True if the token is active, otherwise false
 Returns None, if the token does not exist.

 :param serial: The serial number of the token
 :type serial: basestring
 :return: True or False
 :rtype: bool
 """
 ret = None
 tokenobject_list = get_tokens(serial=serial)
 for tokenobject in tokenobject_list:
 ret = tokenobject.token.active

 return ret

@log_with(log)
@check_user_or_serial
[docs]def set_otplen(serial, otplen=6, user=None):
 """
 Set the otp length of the token defined by serial or for all tokens of
 the user.
 The OTP length is usually 6 or 8.

 :param serial: The serial number of the token
 :type serial: basestring
 :param otplen: The length of the OTP value
 :type otplen: int
 :param user: The owner of the tokens
 :type user: User object
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_otplen(otplen)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_hashlib(serial, hashlib="sha1", user=None):
 """
 Set the hashlib in the tokeninfo.
 Can be something like sha1, sha256...

 :param serial: The serial number of the token
 :type serial: basestring
 :param hashlib: The hashlib of the token
 :type hashlib: basestring
 :param user: The User, for who's token the hashlib should be set
 :type user: User object
 :return: the number of token infos set
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_hashlib(hashlib)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_count_auth(serial, count, user=None, max=False, success=False):
 """
 The auth counters are stored in the token info database field.
 There are different counters, that can be set
 count_auth -> max=False, success=False
 count_auth_max -> max=True, success=False
 count_auth_success -> max=False, success=True
 count_auth_success_max -> max=True, success=True

 :param count: The counter value
 :type count: int
 :param user: The user owner of the tokens tokens to modify
 :type user: User object
 :param serial: The serial number of the one token to modifiy
 :type serial: basestring
 :param max: True, if either count_auth_max or count_auth_success_max are
 to be modified
 :type max: bool
 :param success: True, if either count_auth_success or
 count_auth_success_max are to be modified
 :type success: bool
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 if max:
 if success:
 tokenobject.set_count_auth_success_max(count)
 else:
 tokenobject.set_count_auth_max(count)
 else:
 if success:
 tokenobject.set_count_auth_success(count)
 else:
 tokenobject.set_count_auth(count)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def add_tokeninfo(serial, info, value=None,
 value_type=None,
 user=None):
 """
 Sets a token info field in the database. The info is a dict for each
 token of key/value pairs.

 :param serial: The serial number of the token
 :type serial: basestring
 :param info: The key of the info in the dict
 :param value: The value of the info
 :param value_type: The type of the value. If set to "password" the value
 is stored encrypted
 :type value_type: basestring
 :param user: The owner of the tokens, that should be modified
 :type user: User object
 :return: the number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.add_tokeninfo(info, value)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def delete_tokeninfo(serial, key, user=None):
 """
 Delete a specific token info field in the database.

 :param serial: The serial number of the token
 :type serial: basestring
 :param key: The key of the info in the dict
 :param value: The value of the info
 :param user: The owner of the tokens, that should be modified
 :type user: User object
 :return: the number of tokens matching the serial and user. This number also includes tokens that did not have
 the token info *key* set in the first place!
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)
 for tokenobject in tokenobject_list:
 tokenobject.del_tokeninfo(key)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_validity_period_start(serial, user, start):
 """
 Set the validity period for the given token.

 :param serial:
 :param user:
 :param start: Timestamp in the format DD/MM/YY HH:MM
 :type start: basestring
 """
 tokenobject_list = get_tokens(serial=serial, user=user)
 for tokenobject in tokenobject_list:
 tokenobject.set_validity_period_start(start)
 tokenobject.save()
 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_validity_period_end(serial, user, end):
 """
 Set the validity period for the given token.

 :param serial:
 :param user:
 :param end: Timestamp in the format DD/MM/YY HH:MM
 :type end: basestring
 """
 tokenobject_list = get_tokens(serial=serial, user=user)
 for tokenobject in tokenobject_list:
 tokenobject.set_validity_period_end(end)
 tokenobject.save()
 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_sync_window(serial, syncwindow=1000, user=None):
 """
 The sync window is the window that is used during resync of a token.
 Such many OTP values are calculated ahead, to find the matching otp value
 and counter.

 :param serial: The serial number of the token
 :type serial: basestring
 :param syncwindow: The size of the sync window
 :type syncwindow: int
 :param user: The owner of the tokens, which should be modified
 :type user: User object
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_sync_window(syncwindow)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_count_window(serial, countwindow=10, user=None):
 """
 The count window is used during authentication to find the matching OTP
 value. This sets the count window per token.

 :param serial: The serial number of the token
 :type serial: basestring
 :param countwindow: the size of the window
 :type countwindow: int
 :param user: The owner of the tokens, which should be modified
 :type user: User object
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_count_window(countwindow)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_description(serial, description, user=None):
 """
 Set the description of a token

 :param serial: The serial number of the token
 :type serial: basestring
 :param description: The description for the token
 :type description: int
 :param user: The owner of the tokens, which should be modified
 :type user: User object
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_description(description)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_failcounter(serial, counter, user=None):
 """
 Set the fail counter of a token.

 :param serial: The serial number of the token
 :param counter: THe counter to which the fail counter should be set
 :param user: An optional user
 :return: Number of tokens, where the fail counter was set.
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_failcount(counter)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_user_or_serial
[docs]def set_max_failcount(serial, maxfail, user=None):
 """
 Set the maximum fail counts of tokens. This is the maximum number a
 failed authentication is allowed.

 :param serial: The serial number of the token
 :type serial: basestring
 :param maxfail: The maximum allowed failed authentications
 :type maxfail: int
 :param user: The owner of the tokens, which should be modified
 :type user: User object
 :return: number of modified tokens
 :rtype: int
 """
 tokenobject_list = get_tokens(serial=serial, user=user)

 for tokenobject in tokenobject_list:
 tokenobject.set_maxfail(maxfail)
 tokenobject.save()

 return len(tokenobject_list)

@log_with(log)
@check_copy_serials
[docs]def copy_token_pin(serial_from, serial_to):
 """
 This function copies the token PIN from one token to the other token.
 This can be used for workflows like lost token.

 In fact the PinHash and the PinSeed are transferred

 :param serial_from: The token to copy from
 :type serial_from: basestring
 :param serial_to: The token to copy to
 :type serial_to: basestring

 :return: True. In case of an error raise an exception
 :rtype: bool
 """
 tokenobject_list_from = get_tokens(serial=serial_from)
 tokenobject_list_to = get_tokens(serial=serial_to)
 pinhash, seed = tokenobject_list_from[0].get_pin_hash_seed()
 tokenobject_list_to[0].set_pin_hash_seed(pinhash, seed)
 tokenobject_list_to[0].save()
 return True

@check_copy_serials
[docs]def copy_token_user(serial_from, serial_to):
 """
 This function copies the user from one token to the other token.
 In fact the user_id, resolver and resolver type are transferred.

 :param serial_from: The token to copy from
 :type serial_from: basestring
 :param serial_to: The token to copy to
 :type serial_to: basestring

 :return: True. In case of an error raise an exception
 :rtype: bool
 """
 tokenobject_list_from = get_tokens(serial=serial_from)
 tokenobject_list_to = get_tokens(serial=serial_to)
 user_id = tokenobject_list_from[0].token.user_id
 resolver = tokenobject_list_from[0].token.resolver
 resolver_type = tokenobject_list_from[0].token.resolver_type
 tokenobject_list_to[0].set_user_identifiers(user_id, resolver,
 resolver_type)
 copy_token_realms(serial_from, serial_to)
 tokenobject_list_to[0].save()
 return True

@check_copy_serials
[docs]def copy_token_realms(serial_from, serial_to):
 """
 Copy the realms of one token to the other token

 :param serial_from: The token to copy from
 :param serial_to: The token to copy to
 :return: None
 """
 tokenobject_list_from = get_tokens(serial=serial_from)
 tokenobject_list_to = get_tokens(serial=serial_to)
 realm_list = tokenobject_list_from[0].token.get_realms()
 tokenobject_list_to[0].set_realms(realm_list)

@log_with(log)
@libpolicy(config_lost_token)
[docs]def lost_token(serial, new_serial=None, password=None,
 validity=10, contents="Ccns", pw_len=16, options=None):
 """
 This is the workflow to handle a lost token.
 The token <serial> is lost and will be disabled. A new token of type
 password token will be created and assigned to the user.
 The PIN of the lost token will be copied to the new token.
 The new token will have a certain validity period.

 :param serial: Token serial number
 :param new_serial: new serial number
 :param password: new password
 :param validity: Number of days, the new token should be valid
 :type validity: int
 :param contents: The contents of the generated password. "C": upper case
 characters, "c": lower case characters, "n": digits and "s": special
 characters
 :type contents: A string like "Ccn"
 :param pw_len: The length of the generated password
 :type pw_len: int
 :param options: optional values for the decorator passed from the upper
 API level
 :type options: dict

 :return: result dictionary
 """
 res = {}
 new_serial = new_serial or "lost{0!s}".format(serial)
 user = get_token_owner(serial)

 log.debug("doing lost token for serial {0!r} and user {1!r}".format(serial, user))

 if user is None or user.is_empty():
 err = "You can only define a lost token for an assigned token."
 log.warning("{0!s}".format(err))
 raise TokenAdminError(err, id=2012)

 character_pool = "{0!s}{1!s}{2!s}".format(string.ascii_lowercase,
 string.ascii_uppercase, string.digits)
 if contents != "":
 character_pool = ""
 if "c" in contents:
 character_pool += string.ascii_lowercase
 if "C" in contents:
 character_pool += string.ascii_uppercase
 if "n" in contents:
 character_pool += string.digits
 if "s" in contents:
 character_pool += "!#$%&()*+,-./:;<=>?@[]^_"

 if password is None:
 password = generate_password(size=pw_len, characters=character_pool)

 res['serial'] = new_serial

 tokenobject = init_token({"otpkey": password, "serial": new_serial,
 "type": "pw",
 "description": "temporary replacement for {0!s}".format(
 serial)})

 res['init'] = tokenobject is not None
 if res['init']:
 res['user'] = copy_token_user(serial, new_serial)
 res['pin'] = copy_token_pin(serial, new_serial)

 # set validity period
 end_date = (datetime.datetime.now(tzlocal())
 + datetime.timedelta(days=validity)).strftime(DATE_FORMAT)
 tokenobject_list = get_tokens(serial=new_serial)
 for tokenobject in tokenobject_list:
 tokenobject.set_validity_period_end(end_date)

 # fill results
 res['valid_to'] = "xxxx"
 res['password'] = password
 res['end_date'] = end_date
 # disable token
 res['disable'] = enable_token(serial, enable=False)

 return res

@log_with(log)
[docs]def check_realm_pass(realm, passw, options=None):
 """
 This function checks, if the given passw matches any token in the given
 realm. This can be used for the 4-eyes token.
 Only tokens that are assigned are tested.

 It returns the res True/False and a reply_dict, which contains the
 serial number of the matching token.

 :param realm: The realm of the user
 :param passw: The password containing PIN+OTP
 :param options: Additional options that are passed to the tokens
 :type options: dict
 :return: tuple of bool and dict
 """
 res = False
 reply_dict = {}
 # since an attacker does not know, which token is tested, we restrict to
 # only active tokens. He would not guess that the given OTP value is that
 # of an inactive token.
 tokenobject_list = get_tokens(realm=realm, assigned=True, active=True)
 if not tokenobject_list:
 res = False
 reply_dict["message"] = "There is no active and assigned token in " \
 "this realm"
 else:
 res, reply_dict = check_token_list(tokenobject_list, passw,
 options=options)
 return res, reply_dict

@log_with(log)
@libpolicy(auth_lastauth)
[docs]def check_serial_pass(serial, passw, options=None):
 """
 This function checks the otp for a given serial

 If the OTP matches, True is returned and the otp counter is increased.

 The function tries to determine the user (token owner), to derive possible
 additional policies from the user.

 :param serial: The serial number of the token
 :type serial: basestring
 :param passw: The password usually consisting of pin + otp
 :type passw: basestring
 :param options: Additional options. Token specific.
 :type options: dict
 :return: tuple of result (True, False) and additional dict
 :rtype: tuple
 """
 reply_dict = {}
 tokenobject_list = get_tokens(serial=serial)
 if not tokenobject_list:
 # The serial does not exist
 res = False
 reply_dict["message"] = "The token with this serial does not exist"
 else:
 tokenobject = tokenobject_list[0]
 res, reply_dict = check_token_list(tokenobject_list, passw,
 user=tokenobject.user,
 options=options)

 return res, reply_dict

@log_with(log)
[docs]def check_otp(serial, otpval):
 """
 This function checks the OTP for a given serial number
 :param serial:
 :param otpval:
 :return:
 """
 reply_dict = {}
 tokenobject_list = get_tokens(serial=serial)
 if not tokenobject_list:
 res = False
 reply_dict["message"] = "The token with this serial does not exist"
 else:
 tokenobject = tokenobject_list[0]
 res = tokenobject.check_otp(otpval) >= 0
 if not res:
 reply_dict["message"] = "OTP verification failed."
 return res, reply_dict

@libpolicy(auth_cache)
@libpolicy(auth_user_does_not_exist)
@libpolicy(auth_user_has_no_token)
@libpolicy(auth_user_timelimit)
@libpolicy(auth_lastauth)
@libpolicy(auth_user_passthru)
@log_with(log, hide_kwargs=["passw"])
[docs]def check_user_pass(user, passw, options=None):
 """
 This function checks the otp for a given user.
 It is called by the API /validate/check

 If the OTP matches, True is returned and the otp counter is increased.

 :param user: The user who is trying to authenticate
 :type user: User object
 :param passw: The password usually consisting of pin + otp
 :type passw: basestring
 :param options: Additional options. Token specific.
 :type options: dict
 :return: tuple of result (True, False) and additional dict
 :rtype: tuple
 """
 tokenobject_list = get_tokens(user=user)
 reply_dict = {}
 if not tokenobject_list:
 # The user has no tokens assigned
 res = False
 reply_dict["message"] = "The user has no tokens assigned"
 else:
 tokenobject = tokenobject_list[0]
 res, reply_dict = check_token_list(tokenobject_list, passw,
 user=tokenobject.user,
 options=options)

 return res, reply_dict

@log_with(log)
[docs]def check_token_list(tokenobject_list, passw, user=None, options=None):
 """
 this takes a list of token objects and tries to find the matching token
 for the given passw. It also tests,
 * if the token is active or
 * the max fail count is reached,
 * if the validity period is ok...

 This function is called by check_serial_pass, check_user_pass and
 check_yubikey_pass.

 :param tokenobject_list: list of identified tokens
 :param passw: the provided passw (mostly pin+otp)
 :param user: the identified use - as class object
 :param options: additional parameters, which are passed to the token

 :return: tuple of success and optional response
 :rtype: (bool, dict)
 """
 res = False
 reply_dict = {}

 # add the user to the options, so that every token, that get passed the
 # options can see the user
 options = options or {}
 options = dict(options.items() + {'user': user}.items())

 # if there has been one token in challenge mode, we only handle challenges
 challenge_response_token_list = []
 challenge_request_token_list = []
 pin_matching_token_list = []
 invalid_token_list = []
 valid_token_list = []

 # Remove locked tokens from tokenobject_list
 if len(tokenobject_list) > 1:
 for tokenobject in tokenobject_list:
 if tokenobject.is_revoked():
 tokenobject_list.remove(tokenobject)

 if len(tokenobject_list) == 0:
 # If there is no unlocked token left.
 raise TokenAdminError(_("This action is not possible, since the "
 "token is locked"), id=1007)

 for tokenobject in tokenobject_list:
 log.debug("Found user with loginId {0!r}: {1!r}".format(
 tokenobject.user, tokenobject.get_serial()))

 if tokenobject.is_challenge_response(passw, user=user, options=options):
 # This is a challenge response
 challenge_response_token_list.append(tokenobject)
 elif tokenobject.is_challenge_request(passw, user=user,
 options=options):
 # This is a challenge request
 challenge_request_token_list.append(tokenobject)
 else:
 # This is a normal authentication attempt
 try:
 pin_match, otp_count, repl = \
 tokenobject.authenticate(passw, user, options=options)
 except TokenAdminError as tae:
 # Token is locked
 pin_match = False
 otp_count = -1
 repl = {'message': tae.message}
 repl = repl or {}
 reply_dict.update(repl)
 if otp_count >= 0:
 # This is a successful authentication
 valid_token_list.append(tokenobject)
 elif pin_match:
 # The PIN of the token matches
 pin_matching_token_list.append(tokenobject)
 else:
 # Nothing matches at all
 invalid_token_list.append(tokenobject)

 """
 There might be
 2 in pin_matching_token_list
 0 in valid_token_list
 10 in invalid_token_list
 0 in challenge_token_list.

 in this case, the failcounter of the 2 tokens in pin_matchting_token_list
 needs to be increased. And return False

 If there is
 0 pin_matching
 0 valid
 10 invalid
 0 challenge

 AND incFailCountOnFalsePin is True, then the failcounter of the
 10 invalid tokens need to be increased. And return False

 If there is
 X pin_matching
 1+ valid
 X invalid
 0 challenge

 Then the authentication with the valid tokens was successful and the
 <count> of the valid tokens need to be increased to the new count.
 """
 if valid_token_list:
 # One ore more successfully authenticating tokens found
 # We need to return success
 message_list = ["matching {0:d} tokens".format(len(valid_token_list))]
 # write serial numbers or something to audit log
 for token_obj in valid_token_list:
 token_obj.inc_count_auth_success()
 # Check if the max auth is succeeded
 if token_obj.check_all(message_list):
 # The token is active and the auth counters are ok.
 res = True
 if not reply_dict.get("type"):
 reply_dict["type"] = token_obj.token.tokentype
 if reply_dict["type"] != token_obj.token.tokentype:
 reply_dict["type"] = "undetermined"
 # reset the failcounter of valid token
 try:
 token_obj.reset()
 except Exception:
 # In some cases (Registration Token) the token does not
 # exist anymore. So this would bail an exception!
 log.debug("registration token does not exist anymore and "
 "cannot be reset.")
 if len(valid_token_list) == 1:
 # If only one token was found, we add the serial number,
 # the token type and the OTP length
 reply_dict["serial"] = valid_token_list[0].token.serial
 reply_dict["type"] = valid_token_list[0].token.tokentype
 reply_dict["otplen"] = valid_token_list[0].token.otplen
 # If exist, add next pin and next password change
 next_pin = valid_token_list[0].get_tokeninfo("next_pin_change")
 if next_pin:
 reply_dict["next_pin_change"] = next_pin
 reply_dict["pin_change"] = valid_token_list[0].is_pin_change()
 next_passw = valid_token_list[0].get_tokeninfo(
 "next_password_change")
 if next_passw:
 reply_dict["next_password_change"] = next_passw
 reply_dict["password_change"] = valid_token_list[
 0].is_pin_change(password=True)
 reply_dict["message"] = ", ".join(message_list)

 # Check if we should reset ALL tokens of the user.
 g = options.get("g")
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 token_owner = valid_token_list[0].user
 reset_all = policy_object.get_policies(
 action=ACTION.RESETALLTOKENS,
 scope=SCOPE.AUTH,
 realm=token_owner.login if token_owner else None,
 user=token_owner.realm if token_owner else None,
 client=clientip, active=True)
 if reset_all:
 log.debug("Reset failcounter of all tokens of {0!s}".format(
 token_owner))
 for tok_obj_reset in tokenobject_list:
 try:
 tok_obj_reset.reset()
 except Exception:
 log.debug(
 "registration token does not exist anymore and "
 "cannot be reset.")

 elif challenge_response_token_list:
 # The RESPONSE for a previous request of a challenge response token was
 # found.
 for tokenobject in challenge_response_token_list:
 if tokenobject.check_challenge_response(passw=passw,
 options=options) >= 0:
 # OTP matches
 res = True
 tokenobject.inc_count_auth_success()
 reply_dict["message"] = "Found matching challenge"
 reply_dict["serial"] = tokenobject.token.serial
 tokenobject.challenge_janitor()
 # clean up all other challenges from other tokens. I.e.
 # all challenges with this very transaction_id!
 transaction_id = options.get("transaction_id") or \
 options.get("state")
 Challenge.query.filter(Challenge.transaction_id == u'' +
 transaction_id).delete()

 # Reset the fail counter of the challenge response token
 tokenobject.reset()
 # We have one successful authentication, so we bail out
 break

 elif challenge_request_token_list:
 # This is the initial REQUEST of a challenge response token
 active_challenge_token = [t for t in challenge_request_token_list
 if t.token.active]
 if len(active_challenge_token) == 0:
 reply_dict["message"] = "No active challenge response token found"
 else:
 reply_dict["multi_challenge"] = []
 transaction_id = None
 for token_obj in active_challenge_token:
 message_list = []
 # Check if the max auth is succeeded
 if token_obj.check_all(message_list):
 r_chal, message, transaction_id, attributes = \
 token_obj.create_challenge(
 transactionid=transaction_id, options=options)
 # Add the reply to the response
 message_list.append(message)
 reply_dict["message"] = ", ".join(message_list)
 if r_chal:
 challenge_info = {}
 challenge_info["transaction_id"] = transaction_id
 challenge_info["attributes"] = attributes
 challenge_info["serial"] = token_obj.token.serial
 # If exist, add next pin and next password change
 next_pin = challenge_request_token_list[0].get_tokeninfo(
 "next_pin_change")
 if next_pin:
 challenge_info["next_pin_change"] = next_pin
 challenge_info["pin_change"] = \
 challenge_request_token_list[0].is_pin_change()
 next_passw = challenge_request_token_list[0].get_tokeninfo(
 "next_password_change")
 if next_passw:
 challenge_info["next_password_change"] = next_passw
 challenge_info["password_change"] = \
 challenge_request_token_list[0].is_pin_change(
 password=True)
 for k, v in challenge_info.items():
 reply_dict[k] = v
 reply_dict["multi_challenge"].append(challenge_info)

 elif pin_matching_token_list:
 # We did not find a valid token and no challenge.
 # But there are tokens, with a matching pin.
 # So we increase the failcounter. Return failure.
 for tokenobject in pin_matching_token_list:
 tokenobject.inc_failcount()
 reply_dict["message"] = "wrong otp value"
 if len(pin_matching_token_list) == 1:
 # If there is only one pin matching token, we look if it was
 # a previous OTP value
 token = pin_matching_token_list[0]
 _r, pin, otp = token.split_pin_pass(passw)
 if token.is_previous_otp(otp):
 reply_dict["message"] += ". previous otp used again"
 for token_obj in pin_matching_token_list:
 token_obj.inc_count_auth()
 # write the serial numbers to the audit log
 if len(pin_matching_token_list) == 1:
 reply_dict["serial"] = pin_matching_token_list[0].token.serial
 reply_dict["type"] = pin_matching_token_list[0].token.tokentype
 reply_dict["otplen"] = pin_matching_token_list[0].token.otplen

 elif invalid_token_list:
 # There were only tokens, that did not match the OTP value and
 # not even the PIN.
 # Depending of IncFailCountOnFalsePin, we increase the failcounter.
 reply_dict["message"] = "wrong otp pin"
 if get_inc_fail_count_on_false_pin():
 for tokenobject in invalid_token_list:
 tokenobject.inc_failcount()
 tokenobject.inc_count_auth()

 return res, reply_dict

[docs]def get_dynamic_policy_definitions(scope=None):
 """
 This returns the dynamic policy definitions that come with the new loaded
 token classes.

 :param scope: an optional scope parameter. Only return the policies of
 this scope.
 :return: The policy definition for the token or only for the scope.
 """
 from privacyidea.lib.policy import SCOPE, MAIN_MENU, GROUP

 pol = {SCOPE.ADMIN: {},
 SCOPE.USER: {},
 SCOPE.AUTH: {},
 SCOPE.ENROLL: {},
 SCOPE.AUTHZ: {}}
 for ttype in get_token_types():
 pol[SCOPE.ADMIN]["enroll{0!s}".format(ttype.upper())] \
 = {'type': 'bool',
 'desc': _('Admin is allowed to initalize %s tokens.') %
 ttype.upper(),
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.ENROLLMENT}

 conf = get_tokenclass_info(ttype, section='user')
 if 'enroll' in conf:
 pol[SCOPE.USER]["enroll{0!s}".format(ttype.upper())] = {
 'type': 'bool',
 'desc': _("The user is allowed to enroll a %s token.") % ttype,
 'mainmenu': [MAIN_MENU.TOKENS],
 'group': GROUP.ENROLLMENT}

 # now merge the dynamic Token policy definition
 # into the global definitions
 policy = get_tokenclass_info(ttype, section='policy')

 # get all policy sections like: admin, user, enroll, auth, authz
 pol_keys = pol.keys()

 for pol_section in policy.keys():
 # if we have a dyn token definition of this section type
 # add this to this section - and make sure, that it is
 # then token type prefixed
 if pol_section in pol_keys:
 pol_entry = policy.get(pol_section)
 for pol_def in pol_entry:
 set_def = pol_def
 if pol_def.startswith(ttype) is not True:
 set_def = '{0!s}_{1!s}'.format(ttype, pol_def)

 pol[pol_section][set_def] = pol_entry.get(pol_def)

 # If the token class should provide specific PIN policies, now merge
 # PIN policies
 pin_scopes = get_tokenclass_info(ttype, section='pin_scopes') or []
 for pin_scope in pin_scopes:
 pol[pin_scope]['{0!s}_otp_pin_maxlength'.format(ttype.lower())] = {
 'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the maximum allowed PIN length of the {0!s}"
 " token.").format(ttype.upper()),
 'group': GROUP.PIN
 }
 pol[pin_scope]['{0!s}_otp_pin_minlength'.format(ttype.lower())] = {
 'type': 'int',
 'value': range(0, 32),
 "desc": _("Set the minimum required PIN length of the {0!s}"
 " token.").format(ttype.upper()),
 'group': GROUP.PIN
 }
 pol[pin_scope]['{0!s}_otp_pin_contents'.format(ttype.lower())] = {
 'type': 'str',
 "desc": _("Specifiy the required PIN contents of the "
 "{0!s} token. "
 "(c)haracters, (n)umeric, "
 "(s)pecial, (o)thers. [+/-]!").format(ttype.upper()),
 'group': GROUP.PIN
 }

 # return sub section, if scope is defined
 # make sure that scope is in the policy key
 # e.g. scope='_' is undefined and would break
 if scope and scope in pol:
 pol = pol[scope]

 return pol

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokenclass.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokenclass

-*- coding: utf-8 -*-
privacyIDEA is a fork of LinOTP
#
2017-07-08 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Failcount unlock
2017-04-27 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Change dateformat
2016-06-21 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add method to set the next_pin_change and next_password_change.
2016-04-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add get_default_settings to change the parameters before
the token is created
2016-04-08 Cornelius Kölbel <cornelius@privacyidea.org>
Avoid consecutive if statements
Remove unreachable code
2015-12-18 Cornelius Kölbel <cornelius@privacyidea.org>
Add get_setting_type
2015-10-12 Cornelius Kölbel <cornelius@privacyidea.org>
Add testconfig classmethod
2015-09-07 Cornelius Kölbel <cornelius@privacyidea.org>
Add challenge response decorator
2015-08-27 Cornelius Kölbel <cornelius@privacyidea.org>
Add revocation of token
* Nov 27, 2014 Cornelius Kölbel <cornelius@privacyidea.org>
Migration to flask
Rewrite of methods
100% test code coverage
* Oct 03, 2014 Cornelius Kölbel <cornelius@privacyidea.org>
Move the QR stuff in getInitDetail into the token classes
* Sep 17, 2014 Cornelius Kölbel, cornelius@privacyidea.org
Improve the return value of the InitDetail
* May 08, 2014 Cornelius Kölbel
#
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This is the Token Base class, which is inherited by all token types.
It depends on lib.user and lib.config.

The token object also contains a database token object as self.token.
The token object runs the self.update() method during the initialization
process in the API /token/init.

The update method takes a dictionary. Some of the following parameters:

otpkey -> the token gets created with this OTPKey
genkey -> genkey=1 : privacyIDEA generates an OTPKey, creates the token
 and sends it to the client.
2stepinit -> Will do a two step rollout.
 privacyIDEA creates the first part of the OTPKey, sends it
 to the client and the clients needs to send back the second part.

In case of 2stepinit the key is generated from the server_component and the
client_component using the TokenClass method generate_symmetric_key.
This method is supposed to be overwritten by the corresponding token classes.
"""
import logging
import hashlib
import datetime

from .error import (TokenAdminError,
 ParameterError)

from ..api.lib.utils import getParam
from .utils import generate_otpkey, is_true, decode_base32check
from .log import log_with

from .config import (get_from_config, get_prepend_pin)
from .utils import create_img
from .user import (User,
 get_username)
from ..models import (TokenRealm, Challenge, cleanup_challenges)
from .challenge import get_challenges
from .crypto import encryptPassword
from .crypto import decryptPassword
from .policydecorators import libpolicy, auth_otppin, challenge_response_allowed
from .decorators import check_token_locked
from .utils import parse_timedelta, parse_legacy_time
from policy import ACTION
from dateutil.parser import parse as parse_date_string
from dateutil.tz import tzlocal, tzutc
from privacyidea.lib.utils import is_true

#DATE_FORMAT = "%d/%m/%y %H:%M"
DATE_FORMAT = '%Y-%m-%dT%H:%M%z'
LASTAUTH is utcnow()
AUTH_DATE_FORMAT = "%Y-%m-%d %H:%M:%S.%f%z"
optional = True
required = False
FAILCOUNTER_EXCEEDED = "failcounter_exceeded"
FAILCOUNTER_CLEAR_TIMEOUT = "failcounter_clear_timeout"

TWOSTEP_DEFAULT_CLIENTSIZE = 8
TWOSTEP_DEFAULT_DIFFICULTY = 10000

log = logging.getLogger(__name__)

[docs]class TokenClass(object):

 # Class properties
 using_pin = True
 hKeyRequired = False
 mode = ['authenticate', 'challenge']

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new token object.

 :param db_token: A database token object
 :type db_token: Token
 :return: A TokenClass object
 """
 self.token = db_token
 self.type = db_token.tokentype
 # the init_details is a generic container, to store token specific
 # processing init_details e.g. for the initialization process
 # which could be retrieved in the controllers
 # this is not to be confused with the tokeninfo!
 self.init_details = {}
 # These are temporary details to store during authentication
 # like the "matched_otp_counter".
 self.auth_details = {}

[docs] def set_type(self, tokentype):
 """
 Set the tokentype in this object and
 also in the underlying database-Token-object.

 :param tokentype: The type of the token like HOTP or TOTP
 :type tokentype: string
 """
 tokentype = u'' + tokentype
 self.type = tokentype
 self.token.tokentype = tokentype

 @staticmethod
[docs] def get_class_type():
 return None

 @staticmethod
[docs] def get_class_info(key=None, ret='all'):
 return {}

 @staticmethod
[docs] def get_class_prefix():
 return "UNK"

[docs] def get_type(self):
 return self.token.tokentype

 @check_token_locked
[docs] def set_user(self, user, report=None):
 """
 Set the user attributes (uid, resolvername, resolvertype) of a token.

 :param user: a User() object, consisting of loginname and realm
 :param report: tbdf.
 :return: None
 """
 (uid, resolvertype, resolvername) = user.get_user_identifiers()
 self.token.resolver = resolvername
 self.token.resolver_type = resolvertype
 self.token.user_id = uid
 # set the tokenrealm
 self.set_realms([user.realm])

 @property
 def user(self):
 """
 return the user (owner) of a token
 If the token has no owner assigned, we return None

 :return: The owner of the token
 :rtype: User object
 """
 user_object = None
 realmname = ""
 if self.token.user_id and self.token.resolver:
 username = get_username(self.token.user_id, self.token.resolver)
 rlist = self.token.realm_list
 # FIXME: What if the token has more than one realm assigned?
 if len(rlist) == 1:
 realmname = rlist[0].realm.name
 if username and realmname:
 user_object = User(login=username,
 resolver=self.token.resolver,
 realm=realmname)
 return user_object

[docs] def is_orphaned(self):
 """
 Return True is the token is orphaned.

 An orphaned token means, that it has a user assigned, but the user
 does not exist in the user store (anymore)
 :return: True / False
 """
 orphaned = False
 if self.token.user_id:
 try:
 if not self.user or not self.user.login:
 # The token is assigned, but the username does not resolve
 orphaned = True
 except Exception:
 # If any other resolving error occurs, we also assume the
 # token to be orphaned
 orphaned = True
 return orphaned

[docs] def get_user_displayname(self):
 """
 Returns a tuple of a user identifier like user@realm and the
 displayname of "givenname surname".

 :return: tuple
 """
 user_object = self.user
 user_info = user_object.info
 user_identifier = u"{0!s}_{1!s}".format(user_object.login, user_object.realm)
 user_displayname = u"{0!s} {1!s}".format(user_info.get("givenname", "."),
 user_info.get("surname", "."))
 return user_identifier, user_displayname

 @check_token_locked
[docs] def set_user_identifiers(self, uid, resolvername, resolvertype):
 """
 (was setUid)
 Set the user attributes of a token
 :param uid: The user id in the user source
 :param resolvername: The name of the resolver
 :param resolvertype: The type of the resolver
 :return: None
 """
 self.token.resolver = resolvername
 self.token.resolver_type = resolvertype
 self.token.user_id = uid

 @check_token_locked
[docs] def reset(self):
 """
 Reset the failcounter
 """
 if self.token.failcount:
 # reset the failcounter and write to database
 self.set_failcount(0)
 self.token.save()

 @check_token_locked
[docs] def add_init_details(self, key, value):
 """
 (was addInfo)
 Adds information to a volatile internal dict
 """
 self.init_details[key] = value
 return self.init_details

 @check_token_locked
[docs] def set_init_details(self, details):
 if type(details) not in [dict]:
 raise Exception("Details setting: wrong data type - must be dict")
 self.init_details = details
 return self.init_details

 @log_with(log)
[docs] def get_init_details(self):
 """
 return the status of the token rollout

 :return: return the status dict.
 :rtype: dict
 """
 return self.init_details

 @check_token_locked
[docs] def set_tokeninfo(self, info):
 """
 Set the tokeninfo field in the DB. Old values will be deleted.
 :param info: dictionary with key and value
 :type info: dict
 :return:
 """
 self.token.del_info()
 for k, v in info.items():
 # check if type is a password
 if k.endswith(".type") and v == "password":
 # of type password, so we need to encrypt the value of
 # the original key (without type)
 orig_key = ".".join(k.split(".")[:-1])
 info[orig_key] = encryptPassword(info.get(orig_key, ""))

 self.token.set_info(info)

 @check_token_locked
[docs] def add_tokeninfo(self, key, value, value_type=None):
 """
 Add a key and a value to the DB tokeninfo
 :param key:
 :param value:
 :return:
 """
 add_info = {key: value}
 if value_type:
 add_info[key + ".type"] = value_type
 if value_type == "password":
 # encrypt the value
 add_info[key] = encryptPassword(value)
 self.token.set_info(add_info)

 @check_token_locked
[docs] def check_otp(self, otpval, counter=None, window=None, options=None):
 """
 This checks the OTP value, AFTER the upper level did
 the checkPIN

 In the base class we do not know, how to calculate the
 OTP value. So we return -1.
 In case of success, we should return >=0, the counter

 :param otpval: the OTP value
 :param counter: The counter for counter based otp values
 :type counter: int
 :param window: a counter window
 :type counter: int
 :param options: additional token specific options
 :type options: dict
 :return: counter of the matching OTP value.
 :rtype: int
 """
 if not counter:
 counter = self.token.count
 if not window:
 window = self.token.count_window

 return -1

[docs] def get_otp(self, current_time=""):
 """
 The default token does not support getting the otp value
 will return a tuple of four values
 a negative value is a failure.

 :return: something like: (1, pin, otpval, combined)
 """
 return -2, 0, 0, 0

[docs] def get_multi_otp(self, count=0, epoch_start=0, epoch_end=0,
 curTime=None, timestamp=None):
 """
 This returns a dictionary of multiple future OTP values of a token.

 :param count: how many otp values should be returned
 :param epoch_start: time based tokens: start when
 :param epoch_end: time based tokens: stop when
 :param curTime: current time for TOTP token (for selftest)
 :type curTime: datetime object
 :param timestamp: unix time, current time for TOTP token (for selftest)
 :type timestamp: int

 :return: True/False, error text, OTP dictionary
 :rtype: Tuple
 """
 return False, "get_multi_otp not implemented for this tokentype", {}

 @libpolicy(auth_otppin)
 @check_token_locked
[docs] def check_pin(self, pin, user=None, options=None):
 """
 Check the PIN of the given Password.
 Usually this is only dependent on the token itself,
 but the user object can cause certain policies.

 Each token could implement its own PIN checking behaviour.

 :param pin: the PIN (static password component), that is to be checked.
 :type pin: string
 :param user: for certain PIN policies (e.g. checking against the
 user store) this is the user, whose
 password would be checked. But at the moment we are
 checking against the userstore in the decorator
 "auth_otppin".
 :type user: User object
 :param options: the optional request parameters
 :return: If the PIN is correct, return True
 :rtype: bool
 """
 # check PIN against the token database
 res = self.token.check_pin(pin)
 return res

 @check_token_locked
[docs] def authenticate(self, passw, user=None, options=None):
 """
 High level interface which covers the check_pin and check_otp
 This is the method that verifies single shot authentication like
 they are done with push button tokens.

 It is a high level interface to support other tokens as well, which
 do not have a pin and otp separation - they could overwrite
 this method

 If the authentication succeeds an OTP counter needs to be increased,
 i.e. the OTP value that was used for this authentication is invalidated!

 :param passw: the password which could be pin+otp value
 :type passw: string
 :param user: The authenticating user
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict

 :return: returns tuple of
 1. true or false for the pin match,
 2. the otpcounter (int) and the
 3. reply (dict) that will be added as
 additional information in the JSON response
 of ``/validate/check``.
 :rtype: tuple
 """
 pin_match = False
 otp_counter = -1
 reply = None

 (res, pin, otpval) = self.split_pin_pass(passw, user=user,
 options=options)
 if res != -1:
 pin_match = self.check_pin(pin, user=user, options=options)
 if pin_match is True:
 otp_counter = self.check_otp(otpval, options=options)
 #self.set_otp_count(otp_counter)

 return pin_match, otp_counter, reply

 @staticmethod
[docs] def decode_otpkey(otpkey, otpkeyformat):
 """
 Decode the otp key which is given in a specific format.

 Supported formats:
 * ``hex``, in which the otpkey is returned verbatim
 * ``base32check``, which is specified in ``decode_base32check``

 In case the OTP key is malformed or if the format is unknown,
 a ParameterError is raised.

 :param otpkey: OTP key passed by the user
 :param otpkeyformat: "hex" or "base32check"
 :return: hex-encoded otpkey
 """
 if otpkeyformat == "hex":
 return otpkey
 elif otpkeyformat == "base32check":
 return decode_base32check(otpkey)
 else:
 raise ParameterError("Unknown OTP key format: {!r}".format(otpkeyformat))

[docs] def update(self, param, reset_failcount=True):
 """
 Update the token object

 :param param: a dictionary with different params like keysize,
 description, genkey, otpkey, pin
 :type: param: dict
 """
 tdesc = getParam(param, "description", optional)
 if tdesc is not None:
 self.token.set_description(tdesc)

 # key_size as parameter overrules a prevoiusly set
 # value e.g. in hashlib in the upper classes
 key_size = int(getParam(param, "keysize", optional) or 20)

 #
 # process the otpkey:
 # if otpkey given - take this
 # if not given
 # if genkey == 1 : create one
 # if required and otpkey == None:
 # raise param Exception, that we require an otpkey
 #
 otpKey = getParam(param, "otpkey", optional)
 genkey = is_true(getParam(param, "genkey", optional))
 twostep_init = is_true(getParam(param, "2stepinit", optional))
 otpkeyformat = getParam(param, "otpkeyformat", optional)

 if otpKey is not None and otpkeyformat is not None:
 # have to decode OTP key
 otpKey = self.decode_otpkey(otpKey, otpkeyformat)

 if twostep_init:
 if self.token.rollout_state == "clientwait":
 # We do not do 2stepinit in the second step
 raise ParameterError("2stepinit is only to be used in the "
 "first initialization step.")
 # In a 2-step enrollment, the server always generates a key
 genkey = 1
 # The token is disabled
 self.token.active = False

 #if genkey not in [0, 1]:
 # raise ParameterError("TokenClass supports only genkey in range ["
 # "0,1] : %r" % genkey)

 if genkey and otpKey is not None:
 raise ParameterError('[ParameterError] You may either specify '
 'genkey or otpkey, but not both!', id=344)

 if otpKey is None and genkey:
 otpKey = self._genOtpKey_(key_size)

 # otpKey still None?? - raise the exception
 if otpKey is None and self.hKeyRequired is True:
 otpKey = getParam(param, "otpkey", required)

 if otpKey is not None:
 if self.token.rollout_state == "clientwait":
 # If we have otpkey and the token is in the enrollment-state
 # generate the new key
 server_component = self.token.get_otpkey().getKey()
 client_component = otpKey
 otpKey = self.generate_symmetric_key(server_component,
 client_component,
 param)
 self.token.rollout_state = ""
 self.token.active = True
 self.add_init_details('otpkey', otpKey)
 self.token.set_otpkey(otpKey, reset_failcount=reset_failcount)

 if twostep_init:
 # After the key is generated, we set "waiting for the client".
 self.token.rollout_state = "clientwait"

 pin = getParam(param, "pin", optional)
 if pin is not None:
 storeHashed = True
 enc = getParam(param, "encryptpin", optional)
 if enc is not None and (enc is True or enc.lower() == "true"):
 storeHashed = False
 self.token.set_pin(pin, storeHashed)

 otplen = getParam(param, 'otplen', optional)
 if otplen is not None:
 self.set_otplen(otplen)

 # Add parameters starting with the tokentype-name to the tokeninfo:
 for p in param.keys():
 if p.startswith(self.type + "."):
 self.add_tokeninfo(p, getParam(param, p))

 return

 def _genOtpKey_(self, otpkeylen=None):
 '''
 private method, to create an otpkey
 '''
 if otpkeylen is None:
 if hasattr(self, 'otpkeylen'):
 otpkeylen = getattr(self, 'otpkeylen')
 else:
 otpkeylen = 20
 return generate_otpkey(otpkeylen)

 @check_token_locked
[docs] def set_description(self, description):
 """
 Set the description on the database level

 :param description: description of the token
 :type description: string
 """
 self.token.set_description(u'' + description)
 return

[docs] def set_defaults(self):
 """
 Set the default values on the database level
 """
 self.token.otplen = int(get_from_config("DefaultOtpLen") or 6)
 self.token.count_window = int(get_from_config("DefaultCountWindow")
 or 10)
 self.token.maxfail = int(get_from_config("DefaultMaxFailCount") or 10)
 self.token.sync_window = int(get_from_config("DefaultSyncWindow")
 or 1000)

 self.token.tokentype = u'' + self.type
 return

[docs] def delete_token(self):
 """
 delete the database token
 """
 self.token.delete()

[docs] def save(self):
 """
 Save the database token
 """
 self.token.save()

[docs] def resync(self, otp1, otp2, options=None):
 pass

[docs] def get_otp_count_window(self):
 return self.token.count_window

[docs] def get_otp_count(self):
 return self.token.count

[docs] def is_active(self):
 return self.token.active

[docs] def get_failcount(self):
 return self.token.failcount

[docs] def set_failcount(self, failcount):
 """
 Set the failcounter in the database
 """
 self.token.failcount = failcount
 if failcount == 0:
 self.del_tokeninfo(FAILCOUNTER_EXCEEDED)

[docs] def get_max_failcount(self):
 return self.token.maxfail

[docs] def get_user_id(self):
 return self.token.user_id

[docs] def set_realms(self, realms, add=False):
 """
 Set the list of the realms of a token.
 :param realms: realms the token should be assigned to
 :type realms: list
 :param add: if the realms should be added and not replaced
 :type add: boolean
 """
 self.token.set_realms(realms, add=add)

[docs] def get_realms(self):
 """
 Return a list of realms the token is assigned to
 :return: realms
 :rtype:l list
 """
 return self.token.get_realms()

[docs] def get_serial(self):
 return self.token.serial

[docs] def get_tokentype(self):
 return self.token.tokentype

 @check_token_locked
[docs] def set_so_pin(self, soPin):
 self.token.set_so_pin(soPin)

 @check_token_locked
[docs] def set_user_pin(self, userPin):
 self.token.set_user_pin(userPin)

 @check_token_locked
[docs] def set_otpkey(self, otpKey):
 self.token.set_otpkey(otpKey)

 @check_token_locked
[docs] def set_otplen(self, otplen):
 self.token.otplen = int(otplen)

 @check_token_locked
[docs] def get_otplen(self):
 return self.token.otplen

 @check_token_locked
[docs] def set_otp_count(self, otpCount):
 self.token.count = int(otpCount)
 self.token.save()

 @check_token_locked
[docs] def set_pin(self, pin, encrypt=False):
 """
 set the PIN of a token.
 Usually the pin is stored in a hashed way.
 :param pin: the pin to be set for the token
 :type pin: basestring
 :param encrypt: If set to True, the pin is stored encrypted and
 can be retrieved from the database again
 :type encrypt: bool
 """
 storeHashed = not encrypt
 self.token.set_pin(pin, storeHashed)

[docs] def get_pin_hash_seed(self):
 return self.token.pin_hash, self.token.pin_seed

 @check_token_locked
[docs] def set_pin_hash_seed(self, pinhash, seed):
 self.token.pin_hash = pinhash
 self.token.pin_seed = seed

 @check_token_locked
[docs] def enable(self, enable=True):
 self.token.active = enable

[docs] def revoke(self):
 """
 This revokes the token.
 By default it
 1. sets the revoked-field
 2. set the locked field
 3. disables the token.

 Some token types may revoke a token without locking it.
 """
 self.token.revoked = True
 self.token.locked = True
 self.token.active = False

[docs] def is_revoked(self):
 """
 Check if the token is in the revoked state

 :return: True, if the token is revoked
 """
 return self.token.revoked

[docs] def is_locked(self):
 """
 Check if the token is in a locked state
 A locked token can not be modified

 :return: True, if the token is locked.
 """
 return self.token.locked

 @check_token_locked
[docs] def set_maxfail(self, maxFail):
 self.token.maxfail = maxFail

 @check_token_locked
[docs] def set_hashlib(self, hashlib):
 self.add_tokeninfo("hashlib", hashlib)

 @check_token_locked
[docs] def inc_failcount(self):
 if self.token.failcount < self.token.maxfail:
 self.token.failcount = (self.token.failcount + 1)
 if self.token.failcount == self.token.maxfail:
 self.add_tokeninfo(FAILCOUNTER_EXCEEDED,
 datetime.datetime.now(tzlocal()).strftime(
 DATE_FORMAT))
 try:
 self.token.save()
 except: # pragma: no cover
 log.error('update failed')
 raise TokenAdminError("Token Fail Counter update failed", id=1106)
 return self.token.failcount

 @check_token_locked
[docs] def set_count_window(self, countWindow):
 self.token.count_window = int(countWindow)

[docs] def get_count_window(self):
 return self.token.count_window

 @check_token_locked
[docs] def set_sync_window(self, syncWindow):
 self.token.sync_window = int(syncWindow)

[docs] def get_sync_window(self):
 return self.token.sync_window

 # hashlib algorithms:
 # http://www.doughellmann.com/PyMOTW/hashlib/index.html#module-hashlib

 @staticmethod
[docs] def get_hashlib(hLibStr):
 """
 Returns a hashlib function for a given string
 :param hLibStr: the hashlib
 :type hLibStr: string
 :return: the hashlib
 :rtype: function
 """
 if hLibStr is None:
 return hashlib.sha1

 hashlibStr = hLibStr.lower()

 if hashlibStr == "md5":
 return hashlib.md5
 elif hashlibStr == "sha1":
 return hashlib.sha1
 elif hashlibStr == "sha224":
 return hashlib.sha224
 elif hashlibStr == "sha256":
 return hashlib.sha256
 elif hashlibStr == "sha384":
 return hashlib.sha384
 elif hashlibStr == "sha512":
 return hashlib.sha512
 else:
 return hashlib.sha1

[docs] def get_tokeninfo(self, key=None, default=None):
 """
 return the complete token info or a single key of the tokeninfo.
 When returning the complete token info dictionary encrypted entries
 are not decrypted.
 If you want to receive a decrypted value, you need to call it
 directly with the key.

 :param key: the key to return
 :type key: string
 :param default: the default value, if the key does not exist
 :type default: string
 :return: the value for the key
 :rtype: int or string
 """
 tokeninfo = self.token.get_info()
 if key:
 ret = tokeninfo.get(key, default)
 if tokeninfo.get(key + ".type") == "password":
 # we need to decrypt the return value
 ret = decryptPassword(ret)
 else:
 ret = tokeninfo
 return ret

[docs] def del_tokeninfo(self, key=None):
 self.token.del_info(key)

 @check_token_locked
[docs] def set_count_auth_success_max(self, count):
 """
 Sets the counter for the maximum allowed successful logins
 as key "count_auth_success_max" in token info
 :param count: a number
 :type count: int
 """
 self.add_tokeninfo("count_auth_success_max", int(count))

 @check_token_locked
[docs] def set_count_auth_success(self, count):
 """
 Sets the counter for the occurred successful logins
 as key "count_auth_success" in token info
 :param count: a number
 :type count: int
 """
 self.add_tokeninfo("count_auth_success", int(count))

 @check_token_locked
[docs] def set_count_auth_max(self, count):
 """
 Sets the counter for the maximum allowed login attempts
 as key "count_auth_max" in token info
 :param count: a number
 :type count: int
 """
 self.add_tokeninfo("count_auth_max", int(count))

 @check_token_locked
[docs] def set_count_auth(self, count):
 """
 Sets the counter for the occurred login attepms
 as key "count_auth" in token info
 :param count: a number
 :type count: int
 """
 self.add_tokeninfo("count_auth", int(count))

[docs] def get_count_auth_success_max(self):
 """
 Return the maximum allowed successful authentications
 """
 ret = int(self.get_tokeninfo("count_auth_success_max", 0))
 return ret

[docs] def get_count_auth_success(self):
 """
 Return the number of successful authentications
 """
 ret = int(self.get_tokeninfo("count_auth_success", 0))
 return ret

[docs] def get_count_auth_max(self):
 """
 Return the number of maximum allowed authentications
 """
 ret = int(self.get_tokeninfo("count_auth_max", 0))
 return ret

[docs] def get_count_auth(self):
 """
 Return the number of all authentication tries
 """
 ret = int(self.get_tokeninfo("count_auth", 0))
 return ret

[docs] def get_validity_period_end(self):
 """
 returns the end of validity period (if set)
 if not set, "" is returned.
 :return: the end of the validity period
 :rtype: string
 """
 end = self.get_tokeninfo("validity_period_end", "")
 if end:
 end = parse_legacy_time(end)
 return end

 @check_token_locked
[docs] def set_validity_period_end(self, end_date):
 """
 sets the end date of the validity period for a token
 :param end_date: the end date in the format YYYY-MM-DDTHH:MM+OOOO
 if the format is wrong, the method will
 throw an exception
 :type end_date: string
 """
 # upper layer will catch. we just try to verify the date format
 d = parse_date_string(end_date)
 self.add_tokeninfo("validity_period_end", d.strftime(DATE_FORMAT))

[docs] def get_validity_period_start(self):
 """
 returns the start of validity period (if set)
 if not set, "" is returned.
 :return: the start of the validity period
 :rtype: string
 """
 start = self.get_tokeninfo("validity_period_start", "")
 if start:
 start = parse_legacy_time(start)
 return start

 @check_token_locked
[docs] def set_validity_period_start(self, start_date):
 """
 sets the start date of the validity period for a token
 :param start_date: the start date in the format YYYY-MM-DDTHH:MM+OOOO
 if the format is wrong, the method will
 throw an exception
 :type start_date: string
 """
 d = parse_date_string(start_date)
 self.add_tokeninfo("validity_period_start", d.strftime(DATE_FORMAT))

[docs] def set_next_pin_change(self, diff=None, password=False):
 """
 Sets the timestamp for the next_pin_change. Provide a
 difference like 90d (90 days).

 Either provider the
 :param diff: The time delta.
 :type diff: basestring
 :param password: Do no set next_pin_change but next_password_change
 :return: None
 """
 days = int(diff.lower().strip("d"))
 key = "next_pin_change"
 if password:
 key = "next_password_change"
 new_date = datetime.datetime.now(tzlocal()) + datetime.timedelta(days=days)
 self.add_tokeninfo(key, new_date.strftime(DATE_FORMAT))

[docs] def is_pin_change(self, password=False):
 """
 Returns true if the pin of the token needs to be changed.
 :param password: Whether the password needs to be changed.
 :type password: bool

 :return: True or False
 """
 key = "next_pin_change"
 if password:
 key = "next_password_change"
 sdate = self.get_tokeninfo(key)
 #date_change = datetime.datetime.strptime(sdate, DATE_FORMAT)
 date_change = parse_date_string(parse_legacy_time(sdate))
 return datetime.datetime.now(tzlocal()) > date_change

 @check_token_locked
[docs] def inc_count_auth_success(self):
 """
 Increase the counter, that counts successful authentications
 Also increase the auth counter
 """
 succcess_counter = self.get_count_auth_success()
 succcess_counter += 1
 auth_counter = self.get_count_auth()
 auth_counter += 1
 self.token.set_info({"count_auth_success": int(succcess_counter),
 "count_auth": int(auth_counter)})
 return succcess_counter

 @check_token_locked
[docs] def inc_count_auth(self):
 """
 Increase the counter, that counts authentications - successful and
 unsuccessful
 """
 count = self.get_count_auth()
 count += 1
 self.set_count_auth(count)
 return count

[docs] def check_failcount(self):
 """
 Checks if the failcounter is exceeded. It returns True, if the
 failcounter is less than maxfail
 :return: True or False
 """
 timeout = 0
 try:
 timeout = int(get_from_config(FAILCOUNTER_CLEAR_TIMEOUT, 0))
 except Exception as exx:
 log.warning("Misconfiguration. Error retrieving "
 "failcounter_clear_timeout: "
 "{0!s}".format(exx))
 if timeout and self.token.failcount > 0:
 now = datetime.datetime.now(tzlocal())
 lastfail = self.get_tokeninfo(FAILCOUNTER_EXCEEDED)
 if lastfail is not None:
 failcounter_exceeded = parse_legacy_time(lastfail, return_date=True)
 if now > failcounter_exceeded + datetime.timedelta(minutes=timeout):
 self.reset()

 return self.token.failcount < self.token.maxfail

[docs] def check_auth_counter(self):
 """
 This function checks the count_auth and the count_auth_success.
 If the count_auth is less than count_auth_max
 and count_auth_success is less than count_auth_success_max
 it returns True. Otherwise False.

 :return: success if the counter is less than max
 :rtype: bool
 """
 if self.get_count_auth_max() != 0 and self.get_count_auth() >= \
 self.get_count_auth_max():
 return False

 if self.get_count_auth_success_max() != 0 and \
 self.get_count_auth_success() >= \
 self.get_count_auth_success_max():
 return False

 return True

[docs] def check_validity_period(self):
 """
 This checks if the datetime.datetime.now() is within the validity
 period of the token.

 :return: success
 :rtype: bool
 """
 start = self.get_validity_period_start()
 end = self.get_validity_period_end()

 if start:
 #dt_start = datetime.datetime.strptime(start, DATE_FORMAT)
 dt_start = parse_legacy_time(start, return_date=True)
 if dt_start > datetime.datetime.now(tzlocal()):
 return False

 if end:
 #dt_end = datetime.datetime.strptime(end, DATE_FORMAT)
 dt_end = parse_legacy_time(end, return_date=True)
 if dt_end < datetime.datetime.now(tzlocal()):
 return False

 return True

[docs] def check_all(self, message_list):
 """
 Perform all checks on the token. Returns False if the token is either:
 * auth counter exceeded
 * not active
 * fail counter exceeded
 * validity period exceeded

 This is used in the function token.check_token_list

 :param message_list: A list of messages
 :return: False, if any of the checks fail
 """
 r = False
 # Check if the max auth is succeeded
 if not self.check_auth_counter():
 message_list.append("Authentication counter exceeded")
 # Check if the token is disabled
 elif not self.is_active():
 message_list.append("Token is disabled")
 elif not self.check_failcount():
 message_list.append("Failcounter exceeded")
 elif not self.check_validity_period():
 message_list.append("Outside validity period")
 else:
 r = True
 if not r:
 log.info("{0} {1}".format(message_list, self.get_serial()))
 return r

 @log_with(log)
 @check_token_locked
[docs] def inc_otp_counter(self, counter=None, increment=1, reset=True):
 """
 Increase the otp counter and store the token in the database

 Before increasing the token.count the token.count can be set using the
 parameter counter.

 :param counter: if given, the token counter is first set to counter and then
 increased by increment
 :type counter: int
 :param increment: increase the counter by this amount
 :type increment: int
 :param reset: reset the failcounter if set to True
 :type reset: bool
 :return: the new counter value
 """
 reset_counter = False
 if counter:
 self.token.count = counter

 self.token.count += increment

 if reset is True and get_from_config("DefaultResetFailCount") == "True":
 reset_counter = True

 if (reset_counter and self.token.active and self.token.failcount <
 self.token.maxfail):
 self.set_failcount(0)

 # make DB persistent immediately, to avoid the re-usage of the counter
 self.token.save()
 return self.token.count

[docs] def check_otp_exist(self, otp, window=None):
 """
 checks if the given OTP value is/are values of this very token.
 This is used to autoassign and to determine the serial number of
 a token.

 :param otp: the OTP value
 :param window: The look ahead window
 :type window: int
 :return: True or a value > 0 in case of success
 """
 return -1

[docs] def is_previous_otp(self, otp, window=10):
 """
 checks if a given OTP value is a previous OTP value, that lies in the
 past or has a lower counter.

 This is used in case of a failed authentication to return the
 information, that this OTP values was used previously and is invalid.

 :param otp: The OTP value.
 :type otp: basestring
 :param window: A counter window, how far we should look into the past.
 :type window: int
 :return: bool
 """
 return False

[docs] def split_pin_pass(self, passw, user=None, options=None):
 """
 Split the password into the token PIN and the OTP value

 take the given password and split it into the PIN and the
 OTP value. The splitting can be dependent of certain policies.
 The policies may depend on the user.

 Each token type may define its own way to slit the PIN and
 the OTP value.

 :param passw: the password to split
 :return: tuple of pin and otp value
 :param user: The user/owner of the token
 :type user: User object
 :param options: can be used be the token types.
 :type options: dict
 :return: tuple of (split status, pin, otp value)
 :rtype: tuple
 """
 # The database field is always an integer
 otplen = self.token.otplen
 if get_prepend_pin():
 pin = passw[0:-otplen]
 otpval = passw[-otplen:]
 else:
 pin = passw[otplen:]
 otpval = passw[0:otplen]

 return True, pin, otpval

[docs] def status_validation_fail(self):
 """
 callback to enable a status change, if auth failed
 """
 return

[docs] def status_validation_success(self):
 """
 callback to enable a status change, if auth succeeds
 """
 return

 def __repr__(self):
 """
 return the token state as text

 :return: token state as string representation
 :rtype: string
 """
 ldict = {}
 for attr in self.__dict__:
 key = "{0!r}".format(attr)
 val = "{0!r}".format(getattr(self, attr))
 ldict[key] = val
 res = "<{0!r} {1!r}>".format(self.__class__, ldict)
 return res

[docs] def get_init_detail(self, params=None, user=None):
 """
 to complete the token initialization, the response of the initialisation
 should be build by this token specific method.
 This method is called from api/token after the token is enrolled

 get_init_detail returns additional information after an admin/init
 like the QR code of an HOTP/TOTP token.
 Can be anything else.

 :param params: The request params during token creation token/init
 :type params: dict
 :param user: the user, token owner
 :type user: User object
 :return: additional descriptions
 :rtype: dict
 """
 response_detail = {}

 init_details = self.get_init_details()
 response_detail.update(init_details)
 response_detail['serial'] = self.get_serial()

 otpkey = None
 if 'otpkey' in init_details:
 otpkey = init_details.get('otpkey')

 if otpkey is not None:
 response_detail["otpkey"] = {"description": "OTP seed",
 "value": "seed://{0!s}".format(otpkey),
 "img": create_img(otpkey, width=200)}

 return response_detail

[docs] def get_QRimage_data(self, response_detail):
 """
 FIXME: Do we really use this?
 """
 url = None
 hparam = {}

 if response_detail is not None and 'googleurl' in response_detail:
 url = response_detail.get('googleurl')
 hparam['alt'] = url

 return url, hparam

 # challenge interfaces starts here
 @challenge_response_allowed
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 This method checks, if this is a request, that triggers a challenge.

 The default behaviour to trigger a challenge is,
 if the ``passw`` parameter only contains the correct token pin *and*
 the request contains a ``data`` or a ``challenge`` key i.e. if the
 ``options`` parameter contains a key ``data`` or ``challenge``.

 Each token type can decide on its own under which condition a challenge
 is triggered by overwriting this method.

 please note: in case of pin policy == 2 (no pin is required)
 the ``check_pin`` would always return true! Thus each request
 containing a ``data`` or ``challenge`` would trigger a challenge!

 The Challenge workflow is like this.

 When an authentication request is issued, first it is checked if this is
 a request which will create a new challenge (is_challenge_request) or if
 this is a response to an existing challenge (is_challenge_response).
 In these two cases during request processing the following functions are
 called.

 is_challenge_request or is_challenge_response
 | |
 V V
 create_challenge check_challenge
 | |
 V V
 challenge_janitor challenge_janitor

 :param passw: password, which might be pin or pin+otp
 :type passw: string
 :param user: The user from the authentication request
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict

 :return: true or false
 :rtype: bool
 """

 request_is_challenge = False
 options = options or {}
 pin_match = self.check_pin(passw, user=user, options=options)
 if pin_match is True and "data" in options or "challenge" in options:
 request_is_challenge = True

 return request_is_challenge

[docs] def is_challenge_response(self, passw, user=None, options=None):
 """
 This method checks, if this is a request, that is the response to
 a previously sent challenge.

 The default behaviour to check if this is the response to a
 previous challenge is simply by checking if the request contains
 a parameter ``state`` or ``transactionid`` i.e. checking if the
 ``options`` parameter contains a key ``state`` or ``transactionid``.

 This method does not try to verify the response itself!
 It only determines, if this is a response for a challenge or not.
 The response is verified in check_challenge_response.

 :param passw: password, which might be pin or pin+otp
 :type passw: string
 :param user: the requesting user
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict
 :return: true or false
 :rtype: bool
 """
 options = options or {}
 challenge_response = False
 if "state" in options or "transaction_id" in options:
 challenge_response = True

 return challenge_response

 @check_token_locked
[docs] def check_challenge_response(self, user=None, passw=None, options=None):
 """
 This method verifies if there is a matching challenge for the given
 passw and also verifies if the response is correct.

 It then returns the new otp_counter of the token.

 In case of success the otp_counter will be >= 0.

 :param user: the requesting user
 :type user: User object
 :param passw: the password (pin+otp)
 :type passw: string
 :param options: additional arguments from the request, which could
 be token specific. Usually "transactionid"
 :type options: dict
 :return: return otp_counter. If -1, challenge does not match
 :rtype: int
 """
 options = options or {}
 otp_counter = -1

 # fetch the transaction_id
 transaction_id = options.get('transaction_id')
 if transaction_id is None:
 transaction_id = options.get('state')

 # get the challenges for this transaction ID
 if transaction_id is not None:
 challengeobject_list = get_challenges(serial=self.token.serial,
 transaction_id=transaction_id)

 for challengeobject in challengeobject_list:
 if challengeobject.is_valid():
 # challenge is still valid
 # Add the challenge to the options for check_otp
 options["challenge"] = challengeobject.challenge
 # Now see if the OTP matches:
 otp_counter = self.check_otp(passw, options=options)
 if otp_counter >= 0:
 # We found the matching challenge, so lets return the
 # successful result and delete the challenge object.
 challengeobject.delete()
 break
 else:
 # increase the received_count
 challengeobject.set_otp_status()

 self.challenge_janitor()
 return otp_counter

 @staticmethod
[docs] def challenge_janitor():
 """
 Just clean up all challenges, for which the expiration has expired.

 :return: None
 """
 cleanup_challenges()

[docs] def create_challenge(self, transactionid=None, options=None):
 """
 This method creates a challenge, which is submitted to the user.
 The submitted challenge will be preserved in the challenge
 database.

 If no transaction id is given, the system will create a transaction
 id and return it, so that the response can refer to this transaction.

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :type options: dict
 :return: tuple of (bool, message, transactionid, attributes)
 :rtype: tuple

 The return tuple builds up like this:
 ``bool`` if submit was successful;
 ``message`` which is displayed in the JSON response;
 additional ``attributes``, which are displayed in the JSON response.
 """
 options = options or {}
 message = 'please enter otp: '
 data = None
 attributes = None

 validity = int(get_from_config('DefaultChallengeValidityTime', 120))
 tokentype = self.get_tokentype().lower()
 # Maybe there is a HotpChallengeValidityTime...
 lookup_for = tokentype.capitalize() + 'ChallengeValidityTime'
 validity = int(get_from_config(lookup_for, validity))

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=transactionid,
 challenge=options.get("challenge"),
 data=data,
 session=options.get("session"),
 validitytime=validity)
 db_challenge.save()
 self.challenge_janitor()
 return True, message, db_challenge.transaction_id, attributes

[docs] def get_as_dict(self):
 """
 This returns the token data as a dictionary.
 It is used to display the token list at /token/list.

 :return: The token data as dict
 :rtype: dict
 """
 # first get the database values as dict
 token_dict = self.token.get()

 return token_dict

 @classmethod
[docs] def api_endpoint(cls, request, g):
 """
 This provides a function to be plugged into the API endpoint
 /ttype/<tokentype> which is defined in api/ttype.py

 The method should return
 return "json", {}
 or
 return "text", "OK"

 :param request: The Flask request
 :param g: The Flask global object g
 :return: Flask Response or text
 """
 raise ParameterError("{0!s} does not support the API endpoint".format(
 cls.get_tokentype()))

 @staticmethod
[docs] def test_config(params=None):
 """
 This method is used to test the token config. Some tokens require some
 special token configuration like the SMS-Token or the Email-Token.
 To test this configuration, this classmethod is used.

 It takes token specific parameters and returns a tuple of a boolean
 and a result description.

 :param params: token specific parameters
 :type params: dict
 :return: success, description
 :rtype: tuple
 """
 return False, "Not implemented"

 @staticmethod
[docs] def get_setting_type(key):
 """
 This function returns the type of the token specific config/setting.
 This way a tokenclass can define settings, that can be "public" or a
 "password". If this setting is written to the database, the type of
 the setting is set automatically in set_privacyidea_config

 The key name needs to start with the token type.

 :param key: The token specific setting key
 :return: A string like "public"
 """
 return ""

 @classmethod
[docs] def get_default_settings(cls, params, logged_in_user=None,
 policy_object=None, client_ip=None):
 """
 This method returns a dictionary with default settings for token
 enrollment.
 These default settings depend on the token type and the defined
 policies.

 The returned dictionary is added to the parameters of the API call.
 :param params: The call parameters
 :type params: dict
 :param logged_in_user: The logged_in_user dictionary with "role",
 "username" and "realm"
 :type logged_in_user: dict
 :param policy_object: The policy_object
 :type policy_object: PolicyClass
 :return: default parameters
 """
 return {}

[docs] def check_last_auth_newer(self, last_auth):
 """
 Check if the last successful authentication with the token is newer
 than the specified time delta which is passed as 10h, 7d or 1y.

 It returns True, if the last authentication with this token is
 newer* than the specified delta.

 :param last_auth: 10h, 7d or 1y
 :type last_auth: basestring
 :return: bool
 """
 # per default we return True
 res = True
 # The tdelta in the policy
 tdelta = parse_timedelta(last_auth)

 # The last successful authentication of the token
 date_s = self.get_tokeninfo(ACTION.LASTAUTH)
 if date_s:
 log.debug("Compare the last successful authentication of "
 "token %s with policy "
 "tdelta %s: %s" % (self.token.serial, tdelta,
 date_s))
 # parse the string from the database
 last_success_auth = parse_date_string(date_s)
 if not last_success_auth.tzinfo:
 # the date string has no timezone, default timezone is UTC
 # We need to reparse
 last_success_auth = parse_date_string(date_s,
 tzinfos=tzutc)
 # The last auth is to far in the past
 if last_success_auth + tdelta < datetime.datetime.now(tzlocal()):
 res = False
 log.debug("The last successful authentication is too old: "
 "{0!s}".format(last_success_auth))

 return res

[docs] def generate_symmetric_key(self, server_component, client_component,
 options=None):
 """
 This method generates a symmetric key, from a server component and a
 client component.
 This key generation could be based on HMAC, KDF or even Diffie-Hellman.

 The basic key-generation is simply replacing the last n byte of the
 server component with bytes of the client component.

 :param server_component: The component usually generated by privacyIDEA
 :type server_component: hex string
 :param client_component: The component usually generated by the
 client (e.g. smartphone)
 :type server_component: hex string
 :param options:
 :return: the new generated key as hex string
 """
 if len(server_component) <= len(client_component):
 raise Exception("The server component must be longer than the "
 "client component.")

 key = server_component[:-len(client_component)] + client_component
 return key

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/user.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.user

-*- coding: utf-8 -*-
privacyIDEA is a fork of LinOTP
#
2015-11-03 Cornelius Kölbel <cornelius@privacyidea.org>
Add memberfunction "exist"
2015-06-06 Cornelius Kölbel <cornelius@privacyidea.org>
Add the possibility to update the user data.
Nov 27, 2014 Cornelius Kölbel <cornelius@privacyidea.org>
Migration to flask
Rewrite of methods
100% test code coverage
May 08, 2014 Cornelius Kölbel
#
License: AGPLv3
contact: http://www.privacyidea.org
#
2014-10-03 fix getUsername function
Cornelius Kölbel <cornelius@privcyidea.org>
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = '''There are the library functions for user functions.
It depends on the lib.resolver and lib.realm.

There are and must be no dependencies to the token functions (lib.token)
or to webservices!

This code is tested in tests/test_lib_user.py
'''

import logging
import traceback

from .error import UserError
from ..api.lib.utils import (getParam,
 optional)
from .log import log_with
from .resolver import (get_resolver_object,
 get_resolver_type)

from .realm import (get_realms,
 get_default_realm,
 get_realm)
from .config import get_from_config
from .usercache import (user_cache, cache_username, user_init, delete_user_cache)

ENCODING = 'utf-8'

log = logging.getLogger(__name__)

@log_with(log)
[docs]class User(object):
 """
 The user has the attributes
 login, realm and resolver.
 Usually a user can be found via "login@realm".

 A user object with an empty login and realm should not exist,
 whereas a user object could have an empty resolver.
 """

 # In some test case the login attribute from a not
 # initialized user is requested. This is why we need
 # these dummy class attributes.
 login = ""
 realm = ""
 resolver = ""

 def __init__(self, login="", realm="", resolver=""):
 self.login = login or ""
 self.realm = (realm or "").lower()
 if resolver == "**":
 resolver = ""
 self.resolver = resolver or ""
 self.uid = None
 # Enrich user object with information from the userstore or from the
 # usercache
 if login:
 self._get_user_from_userstore()
 # Just store the resolver type
 self.rtype = get_resolver_type(self.resolver)

 @user_cache(user_init)
 def _get_user_from_userstore(self):
 if not self.resolver:
 # set the resolver implicitly!
 self._get_resolvers()

 # Get Identifiers
 if self.resolver:
 y = get_resolver_object(self.resolver)
 if y is None:
 raise UserError("The resolver '{0!s}' does not exist!".format(
 self.resolver))
 self.uid = y.getUserId(self.login)

[docs] def is_empty(self):
 # ignore if only resolver is set! as it makes no sense
 if len(self.login or "") + len(self.realm or "") == 0:
 return True
 else:
 return False

 def __eq__(self, other):
 """
 Compare two User Objects.

 :param other: The other User object, to which this very object is
 compared.
 :type other: User object
 :return: True or False
 :rtype: bool
 """
 # TODO: Should we add a check for `uid` here?
 return (self.login == other.login) and (self.resolver ==
 other.resolver) and (
 self.realm == other.realm)

 def __unicode__(self):
 ret = u"<empty user>"
 if not self.is_empty():
 login = self.login
 if not isinstance(login, unicode):
 login = login.decode(ENCODING)
 # Realm and resolver should always be ASCII
 conf = u''
 if self.resolver:
 conf = u'.{0!s}'.format(self.resolver)
 ret = u'<{0!s}{1!s}@{2!s}>'.format(login, conf, self.realm)
 return ret

 def __str__(self):
 return unicode(self).encode('utf-8')

 def __repr__(self):
 ret = ('User(login={0!r}, realm={1!r}, resolver={2!r})'.format(
 self.login, self.realm, self.resolver))
 return ret

 def __nonzero__(self):
 return not self.is_empty()

 @log_with(log)
[docs] def get_ordererd_resolvers(self):
 """
 returns a list of resolvernames ordered by priority.
 The resolver with the lowest priority is the first.
 If resolvers have the same priority, they are ordered alphabetically.

 :return: list or resolvernames
 """
 resolver_tuples = []
 realm_config = get_realms(self.realm)
 resolvers_in_realm = realm_config.get(self.realm, {})\
 .get("resolver", {})
 for resolver in resolvers_in_realm:
 # append a tuple
 resolver_tuples.append((resolver.get("name"),
 resolver.get("priority") or 1000))

 # sort the resolvers by the 2nd entry in the tuple, the priority
 resolvers = sorted(resolver_tuples, key=lambda resolver: resolver[1])
 resolvers = [r[0] for r in resolvers]
 return resolvers

 def _get_resolvers(self, all_resolvers=False):
 """
 This returns the list of the resolvernames of the user.
 If no resolver attribute exists at the moment, the user is searched
 in the realm and according to this the resolver attribute is set.

 It will only return one resolver in the list for backward compatibility

 .. note:: If the user does not exist in the realm, then an empty
 list is returned!

 :param all_resolvers: return all resolvers (of a realm), in which
 the user is contained
 :return: list of resolvers for self.login
 :rtype: list of strings
 """
 if self.resolver:
 return [self.resolver]

 resolvers = []
 for resolvername in self.get_ordererd_resolvers():
 # test, if the user is contained in this resolver
 if self._locate_user_in_resolver(resolvername):
 break
 if self.resolver:
 resolvers = [self.resolver]
 return resolvers

 def _locate_user_in_resolver(self, resolvername):
 """
 Try to locate the user (by self.login) in the resolver with the given name.
 In case of success, this sets `self.resolver` as well as `self.uid`
 and returns True. If the resolver does not exist or the user does
 not exist in the resolver, False is returned.
 :param resolvername: string denoting the resolver name
 :return: boolean
 """
 y = get_resolver_object(resolvername)
 if y is None: # pragma: no cover
 log.info("Resolver {0!r} not found!".format(resolvername))
 return False
 else:
 uid = y.getUserId(self.login)
 if uid not in ["", None]:
 log.info("user {0!r} found in resolver {1!r}".format(self.login,
 resolvername))
 log.info("userid resolved to {0!r} ".format(uid))
 self.resolver = resolvername
 self.uid = uid
 # We do not need to search other resolvers!
 return True
 else:
 log.debug("user %r not found"
 " in resolver %r" % (self.login,
 resolvername))
 return False

[docs] def get_user_identifiers(self):
 """
 This returns the UserId information from the resolver object and
 the resolvertype and the resolvername
 (former: getUserId)
 (former: getUserResolverId)
 :return: The userid, the resolver type and the resolver name
 like (1000, "passwdresolver", "resolver1")
 :rtype: tuple
 """
 if not self.resolver:
 raise UserError("The user can not be found in any resolver in "
 "this realm!")
 return self.uid, self.rtype, self.resolver

[docs] def exist(self):
 """
 Check if the user object exists in the user store
 :return: True or False
 """
 return bool(self.uid)

 @property
 def info(self):
 """
 return the detailed information for the user

 :return: a dict with all the userinformation
 :rtype: dict
 """
 if self.is_empty():
 # An empty user has no info
 return {}
 (uid, _rtype, _resolver) = self.get_user_identifiers()
 y = get_resolver_object(self.resolver)
 userInfo = y.getUserInfo(uid)
 return userInfo

 @log_with(log)
[docs] def get_user_phone(self, phone_type='phone'):
 """
 Returns the phone number of a user

 :param phone_type: The type of the phone, i.e. either mobile or
 phone (land line)
 :type phone_type: string

 :returns: list with phone numbers of this user object
 """
 userinfo = self.info
 if phone_type in userinfo:
 log.debug("got user phone {0!r} of type {1!r}".format(userinfo[phone_type], phone_type))
 return userinfo[phone_type]
 else:
 log.warning("userobject ({0!r}) has no phone of type {1!r}.".format(self, phone_type))
 return ""

 @log_with(log)
[docs] def get_user_realms(self):
 """
 Returns a list of the realms, a user belongs to.
 Usually this will only be one realm.
 But if the user object has no realm but only a resolver,
 than all realms, containing this resolver are returned.
 This function is used for the policy module

 :return: realms of the user
 :rtype: list
 """
 allRealms = get_realms()
 Realms = []
 if self.realm == "" and self.resolver == "":
 defRealm = get_default_realm().lower()
 Realms.append(defRealm)
 self.realm = defRealm
 elif self.realm != "":
 Realms.append(self.realm.lower())
 else:
 # User has no realm!
 # we have got a resolver and will get all realms
 # the resolver belongs to.
 for key, val in allRealms.items():
 log.debug("evaluating realm {0!r}: {1!r} ".format(key, val))
 for reso in val.get('resolver', []):
 resoname = reso.get("name")
 if resoname == self.resolver:
 Realms.append(key.lower())
 log.debug("added realm %r to Realms due to "
 "resolver %r" % (key, self.resolver))
 return Realms

 @log_with(log, log_entry=False)
[docs] def check_password(self, password):
 """
 The password of the user is checked against the user source

 :param password: The clear text password
 :return: the username of the authenticated user.
 If unsuccessful, returns None
 :rtype: string/None
 """
 success = None
 try:
 log.info("User %r from realm %r tries to "
 "authenticate" % (self.login, self.realm))
 if type(self.login) != unicode:
 self.login = self.login.decode(ENCODING)
 res = self._get_resolvers()
 # Now we know, the resolvers of this user and we can verify the
 # password
 if len(res) == 1:
 y = get_resolver_object(self.resolver)
 uid, _rtype, _rname = self.get_user_identifiers()
 if y.checkPass(uid, password):
 success = u"{0!s}@{1!s}".format(self.login, self.realm)
 log.debug("Successfully authenticated user {0!r}.".format(self))
 else:
 log.info("user {0!r} failed to authenticate.".format(self))

 elif not res:
 log.error("The user {0!r} exists in NO resolver.".format(self))
 except UserError as e: # pragma: no cover
 log.error("Error while trying to verify the username: {0!r}".format(e))
 except Exception as e: # pragma: no cover
 log.error("Error checking password within module {0!r}".format(e))
 log.debug("{0!s}".format(traceback.format_exc()))

 return success

 @log_with(log)
[docs] def get_search_fields(self):
 """
 Return the valid search fields of a user.
 The search fields are defined in the UserIdResolver class.

 :return: searchFields with name (key) and type (value)
 :rtype: dict
 """
 searchFields = {}

 for reso in self._get_resolvers():
 # try to load the UserIdResolver Class
 try:
 y = get_resolver_object(reso)
 sf = y.getSearchFields()
 searchFields[reso] = sf

 except Exception as e: # pragma: no cover
 log.warning("module {0!r}: {1!r}".format(reso, e))

 return searchFields

 # If passwords should not be logged, we hide it from the log entry
 @log_with(log, hide_kwargs=["password"])
[docs] def update_user_info(self, attributes, password=None):
 """
 This updates the given attributes of a user.
 The attributes can be "username", "surname", "givenname", "email",
 "mobile", "phone", "password"

 :param attributes: A dictionary of the attributes to be updated
 :type attributes: dict
 :param password: The password of the user
 :return: True in case of success
 """
 if password is not None:
 attributes["password"] = password
 success = False
 try:
 log.info("User info for user {0!r}@{1!r} about to be updated.".format(self.login, self.realm))
 if type(self.login) != unicode:
 self.login = self.login.decode(ENCODING)
 res = self._get_resolvers()
 # Now we know, the resolvers of this user and we can update the
 # user
 if len(res) == 1:
 y = get_resolver_object(self.resolver)
 if not y.updateable: # pragma: no cover
 log.warning("The resolver {0!s} is not updateable.".format(y))
 else:
 uid, _rtype, _rname = self.get_user_identifiers()
 if y.update_user(uid, attributes):
 success = True
 # Delete entries corresponding to the old username from the user cache
 delete_user_cache(username=self.login, resolver=self.resolver)
 # If necessary, update the username
 if attributes.get("username"):
 self.login = attributes.get("username")
 log.info("Successfully updated user {0!r}.".format(self))
 else: # pragma: no cover
 log.info("user {0!r} failed to update.".format(self))

 elif not res: # pragma: no cover
 log.error("The user {0!r} exists in NO resolver.".format(self))
 except UserError as exx: # pragma: no cover
 log.error("Error while trying to verify the username: {0!s}".format(exx))

 return success

 @log_with(log)
[docs] def delete(self):
 """
 This deletes the user in the user store. I.e. the user in the SQL
 database or the LDAP gets deleted.

 Returns True in case of success
 """
 success = False
 try:
 log.info("User {0!r}@{1!r} about to be deleted.".format(self.login, self.realm))
 if type(self.login) != unicode:
 self.login = self.login.decode(ENCODING)
 res = self._get_resolvers()
 # Now we know, the resolvers of this user and we can delete it
 if len(res) == 1:
 y = get_resolver_object(self.resolver)
 if not y.updateable: # pragma: no cover
 log.warning("The resolver {0!s} is not updateable.".format(y))
 else:
 uid, _rtype, _rname = self.get_user_identifiers()
 if y.delete_user(uid):
 success = True
 log.info("Successfully deleted user {0!r}.".format(self))
 # Delete corresponding entry from the user cache
 delete_user_cache(username=self.login, resolver=self.resolver)
 else: # pragma: no cover
 log.info("user {0!r} failed to update.".format(self))

 elif not res: # pragma: no cover
 log.error("The user {0!r} exists in NO resolver.".format(self))
 except UserError as exx: # pragma: no cover
 log.error("Error while trying to verify the username: {0!r}".format(exx))
 except Exception as exx: # pragma: no cover
 log.error("Error checking password within module {0!r}".format(exx))
 log.debug("{0!s}".format(traceback.format_exc()))

 return success

@log_with(log, hide_kwargs=["password"])
[docs]def create_user(resolvername, attributes, password=None):
 """
 This creates a new user in the given resolver. The resolver must be
 editable to do so.

 The attributes is a dictionary containing the keys "username", "email",
 "phone",
 "mobile", "surname", "givenname", "password".

 We return the UID and not the user object, since the user could be located
 in several realms!

 :param resolvername: The name of the resolver, in which the user should
 be created
 :type resolvername: basestring
 :param attributes: Attributes of the user
 :type attributes: dict
 :param password: The password of the user
 :return: The uid of the user object
 """
 if password is not None:
 attributes["password"] = password
 y = get_resolver_object(resolvername)
 uid = y.add_user(attributes)
 return uid

@log_with(log)
[docs]def split_user(username):
 """
 Split the username of the form user@realm into the username and the realm
 splitting myemail@emailprovider.com@realm is also possible and will
 return (myemail@emailprovider, realm).

 If for a user@domain the "domain" does not exist as realm, the name is
 not split, since it might be the user@domain in the default realm

 We can also split realm\\user to (user, realm)

 :param username: the username to split
 :type username: string
 :return: username and realm
 :rtype: tuple
 """
 from privacyidea.lib.realm import realm_is_defined
 user = username.strip()
 realm = ""

 l = user.split('@')
 if len(l) >= 2:
 if realm_is_defined(l[-1]):
 # split the last only if the last part is really a realm
 (user, realm) = user.rsplit('@', 1)
 else:
 l = user.split('\\')
 if len(l) >= 2:
 (realm, user) = user.rsplit('\\', 1)

 return user, realm

@log_with(log)
[docs]def get_user_from_param(param, optionalOrRequired=optional):
 """
 Find the parameters user, realm and resolver and
 create a user object from these parameters.

 An exception is raised, if a user in a realm is found in more
 than one resolvers.

 :param param: The dictionary of request parameters
 :type param: dict
 :return: User as found in the parameters
 :rtype: User object
 """
 realm = ""
 username = getParam(param, "user", optionalOrRequired)

 if username is None:
 username = ""
 else:
 splitAtSign = get_from_config("splitAtSign", default=False,
 return_bool=True)
 if splitAtSign:
 (username, realm) = split_user(username)

 if "realm" in param:
 realm = param["realm"]

 if username != "":
 if realm is None or realm == "":
 realm = get_default_realm()

 user_object = User(login=username, realm=realm,
 resolver=param.get("resolver"))

 return user_object

@log_with(log)
[docs]def get_user_list(param=None, user=None):
 users = []
 resolvers = []
 searchDict = {"username": "*"}
 param = param or {}

 # we have to recreate a new searchdict without the realm key
 # as delete does not work
 for key in param:
 lval = param[key]
 if key == "realm":
 continue
 if key == "resolver":
 continue
 if key == "user":
 # If "user" is in the param we overwrite the username
 key = "username"

 searchDict[key] = lval
 log.debug("Parameter key:{0!r}={1!r}".format(key, lval))

 # determine which scope we want to show
 param_resolver = getParam(param, "resolver")
 param_realm = getParam(param, "realm")
 user_resolver = None
 user_realm = None
 if user is not None:
 user_resolver = user.resolver
 user_realm = user.realm

 # Append all possible resolvers
 if param_resolver:
 resolvers.append(param_resolver)
 if user_resolver:
 resolvers.append(user_resolver)
 for pu_realm in [param_realm, user_realm]:
 if pu_realm:
 realm_config = get_realm(pu_realm)
 for r in realm_config.get("resolver", {}):
 if r.get("name"):
 resolvers.append(r.get("name"))

 if not (param_resolver or user_resolver or param_realm or user_realm):
 # if no realm or resolver was specified, we search the resolvers
 # in all realms
 all_realms = get_realms()
 for _name, res_list in all_realms.items():
 for resolver_entry in res_list.get("resolver"):
 resolvers.append(resolver_entry.get("name"))

 for resolver_name in set(resolvers):
 try:
 log.debug("Check for resolver class: {0!r}".format(resolver_name))
 y = get_resolver_object(resolver_name)
 log.debug("with this search dictionary: {0!r} ".format(searchDict))
 ulist = y.getUserList(searchDict)
 # Add resolvername to the list
 for ue in ulist:
 ue["resolver"] = resolver_name
 ue["editable"] = y.editable
 log.debug("Found this userlist: {0!r}".format(ulist))
 users.extend(ulist)

 except KeyError as exx: # pragma: no cover
 log.error("{0!r}".format((exx)))
 log.debug("{0!s}".format(traceback.format_exc()))
 raise exx

 except Exception as exx: # pragma: no cover
 log.error("{0!r}".format((exx)))
 log.debug("{0!s}".format(traceback.format_exc()))
 continue

 return users

@log_with(log)
[docs]def get_user_info(userid, resolvername):
 """
 return the detailed information for a user in a resolver

 :param userid: The id of the user in a resolver
 :type userid: string
 :param resolvername: The name of the resolver
 :return: a dict with all the userinformation
 :rtype: dict
 """
 userInfo = {}
 if userid:
 y = get_resolver_object(resolvername)
 userInfo = y.getUserInfo(userid)
 return userInfo

@log_with(log)
@user_cache(cache_username)
[docs]def get_username(userid, resolvername):
 """
 Determine the username for a given id and a resolvername.

 :param userid: The id of the user in a resolver
 :type userid: string
 :param resolvername: The name of the resolver
 :return: the username or "" if it does not exist
 :rtype: string
 """
 username = ""
 if userid:
 y = get_resolver_object(resolvername)
 if y:
 username = y.getUsername(userid)
 return username

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/pinhandling/base.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.pinhandling.base

-*- coding: utf-8 -*-
#
2015-06-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial writup
#
License: AGPLv3
(c) 2015. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This module provides the PIN Handling base class.
In case of enrolling a token, a PIN Handling class can be used to
send the PIN via Email, call an external program or print a letter.

This module is not tested explicitly.
It is tested in conjunction with the policy decorator init_random_pin in
tests/test_api_lib_policy.py
"""
import logging
log = logging.getLogger(__name__)

[docs]class PinHandler(object):
 """
 A PinHandler Class is responsible for handling the OTP PIN during
 enrollment.

 It receives the necessary data like
 * the PIN
 * the serial number of the token
 * the username
 * all other user data:

 * given name, surname
 * email address
 * telephone
 * mobile (if the module would deliver via SMS)
 * the administrator name (who enrolled the token)
 """
 def __init__(self, options=None):
 pass

[docs] def send(self, pin, serial, user, tokentype=None, logged_in_user=None,
 userdata=None, options=None):
 """

 :param pin: The PIN in cleartext
 :param user: the owner of the token
 :type user: user object
 :param tokentype: the type of the token
 :type tokentype: basestring
 :param logged_in_user: The logged in user, who enrolled the token
 :type logged_in_user: dict
 :param userdata: Handler-specific user data like email, mobile...
 :type userdata: dict
 :param options: Handler-specific additional options
 :type options: dict
 :return: True in case of success
 :rtype: bool
 """
 # The most simple way of handling a random PIN! ;-)
 log.info("handling pin {0!r} for token {1!s} of user {2!r}".format(pin, serial,
 user))
 log.info("The token was enrolled by {0!r}@{1!s}".format(logged_in_user.get("username"), logged_in_user.get("realm")))
 return True

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/event.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.event

-*- coding: utf-8 -*-
#
2016-05-04 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial writup
#
License: AGPLv3
(c) 2016. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
from privacyidea.models import EventHandler, EventHandlerOption, db
from privacyidea.lib.error import ParameterError
from privacyidea.lib.audit import getAudit
import functools
import logging
log = logging.getLogger(__name__)

AVAILABLE_EVENTS = []

[docs]class event(object):
 """
 This is the event decorator that calls the event handler in the handler
 module. This event decorator can be used at any API call
 """

 def __init__(self, eventname, request, g):
 self.eventname = eventname
 if not eventname in AVAILABLE_EVENTS:
 AVAILABLE_EVENTS.append(eventname)
 self.request = request
 self.g = g

 def __call__(self, func):
 """
 Returns a wrapper that wraps func.
 The wrapper will evaluate the event handling definitions and call the
 defined action.

 :param func: The function that is decorated
 :return: function
 """
 @functools.wraps(func)
 def event_wrapper(*args, **kwds):
 # here we have to evaluate the event configuration from the
 # DB table eventhandler and based on the self.eventname etc...
 # TODO: do Pre-Event Handling
 f_result = func(*args, **kwds)
 # Post-Event Handling
 e_handles = self.g.event_config.get_handled_events(self.eventname)
 for e_handler_def in e_handles:
 log.debug("Handling event {eventname} with "
 "{eventDef}".format(eventname=self.eventname,
 eventDef=e_handler_def))
 event_handler_name = e_handler_def.get("handlermodule")
 event_handler = get_handler_object(event_handler_name)
 # The "action is determined by the event configuration
 # In the options we can pass the mailserver configuration
 options = {"request": self.request,
 "g": self.g,
 "response": f_result,
 "handler_def": e_handler_def}
 if event_handler.check_condition(options=options):
 log.debug("Handling event {eventname} with options"
 "{options}".format(eventname=self.eventname,
 options=options))
 # create a new audit object
 event_audit = getAudit(self.g.audit_object.config)
 # copy all values from the originial audit entry
 event_audit_data = dict(self.g.audit_object.audit_data)
 event_audit_data["action"] = "EVENT {trigger}>>" \
 "{handler}:{action}".format(
 trigger=self.eventname,
 handler=e_handler_def.get("handlermodule"),
 action=e_handler_def.get("action"))
 event_audit_data["action_detail"] = "{0!s}".format(
 e_handler_def.get("options"))
 event_audit_data["info"] = e_handler_def.get("name")
 event_audit.log(event_audit_data)

 event_handler.do(e_handler_def.get("action"),
 options=options)
 # In case the handler has modified the response
 f_result = options.get("response")
 # set audit object to success
 event_audit.log({"success": True})
 event_audit.finalize_log()

 return f_result

 return event_wrapper

[docs]def get_handler_object(handlername):
 """
 Return an event handler object based on the Name of the event handler class

 :param handlername: The identifier of the Handler Class
 :type hanldername: basestring
 :return:
 """
 # TODO: beautify and make this work with several different handlers
 from privacyidea.lib.eventhandler.usernotification import \
 UserNotificationEventHandler
 from privacyidea.lib.eventhandler.tokenhandler import TokenEventHandler
 from privacyidea.lib.eventhandler.scripthandler import ScriptEventHandler
 from privacyidea.lib.eventhandler.federationhandler import \
 FederationEventHandler
 h_obj = None
 if handlername == "UserNotification":
 h_obj = UserNotificationEventHandler()
 if handlername == "Token":
 h_obj = TokenEventHandler()
 if handlername == "Script":
 h_obj = ScriptEventHandler()
 if handlername == "Federation":
 h_obj = FederationEventHandler()
 return h_obj

[docs]def enable_event(event_id, enable=True):
 """
 Enable or disable the and event
 :param event_id: ID of the event
 :return:
 """
 ev = EventHandler.query.filter_by(id=event_id).first()
 if not ev:
 raise ParameterError("The event with id '{0!s}' does not "
 "exist".format(event_id))

 # Update the event
 ev.active = enable
 r = ev.save()
 return r

[docs]def set_event(name, event, handlermodule, action, conditions=None,
 ordering=0, options=None, id=None, active=True):

 """
 Set an event handling configuration. This writes an entry to the
 database eventhandler.

 :param name: The name of the event definition
 :param event: The name of the event to react on. Can be a single event or
 a comma separated list.
 :type event: basestring
 :param handlermodule: The identifier of the event handler module. This is
 an identifier string like "UserNotification"
 :type handlermodule: basestring
 :param action: The action to perform. This is an action defined by the
 handler module
 :type action: basestring
 :param conditions: A condition. Only if this condition is met, the action is
 performed.
 :type conditions: dict
 :param ordering: An optional ordering of the event definitions.
 :type ordering: integer
 :param options: Additional options, that are needed as parameters for the
 action
 :type options: dict
 :param id: The DB id of the event. If the id is given, the event is
 updated. Otherwise a new entry is generated.
 :type id: int
 :return: The id of the event.
 """
 if type(event) == list:
 event = ",".join(event)
 conditions = conditions or {}
 if id:
 id = int(id)
 event = EventHandler(name, event, handlermodule, action,
 conditions=conditions, ordering=ordering,
 options=options, id=id, active=active)
 return event.id

[docs]def delete_event(event_id):
 """
 Delete the event configuration with this given ID.
 :param event_id: The database ID of the event.
 :type event_id: int
 :return:
 """
 event_id = int(event_id)
 ev = EventHandler.query.filter_by(id=event_id).first()
 r = ev.delete()
 return r

[docs]class EventConfiguration(object):
 """
 This class is supposed to contain the event handling configuration during
 the Request. It can be read initially (in the init method) an can be
 accessed later during the request.
 """

 def __init__(self):
 self.eventlist = []
 self._read_events()

 @property
 def events(self):
 return self.eventlist

[docs] def get_handled_events(self, eventname):
 """
 Return a list of the event handling definitions for the given eventname

 :param eventname:
 :return:
 """
 eventlist = [e for e in self.eventlist if (
 eventname in e.get("event") and e.get("active"))]
 return eventlist

[docs] def get_event(self, eventid):
 """
 Return the reduced list with the given eventid. This list should only
 have one element.

 :param eventid: id of the event
 :type eventid: int
 :return: list with one element
 """
 if eventid is not None:
 eventid = int(eventid)
 eventlist = [e for e in self.eventlist if e.get("id") == eventid]
 return eventlist
 else:
 return self.eventlist

 def _read_events(self):
 q = EventHandler.query.order_by(EventHandler.ordering)
 for e in q:
 self.eventlist.append(e.get())

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/index.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 All modules for which code is available

		privacyidea.api.lib.postpolicy

		privacyidea.api.lib.prepolicy

		privacyidea.lib.applications.base

		privacyidea.lib.auditmodules.base

		privacyidea.lib.auditmodules.sqlaudit

		privacyidea.lib.event

		privacyidea.lib.eventhandler.base

		privacyidea.lib.eventhandler.federationhandler

		privacyidea.lib.eventhandler.tokenhandler

		privacyidea.lib.eventhandler.usernotification

		privacyidea.lib.machines.base

		privacyidea.lib.machines.hosts

		privacyidea.lib.pinhandling.base

		privacyidea.lib.policy

		privacyidea.lib.policydecorators

		privacyidea.lib.resolvers.LDAPIdResolver

		privacyidea.lib.resolvers.PasswdIdResolver

		privacyidea.lib.resolvers.UserIdResolver

		privacyidea.lib.smsprovider.HttpSMSProvider

		privacyidea.lib.smsprovider.SMSProvider

		privacyidea.lib.smsprovider.SipgateSMSProvider

		privacyidea.lib.smsprovider.SmtpSMSProvider

		privacyidea.lib.token

		privacyidea.lib.tokenclass

		privacyidea.lib.tokens.certificatetoken

		privacyidea.lib.tokens.daplugtoken

		privacyidea.lib.tokens.emailtoken

		privacyidea.lib.tokens.foureyestoken

		privacyidea.lib.tokens.hotptoken

		privacyidea.lib.tokens.motptoken

		privacyidea.lib.tokens.ocratoken

		privacyidea.lib.tokens.papertoken

		privacyidea.lib.tokens.passwordtoken

		privacyidea.lib.tokens.questionnairetoken

		privacyidea.lib.tokens.radiustoken

		privacyidea.lib.tokens.registrationtoken

		privacyidea.lib.tokens.remotetoken

		privacyidea.lib.tokens.smstoken

		privacyidea.lib.tokens.spasstoken

		privacyidea.lib.tokens.sshkeytoken

		privacyidea.lib.tokens.tiqrtoken

		privacyidea.lib.tokens.totptoken

		privacyidea.lib.tokens.u2ftoken

		privacyidea.lib.tokens.yubicotoken

		privacyidea.lib.tokens.yubikeytoken

		privacyidea.lib.user

		privacyidea.models

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_images/edit-realm.png
privacylDEA O Token View & UserView = iEConfig Q Audit
S|msystem D Policies [Tokens = Machine Resolvers
AllR Default Realm name
Clear default realm v asdt
{
"asdf": true

)

& User Resolvers | @ User Realms

resolvers

@ asdf (passwdresolver)
[flatusers (passwdresolver)

[themis (Idapresolver)

_images/components.png
@ Owes Lues Swanes Soomg Qaw componens

Client Appication Type
O Refresh

Application Type Client
chrome 127001

Last seen: Tue, 30 Aug 2016 17:47:16 GMT

_images/ask-create-realm.png
Create default realm =]

@

You have no user realm configured, yet. You will not be able to assign tokens
to users. If you wish to, the system can create a default realm for you with the
local users on the server.

To learn more about realms and resolvers, click the question mark in the green
circle.

Shall the system create this realm?

1 Do not ask again.

Create realm No

_images/upload_csr.png
Enroll a new token

Certificate: Enroll an x509 Certificate Token.

‘The Certificate Token lets you enroll an x509 ceritficate by the given CA.
Token data

Generate Request [IIU1Y Upload Certificate

CA Connector

myCA

Certificate Signing Request (PEM)

Paste the Certifcate Signing Request

_static/privacyidea-color.png

_images/token-config.png
privacylDEA O Token View & UserView = iEConfig Q Audit

Jsystem SPolicies | O Tokens | Machine Resolvers & User Resolvers @ User Realms

HOTP
SMS Token settings
Tore The SMS Token is an event based token. After the user has tried to authenticate with the OTP PIN, an SMS with an OTP value is
RADIUS sent to the users mobile phone. Then user can authenticate with this OTP value in a second step.
Here you can define how the SMS will be sent - via which kind of gateway.
Remote SMS Provider
privacyidea.lib.smsprovider.SipgateSMSProvider.SipgateSMSProvider J
Yubico Timeout
300
Provider Config

{'USERNAME': 'Your User'\n "PASSWORD': 'Your Password’}

_static/comment-close.png

_images/ha-one-dbms.png
privacyIDEA Instance 1 privacyIDEA Instance 2

Database Management System

_images/yk-personalization-gui.png
Yublco OTP OATH-HOTP Static Password Challenge-Response Settings Tools Abou
Program in Yubico OTP mode - Quick
Configuration Slot
Select the configuration siot to be programmed
@ Configuration Slot 1 (O Configuration Slot 2 e
Yubico OTP Parameters (auto generated)
Public Identity (6 bytes Modhex) wge ctgin v)
(] Hide values
Private Identity (6 bytes Hex) 42080612570)
Secret Key (16 bytes Hex) 70 9c 47 1b de af 7b 44 of 40 4e fb 2b 2e 62 7c)
Actions

Press Write Configuration button to program your Yubikey's selected configuration siot

Write Configuration Upload to Yubico Regenerate Back.

_images/ha-master-master.png
privacyIDEA Instance 1 privacyIDEA Instance 2

ecaian

MysQLL MysSQL2

_images/resolver1.png
privacylDEA [Tokens & Users = Machines | #Config Q Audit

=system DPolicies [Tokens SMachines =~ L Users @Reaims W CAs

New Resolvers

New passwdresolver
New Idapresolver
New sqlresolver

New scimresolver

_images/enroll_hotp2.png
Enroll a new token
The token was successfully enrolled with serial number OATH0009C424

Click here or scan the QR Code, if you want to add the Token to your Google Authenticator.

Enroll a new token

_images/enroll_hotp1.png
Enroll a new token

HOTP: event based One Time Passwords

The HOTP token is an event based token. You can paste a secret key or have the server generate the secret and scan the QR
code.

Token data
4 Generate OTP Key on the Server
The server willcreate the OTP value and a QR Code will be displayed to you to be scanned.
OTP length
6

Hash algorithm

shat

_images/enroll_4eyes.png
Enroll a new token

4Eyes Token:

Jse tokens of two or more users to authenticate j

The 4 Eyes token will only authenticate if two or more users are present at once. You can define how many existing tokens of the
given realms need to be present to perform a successful authentication.

Token data
Separator
|
The separator that s used to separate the passwords of the different tokens.
Required Realms
Here you can select how many tokens of which realm are required to perform a successful authentication.
Or
@ realm2 2 :
@ sqlite |1 :
[superuser
() themis

_images/enroll_yubikey.png
Enroll a new token

‘ Yubikey AES mode: One Time Passwords with Yubikey v

The Yubikey Token is an USB device that emits an event based One Time Password. You can initialize the Yubikey using the tool
ykpersonalize. Paste the secret hex key here. You also need to choose, if the Yubikey emits the additional UID, which is either 12
or 16 characters long. You can check this in the test field.

Token data
Test Yubikey
Push Yubikey button here.

() emit a public UID

OTP Key
Enter OTP key.

OTP length

_images/event-details.png
=mSysem OPolicies = MEvents [Tokens = Machines L Users @Reams M CAs

Al Event Handlers

Edit Event Handler 5
|
Handlermodule | UserNotification B
Condition |
Action sendmail B
Options
emailconfig | themis .

Send notification email via this email server.

_images/generate_csr1.png
Enroll a new token

Certificate: Enroll an x509 Cerificate Token.
‘The Certificate Token lets you enroll an x509 ceritficate by the given CA.
Token data

TR ——

[Generate the Key Pair on the Server

‘The RSA keys will be generated in the browser. You wil be taken to a new browser window, where you can create the Certificate
Request. The private key remains in your browser and you will be able to install the certificate to the browser.

Microsoft Intemet Explorer s not supported.

_images/user-detail.png
Conflg Q@ Audit

privacylDEA 0 Token View | & UserView

Alusers

Details for user cornelius in realm asdf = viewuserin auitiog

Quick links. Username Emall
Editrealms comelius. comelius koelbel@netknights.t
total users: 52 Glven name Phone
Comelius, 449 5613166797
‘Surname Mobile
Kolbel 449 1512960 1417

Tokens for user cornelius

serlal type Actve window description fallcounter maxfall otplen

OATHOO0OFBTE -]

Assign a new token
Serial

starttyping a serial number of a token thatisnot assigned, yet.

PIN
Type a password

Repeat password

_images/enroll_yubico.png
Enroll a new token

‘ Yubikey Cloud mode: Forward authentication request to YubiCloud

The Yubico Cloud mode forwards the authentication request to the YubiCloud. The Yubikey needs to be registered with the
YubiCloud.

Token data
Yubikey Identifier
Enter the 12 digit Yubikey identifer.

Assign token to user

_images/edit_user_store.png
Password |

Edit user store
The user data in ths database can be modified from within privacylDEA.

_images/enroll2.png
ut admin @
(Role: admin)

privacylDEA | OTokens R Users =Machines & Config Q Audit

All tokens
Enroll a new token

nroll Token ‘The token was successfully enrolled with serial number OATHO0004EE4 for user [0] root (root) in realm realm?

® Import Tokens

© Get Serial
total tokens: 45

Click here or scan the QR Code, if you want to add the Token to your Google Authenticator.

Enroll a new token

_images/auditlog.png
privacylDEA O TokenView 2 User View Qaudt

Downlosd Auditiog | Downlosdie 265 enres found.
action token
Success detall serial fype administrator user 1og
number date actonY Y Y Y Y Y, Y ream clent info sig_check missing i clearance level
26 Feo GET - admin 127001 ream;
21, foken 1
2015
85054
A
% fw e [- admin 127001 reaim;
21, foken 1
2015
85054
A
%% Fo o [admin 127001
21, poliyiders
2015
sus15
™
= S | admin 127001
21, resolver
2015
su918
™
% Fo cer [admin 127001
21, ream
2015
sus15
™
= S | admin 127001
21, poly
2015
Bu917
™

_images/register.png
privacylDEA Register Login

Enter your username and password and dlick Log In to authenticate. x

Please sign in

Username

Password P

ogln

_images/email.png
privacylDEA QO Tokens R Users = Machines = #Config QAudit

=system OPolicies | [Tokens = Machines L Users @Reams M CAs

HOTP . .

EMail Token settings
ot The EMail token is a challenge response token that sends the OTP value to the given email address, when the correct OTP PIN
RADIUS was presented by the user.

Mail Server
Remote | themis.az ocal |
SMs
Yubico

‘ comy@comelinux.de. ‘

OTP validity time
The time in seconds for which the sent OTP value is valid for authentication.

| 120 |

Use TLS

_images/tiqr.png
TiQR Token settings

The TIQR Token is an OCRA based Smartphone Token, that can be used to authenticate by just scanning a QR code.
TiQR Registration Server

The Registration Server is this privacylDEA server. Note that the privacylDEA server needs to be accessible from the users
smartphone.

hitp://172.16.200.106:5000/typertiqr

TiQR Authentication Server

The Authentication Server is this privacylDEA server. Note that the privacyIDEA server needs to be accessible from the users
smartphone.

TIQR Service Displayname

This is the display name of your service in the TiQR app.

local P! System

TiQR Service Identifier

This s the service identifer that wil be passed to the TiQR app. This should contain a reverse FQDN (defautts to
org privacyidea).

OCRA Suite

This is the OCRA suite used by the TIQR App. The default OCRA suite is OCRA-1:HOTP-SHA1-6:QN10. For more details see the
RFC 6287.

(OCRA-1:HOTP-SHA1-6:QN10

_images/testtoken.png
privacylDEA = QTokens & Users = Machines & Config

Al tokens

Q Audit

Token details for OATHO0004EE4 view token in Auditlog

Token OATHOO004EE4.

Type
@ Enroll Token
Active
® Import Tokens.
Maxdail
® Lost Token Fail counter
© Get Serial OTP Length
total tokens: 45
ns Count
Count Window
Sync Window
Description
Info
Realms

Enter first OTP value

Enter PIN for token

Assgined User

Usemame

hotp

10

6

10

1000

« count_auth: 1
+ count_auth_success: 1
« hashiib: shat

- realmt

Enter second OTP value

Enter PIN again

test056428

root

< Resync Token

PIN

_images/generate_csr2.png
privacylDEA Certificate Request

CA Connector: myCA

Key strength (2043 (ign Grade) 7]

_images/user_edit.png
Details for user cornelius in realm realm3 | viewuserin Auitiog

Username
comelius
Given name

Comelius

Sumame
Koelbel

Description
Benutzer

Email
comelius koelbel@netknights.t
Phone
+495613166797
Mobile
+495613166797

Password

_images/user-view.png
privacyDEA

Quick links.

Editrealms.

total users: 52

0 Token View

& User View

v
www-data
Iibvirtqemu
backup

Tibvirt
dnsmasq

comelius.

comy

franzi

Config

First | Previous 1

v

Dnsmasq

2

Q Audit

phone

Libvirt

Comelius comeliuskoelbel@netinighisit +49 561
3166797

449 151
2960 1417

description Id

122

123

1009

1003

1000

_images/register-dialog.png
privacylDEA

Register

Login

)
)
Q
ot
]

2

Given name

Given name

Email

Mobile

3
g

Phone

2

ssword

Password

Password

’
o 2]

_static/up-pressed.png

_images/enroll1.png
privacylDEA ~ O Tokens R Users = Machines ®Config QAudit

All tokens
Enroll a new token

@

HOTP: event based One Time Passwords v

® Import Tokens The HOTP token is an event based token. You can paste a secret key or have the server generate the secret and scan the QR
code.

Token data
© Get Serial 4 Generate OTP Key on the Server
total tokens: 45 The server willcreate the OTP value and a QR Code will be displayed to you to be scanned.
OTP length
6 v
Hash algorithm
shat M
Assign token to user
Realm

realm1 v

Username

[0] root (root)

PIN

_images/system-config.png
S|mgystem | O Policies [Tokens =Machines L Users @Realms M CAs

@ Use @ sign to split the usemame and the realm.

@ Get System Documentation @ Increase the failcounter if the wrong PIN was entered.
@ Prepend the PIN in front of the OTP value . Otherwise it will be post pended.
(7 Include SAML attributes in the authentication response.

& Automatic resync during authentication

Auto resync timeout 300
Override Authorization Clients 7001 10008
These client IP addresses or subnets are allowed to masquerade as another
client.
OTP length of newly enrolled tokens, .
Count Window of newly enrolled tokens. o
Max Failcount of newly enrolled tokens o
Sync Window of newly enrolled tokens. oo

The challenge validity time 0

_images/enroll_remote.png
Enroll a new token

‘ Remote Token: Forward authentication request to another server v

‘The remote token forwards the authent
Tocaly.

Token data
() Check the PIN locally

jon request to another privacylDEA server. You can choose if the PIN should be stripped and checked

Remote Server

The remote Server URL
Remote Serial

The serial number on the remote server

Remote User

Remote Realm

Remote Resolver

_images/owncloud.png
privacylDEA
Two-Factor-Au
Use privacylDEA to authenticate the users.

Also allow users to authenticate with their normal password.
(O Verify the SSL certificate of the privacylDEA server.

tication for all users, authent

againsta privacyIDEA system,

&

URL of the privacylDEA server https://10.0.0.70

_images/manage-radius-clients.png
You can select an existing RADIUS client to either
delete it or change it or create a new client

| dd new client]
n
1

K <Cancel>

_images/smtp_server_list.png
= Machines | % Config Q Audit

privacylDEA 0 Tokens & Users
Ssystem D Policies [Tokens = Machines L Users @Reams MCAs
AT fin Identifier IPIFQDN Sender
Hallo2 123425 comy@comelinux.de

New SMTP server

themis themis.azlocal:25 privacyidea@comelinux.de

TLS Description

v

_images/backup1.png
Backup and Restore

| onfigure backup|
B
Vi

K <Cancel>

_images/ldap-resolver.png
& User Resolvers |~ @ User Realms

Create a new LDAP Resolver

privacylDEA O Token View & UserView = iEConfig Q Audit

S|msystem D Policies [Tokens = Machine Resolvers

Al Resolvers

New Resolvers
New passwdresolver Resolver name
Server URI
New sqlresolver Base DN
Bind DN
Bind Password
Timeout (seconds)

resolvert
Idap//privacyidea.servert, Idap:/privacyidea.server2
ou=users,de=domain,de=tid

cn=admin ou=users,dc=domain dc=tid

Bind Type

topsecret Simple

5 Size Limit | 500

Preset Active Directory

[No anonymous referral chasing
Loginname Attribute sAlAccouniName
Search Filter | (sAMAccountName=")(objectClass=person)
UserFilter | (&(sAMAccountName=2%s) objectClass=person))
Attribute mapping | { “username": "sAMAccountName”, “phone” : “telephoneNumber”, " " "mobile", "
UDType DN

Test LDAP Re:

_images/configure-privacyidea.png
Configure privacyidea
£(=)

aZoQ ~p

| ncryption key]
B

K <Cancel>

_images/user_add.png
Add a new user

Resolver
Editrealms localusers M
total users: 1 These are the resolvers marked as editable. You can add a user to the resolver. The user will appear in the realms, that
contain this resolver.
Username Email
Given name Phone
Sumame Mobile
Description Password

Save

iser

_static/plus.png

_images/realm1.png
privacylDEA [Tokens & Users = Machines | #Config Q Audit

=system DQPolicies [Tokens SMachines R Users = @Reaims W CAs

Clear default realm

Default Realm name resolvers

o

(passwdresolver)

reaim1 @ myusers 1

_static/file.png

_images/sshkey.png
® Import Tokens.

© Get Serial
total tokens: 15

Enroll a new token

SSH Public Key: The public SSH key

‘The SSH Key Token stores the public SSH Key in the server. This can be used to authenticate to a secure shell
Token data
SSH public Key

sshrsa
AAAAAB3NZaC 1yc2EAAAABPsZIM/dwBH4AGyKcSDV5+DqyYsZ)YMwdNj9ldxaidtY odohohgpvP GjamGsXKQlaDmeOREpH2F cl0eZWG5vAZZ

Sw/qCp2ydnZISLIJGsdjDoNybHN4ig8hZyGIAEHNTIESc1MGkJ/e TkxD2v4IFPSMbGJOIbmy +JR56 TugKolde9AnytvztqrMTD3+Y5acdaZ7kSs
ufbOvaV1FI2+wvJ2D64xe XES0NaGIzTFVIeqQ330jw== comy@az.local

Description

comy@azlocal

Assign token to user
Realm

privacyidea-demo.intranet

Username

start typing a username

_static/down-pressed.png

_images/enroll_totp.png
Enroll a new token

‘ TOTP: time based One Time Passwords. v

The TOTP token s a time based token. You can paste a secret ke or have the server generate the secret and scan the QR code.
Token data
4 Generate OTP Key on the Server
The server willcreate the OTP value and a QR Code will be displayed to you to be scanned.
OTP length

6 N
Timestep

30 N
seconds.
Hash algorithm

shat v

_static/ajax-loader.gif

_images/enroll_tiqr_2.png
Enroll a new token

The token was successfully enrolled with serial number TIQRO004C962 for user root in realm themis.

The Enroliment URL

Click here or scan the QR Code, if you want to add the Token
to your TiQR App.

Enroll a new token

_static/up.png

_images/enroll_tiqr_1.png
Enroll a new token

TiQR: Enroll a TIQR token.

The TIOR token is a Smartphone App token, which allows easy authentication by just scanning a QR Code during the
authentication process.

Assign token to user

_static/down.png

_images/yubikey.png
privacyIDEA QTokens ~ R Users EMachines = #Config Q Audit

Zsystem O Policies O Tokens =~ = Machines L Users @ Reams R cas

HOTP . .
Yubikey Token settings
TOTP
This is a Yubikey in the Yubico Mode authenticated against privacylDEA. The Yubikey emits a 44 character on time password.
U2F The authentication request can be handled by the default privacyIDEA validate API but can also be handled by the Yubico Validation
Protocol.
RADIUS
Client ID API Key
Remote
Client ID API Key 1 Create new API key
SMS
EMail
Questionnaire
Yubico

_images/token-enroll.png
privacylDEA ~ O Tokens R Users = Machines ®Config QAudit

All tokens
Enroll a new token

& Enroll Token

HOTP: event based One Time Passwords v

® Import Tokens The HOTP token is an event based token. You can paste a secret key or have the server generate the secret and scan the QR
code.

Token data
© Get Serial 4 Generate OTP Key on the Server
total tokens: 2 The server willcreate the OTP value and a QR Code will be displayed to you to be scanned.
OTP length
6 v
Hash algorithm
shat v

Assign token to user

Realm
defrealm v

Username

start typing a username
PIN
Type a password

Repeat password

_static/comment-bright.png

_images/yubikey1.png
YubiKey Personalization Tool

Yubico OTP OATH-HOTP Static Password Challenge-Response Settings Tools ~About Exit

Program in OATH-HOTP mode - Advanced
Configuration Slot
Select the configuration st to be programmed
@ Configuration Siot 1 *) Configuration Siot 2 e
[Program Multiple Yubikeys Configuration Protection (6 bytes Hex) L]
(7] Automatically program Yubikeys when inserted YubiKey(s) unprotected - Keep it that way =]

Parameter Generation Scheme @ Curent Access Code

Increment Identites; Randomize Secret 2] New Access code

OATH-HOTP Parameters

(7] OATH Token Identifer (6 bytes))
OMP (1) + TT (1) + MUI (4) 0 00 00000000 Generate MUI
HOTP Length @ 60ats O 8Digits N)
Moving Factor Seed Fixed zero 3o)
Secret Key (20 bytes Hex) 60 €9 8 43 24 20 fa 92 4b 20 a4 21 85 c9 €0 38 05 77 24] | _Generate | @
Actions

Press Write Configuration button to program your YubiKey's selected configuration siot

Write Configuration stop. Reset Back

OATHToken Identifier Status Timestamp. ~

No YubiKey inserted

Firmware Versior
WA
‘Serial Number

Dec: NA
Hex: A
Modhex: N/A

Features Supported

Yubico OTP NA
2 Configurations N/A
OATH-HOTP NA
Static Password N/A
Scan CodeMode N/A
Challenge-Response N/A
Updatable NA
Naef NA

yubico

the key to the cloud

_static/comment.png

_images/totp.png
privacyIDEA O Tokens ~ & Users = Machines = #Config = Q Audit

Ssystem D Policies | [Tokens = Machines L Users @Reams M CAs

TOTP Token settings

The TOTP Token is a time based one time password token. It is described in RFC 6238.

Here you can define settings, that will be set as default values, when enroling a TOTP token.

Default Time Step
Remote
30 ’
sMs
Default Time Window
EMail 180
Yubico Default Time Shift
0
Default Hashlib
shat !

Save

_static/minus.png

_images/admin_policies.png
#=system | OPolies [Tokens ~=Machines R Users @Reams M CAs

Al Policies

Edit Policy admins

ew Policy
PolicyName | admins
If you change the name of the policy, it will create a new policy with the new name!
Scope | admin ~
Admin-Realm | superuser ~
Action | adduser, assign, auditiog, caconnectordelete, caconnectorwrite, configdelete ~
User-Realm | None selected ~

User-Resolver | None selected ~

Admin | admin, superuser

Client 10.0.0.0/8, 110.0.0.124

_images/smtp-server-edit.png
Edit SMTP server themis

Identifier themis

“This is the unique identfying name of the SMTP server definition.

IP or FQDN themis.az local

Pot | 25
Sender Emai privacyidea@comelinux.de
This is the email address of the sender. Usually this should be an email address identfying your
system.
Usernane user@example.com

If the SMTP server requires authentication you need to specify the user.
Password topsecret P
Description | some wise words
O Use TLS

Recipient for testing

Send Test Email

_images/enroll_email.png
Enroll a new token

EMail: Send a One Time Passwort to the users email address

The Email Token sends the OTP value to the users email address.
Token data
Email Address

user@example.com
Description

Some nice words.

_images/sql-resolver.png
privacylDEA O Token View & UserView = iEConfig Q Audit
S|msystem D Policies [Tokens = Machine Resolvers
Al Resolvers
New Resolvers

New passwdresolver Resolver name

New Idapresolver

Driver

Server

Database

& User Resolvers |~ @ User Realms

Create a new SQL Resolver

resolverl

mysal

127.00.1 Port

YourDataBase

user

topsecret

Table

Mapping

Where statement

Database Encoding

Connection Parameters.

Users

{userid" "

Test SQL Res

3306

modules/api/smsgateway.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

SMS Gateway endpoints

This endpoint is used to create, modify, list and delete SMS gateway
definitions.
These gateway definitions are written to the database table “smsgateway” and
“smsgatewayoption”.

The code of this module is tested in tests/test_api_smsgateway.py

		
GET /smsgateway

		returns a json list of the gateway definitions

Or

returns a list of available sms providers with their configuration
/smsgateway/providers

		
POST /smsgateway

		This creates a new SMS gateway definition or updates an existing one.

		JSON Parameters:

		 		
		name – The unique identifier of the SMS gateway definition

		module – The providermodule name

		description – An optional description of the definition

		options.* – Additional options for the provider module (module
specific)

		
DELETE /smsgateway/option/(gwid)/(option)

		this function deletes an option of a gateway definition

		Parameters:		
		gwid – The id of the sms gateway definition

		Return:		json with success or fail

		
GET /smsgateway/(gwid)

		returns a json list of the gateway definitions

Or

returns a list of available sms providers with their configuration
/smsgateway/providers

		
DELETE /smsgateway/(identifier)

		this function deletes an existing smsgateway definition

		Parameters:		
		identifier – The name of the sms gateway definition

		Return:		json with success or fail

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

modules/api/radiusserver.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

RADIUS server endpoints

This endpoint is used to create, update, list and delete RADIUS
server definitions. RADIUS server definitions can be used for several purposes
like RADIUS-Token or RADIUS-passthru policies.

The code of this module is tested in tests/test_api_radiusserver.py

		
POST /radiusserver/test_request

		Test the RADIUS definition
:return:

		
GET /radiusserver/

		This call gets the list of RADIUS server definitions

		
POST /radiusserver/(identifier)

		This call creates or updates a RADIUS server definition.

		Parameters:		
		identifier – The unique name of the RADIUS server definition

		server – The FQDN or IP of the RADIUS server

		port – The port of the RADIUS server

		secret – The RADIUS secret of the RADIUS server

		description – A description for the definition

		
DELETE /radiusserver/(identifier)

		This call deletes the specified RADIUS server configuration

		Parameters:		
		identifier – The unique name of the RADIUS server definition

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

modules/api/event.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

Event endpoints

This endpoint is used to create, modify, list and delete Event Handling
Configuration. Event handling configuration is stored in the database table
“eventhandling”

The code of this module is tested in tests/test_api_events.py

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

application_plugins/rlm_rest.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

Configuration of rlm_rest

Starting with version 3.0.x FreeRADIUS is shipped with the rlm_rest module, which can be used to transform
RADIUS authentication requests to HTTP requests to a suitable REST endpoint. Starting with version 2.19,
privacyIDEA implements such an endpoint (/validate/radiuscheck, see Validate endpoints). However, the endpoint
currently does not implement all features of the RADIUS plugin such as challenge-response authentication
and attribute mapping.

Please note that Ubuntu 17.04 and Debian 9 are the first releases to include FreeRADIUS 3.0.x. Here, the required
packages can be installed as follows:

apt-get install freeradius freeradius-rest

Setup

First, the rlm_rest module needs to be enabled:

cd /etc/freeradius/mods-enabled
ln -s ../mods-available/rest .

The authentication type needs to be configured in the /etc/freeradius/users file:

DEFAULT Auth-Type := rest

and the site configuration should invoke the module as follows:

authenticate {
 Auth-Type rest {
 rest
 }
 digest
 unix
}

The module itself is then configured via the file /etc/freeradius/mods-enabled/rest. First, connect_uri
needs to point to your privacyIDEA instance:

connect_uri = "https://127.0.0.1/"

The authenticate section needs to be modified as follows:

authenticate
 uri = "${..connect_uri}/validate/radiuscheck"
 method = 'post'
 body = 'post'
 data = "user=%{urlquote:%{User-Name}}&pass=%{urlquote:%{User-Password}}"
 force_to = 'plain'
 tls = ${..tls}
}

Assuming clients.conf has been edited accordingly, the FreeRADIUS server should already respond
to authentication requests:

echo "User-Name=user, Password=password" | radclient -sx yourRadiusServer \
 auth topsecret

For instructions how to configure more advanced features of rlm_rest such as the connection pool or
TLS certificate validation, please consult the documentation in the configuration file.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/eventhandler/usernotification.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.eventhandler.usernotification

-*- coding: utf-8 -*-
#
2017-10-27 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add additional tags for notification: date, time, client_ip,
ua_string, ua_browser
2016-10-12 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add tokentype, tokenrealm and serial
Add multi and regexp
2016-07-18 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add notification conditions
2016-05-06 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial writup
#
License: AGPLv3
(c) 2016. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This is the event handler module for user notifications.
It can be bound to each event and can perform the action:

 * sendmail: Send an email to the user/token owner
 * sendsms: We can also notify the user with an SMS.

The module is tested in tests/test_lib_events.py
"""
from privacyidea.lib.eventhandler.base import BaseEventHandler
from privacyidea.lib.smtpserver import send_email_identifier
from privacyidea.lib.smsprovider.SMSProvider import send_sms_identifier
from privacyidea.lib.auth import get_db_admins, get_db_admin
from privacyidea.lib.token import get_tokens
from privacyidea.lib.smtpserver import get_smtpservers
from privacyidea.lib.smsprovider.SMSProvider import get_smsgateway
from privacyidea.lib.user import User, get_user_list
from privacyidea.lib import _
from flask import current_app
import json
import logging
import datetime

log = logging.getLogger(__name__)

DEFAULT_BODY = """
Hello {user},

the administrator {admin}@{realm} performed the action
{action} on your token {serial}.

To check your tokens you may login to the Web UI:
{url}
"""

[docs]class NOTIFY_TYPE(object):
 """
 Allowed token owner
 """
 TOKENOWNER = "tokenowner"
 LOGGED_IN_USER = "logged_in_user"
 INTERNAL_ADMIN = "internal admin"
 ADMIN_REALM = "admin realm"
 EMAIL = "email"

[docs]class UserNotificationEventHandler(BaseEventHandler):
 """
 An Eventhandler needs to return a list of actions, which it can handle.

 It also returns a list of allowed action and conditions

 It returns an identifier, which can be used in the eventhandlig definitions
 """

 identifier = "UserNotification"
 description = "This eventhandler notifies the user about actions on his " \
 "tokens"

 @property
 def actions(cls):
 """
 This method returns a dictionary of allowed actions and possible
 options in this handler module.

 :return: dict with actions
 """
 smtpserver_objs = get_smtpservers()
 smsgateway_dicts = get_smsgateway()
 smsgateways = [sms.identifier for sms in smsgateway_dicts]
 smtpservers = [s.config.identifier for s in smtpserver_objs]
 actions = {"sendmail": {"emailconfig":
 {"type": "str",
 "required": True,
 "description": _("Send notification "
 "email via this "
 "email server."),
 "value": smtpservers},
 "mimetype": {"type": "str",
 "description": _("Either send "
 "email as plain text or HTML."),
 "value": ["plain", "html"]},
 "subject": {"type": "str",
 "required": False,
 "description": _("The subject of "
 "the mail that "
 "is sent.")},
 "reply_to": {"type": "str",
 "required": False,
 "description": _("The Reply-To "
 "header in the "
 "sent email.")},
 "body": {"type": "text",
 "required": False,
 "description": _("The body of the "
 "mail that is "
 "sent.")},
 "To": {"type": "str",
 "required": True,
 "description": _("Send notification to "
 "this user."),
 "value": [
 NOTIFY_TYPE.TOKENOWNER,
 NOTIFY_TYPE.LOGGED_IN_USER,
 NOTIFY_TYPE.INTERNAL_ADMIN,
 NOTIFY_TYPE.ADMIN_REALM,
 NOTIFY_TYPE.EMAIL]},
 "To "+NOTIFY_TYPE.ADMIN_REALM: {
 "type": "str",
 "value": current_app.config.get(
 "SUPERUSER_REALM", []),
 "visibleIf": "To",
 "visibleValue": NOTIFY_TYPE.ADMIN_REALM},
 "To "+NOTIFY_TYPE.INTERNAL_ADMIN: {
 "type": "str",
 "value": [a.username for a in
 get_db_admins()],
 "visibleIf": "To",
 "visibleValue":
 NOTIFY_TYPE.INTERNAL_ADMIN},
 "To "+NOTIFY_TYPE.EMAIL: {
 "type": "str",
 "description": _("Any email address, to "
 "which the notification "
 "should be sent."),
 "visibleIf": "To",
 "visibleValue": NOTIFY_TYPE.EMAIL}
 },
 "sendsms": {"smsconfig":
 {"type": "str",
 "required": True,
 "description": _("Send the user "
 "notification via a "
 "predefined SMS "
 "gateway."),
 "value": smsgateways},
 "body": {"type": "text",
 "required": False,
 "description": _("The text of the "
 "SMS.")},
 "To": {"type": "str",
 "required": True,
 "description": _("Send notification to "
 "this user."),
 "value": [NOTIFY_TYPE.TOKENOWNER]}
 }
 }
 return actions

[docs] def do(self, action, options=None):
 """
 This method executes the defined action in the given event.

 :param action:
 :param options: Contains the flask parameters g, request, response
 and the handler_def configuration
 :type options: dict
 :return:
 """
 ret = True
 g = options.get("g")
 request = options.get("request")
 response = options.get("response")
 content = json.loads(response.data)
 handler_def = options.get("handler_def")
 handler_options = handler_def.get("options", {})
 notify_type = handler_options.get("To", NOTIFY_TYPE.TOKENOWNER)
 try:
 logged_in_user = g.logged_in_user
 except Exception:
 logged_in_user = {}

 tokenowner = self._get_tokenowner(request)
 log.debug(u"Executing event for action {0!r}, user {1!r}, "
 u"logged_in_user {2!r}".format(action, tokenowner,
 logged_in_user))

 # Determine recipient
 recipient = None

 if notify_type == NOTIFY_TYPE.TOKENOWNER and not tokenowner.is_empty():
 recipient = {
 "givenname": tokenowner.info.get("givenname"),
 "surname": tokenowner.info.get("surname"),
 "username": tokenowner.login,
 "userrealm": tokenowner.realm,
 "email": tokenowner.info.get("email"),
 "mobile": tokenowner.info.get("mobile")
 }
 elif notify_type == NOTIFY_TYPE.INTERNAL_ADMIN:
 username = handler_options.get("To "+NOTIFY_TYPE.INTERNAL_ADMIN)
 internal_admin = get_db_admin(username)
 recipient = {
 "givenname": username,
 "email": internal_admin.email if internal_admin else ""
 }
 elif notify_type == NOTIFY_TYPE.ADMIN_REALM:
 # Send emails to all the users in the specified admin realm
 admin_realm = handler_options.get("To "+NOTIFY_TYPE.ADMIN_REALM)
 ulist = get_user_list({"realm": admin_realm})
 # create a list of all user-emails, if the user has an email
 emails = [u.get("email") for u in ulist if u.get("email")]
 recipient = {
 "givenname": "admin of realm {0!s}".format(admin_realm),
 "email": emails
 }
 elif notify_type == NOTIFY_TYPE.LOGGED_IN_USER:
 # Send notification to the logged in user
 if logged_in_user.get("username") and not logged_in_user.get(
 "realm"):
 # internal admins have no realm
 internal_admin = get_db_admin(logged_in_user.get("username"))
 if internal_admin:
 recipient = {
 "givenname": logged_in_user.get("username"),
 "email": internal_admin.email if internal_admin else ""
 }
 else:
 # Try to find the user in the specified realm
 user_obj = User(logged_in_user.get("username"),
 logged_in_user.get("realm"))
 if user_obj:
 recipient = {
 "givenname": user_obj.info.get("givenname"),
 "surname": user_obj.info.get("surname"),
 "email": user_obj.info.get("email"),
 "mobile": user_obj.info.get("mobile")
 }

 elif notify_type == NOTIFY_TYPE.EMAIL:
 email = handler_options.get("To "+NOTIFY_TYPE.EMAIL, "").split(",")
 recipient = {
 "email": email
 }
 else:
 log.warning("Was not able to determine the recipient for the user "
 "notification: {0!s}".format(handler_def))

 if recipient:
 # Collect all data
 body = handler_options.get("body") or DEFAULT_BODY
 serial = request.all_data.get("serial") or \
 content.get("detail", {}).get("serial") or \
 g.audit_object.audit_data.get("serial")
 registrationcode = content.get("detail", {}).get("registrationcode")
 googleurl_value = content.get("detail", {}).get("googleurl",
 {}).get("value")
 googleurl_img = content.get("detail", {}).get("googleurl",
 {}).get("img")
 tokentype = None
 if serial:
 tokens = get_tokens(serial=serial)
 if tokens:
 tokentype = tokens[0].get_tokentype()
 else:
 token_objects = get_tokens(user=tokenowner)
 serial = ','.join([tok.get_serial() for tok in token_objects])

 time = datetime.datetime.now().strftime("%H:%M:%S")
 date = datetime.datetime.now().strftime("%Y-%m-%d")
 body = body.format(
 admin=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 action=request.path,
 serial=serial,
 url=request.url_root,
 user=tokenowner.info.get("givenname"),
 surname=tokenowner.info.get("surname"),
 givenname=recipient.get("givenname"),
 username=tokenowner.login,
 userrealm=tokenowner.realm,
 tokentype=tokentype,
 registrationcode=registrationcode,
 recipient_givenname=recipient.get("givenname"),
 recipient_surname=recipient.get("surname"),
 googleurl_img=googleurl_img,
 googleurl_value=googleurl_value,
 time=time,
 date=date,
 client_ip=g.client_ip,
 ua_browser=request.user_agent.browser,
 ua_string=request.user_agent.string
)

 # Send notification
 if action.lower() == "sendmail":
 emailconfig = handler_options.get("emailconfig")
 mimetype = handler_options.get("mimetype", "plain")
 useremail = recipient.get("email")
 reply_to = handler_options.get("reply_to")
 subject = handler_options.get("subject") or \
 "An action was performed on your token."
 try:
 ret = send_email_identifier(emailconfig,
 recipient=useremail,
 subject=subject, body=body,
 reply_to=reply_to,
 mimetype=mimetype)
 except Exception as exx:
 log.error("Failed to send email: {0!s}".format(exx))
 ret = False
 if ret:
 log.info("Sent a notification email to user {0}".format(
 recipient))
 else:
 log.warning("Failed to send a notification email to user "
 "{0}".format(recipient))

 elif action.lower() == "sendsms":
 smsconfig = handler_options.get("smsconfig")
 userphone = recipient.get("mobile")
 try:
 ret = send_sms_identifier(smsconfig, userphone, body)
 except Exception as exx:
 log.error("Failed to send sms: {0!s}".format(exx))
 ret = False
 if ret:
 log.info("Sent a notification sms to user {0}".format(
 recipient))
 else:
 log.warning("Failed to send a notification email to user "
 "{0}".format(recipient))

 return ret

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/eventhandler/tokenhandler.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.eventhandler.tokenhandler

-*- coding: utf-8 -*-
#
2017-07-18 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Allow setting time with timedelta
2017-01-21 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add required mobile number and email address when enrolling tokens
added with the help of splashx
2016-11-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial writup
#
License: AGPLv3
(c) 2016. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This is the event handler module for token actions.
You can attach token actions like enable, disable, delete, unassign,... of the

 * current token
 * all the user's tokens
 * all unassigned tokens
 * all disabled tokens
 * ...
"""
from privacyidea.lib.eventhandler.base import BaseEventHandler
from privacyidea.lib.token import (get_token_types, set_validity_period_end,
 set_validity_period_start)
from privacyidea.lib.realm import get_realms
from privacyidea.lib.token import (set_realms, remove_token, enable_token,
 unassign_token, init_token, set_description,
 set_count_window, add_tokeninfo,
 set_failcounter)
from privacyidea.lib.utils import (parse_date, is_true,
 parse_time_offset_from_now)
from privacyidea.lib.tokenclass import DATE_FORMAT, AUTH_DATE_FORMAT
from privacyidea.lib import _
import json
import logging
import datetime
from dateutil.parser import parse as parse_date_string
from dateutil.tz import tzlocal

log = logging.getLogger(__name__)

[docs]class ACTION_TYPE(object):
 """
 Allowed actions
 """
 SET_TOKENREALM = "set tokenrealm"
 DELETE = "delete"
 UNASSIGN = "unassign"
 DISABLE = "disable"
 ENABLE = "enable"
 INIT = "enroll"
 SET_DESCRIPTION = "set description"
 SET_VALIDITY = "set validity"
 SET_COUNTWINDOW = "set countwindow"
 SET_TOKENINFO = "set tokeninfo"
 SET_FAILCOUNTER = "set failcounter"

[docs]class VALIDITY(object):
 """
 Allowed validity options
 """
 START= "valid from"
 END = "valid till"

[docs]class TokenEventHandler(BaseEventHandler):
 """
 An Eventhandler needs to return a list of actions, which it can handle.

 It also returns a list of allowed action and conditions

 It returns an identifier, which can be used in the eventhandlig definitions
 """

 identifier = "Token"
 description = "This event handler can trigger new actions on tokens."

 @property
 def actions(cls):
 """
 This method returns a dictionary of allowed actions and possible
 options in this handler module.

 :return: dict with actions
 """
 realm_list = get_realms().keys()
 actions = {ACTION_TYPE.SET_TOKENREALM:
 {"realm":
 {"type": "str",
 "required": True,
 "description": _("set a new realm of the token"),
 "value": realm_list},
 "only_realm":
 {"type": "bool",
 "description": _("The new realm will be the only "
 "realm of the token. I.e. all "
 "other realms will be removed "
 "from this token. Otherwise the "
 "realm will be added to the token.")
 }
 },
 ACTION_TYPE.DELETE: {},
 ACTION_TYPE.UNASSIGN: {},
 ACTION_TYPE.DISABLE: {},
 ACTION_TYPE.ENABLE: {},
 ACTION_TYPE.INIT:
 {"tokentype":
 {"type": "str",
 "required": True,
 "description": _("Token type to create"),
 "value": get_token_types()
 },
 "user":
 {"type": "bool",
 "description": _("Assign token to user in "
 "request or to tokenowner.")},
 "realm":
 {"type": "str",
 "required": False,
 "description": _("Set the realm of the newly "
 "created token."),
 "value": realm_list},
 "motppin": {
 "type": "str",
 "visibleIf": "tokentype",
 "visibleValue": "motp",
 "description": _("Set the MOTP PIN of the MOTP "
 "token during enrollment. This "
 "is a required value for "
 "enrolling MOTP tokens.")}
 },
 ACTION_TYPE.SET_DESCRIPTION:
 {"description":
 {
 "type": "str",
 "description": _("The new description of the "
 "token.")
 }
 },
 ACTION_TYPE.SET_VALIDITY:
 {VALIDITY.START: {
 "type": "str",
 "description": _("The token will be valid starting "
 "at the given date. Can be a fixed "
 "date or an offset like +10m, "
 "+24h, +7d.")
 },
 VALIDITY.END: {
 "type": "str",
 "description": _("The token will be valid until "
 "the given date. Can be a fixed "
 "date or an offset like +10m, "
 "+24h, +7d.")
 }
 },
 ACTION_TYPE.SET_COUNTWINDOW:
 {"count window":
 {
 # TODO: should be "int" but we do not support
 # this at the moment.
 "type": "str",
 "required": True,
 "description": _("Set the new count window of "
 "the token.")
 }
 },
 ACTION_TYPE.SET_FAILCOUNTER:
 {
 "fail counter":
 {
 "type": "str",
 "required": True,
 "description": _("Set the failcounter of "
 "the token.")
 }
 },
 ACTION_TYPE.SET_TOKENINFO:
 {"key":
 {
 "type": "str",
 "required": True,
 "description": _("Set this tokeninfo key.")
 },
 "value":
 {
 "type": "str",
 "description": _("Set the above key the this "
 "value.")
 }
 }
 }
 return actions

[docs] def do(self, action, options=None):
 """
 This method executes the defined action in the given event.

 :param action:
 :param options: Contains the flask parameters g, request, response
 and the handler_def configuration
 :type options: dict
 :return:
 """
 ret = True
 g = options.get("g")
 request = options.get("request")
 response = options.get("response")
 content = json.loads(response.data)
 handler_def = options.get("handler_def")
 handler_options = handler_def.get("options", {})

 serial = request.all_data.get("serial") or \
 content.get("detail", {}).get("serial") or \
 g.audit_object.audit_data.get("serial")

 if action.lower() in [ACTION_TYPE.SET_TOKENREALM,
 ACTION_TYPE.SET_DESCRIPTION,
 ACTION_TYPE.DELETE, ACTION_TYPE.DISABLE,
 ACTION_TYPE.ENABLE, ACTION_TYPE.UNASSIGN,
 ACTION_TYPE.SET_VALIDITY,
 ACTION_TYPE.SET_COUNTWINDOW,
 ACTION_TYPE.SET_TOKENINFO,
 ACTION_TYPE.SET_FAILCOUNTER]:
 if serial:
 log.info("{0!s} for token {1!s}".format(action, serial))
 if action.lower() == ACTION_TYPE.SET_TOKENREALM:
 realm = handler_options.get("realm")
 only_realm = is_true(handler_options.get("only_realm"))
 # Set the realm..
 log.info("Setting realm of token {0!s} to {1!s}".format(
 serial, realm))
 # Add the token realm
 set_realms(serial, [realm], add=not only_realm)
 elif action.lower() == ACTION_TYPE.DELETE:
 remove_token(serial=serial)
 elif action.lower() == ACTION_TYPE.DISABLE:
 enable_token(serial, enable=False)
 elif action.lower() == ACTION_TYPE.ENABLE:
 enable_token(serial, enable=True)
 elif action.lower() == ACTION_TYPE.UNASSIGN:
 unassign_token(serial)
 elif action.lower() == ACTION_TYPE.SET_DESCRIPTION:
 description = handler_options.get("description") or ""
 description, td = parse_time_offset_from_now(description)
 s_now = (datetime.datetime.now(tzlocal()) + td).strftime(
 AUTH_DATE_FORMAT)
 set_description(serial,
 description.format(
 current_time=s_now,
 now=s_now,
 client_ip=g.client_ip,
 ua_browser=request.user_agent.browser,
 ua_string=request.user_agent.string))
 elif action.lower() == ACTION_TYPE.SET_COUNTWINDOW:
 set_count_window(serial,
 int(handler_options.get("count window",
 50)))
 elif action.lower() == ACTION_TYPE.SET_TOKENINFO:
 tokeninfo = handler_options.get("value") or ""
 tokeninfo, td = parse_time_offset_from_now(tokeninfo)
 s_now = (datetime.datetime.now(tzlocal()) + td).strftime(
 AUTH_DATE_FORMAT)
 try:
 username = request.User.loginname
 realm = request.User.realm
 except Exception:
 username = "N/A"
 realm = "N/A"
 add_tokeninfo(serial, handler_options.get("key"),
 tokeninfo.format(
 current_time=s_now,
 now=s_now,
 client_ip=g.client_ip,
 username=username,
 realm=realm,
 ua_browser=request.user_agent.browser,
 ua_string=request.user_agent.string))
 elif action.lower() == ACTION_TYPE.SET_VALIDITY:
 start_date = handler_options.get(VALIDITY.START)
 end_date = handler_options.get(VALIDITY.END)
 if start_date:
 d = parse_date(start_date)
 set_validity_period_start(serial, None,
 d.strftime(DATE_FORMAT))
 if end_date:
 d = parse_date(end_date)
 set_validity_period_end(serial, None,
 d.strftime(DATE_FORMAT))
 elif action.lower() == ACTION_TYPE.SET_FAILCOUNTER:
 try:
 set_failcounter(serial,
 int(handler_options.get("fail counter")))
 except Exception as exx:
 log.warning("Misconfiguration: Failed to set fail "
 "counter!")
 else:
 log.info("Action {0!s} requires serial number. But no serial "
 "number could be found in request.")

 if action.lower() == ACTION_TYPE.INIT:
 log.info("Initializing new token")
 init_param = {"type": handler_options.get("tokentype"),
 "genkey": 1,
 "realm": handler_options.get("realm", "")}
 user = None
 if is_true(handler_options.get("user")):
 user = self._get_tokenowner(request)
 tokentype = handler_options.get("tokentype")
 # Some tokentypes need additional parameters or otherwise
 # will fail to enroll.
 # TODO: Other tokentypes will require additional parameters
 if tokentype == "sms":
 init_param['phone'] = user.get_user_phone(
 phone_type='mobile')
 if not init_param['phone']:
 log.warning("Enrolling SMS token. But the user "
 "{0!r} has no mobile number!".format(user))
 elif tokentype == "email":
 init_param['email'] = user.info.get("email", "")
 if not init_param['email']:
 log.warning("Enrolling EMail token. But the user {0!s}"
 "has no email address!".format(user))
 elif tokentype == "motp":
 init_param['motppin'] = handler_options.get("motppin")

 t = init_token(param=init_param, user=user)
 log.info("New token {0!s} enrolled.".format(t.token.serial))

 return ret

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/auditmodules/base.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.auditmodules.base

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2014-10-17 Fix the empty result problem
Cornelius Kölbel, <cornelius@privacyidea.org>
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: AGPLv3
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__="""This is the BaseClass for audit trails

The audit is supposed to work like this. First we need to create an audit
object. E.g. this can be done in the before_request:

 g.audit_object = getAudit(file_config)

During the request, the g.audit_object can be used to add audit information:

 g.audit_object.log({"client": "123.2.3.4", "action": "validate/check"})

Thus at many different places in the code, audit information can be added to
the audit object.
Finally the audit_object needs to be stored to the audit storage. So we call:

 g.audit_object.finalize_log()

which creates a signature of the audit data and writes the data to the audit
storage.
"""

import logging
log = logging.getLogger(__name__)
from privacyidea.lib.log import log_with
import socket
from datetime import datetime, timedelta

class Paginate(object):
 """
 This is a pagination object, that is used for searching audit trails.
 """
 def __init__(self):
 # The audit data
 self.auditdata = []
 # The number of the previous page
 self.prev = None
 # the number of the next page
 self.next = None
 # the number of the current page
 self.current = 1
 # the total entry numbers
 self.total = 0

[docs]class Audit(object): # pragma: no cover

 def __init__(self, config=None):
 """
 Create a new audit object.

 :param config: The web config is passed to the audit module, so that
 the special module implementation can get its configuration.
 :type config: dict
 :return:
 """
 self.name = "AuditBase"
 self.audit_data = {}
 self.private = ""
 self.public = ""

 @log_with(log)
[docs] def initialize(self):
 # defaults
 self.audit_data = {'action_detail': '',
 'info': '',
 'log_level': 'INFO',
 'administrator': '',
 'value': '',
 'key': '',
 'serial': '',
 'token_type': '',
 'clearance_level': 0,
 'privacyidea_server': socket.gethostname(),
 'realm': '',
 'user': '',
 'client': ''
 }

 #controller = request.environ['pylons.routes_dict']['controller']
 #action = request.environ['pylons.routes_dict']['action']
 #c.audit['action'] = "%s/%s" % (controller, action)

[docs] def log_token_num(self, count):
 """
 Log the number of the tokens.
 Can be passed like
 log_token_num(get_tokens(count=True))

 :param count: Number of tokens
 :type count: int
 :return:
 """
 self.audit_data['action_detail'] = "tokennum = {0!s}".format(str(count))

 @log_with(log)
[docs] def read_keys(self, pub, priv):
 """
 Set the private and public key for the audit class. This is achieved by
 passing the entries.

 #priv = config.get("privacyideaAudit.key.private")
 #pub = config.get("privacyideaAudit.key.public")

 :param pub: Public key, used for verifying the signature
 :type pub: string with filename
 :param priv: Private key, used to sign the audit entry
 :type priv: string with filename
 :return: None
 """

 try:
 f = open(priv, "r")
 self.private = f.read()
 f.close()
 except Exception as e:
 log.error("Error reading private key {0!s}: ({1!r})".format(priv, e))
 raise e

 try:
 f = open(pub, "r")
 self.public = f.read()
 f.close()
 except Exception as e:
 log.error("Error reading public key {0!s}: ({1!r})".format(pub, e))
 raise e

[docs] def get_audit_id(self):
 return self.name

[docs] def get_total(self, param, AND=True, display_error=True):
 """
 This method returns the total number of audit entries
 in the audit store
 """
 return None

 @log_with(log)
[docs] def log(self, param): # pragma: no cover
 """
 This method is used to log the data.
 During a request this method can be called several times to fill the
 internal audit_data dictionary.
 """
 pass

[docs] def add_to_log(self, param):
 """
 Add to existing log entry
 :param param:
 :return:
 """
 pass

[docs] def finalize_log(self):
 """
 This method is called to finalize the audit_data. I.e. sign the data
 and write it to the database.
 It should hash the data and do a hash chain and sign the data
 """
 pass

[docs] def initialize_log(self, param):
 """
 This method initialized the log state.
 The fact, that the log state was initialized, also needs to be logged.
 Therefor the same params are passed as i the log method.
 """
 pass

def set(self):
"""
This function could be used to set certain things like the signing key.
But maybe it should only be read from pi.cfg?
"""
pass

[docs] def search(self, param, display_error=True, rp_dict=None, timelimit=None):
 """
 This function is used to search audit events.

 param: Search parameters can be passed.

 return: A pagination object

 This function is deprecated.
 """
 return Paginate()

[docs] def get_count(self, search_dict, timedelta=None, success=None):
 """
 Returns the number of found log entries.
 E.g. used for checking the timelimit.

 :param param: List of filter parameters
 :return: number of found entries
 """
 return 0

[docs] def csv_generator(self, param=None, user=None, timelimit=None):
 """
 A generator that can be used to stream the audit log

 :param param:
 :return:
 """
 pass

[docs] def search_query(self, search_dict, rp_dict):
 """
 This function returns the audit log as an iterator on the result
 """
 return None

[docs] def audit_entry_to_dict(self, audit_entry):
 """
 If the search_query returns an iterator with elements that are not a
 dictionary, the audit module needs
 to provide this function, to convert the audit entry to a dictionary.
 """
 return {}

[docs] def get_dataframe(self, start_time=datetime.now()-timedelta(days=7),
 end_time=datetime.now()):
 """
 The Audit module can handle its data the best. This function is used
 to return a pandas.dataframe with all audit data in the given time
 frame.

 This dataframe then can be used for extracting statistics.

 :param start_time: The start time of the data
 :type start_time: datetime
 :param end_time: The end time of the data
 :type end_time: datetime
 :return: Audit data
 :rtype: dataframe
 """
 return None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/auditmodules/sqlaudit.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.auditmodules.sqlaudit

-*- coding: utf-8 -*-
#
2016-04-08 Cornelius Kölbel <cornelius@privacyidea.org>
Avoid consecutive if statements
#
privacyIDEA
May 11, 2014 Cornelius Kölbel, info@privacyidea.org
http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """The SQL Audit Module is used to write audit entries to an SQL
database.
The SQL Audit Module is configured like this:

 PI_AUDIT_MODULE = "privacyidea.lib.auditmodules.sqlaudit"
 PI_AUDIT_KEY_PRIVATE = "tests/testdata/private.pem"
 PI_AUDIT_KEY_PUBLIC = "tests/testdata/public.pem"
 PI_AUDIT_SERVERNAME = "your choice"

 Optional:
 PI_AUDIT_SQL_URI = "sqlite://"
 PI_AUDIT_SQL_TRUNCATE = True | False

If the PI_AUDIT_SQL_URI is omitted the Audit data is written to the
token database.
"""

import logging
from privacyidea.lib.auditmodules.base import (Audit as AuditBase, Paginate)
from privacyidea.lib.crypto import Sign
from sqlalchemy import MetaData, cast, String
from sqlalchemy import asc, desc, and_, or_
import datetime
import traceback

log = logging.getLogger(__name__)
try:
 import matplotlib
 MATPLOT_READY = True
 matplotlib.use('Agg')
 # We need to set the matplotlib backend before importing pandas with pyplot
 from pandas import DataFrame
 PANDAS_READY = True
 # matplotlib is needed to plot
except Exception as exx:
 log.warning(exx)
 PANDAS_READY = False

metadata = MetaData()

from privacyidea.models import audit_column_length as column_length
from privacyidea.models import AUDIT_TABLE_NAME as TABLE_NAME
from privacyidea.models import Audit as LogEntry
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

[docs]class Audit(AuditBase):
 """
 This is the SQLAudit module, which writes the audit entries
 to an SQL database table.
 It requires the configuration parameters.
 PI_AUDIT_SQL_URI
 """

 def __init__(self, config=None):
 self.name = "sqlaudit"
 self.config = config or {}
 self.audit_data = {}
 self.sign_object = None
 self.read_keys(self.config.get("PI_AUDIT_KEY_PUBLIC"),
 self.config.get("PI_AUDIT_KEY_PRIVATE"))

 # an Engine, which the Session will use for connection
 # resources
 connect_string = self.config.get("PI_AUDIT_SQL_URI", self.config.get(
 "SQLALCHEMY_DATABASE_URI"))
 log.debug("using the connect string {0!s}".format(connect_string))
 try:
 pool_size = self.config.get("PI_AUDIT_POOL_SIZE", 20)
 self.engine = create_engine(
 connect_string,
 pool_size=pool_size,
 pool_recycle=self.config.get("PI_AUDIT_POOL_RECYCLE", 600))
 log.debug("Using SQL pool_size of {0!s}".format(pool_size))
 except TypeError:
 # SQLite does not support pool_size
 self.engine = create_engine(connect_string)
 log.debug("Using no SQL pool_size.")

 # create a configured "Session" class
 Session = sessionmaker(bind=self.engine)

 # create a Session
 self.session = Session()
 self.session._model_changes = {}

 def _truncate_data(self):
 """
 Truncate self.audit_data according to the column_length.
 :return: None
 """
 for column, l in column_length.iteritems():
 if column in self.audit_data:
 self.audit_data[column] = self.audit_data[column][:l]

 @staticmethod
 def _create_filter(param, timelimit=None):
 """
 create a filter condition for the logentry
 """
 conditions = []
 param = param or {}
 for search_key in param.keys():
 search_value = param.get(search_key)
 if search_key == "allowed_audit_realm":
 # Add each realm in the allowed_audit_realm list to the
 # search condition
 realm_conditions = []
 for realm in search_value:
 realm_conditions.append(LogEntry.realm == realm)
 filter_realm = or_(*realm_conditions)
 conditions.append(filter_realm)
 # We do not search if the search value only consists of '*'
 elif search_value.strip() != '' and search_value.strip('*') != '':
 try:
 if search_key == "success":
 # "success" is the only integer.
 search_value = search_value.strip("*")
 conditions.append(getattr(LogEntry, search_key) ==
 int(search_value))
 else:
 # All other keys are compared as strings
 column = getattr(LogEntry, search_key)
 if search_key == "date":
 # but we cast "date" to a string first (required on postgresql)
 column = cast(column, String)
 search_value = search_value.replace('*', '%')
 if '%' in search_value:
 conditions.append(column.like(search_value))
 else:
 conditions.append(column == search_value)
 except Exception as exx:
 # The search_key was no search key but some
 # bullshit stuff in the param
 log.debug("Not a valid searchkey: {0!s}".format(exx))

 if timelimit:
 conditions.append(LogEntry.date >= datetime.datetime.now() -
 timelimit)
 # Combine them with or to a BooleanClauseList
 filter_condition = and_(*conditions)
 return filter_condition

[docs] def get_total(self, param, AND=True, display_error=True, timelimit=None):
 """
 This method returns the total number of audit entries
 in the audit store
 """
 count = 0
 # if param contains search filters, we build the search filter
 # to only return the number of those entries
 filter_condition = self._create_filter(param, timelimit=timelimit)

 try:
 count = self.session.query(LogEntry.id)\
 .filter(filter_condition)\
 .count()
 finally:
 self.session.close()
 return count

[docs] def log(self, param):
 """
 Add new log details in param to the internal log data self.audit_data.

 :param param: Log data that is to be added
 :type param: dict
 :return: None
 """
 for k, v in param.items():
 self.audit_data[k] = v

[docs] def add_to_log(self, param):
 """
 Add new text to an existing log entry
 :param param:
 :return:
 """
 for k, v in param.items():
 self.audit_data[k] += v

[docs] def finalize_log(self):
 """
 This method is used to log the data.
 It should hash the data and do a hash chain and sign the data
 """
 try:
 if self.config.get("PI_AUDIT_SQL_TRUNCATE"):
 self._truncate_data()
 le = LogEntry(action=self.audit_data.get("action"),
 success=int(self.audit_data.get("success", 0)),
 serial=self.audit_data.get("serial"),
 token_type=self.audit_data.get("token_type"),
 user=self.audit_data.get("user"),
 realm=self.audit_data.get("realm"),
 resolver=self.audit_data.get("resolver"),
 administrator=self.audit_data.get("administrator"),
 action_detail=self.audit_data.get("action_detail"),
 info=self.audit_data.get("info"),
 privacyidea_server=self.audit_data.get("privacyidea_server"),
 client=self.audit_data.get("client", ""),
 loglevel=self.audit_data.get("log_level"),
 clearance_level=self.audit_data.get("clearance_level")
)
 self.session.add(le)
 self.session.commit()
 # Add the signature
 if self.sign_object:
 s = self._log_to_string(le)
 sign = self.sign_object.sign(s)
 le.signature = sign
 self.session.merge(le)
 self.session.commit()
 except Exception as exx: # pragma: no cover
 log.error("exception {0!r}".format(exx))
 log.error("DATA: {0!s}".format(self.audit_data))
 log.debug("{0!s}".format(traceback.format_exc()))
 self.session.rollback()

 finally:
 self.session.close()
 # clear the audit data
 self.audit_data = {}

[docs] def read_keys(self, pub, priv):
 """
 Set the private and public key for the audit class. This is achieved by
 passing the entries.

 #priv = config.get("privacyideaAudit.key.private")
 #pub = config.get("privacyideaAudit.key.public")

 :param pub: Public key, used for verifying the signature
 :type pub: string with filename
 :param priv: Private key, used to sign the audit entry
 :type priv: string with filename
 :return: None
 """
 self.sign_object = Sign(priv, pub)

 def _check_missing(self, audit_id):
 """
 Check if the audit log contains the entries before and after
 the given id.

 TODO: We can not check at the moment if the first or the last entries
 were deleted. If we want to do this, we need to store some signed
 meta information
 1. Which one was the first entry. (use initialize_log)
 2. Which one was the last entry.
 """
 res = False
 try:
 id_bef = self.session.query(LogEntry.id
).filter(LogEntry.id ==
 int(audit_id) - 1).count()
 id_aft = self.session.query(LogEntry.id
).filter(LogEntry.id ==
 int(audit_id) + 1).count()
 # We may not do a commit!
 # self.session.commit()
 if id_bef and id_aft:
 res = True
 except Exception as exx: # pragma: no cover
 log.error("exception {0!r}".format(exx))
 log.debug("{0!s}".format(traceback.format_exc()))
 # self.session.rollback()
 finally:
 # self.session.close()
 pass

 return res

 @staticmethod
 def _log_to_string(le):
 """
 This function creates a string from the logentry so
 that this string can be signed.

 Note: Not all elements of the LogEntry are used to generate the
 string (the Signature is not!), otherwise we could have used pickle
 """
 s = "id=%s,date=%s,action=%s,succ=%s,serial=%s,t=%s,u=%s,r=%s,adm=%s,"\
 "ad=%s,i=%s,ps=%s,c=%s,l=%s,cl=%s" % (le.id,
 le.date,
 le.action,
 le.success,
 le.serial,
 le.token_type,
 le.user,
 le.realm,
 le.administrator,
 le.action_detail,
 le.info,
 le.privacyidea_server,
 le.client,
 le.loglevel,
 le.clearance_level)
 if type(s) == unicode:
 s = s.encode("utf-8")
 return s

 @staticmethod
 def _get_logentry_attribute(key):
 """
 This function returns the LogEntry attribute for the given key value
 """
 sortname = {'number': LogEntry.id,
 'action': LogEntry.action,
 'success': LogEntry.success,
 'serial': LogEntry.serial,
 'date': LogEntry.date,
 'token_type': LogEntry.token_type,
 'user': LogEntry.user,
 'realm': LogEntry.realm,
 'administrator': LogEntry.administrator,
 'action_detail': LogEntry.action_detail,
 'info': LogEntry.info,
 'privacyidea_server': LogEntry.privacyidea_server,
 'client': LogEntry.client,
 'loglevel': LogEntry.loglevel,
 'clearance_level': LogEntry.clearance_level}
 return sortname.get(key)

[docs] def csv_generator(self, param=None, user=None, timelimit=None):
 """
 Returns the audit log as csv file.
 :param config: The current flask app configuration
 :type config: dict
 :param param: The request parameters
 :type param: dict
 :param user: The user, who issued the request
 :return: None. It yields results as a generator
 """
 filter_condition = self._create_filter(param,
 timelimit=timelimit)
 logentries = self.session.query(LogEntry).filter(filter_condition).all()

 for le in logentries:
 audit_dict = self.audit_entry_to_dict(le)
 audit_list = audit_dict.values()
 string_list = [u"'{0!s}'".format(x) for x in audit_list]
 yield ",".join(string_list)+"\n"

 def get_count(self, search_dict, timedelta=None, success=None):
 # create filter condition
 filter_condition = self._create_filter(search_dict)
 conditions = [filter_condition]
 if success is not None:
 conditions.append(LogEntry.success == success)

 if timedelta is not None:
 conditions.append(LogEntry.date >= datetime.datetime.now() -
 timedelta)

 filter_condition = and_(*conditions)
 log_count = self.session.query(LogEntry).filter(filter_condition).count()

 return log_count

[docs] def search(self, search_dict, page_size=15, page=1, sortorder="asc",
 timelimit=None):
 """
 This function returns the audit log as a Pagination object.

 :param timelimit: Only audit entries newer than this timedelta will
 be searched
 :type timelimit: timedelta
 """
 page = int(page)
 page_size = int(page_size)
 paging_object = Paginate()
 paging_object.page = page
 paging_object.total = self.get_total(search_dict, timelimit=timelimit)
 if page > 1:
 paging_object.prev = page - 1
 if paging_object.total > (page_size * page):
 paging_object.next = page + 1

 auditIter = self.search_query(search_dict, page_size=page_size,
 page=page, sortorder=sortorder,
 timelimit=timelimit)
 try:
 le = auditIter.next()
 while le:
 # Fill the list
 paging_object.auditdata.append(self.audit_entry_to_dict(le))
 le = auditIter.next()
 except StopIteration:
 log.debug("Interation stopped.")

 return paging_object

[docs] def search_query(self, search_dict, page_size=15, page=1, sortorder="asc",
 sortname="number", timelimit=None):
 """
 This function returns the audit log as an iterator on the result

 :param timelimit: Only audit entries newer than this timedelta will
 be searched
 :type timelimit: timedelta
 """
 logentries = None
 try:
 limit = int(page_size)
 offset = (int(page) - 1) * limit

 # create filter condition
 filter_condition = self._create_filter(search_dict,
 timelimit=timelimit)

 if sortorder == "desc":
 logentries = self.session.query(LogEntry).filter(
 filter_condition).order_by(
 desc(self._get_logentry_attribute("number"))).limit(
 limit).offset(offset)
 else:
 logentries = self.session.query(LogEntry).filter(
 filter_condition).order_by(
 asc(self._get_logentry_attribute("number"))).limit(
 limit).offset(offset)

 except Exception as exx: # pragma: no cover
 log.error("exception {0!r}".format(exx))
 log.debug("{0!s}".format(traceback.format_exc()))
 self.session.rollback()
 finally:
 self.session.close()

 if logentries is None:
 return iter([])
 else:
 return iter(logentries)

[docs] def get_dataframe(self,
 start_time=datetime.datetime.now()
 -datetime.timedelta(days=7),
 end_time=datetime.datetime.now()):
 """
 The Audit module can handle its data the best. This function is used
 to return a pandas.dataframe with all audit data in the given time
 frame.

 This dataframe then can be used for extracting statistics.

 :param start_time: The start time of the data
 :type start_time: datetime
 :param end_time: The end time of the data
 :type end_time: datetime
 :return: Audit data
 :rtype: dataframe
 """
 if not PANDAS_READY:
 log.warning("If you want to use statistics, you need to install "
 "python-pandas.")
 return None

 q = self.session.query(LogEntry)\
 .filter(LogEntry.date > start_time,
 LogEntry.date < end_time)
 rows = q.all()
 rows = [r.__dict__ for r in rows]
 df = DataFrame(rows)
 return df

[docs] def clear(self):
 """
 Deletes all entries in the database table.
 This is only used for test cases!
 :return:
 """
 self.session.query(LogEntry).delete()
 self.session.commit()

 def audit_entry_to_dict(self, audit_entry):
 sig = self.sign_object.verify(self._log_to_string(audit_entry),
 audit_entry.signature)
 is_not_missing = self._check_missing(int(audit_entry.id))
 # is_not_missing = True
 audit_dict = {'number': audit_entry.id,
 'date': audit_entry.date.isoformat(),
 'sig_check': "OK" if sig else "FAIL",
 'missing_line': "OK" if is_not_missing else "FAIL",
 'action': audit_entry.action,
 'success': audit_entry.success,
 'serial': audit_entry.serial,
 'token_type': audit_entry.token_type,
 'user': audit_entry.user,
 'realm': audit_entry.realm,
 'resolver': audit_entry.resolver,
 'administrator': audit_entry.administrator,
 'action_detail': audit_entry.action_detail,
 'info': audit_entry.info,
 'privacyidea_server': audit_entry.privacyidea_server,
 'client': audit_entry.client,
 'log_level': audit_entry.loglevel,
 'clearance_level': audit_entry.clearance_level
 }
 return audit_dict

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

application_plugins/openvpn.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

OTP with OpenVPN

This section describes, how you can setup OpenVPN to authenticate against
privacyIDEA. There are basically three ways to integrate OpenVPN with
privacyIDEA:

		use the privacyidea_pam.py module for PAM

		integrate OpenVPN directly with RADIUS

		use the PAM module for RADIUS in OpenVPN

Each of the methods has its andvantages as well as drawbacks.

On the client side, you need to add:

auth-user-pass

to the client configuration.

Now the user is asked for a password when establishing the VPN connection.
The entered password is sent to privacyIDEA. Thus you can require the user to
enter a password consisting of a static part he knows and the OTP part which
the user needs to generate with the OTP token he possesses.

Another addition you most probably want to make is adding the following option
to both the client and the server configuration:

reneg-sec 0

By default, the channel key gets renegotiated after 3600 seconds, either
partner can request a renegotiation. If only one partner disables this
option, the other one will request it. This works fine for static password
or dual-factor authentication where both factors are static (e.g. password
and certificate/smartcard).

When using OTP authentication, note that this default value may cause the
end user to be challenged to reauthorize once per hour. The OpenVPN client
with the option –auth-user-pass prompts for username and password for
every renegotiation.

Network-Manager does not rechallenge the user and the VPN connection hangs,
so you’ll need to disabled the renegotiation.

If you are also requiring client certificates, the user needs

		a machine certificate

		a password

		and an OTP token

to establish a VPN connection.

privacyidea_pam.py module for OpenVPN

For this the PAM stack is used. To get the basic information
about integrating privacyIDEA with PAM, read Pluggable Authentication Module.
Since we do not use RADIUS this is the least complex configuration and for
most installations probably the preferred one. The biggest drawback is that
you need to install the privacyidea-pam package on your OpenVPN server.
As long as the package is not part of your distribution you need to handle
updates/security fixes manually or by using the packages provided by
privacyIDEA.

You can create a file /etc/pam.d/openvpn on your OpenVPN server that
basically looks like this:

auth [success=1 default=ignore] pam_python.so
 /path/to/privacyidea_pam.py url=https://your.privacyidea.server
auth requisite pam_deny.so
auth required pam_permit.so
session sufficient pam_permit.so
account sufficient pam_permit.so

Then you need to configure the OpenVPN server like this:

port 1194
[...]
plugin /usr/lib/openvpn/openvpn-auth-pam.so openvpn

The important line is the last line, which tells OpenVPN to use the PAM stack
to authenticate the user and within the PAM stack the configuration for
“openvpn”. On certain distributions the library might be located at
/usr/lib64/openvpn/plugin/lib/openvpn-auth-pam.so.

Integration of OpenVPN directly with RADIUS

This configuration does not use PAM, so might be preferred in some installations.
You will need the package openvpn-auth-radius which should be part of your
distribution. Before you can configure your OpenVPN you need to install freeradius
on your privacyIDEA server and configure it according to FreeRADIUS.
Be sure that RADIUS works before you start.

Copy the file /usr/share/doc/openvpn-auth-radius/examples/radiusplugn.cnf into /etc/openvpn
and adapt it to your configuration. The most important parts of the file should contain:

The NAS identifier which is sent to the RADIUS server
NAS-Identifier=OpenVPN
OpenVPNConfig=/etc/openvpn/server.conf
[...]
server
{
 # The UDP port for radius accounting.
 acctport=1813
 # The UDP port for radius authentication.
 authport=1812
 # The name or ip address of the radius server.
 name=<your-radius-server>
 # How many times should the plugin send the if there is no response?
 retry=1
 # How long should the plugin wait for a response?
 wait=1
 # The shared secret.
 sharedsecret=<shared-secret>
}

After the changes restart your OpenVPN service and keep a look at the
logs of OpenVPN on your access server as well as the freeradius logs on
your RADIUS server.

If you use privacyidea-radius 2.6 or earlier, you make sure you have the
following entry in /etc/freeradius/sites-enabled/privacyidea:

[...]
accounting {
 detail
}
[...]

Otherwise RADIUS will authenticate your user, but refuse to add the
accounting data that the OpenVPN plugin sends and the connect will fail.

Using the PAM module for RADIUS in OpenVPN

The other method to integrate OpenVPN with RADIUS (and privacyIDEA) is to
use the PAM module libpam-radius-auth. If you have other services running
on your OpenVPN server that should integrate into privacyIDEA as well, this
might be your preferred method.

You can create a file /etc/pam.d/openvpn on your OpenVPN server that
basically looks like this:

auth [success=1 default=ignore] pam_radius_auth.so
auth requisite pam_deny.so
auth required pam_permit.so
session sufficient pam_permit.so
account sufficient pam_permit.so

Then you need to configure the OpenVPN server like this:

port 1194
[...]
plugin /usr/lib/openvpn/openvpn-auth-pam.so openvpn

Now we need to tell the PAM plugin which RADIUS server to use. Modify the
file /etc/pam_radius_auth.conf to point to your RADIUS server and add
the shared secret:

server[:port] shared_secret timeout (s)
#127.0.0.1 secret 1
#other-server other-secret 3
<your-radius-server>:1812 <shared-secret> 3

Now you can restart your OpenVPN service and should be able to connect
with your PIN and OTP. Again, have a look at the logs of both OpenVPN
and RADIUS.

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

application_plugins/rlm_perl.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

RADIUS plugin

Installation

If you want to install the FreeRADIUS Plugin on Ubuntu 14.04 LTS or 16.04 LTS, this can be
easily done, since there is a ready made package (see
FreeRADIUS).

However, it can also be installed on other distributions.
The FreeRADIUS plugin is a perl module, that e.g. requires on a Debian system
the following packages to be installed:

		libconfig-inifiles-perl

		libdata-dump-perl

		libtry-tiny-perl

		libjson-perl

The module itself may be downloaded at [2] and placed at, e.g.,
/usr/share/privacyidea/freeradius/privacyidea_radius.pm.

Setup

Then you need to configure your FreeRADIUS site and the perl module. The
latest FreeRADIUS plugin uses the /validate/check REST API of privacyIDEA.

You need to configure the perl module in FreeRADIUS modules/perl to look
something like this:

perl {
 module = /usr/share/privacyidea/freeradius/privacyidea_radius.pm
}

Your freeradius enabled site config should contain something like this:

authenticate {
 Auth-Type Perl {
 perl
 }
 digest
 unix
}

While you define the default authenticate type to be Perl in the
users file:

DEFAULT Auth-Type := Perl

Note

The privacyIDEA module uses other perl modules that were not thread
safe in the
past. So in case you are using old perl dependencies and are experiencing
thread problems, please start FreeRADIUS with the -t switch.
(Everything works fine with Ubuntu 14.04 and Debian 7.)

Configuration

The RADIUS plugin configuration is read from the file
/opt/privacyIDEA/rlm_perl.ini.

Starting with version 2.7 the plugin first tries to read from the following
locations:

		/etc/privacyidea/rlm_perl.ini

		/etc/freeradius/rlm_perl.ini

		/opt/privacyIDEA/rlm_perl.ini.

If no file exists, the default values are:

[Default]
URL = https://localhost/validate/check
REALM =

But it can also look like this:

[Default]
URL = https://your.server/validate/check
REALM = someRealm
RESCONF = someResolver
SSL_CHECK = true
DEBUG = true
TIMEOUT = 10

[Mapping]
serial = privacyIDEA-Serial

[Mapping user]
group = Class

Note

The default behaviour is to not check the SSL certificate.
So in a productive environment where the privacyIDEA system is located on
another server than the RADIUS server, you should set “SSL_CHECK = true”.

Radius and Realms

FreeRADIUS also has a notion of realms. In general the RADIUS realms are not
necessarily the same as the privacyIDEA realms, but they can be mapped.

A user can authenticate to the FreeRADIUS either with a simple username
“fred”, or a username combined with a RADIUS realm in the format like
“fred@realm1” or “realm1\fred”.

Note

The format of the realms is defined in
/etc/freeradius/modules/realm as “suffix” and “ntdomain”. I.e. you could
also change the delimiter.
The “suffix” and “ntdomain” is referenced in the authorize section in
/etc/freeradius/sites-enabled/privacyidea.

The RADIUS server tries to split the realms according to the definition of
“suffix” or “ntdomain”. I.e. a User-Name “fred@realmRadius” would be
split
into Stripped-User-Name “fred” and Realm (RADIUS realm) “realmRadius”.
But only if FreeRADIUS can identify “realmRadius” as a RADIUS realm. For
FreeRADIUS to identify this as a REALM you need to add this to the file
/etc/freeradius/proxy.conf:

realm realmRadius {
}

Realm processing in FreeRADIUS

A User-Name “fred@realmRadius” or “realmRadius\fred” is sent to the
FreeRADIUS server.

If “realmRadius” can not be identified as RADIUS realm (missing entry in
proxy.conf), then no realm can be split and the complete User-Name will be
sent to privacyIDEA for validation.
This can work out with “fred@realmRadius”, since privacyIDEA
might split the @-sign. But this probably will not work out for
“realmRadius\fred”.

If the “realmRadius” can be identified as RADIUS realm (entry in proxy.conf),
then FreeRADIUS will split the User-Name into the RADIUS attributes
Stripped-User-Name and Realm and the “fred” will be sent as user and
“realmRadius” as the realm to privacyIDEA.

This way you can directly map RADIUS realms in the RADIUS user name to realm
in privacyIDEA.

Note

If the User-Name could be split into the RADIUS attributes
Stripped-User-Name and Realm, then these values are sent to the
privacyIDEA server. If the User-Name could not be split (and
Stripped-User-Name is empty) then User-Name is sent to the
privacyIDEA server.

For a deeper insight take a look at the code
https://github.com/privacyidea/FreeRADIUS/blob/master/privacyidea_radius.pm#L276

Note

The NAS-IP-Address is sent as the client parameter to the
privacyIDEA server. Using Override Authorization Client you can pass the RADIUS
client IP to the privacyIDEA server to perform policies based on the
RADIUS client’s IP address.

Note

You can define a realm in /opt/privacyIDEA/rlm_perl.ini. Such a
realm definition will override a RADIUS realm in the User-Name.

Mapping privacyIDEA return values to RADIUS Attribute-Value pairs

The plugin can use information from the detail section
(see Validate endpoints) of the
privacyIDEA response to map these values to arbitrary RADIUS Attribute-Value
pairs.

To do this use the [Mapping] section in the rlm_perl.ini file.

Using the Token serial number

In case of a successful authentication privacyIDEA returns the serial number
of the token used.

If available (see no_detail_on_success and
no_detail_on_fail) the FreeRADIUS server can receive this
serial number.

In rlm_perl_ini use:

[Mapping]
serial = privacyIDEA-Serial

This will map the detail->serial in the privacyIDEA response and add an
attribute privacyIDEA-Serial in your RADIUS response.

To use the privacyIDEA-Serial in the RADIUS response, you need to include
the dictionary.netknights in your FreeRADIUS dictionary.
You can get it here [1].

Return user attributes

If the authorization policy add_user_in_response is configured
the privacyIDEA response contains an additional tree detail->user with
user information.

The FreeRADIUS plugin can also map these user information to RADIUS
Attribute-Value pairs. Certain VPN systems use RADIUS return values to put
users into certain groups to allow access to special sub networks.

If you want to map such user values you need to add a section in
rlm_perl.ini:

[Mapping user]
a_user_attribute = any_RADIUS_Attribute_even_vendor_specific

This way you can map any user attribute like name, email, realm, group to any
arbitrary RADIUS attribute.

You can also address different sections in the privacyIDEA detail response by
changing the keyword in rlm_perl.ini to [Mapping other_section].

Debugging RADIUS

If you need to DEBUG the FreeRADIUS go like this.

Add “DEBUG = true” to /opt/privacyIDEA/rlm_perl.ini.
Then stop the FreeRADIUS and run it in debug mode as user root:

/etc/init.d/freeradius stop; freeradius -X

Now you can send requests to the RADIUS server like this:

echo 'User-Name=realm3\\cornelius, Password=test' | radclient -s \
 127.0.0.1 auth test

Of course you need to replace the IP of your RADIUS server and the RADIUS
secret “test” with your clients secret.

Footnotes

		[1]		https://github.com/privacyidea/privacyidea/blob/master/authmodules/FreeRADIUS/dictionary.netknights

		[2]		https://github.com/privacyidea/freeradius

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/applications/base.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.applications.base

-*- coding: utf-8 -*-
#
privacyIDEA
Jul 18, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import logging
import sys
import os
from privacyidea.lib.log import log_with
import privacyidea.lib.applications
from importlib import import_module
log = logging.getLogger(__name__)

def get_machine_application_class_list():
 """
 Get the list of class names of applications like
 "lib.applications.luks.MachineApplication".

 :return: list of application class names
 :rtype: list
 """
 class_list = []
 # We add each python module in this directory to the class list
 path = os.path.dirname(privacyidea.lib.applications.__file__)
 files = os.listdir(path)
 modules = [f.split(".")[0] for f in files if f.endswith(".py") and f !=
 "__init__.py"]
 for module in modules:
 class_list.append("privacyidea.lib.applications.{0!s}.MachineApplication".format(module))
 return class_list

def get_machine_application_class_dict():
 """
 get a dictionary of the application classes with the type as the key.

 :return: {'base':
 <class
 'privacyidea.lib.applications.base.MachineApplicationBase'>
 'luks': <class
 'privacyidea.lib.applications.base.MachineApplication'>
 }
 """
 ret = {}
 long_class_names = get_machine_application_class_list()
 for long_class_name in long_class_names:
 module_name = ".".join(long_class_name.split(".")[:-1])
 class_name = long_class_name.split(".")[-1:]

 mod = import_module(module_name)
 # should be able to run as class or as object
 auth_class = mod.MachineApplication
 mtype = auth_class.application_name

 ret[mtype] = auth_class
 return ret

class MachineApplication(object):

 application_name = "base"
 '''If bulk_call is false, the administrator may
 only retrieve authentication items for the
 very host he is starting the request.
 '''
 allow_bulk_call = False

 @classmethod
 def get_name(cls):
 """
 returns the identifying name of this application class
 """
 return cls.application_name

 @staticmethod
 def get_authentication_item(token_type,
 serial,
 challenge=None, options=None,
 filter_param=None):
 """
 returns a dictionary of authentication items
 like public keys, challenges, responses...

 :param filter_param: Additional URL request parameters
 :type filter_param: dict
 """
 return "nothing"

 @staticmethod
 def get_options():
 """
 returns a dictionary with a list of required and optional options
 """
 return {'required': [],
 'optional': []}

@log_with(log)
def get_auth_item(application, token_type,serial,
 challenge=None, options=None, filter_param=None):

 options = options or {}
 # application_module from application
 class_dict = get_machine_application_class_dict()
 # should be able to run as class or as object
 auth_class = class_dict.get(application)
 auth_item = auth_class.get_authentication_item(token_type,
 serial,
 challenge=challenge,
 options=options,
 filter_param=filter_param)
 return auth_item

@log_with(log)
def is_application_allow_bulk_call(application_module):
 mod = import_module(application_module)
 auth_class = mod.MachineApplication
 return auth_class.allow_bulk_call

@log_with(log)
def get_application_types():
 """
 This function returns a dictionary of application types with the
 corresponding available attributes.

 {"luks": {"options": {"required": [],
 "optional": ["slot", "partition"]}}
 "ssh": {"options": {"required": [],
 "optional": ["user"]}}
 }

 :return: dictionary describing the applications
 """
 ret = {}
 current_module = sys.modules[__name__]
 module_dir = os.path.dirname(current_module.__file__)

 # load all modules and get their application names
 files = [os.path.basename(f)[:-3] for f in os.listdir(module_dir) if
 f.endswith(".py")]
 for f in files:
 if f not in ["base", "__init__"]:
 try:
 mod = import_module("privacyidea.lib.applications.{0!s}".format(f))
 name = mod.MachineApplication.application_name
 options = mod.MachineApplication.get_options()
 ret[name] = {"options": options}
 except Exception as exx:
 log.info("Can not get application type: {0!s}".format(exx))

 return ret

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/eventhandler/federationhandler.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.eventhandler.federationhandler

-*- coding: utf-8 -*-
#
2017-08-23 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial federation handler
#
License: AGPLv3
(c) 2017. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This is the event handler module for privacyIDEA federations.
Requests can be forwarded to other privacyIDEA servers.
"""
from privacyidea.lib.eventhandler.base import BaseEventHandler
from privacyidea.lib.privacyideaserver import (get_privacyideaservers,
 get_privacyideaserver)
from privacyidea.lib import _
import json
import logging
import requests
from flask import Response

log = logging.getLogger(__name__)

[docs]class ACTION_TYPE(object):
 """
 Allowed actions
 """
 FORWARD = "forward"

[docs]class FederationEventHandler(BaseEventHandler):
 """
 An Eventhandler needs to return a list of actions, which it can handle.

 It also returns a list of allowed action and conditions

 It returns an identifier, which can be used in the eventhandlig definitions
 """

 identifier = "Federation"
 description = "This event handler can forward the request to other " \
 "privacyIDEA servers"

 @property
 def actions(cls):
 """
 This method returns a dictionary of allowed actions and possible
 options in this handler module.

 :return: dict with actions
 """
 pi_servers = [x.config.identifier for x in get_privacyideaservers()]
 actions = {ACTION_TYPE.FORWARD:
 {"privacyIDEA":
 {"type": "str",
 "required": True,
 "value": pi_servers,
 "description": _("The remote/child privacyIDEA "
 "Server.")
 },
 "realm":
 {"type": "str",
 "description": _("Change the realm name to a "
 "realm on the child privacyIDEA "
 "system.")
 },
 "resolver":
 {"type": "str",
 "description": _("Change the resolver name to a "
 "resolver on the child "
 "privacyIDEA system.")
 },
 "forward_client_ip":
 {"type": "bool",
 "description": _("Forward the client IP to the "
 "child privacyIDEA server. "
 "Otherwise this server will "
 "be the client.")
 },
 "forward_authorization_token":
 {"type": "bool",
 "description": _("Forward the authorization header. "
 "This allows to also forward request like "
 "token- and system-requests.")

 }
 }
 }
 return actions

[docs] def do(self, action, options=None):
 """
 This method executes the defined action in the given event.

 :param action:
 :param options: Contains the flask parameters g, request, response
 and the handler_def configuration
 :type options: dict
 :return:
 """
 g = options.get("g")
 request = options.get("request")
 handler_def = options.get("handler_def")
 handler_options = handler_def.get("options", {})

 if action == ACTION_TYPE.FORWARD:
 server_def = handler_options.get("privacyIDEA")
 pi_server = get_privacyideaserver(server_def)

 # the new url is the configured server url and the original path
 url = pi_server.config.url + request.path
 # We use the original method
 method = request.method
 tls = pi_server.config.tls
 # We also transfer the original payload
 data = request.all_data
 if handler_options.get("forward_client_ip"):
 data["client"] = g.client_ip
 if handler_options.get("realm"):
 data["realm"] = handler_options.get("realm")
 if handler_options.get("resolver"):
 data["resolver"] = handler_options.get("resolver")

 log.info(u"Sending {0} request to {1!r}".format(method, url))
 requestor = None
 params = None
 headers = {}

 # We need to pass an authorization header if we forward administrative requests
 if handler_options.get("forward_authorization_token"):
 auth_token = request.headers.get('PI-Authorization')
 if not auth_token:
 auth_token = request.headers.get('Authorization')
 headers["PI-Authorization"] = auth_token

 if method.upper() == "GET":
 params = data
 data = None
 requestor = requests.get
 elif method.upper() == "POST":
 requestor = requests.post
 elif method.upper() == "DELETE":
 requestor = requests.delete

 if requestor:
 r = requestor(url, params=params, data=data,
 headers=headers, verify=tls)
 # convert requests Response to werkzeug Response
 response_dict = json.loads(r.text)
 if "detail" in response_dict:
 if response_dict.get("detail") is None:
 # In case of exceptions we may not have a detail
 response_dict["detail"] = {"origin": url}
 else:
 response_dict.get("detail")["origin"] = url
 # We will modify the response!
 # We can not use flask.jsonify(response_dict) here, since we
 # would work outside of application context!
 options["response"] = Response()
 options["response"].status_code = r.status_code
 options["response"].content_type = "application/json"
 options["response"].data = json.dumps(response_dict)
 else:
 log.warning(u"Unsupported method: {0!r}".format(method))

 return True

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/eventhandler/base.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.eventhandler.base

-*- coding: utf-8 -*-
2017-08-11 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add condition for detail->error->message
2017-07-19 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add possibility to compare tokeninfo field against fixed time
and also {now} with offset.
2016-05-04 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Initial writup
#
License: AGPLv3
(c) 2016. Cornelius Kölbel
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
__doc__ = """This is the base class for an event handler module.
The event handler module is bound to an event together with

* a condition and
* an action
* optional options ;-)
"""
from privacyidea.lib import _
from privacyidea.lib.config import get_token_types
from privacyidea.lib.realm import get_realms
from privacyidea.lib.auth import ROLE
from privacyidea.lib.policy import ACTION
from privacyidea.lib.token import get_token_owner, get_tokens
from privacyidea.lib.user import User, UserError
from privacyidea.lib.utils import (compare_condition, compare_value_value,
 parse_time_offset_from_now)
import datetime
from dateutil.tz import tzlocal
import re
import json
import logging
from privacyidea.lib.tokenclass import DATE_FORMAT

log = logging.getLogger(__name__)

class CONDITION(object):
 """
 Possible conditions
 """
 TOKEN_HAS_OWNER = "token_has_owner"
 TOKEN_IS_ORPHANED = "token_is_orphaned"
 TOKEN_VALIDITY_PERIOD = "token_validity_period"
 USER_TOKEN_NUMBER = "user_token_number"
 OTP_COUNTER = "otp_counter"
 TOKENTYPE = "tokentype"
 LAST_AUTH = "last_auth"
 COUNT_AUTH = "count_auth"
 COUNT_AUTH_SUCCESS = "count_auth_success"
 COUNT_AUTH_FAIL = "count_auth_fail"
 TOKENINFO = "tokeninfo"
 DETAIL_ERROR_MESSAGE = "detail_error_message"
 DETAIL_MESSAGE = "detail_message"

[docs]class BaseEventHandler(object):
 """
 An Eventhandler needs to return a list of actions, which it can handle.

 It also returns a list of allowed action and conditions

 It returns an identifier, which can be used in the eventhandlig definitions
 """

 identifier = "BaseEventHandler"
 description = "This is the base class of an EventHandler with no " \
 "functionality"

 def __init__(self):
 pass

 @property
 def actions(cls):
 """
 This method returns a list of available actions, that are provided
 by this event handler.
 :return: dictionary of actions.
 """
 actions = ["sample_action_1", "sample_action_2"]
 return actions

 @property
 def conditions(cls):
 """
 The UserNotification can filter for conditions like
 * type of logged in user and
 * successful or failed value.success

 allowed types are str, multi, text, regexp

 :return: dict
 """
 realms = get_realms()
 cond = {
 "realm": {
 "type": "str",
 "desc": _("The user realm, for which this event should apply."),
 "value": realms.keys()
 },
 "tokenrealm": {
 "type": "multi",
 "desc": _("The token realm, for which this event should "
 "apply."),
 "value": [{"name": r} for r in realms.keys()]
 },
 CONDITION.TOKENTYPE: {
 "type": "multi",
 "desc": _("The type of the token."),
 "value": [{"name": r} for r in get_token_types()]
 },
 "logged_in_user": {
 "type": "str",
 "desc": _("The logged in user is of the following type."),
 "value": (ROLE.ADMIN, ROLE.USER)
 },
 "result_value": {
 "type": "str",
 "desc": _("The result.value within the response is "
 "True or False."),
 "value": ("True", "False")
 },
 "token_locked": {
 "type": "str",
 "desc": _("Check if the max failcounter of the token is "
 "reached."),
 "value": ("True", "False")
 },
 CONDITION.TOKEN_HAS_OWNER: {
 "type": "str",
 "desc": _("The token has a user assigned."),
 "value": ("True", "False")
 },
 CONDITION.TOKEN_IS_ORPHANED: {
 "type": "str",
 "desc": _("The token has a user assigned, but the user does "
 "not exist in the userstore anymore."),
 "value": ("True", "False")
 },
 CONDITION.TOKEN_VALIDITY_PERIOD: {
 "type": "str",
 "desc": _("Check if the token is within its validity period."),
 "value": ("True", "False")
 },
 "serial": {
 "type": "regexp",
 "desc": _("Action is triggered, if the serial matches this "
 "regular expression.")
 },
 CONDITION.USER_TOKEN_NUMBER: {
 "type": "str",
 "desc": _("Action is triggered, if the user has this number "
 "of tokens assigned.")
 },
 CONDITION.OTP_COUNTER: {
 "type": "str",
 "desc": _("Action is triggered, if the counter of the token "
 "equals this setting.")
 },
 CONDITION.LAST_AUTH: {
 "type": "str",
 "desc": _("Action is triggered, if the last authentication of "
 "the token is older than 7h, 10d or 1y.")
 },
 CONDITION.COUNT_AUTH: {
 "type": "str",
 "desc": _("This can be '>100', '<99', or '=100', to trigger "
 "the action, if the tokeninfo field 'count_auth' is "
 "bigger than 100, less than 99 or exactly 100.")
 },
 CONDITION.COUNT_AUTH_SUCCESS: {
 "type": "str",
 "desc": _("This can be '>100', '<99', or '=100', to trigger "
 "the action, if the tokeninfo field "
 "'count_auth_success' is "
 "bigger than 100, less than 99 or exactly 100.")
 },
 CONDITION.COUNT_AUTH_FAIL: {
 "type": "str",
 "desc": _("This can be '>100', '<99', or '=100', to trigger "
 "the action, if the difference between the tokeninfo "
 "field 'count_auth' and 'count_auth_success is "
 "bigger than 100, less than 99 or exactly 100.")
 },
 CONDITION.TOKENINFO: {
 "type": "str",
 "desc": _("This condition can check any arbitrary tokeninfo "
 "field. You need to enter something like "
 "'<fieldname> == <fieldvalue>', '<fieldname> > "
 "<fieldvalue>' or '<fieldname> < <fieldvalue>'")
 },
 CONDITION.DETAIL_ERROR_MESSAGE: {
 "type": "str",
 "desc": _("Here you can enter a regular expression. The "
 "condition only applies if the regular expression "
 "matches the detail->error->message in the response.")
 },
 CONDITION.DETAIL_MESSAGE: {
 "type": "str",
 "desc": _("Here you can enter a regular expression. The "
 "condition only applies if the regular expression "
 "matches the detail->message in the response.")
 }
 }
 return cond

 @property
 def events(cls):
 """
 This method returns a list allowed events, that this event handler
 can be bound to and which it can handle with the corresponding actions.

 An eventhandler may return an asterisk ["*"] indicating, that it can
 be used in all events.
 :return: list of events
 """
 events = ["*"]
 return events

 @staticmethod
 def _get_tokenowner(request):
 user = request.User
 serial = request.all_data.get("serial")
 if user.is_empty() and serial:
 # maybe the user is empty, but a serial was passed.
 # Then we determine the user by the serial
 try:
 user = get_token_owner(serial) or User()
 except Exception as exx:
 user = User()
 # This can happen for orphaned tokens.
 log.info("Could not determine tokenowner for {0!s}. Maybe the "
 "user does not exist anymore.".format(serial))
 log.debug(exx)
 # We now check, if the user exists at all!
 try:
 ui = user.info
 except UserError as exx:
 if exx.id == 905:
 user = User()
 else:
 raise exx
 return user

[docs] def check_condition(self, options):
 """
 Check if all conditions are met and if the action should be executed.
 The the conditions are met, we return "True"
 :return: True
 """
 g = options.get("g")
 request = options.get("request")
 response = options.get("response")
 e_handler_def = options.get("handler_def")
 if not response or not e_handler_def:
 # options is missing a response and the handler definition
 # We are probably in test mode.
 return True
 # conditions can be correspnding to the property conditions
 conditions = e_handler_def.get("conditions")
 content = json.loads(response.data)
 user = self._get_tokenowner(request)

 serial = request.all_data.get("serial") or \
 content.get("detail", {}).get("serial")
 tokenrealms = []
 tokentype = None
 token_obj = None
 if serial:
 # We have determined the serial number from the request.
 token_obj_list = get_tokens(serial=serial)
 else:
 # We have to determine the token via the user object. But only if
 # the user has only one token
 token_obj_list = get_tokens(user=user)
 if len(token_obj_list) == 1:
 token_obj = token_obj_list[0]
 tokenrealms = token_obj.get_realms()
 tokentype = token_obj.get_tokentype()

 if "realm" in conditions:
 if user.realm != conditions.get("realm"):
 return False

 if "logged_in_user" in conditions:
 # Determine the role of the user
 try:
 logged_in_user = g.logged_in_user
 user_role = logged_in_user.get("role")
 except Exception:
 # A non-logged-in-user is a User, not an admin
 user_role = ROLE.USER
 if user_role != conditions.get("logged_in_user"):
 return False

 if "result_value" in conditions:
 condition_value = conditions.get("result_value")
 result_value = content.get("result", {}).get("value")
 if condition_value != str(result_value):
 return False

 # checking of max-failcounter state of the token
 if "token_locked" in conditions:
 if token_obj:
 locked = token_obj.get_failcount() >= \
 token_obj.get_max_failcount()
 if (conditions.get("token_locked") in ["True", True]) != \
 locked:
 return False
 else:
 # check all tokens of the user, if any token is maxfail
 token_objects = get_tokens(user=user, maxfail=True)
 if not ','.join([tok.get_serial() for tok in token_objects]):
 return False

 if "tokenrealm" in conditions and tokenrealms:
 res = False
 for trealm in tokenrealms:
 if trealm in conditions.get("tokenrealm").split(","):
 res = True
 break
 if not res:
 return False

 if "serial" in conditions and serial:
 serial_match = conditions.get("serial")
 if not bool(re.match(serial_match, serial)):
 return False

 if CONDITION.USER_TOKEN_NUMBER in conditions and user:
 num_tokens = get_tokens(user=user, count=True)
 if num_tokens != int(conditions.get(
 CONDITION.USER_TOKEN_NUMBER)):
 return False

 if CONDITION.DETAIL_ERROR_MESSAGE in conditions:
 message = content.get("detail", {}).get("error", {}).get("message")
 search_exp = conditions.get(CONDITION.DETAIL_ERROR_MESSAGE)
 m = re.search(search_exp, message)
 if not bool(m):
 return False

 if CONDITION.DETAIL_MESSAGE in conditions:
 message = content.get("detail", {}).get("message")
 search_exp = conditions.get(CONDITION.DETAIL_MESSAGE)
 m = re.search(search_exp, message)
 if not bool(m):
 return False

 # Token specific conditions
 if token_obj:
 if CONDITION.TOKENTYPE in conditions:
 if tokentype not in conditions.get(CONDITION.TOKENTYPE).split(
 ","):
 return False

 if CONDITION.TOKEN_HAS_OWNER in conditions:
 uid = token_obj.get_user_id()
 check = conditions.get(CONDITION.TOKEN_HAS_OWNER)
 if uid and check in ["True", True]:
 res = True
 elif not uid and check in ["False", False]:
 res = True
 else:
 log.debug("Condition token_has_owner for token {0!r} "
 "not fulfilled.".format(token_obj))
 return False

 if CONDITION.TOKEN_IS_ORPHANED in conditions:
 uid = token_obj.get_user_id()
 orphaned = uid and not user
 check = conditions.get(CONDITION.TOKEN_IS_ORPHANED)
 if orphaned and check in ["True", True]:
 res = True
 elif not orphaned and check in ["False", False]:
 res = True
 else:
 log.debug("Condition token_is_orphaned for token {0!r} not "
 "fulfilled.".format(token_obj))
 return False

 if CONDITION.TOKEN_VALIDITY_PERIOD in conditions:
 valid = token_obj.check_validity_period()
 if (conditions.get(CONDITION.TOKEN_VALIDITY_PERIOD)
 in ["True", True]) != valid:
 return False

 if CONDITION.OTP_COUNTER in conditions:
 if token_obj.token.count != \
 int(conditions.get(CONDITION.OTP_COUNTER)):
 return False

 if CONDITION.LAST_AUTH in conditions:
 if token_obj.check_last_auth_newer(conditions.get(
 CONDITION.LAST_AUTH)):
 return False

 if CONDITION.COUNT_AUTH in conditions:
 count = token_obj.get_count_auth()
 cond = conditions.get(CONDITION.COUNT_AUTH)
 if not compare_condition(cond, count):
 return False

 if CONDITION.COUNT_AUTH_SUCCESS in conditions:
 count = token_obj.get_count_auth_success()
 cond = conditions.get(CONDITION.COUNT_AUTH_SUCCESS)
 if not compare_condition(cond, count):
 return False

 if CONDITION.COUNT_AUTH_FAIL in conditions:
 count = token_obj.get_count_auth()
 c_success = token_obj.get_count_auth_success()
 c_fail = count - c_success
 cond = conditions.get(CONDITION.COUNT_AUTH_FAIL)
 if not compare_condition(cond, c_fail):
 return False

 if CONDITION.TOKENINFO in conditions:
 cond = conditions.get(CONDITION.TOKENINFO)
 # replace {now} in condition
 cond, td = parse_time_offset_from_now(cond)
 s_now = (datetime.datetime.now(tzlocal()) + td).strftime(
 DATE_FORMAT)
 cond = cond.format(now=s_now)
 if len(cond.split("==")) == 2:
 key, value = [x.strip() for x in cond.split("==")]
 if not compare_value_value(token_obj.get_tokeninfo(key),
 "==", value):
 return False
 elif len(cond.split(">")) == 2:
 key, value = [x.strip() for x in cond.split(">")]
 if not compare_value_value(token_obj.get_tokeninfo(key),
 ">", value):
 return False
 elif len(cond.split("<")) == 2:
 key, value = [x.strip() for x in cond.split("<")]
 if not compare_value_value(token_obj.get_tokeninfo(key),
 "<", value):
 return False
 else:
 # There is a condition, but we do not know it!
 log.warning("Misconfiguration in your tokeninfo "
 "condition: {0!s}".format(cond))
 return False

 return True

[docs] def do(self, action, options=None):
 """
 This method executes the defined action in the given event.

 :param action:
 :param options: Contains the flask parameters g and request and the
 handler_def configuration
 :type options: dict
 :return:
 """
 log.info("In fact we are doing nothing, be we presume we are doing"
 "{0!s}".format(action))
 return True

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/registrationtoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.registrationtoken

-*- coding: utf-8 -*-
#
privacyIDEA
Aug 12, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2015-01-29 Adapt during migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This file contains the definition of the RegisterToken class.

The code is tested in test_lib_tokens_registration.py.
"""

import logging
from privacyidea.lib.tokens.passwordtoken import PasswordTokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.utils import generate_password
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

[docs]class RegistrationTokenClass(PasswordTokenClass):
 """
 Token to implement a registration code.
 It can be used to create a registration code or a "TAN" which can be used
 once by a user to authenticate somewhere. After this registration code is
 used, the token is automatically deleted.

 The idea is to provide a workflow, where the user can get a registration code
 by e.g. postal mail and then use this code as the initial first factor to
 authenticate to the UI to enroll real tokens.

 A registration code can be created by an administrative task with the
 token/init api like this:

 Example Authentication Request:

 .. sourcecode:: http

 POST /token/init HTTP/1.1
 Host: example.com
 Accept: application/json

 type=register
 user=cornelius
 realm=realm1

 Example response:

 .. sourcecode:: http

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "detail": {
 "registrationcode": "12345808124095097608"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

 """

 def __init__(self, aToken):
 PasswordTokenClass.__init__(self, aToken)
 self.hKeyRequired = False
 self.set_type(u"registration")
 self.otp_len = 24

 @staticmethod
[docs] def get_class_type():
 return "registration"

 @staticmethod
[docs] def get_class_prefix():
 return "REG"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'registration',
 'title': 'Registration Code Token',
 'description': _('Registration: A token that creates a '
 'registration code that '
 'can be used as a second factor once.'),
 'init': {},
 'config': {},
 'user': [],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin"],
 'policy': {},
 }

 if key:
 ret = res.get(key)
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 """
 This method is called during the initialization process.
 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 if "genkey" in param:
 # We do not need the genkey! We generate anyway.
 # Otherwise genkey and otpkey will raise an exception in
 # PasswordTokenClass
 del param["genkey"]
 param["otpkey"] = generate_password(size=self.otp_len)
 PasswordTokenClass.update(self, param)

 @log_with(log, log_entry=False)
 @check_token_locked
[docs] def inc_count_auth_success(self):
 """
 Increase the counter, that counts successful authentications
 In case of successful authentication the token does needs to be deleted.
 """
 self.delete_token()
 return 1

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 At the end of the initialization we return the registration code.
 """
 response_detail = PasswordTokenClass.get_init_detail(self, params, user)
 params = params or {}
 secretHOtp = self.token.get_otpkey()
 registrationcode = secretHOtp.getKey()
 response_detail["registrationcode"] = registrationcode
 return response_detail

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/spasstoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.spasstoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2015-01-27 Rewrite due to flask migration
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__="""This is the implementation of the simple pass token.
The simple pass token always returns TRUE as far as the checkOTP is concerned.
Thus a user with a simple pass token can authenticate by just providing the
OTP PIN of the token.

This code is tested in tests/test_lib_tokens_spass
"""

import logging
from privacyidea.lib import _
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.policy import SCOPE

optional = True
required = False

log = logging.getLogger(__name__)

[docs]class SpassTokenClass(TokenClass):
 """
 This is a simple pass token.
 It does have no OTP component. The OTP checking will always
 succeed. Of course, an OTP PIN can be used.
 """
 def __init__(self, db_token):
 TokenClass.__init__(self, db_token)
 self.set_type(u"spass")
 self.mode = ['authenticate']

 @staticmethod
[docs] def get_class_type():
 return "spass"

 @staticmethod
[docs] def get_class_prefix():
 return "PISP"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition
 Is used by lib.token.get_token_info

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict
 """
 res = {'type' :'spass',
 'title' :'Simple Pass Token',
 'description': _('SPass: Simple Pass token. Static passwords.'),
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 # SPASS token can have specific PIN policies in the scopes
 # admin and user
 'pin_scopes': [SCOPE.ADMIN, SCOPE.USER],
 'policy': {}
 }

 # do we need to define the lost token policies here...
 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 if 'otpkey' not in param:
 param['genkey'] = 1

 TokenClass.update(self, param)

 @staticmethod
[docs] def is_challenge_request(passw, user, options=None):
 """
 The spass token does not support challenge response
 :param passw:
 :param user:
 :param options:
 :return:
 """
 return False # pragma: no cover

 @staticmethod
[docs] def is_challenge_response(passw, user, options=None, challenges=None):
 return False # pragma: no cover

 @check_token_locked
[docs] def check_otp(self, otpval, counter=None, window=None, options=None):
 """
 As we have no otp value we always return true. (counter == 0)
 """
 return 0

 @log_with(log)
 @check_token_locked
[docs] def authenticate(self, passw, user=None, options=None):
 """
 in case of a wrong passw, we return a bad matching pin,
 so the result will be an invalid token
 """
 otp_count = -1
 pin_match = self.check_pin(passw, user=user, options=options)
 if pin_match is True:
 otp_count = 0
 return pin_match, otp_count, None

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/daplugtoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.daplugtoken

-*- coding: utf-8 -*-
#
privacyIDEA
Aug 12, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2015-01-29 Adapt during migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
#
based on the tokenclass.py base class of LinOTP which is
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
This is the token module for the daplug token. It behaves like HOTP,
but uses another OTP format/mapping.

This code is tested in tests/test_lib_tokens_daplug
"""

import binascii
from privacyidea.lib.tokens.hotptoken import HotpTokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.config import get_prepend_pin
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib import _
optional = True
required = False

import logging
log = logging.getLogger(__name__)

MAPPING = {"b": "0",
 "c": "1",
 "d": "2",
 "e": "3",
 "f": "4",
 "g": "5",
 "h": "6",
 "i": "7",
 "j": "8",
 "k": "9"}

def _daplug2digit(daplug_otp):
 hex_otp = ""
 for i in daplug_otp:
 digit = MAPPING.get(i)
 hex_otp += digit
 otp = binascii.unhexlify(hex_otp)
 return otp

def _digi2daplug(normal_otp):
 """
 convert "497096" to 34 39 37 30 39 36, which is efekeiebekeh

 This function is only used for testing purposes
 :param normal_otp:
 :return:
 """
 daplug_otp = ""
 hex_otp = binascii.hexlify(normal_otp)
 REVERSE_MAP = {v: k for k,v in MAPPING.items()}
 for i in hex_otp:
 daplug_otp += REVERSE_MAP.get(i)
 return daplug_otp

[docs]class DaplugTokenClass(HotpTokenClass):
 """
 daplug token class implementation
 """

 @staticmethod
[docs] def get_class_type():
 return "daplug"

 @staticmethod
[docs] def get_class_prefix():
 return "DPLG"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string

 :param ret: default return value, if nothing is found
 :type ret: user defined

 :return: subsection if key exists or user defined
 :rtype: dict or string
 """
 res = {'type': 'daplug',
 'title': 'Daplug Event Token',
 'description': _("event based OTP token using "
 "the HOTP algorithm"),
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, a_token):
 """
 create a token object

 :param aToken: instance of the orm db object
 :type aToken: orm object
 """
 HotpTokenClass.__init__(self, a_token)
 self.set_type(u"daplug")
 self.hKeyRequired = True
 return

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 checkOtp - validate the token otp against a given otpvalue

 :param anOtpVal: the otpvalue to be verified
 :type anOtpVal: string, format: efekeiebekeh
 :param counter: the counter state, that should be verified
 :type counter: int
 :param window: the counter +window, which should be checked
 :type window: int
 :param options: the dict, which could contain token specific info
 :type options: dict
 :return: the counter state or -1
 :rtype: int

 """
 # convert OTP value
 otp = _daplug2digit(anOtpVal)
 res = HotpTokenClass.check_otp(self, otp, counter, window, options)
 return res

 @log_with(log)
[docs] def check_otp_exist(self, otp, window=10):
 """
 checks if the given OTP value is/are values of this very token.
 This is used to autoassign and to determine the serial number of
 a token.

 :param otp: the to be verified otp value
 :type otp: string
 :param window: the lookahead window for the counter
 :type window: int
 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 otp = _daplug2digit(otp)
 res = HotpTokenClass.check_otp_exist(self, otp, window)
 return res

 @log_with(log)
[docs] def get_otp(self, current_time=None):
 res = HotpTokenClass.get_otp(self, current_time)
 # returns (1, -1, '755224', '755224-1')
 return res[0], res[1], _digi2daplug(res[2]), res[3]

 @log_with(log)
[docs] def get_multi_otp(self, count=0, epoch_start=0, epoch_end=0,
 curTime=None, timestamp=None):
 res = HotpTokenClass.get_multi_otp(self, count=count,
 epoch_start=epoch_start,
 epoch_end=epoch_end,
 curTime=curTime, timestamp=timestamp)
 # (True, 'OK', {'otp': {0: '755224', 1: '287082',
 # 2: '359152', 3: '969429',
 # 4: '338314'},
 # 'type': 'hotp'})
 # convert the response
 rdict = {'type': self.get_class_type(),
 'otp': {}}
 otp_dict = {}
 for k, v in res[2].get('otp').items():
 rdict['otp'][k] = _digi2daplug(v)

 return res[0], res[1], rdict

 @log_with(log)
[docs] def resync(self, otp1, otp2, options=None):
 """
 resync the token based on two otp values
 - external method to do the resync of the token

 :param otp1: the first otp value
 :type otp1: string
 :param otp2: the second otp value
 :type otp2: string
 :param options: optional token specific parameters
 :type options: dict or None
 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 n_otp1 = _daplug2digit(otp1)
 n_otp2 = _daplug2digit(otp2)
 res = HotpTokenClass.resync(self, n_otp1, n_otp2, options)
 return res

[docs] def split_pin_pass(self, passw, user=None, options=None):
 res = 0
 try:
 otplen = int(self.token.otplen)
 except ValueError: # pragma: no cover
 otplen = 6

 # For splitting the value we use 12 characters.
 # For internal calculation we use 6 digits.
 otplen *= 2

 if get_prepend_pin():
 pin = passw[0:-otplen]
 otpval = passw[-otplen:]
 else:
 pin = passw[otplen:]
 otpval = passw[0:otplen]

 return res, pin, otpval

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/certificatetoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.certificatetoken

-*- coding: utf-8 -*-
#
privacyIDEA
Aug 12, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2016-04-26 Cornelius Kölbel <cornelius@privacyidea.org>
Add the possibility to create key pair on server side
Provide download for pkcs12 file
#
2015-05-15 Adapt during migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This file contains the definition of the CertificateToken class.

The code is tested in test_lib_tokens_certificate.py.
"""

import logging
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.caconnector import get_caconnector_object
from privacyidea.lib.user import get_user_from_param
from OpenSSL import crypto
from privacyidea.lib.decorators import check_token_locked
import base64
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

[docs]class CertificateTokenClass(TokenClass):
 """
 Token to implement an X509 certificate.
 The certificate can be enrolled by sending a CSR to the server or the
 keypair is created by the server. If the server creates the keypair,
 the user can download a PKCS12 file.
 The OTP PIN is used as passphrase for the PKCS12 file.

 privacyIDEA is capable of working with different CA connectors.

 Valid parameters are *request* or *certificate*, both PEM encoded.
 If you pass a *request* you also need to pass the *ca* that should be
 used to sign the request. Passing a *certificate* just uploads the
 certificate to a new token object.

 A certificate token can be created by an administrative task with the
 token/init api like this:

 Example Initialization Request:

 .. sourcecode:: http

 POST /auth HTTP/1.1
 Host: example.com
 Accept: application/json

 type=certificate
 user=cornelius
 realm=realm1
 request=<PEM encoded request>
 ca=<name of the ca connector>

 Example Initialization Request, key generation on servers side

 In this case the certificate is created on behalf of another user.

 .. sourcecode:: http

 POST /auth HTTP/1.1
 Host: example.com
 Accept: application/json

 type=certificate
 user=cornelius
 realm=realm1
 generate=1
 ca=<name of the ca connector>

 Example response:

 .. sourcecode:: http

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "detail": {
 "certificate": "...PEM..."
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

 """
 using_pin = False
 hKeyRequired = False

 def __init__(self, aToken):
 TokenClass.__init__(self, aToken)
 self.set_type(u"certificate")
 self.otp_len = 0

 @staticmethod
[docs] def get_class_type():
 return "certificate"

 @staticmethod
[docs] def get_class_prefix():
 return "CRT"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'certificate',
 'title': 'Certificate Token',
 'description': _('Certificate: Enroll an x509 Certificate '
 'Token.'),
 'init': {},
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 """
 This method is called during the initialization process.
 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 TokenClass.update(self, param)

 request = getParam(param, "request", optional)
 spkac = getParam(param, "spkac", optional)
 certificate = getParam(param, "certificate", optional)
 generate = getParam(param, "genkey", optional)
 template_name = getParam(param, "template", optional)
 if request or generate:
 # If we do not upload a user certificate, then we need a CA do
 # sign the uploaded request or generated certificate.
 ca = getParam(param, "ca", required)
 self.add_tokeninfo("CA", ca)
 cacon = get_caconnector_object(ca)
 if request:
 # During the initialization process, we need to create the
 # certificate
 x509object = cacon.sign_request(request,
 options={"spkac": spkac,
 "template": template_name})
 certificate = crypto.dump_certificate(crypto.FILETYPE_PEM,
 x509object)
 elif generate:
 # Create the certificate on behalf of another user.
 # Now we need to create the key pair,
 # the request
 # and the certificate
 # We need the user for whom the certificate should be created
 user = get_user_from_param(param, optionalOrRequired=required)

 keysize = getParam(param, "keysize", optional, 2048)
 key = crypto.PKey()
 key.generate_key(crypto.TYPE_RSA, keysize)
 req = crypto.X509Req()
 req.get_subject().CN = user.login
 # Add email to subject
 if user.info.get("email"):
 req.get_subject().emailAddress = user.info.get("email")
 req.get_subject().organizationalUnitName = user.realm
 # TODO: Add Country, Organization, Email
 # req.get_subject().countryName = 'xxx'
 # req.get_subject().stateOrProvinceName = 'xxx'
 # req.get_subject().localityName = 'xxx'
 # req.get_subject().organizationName = 'xxx'
 req.set_pubkey(key)
 req.sign(key, "sha256")
 x509object = cacon.sign_request(crypto.dump_certificate_request(
 crypto.FILETYPE_PEM, req), options={"template": template_name})
 certificate = crypto.dump_certificate(crypto.FILETYPE_PEM,
 x509object)
 # Save the private key to the encrypted key field of the token
 s = crypto.dump_privatekey(crypto.FILETYPE_PEM, key)
 self.add_tokeninfo("privatekey", s, value_type="password")

 if "pin" in param:
 self.set_pin(param.get("pin"), encrypt=True)

 if certificate:
 self.add_tokeninfo("certificate", certificate)

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 At the end of the initialization we return the certificate and the
 PKCS12 file, if the private key exists.
 """
 response_detail = TokenClass.get_init_detail(self, params, user)
 params = params or {}
 certificate = self.get_tokeninfo("certificate")
 response_detail["certificate"] = certificate
 privatekey = self.get_tokeninfo("privatekey")
 # If there is a private key, we dump a PKCS12
 if privatekey:
 response_detail["pkcs12"] = base64.b64encode(
 self._create_pkcs12_bin())

 return response_detail

 def _create_pkcs12_bin(self):
 """
 Helper function to create an encrypted pkcs12 binary for download

 :return: PKCS12 binary
 """
 certificate = self.get_tokeninfo("certificate")
 privatekey = self.get_tokeninfo("privatekey")
 pkcs12 = crypto.PKCS12()
 pkcs12.set_certificate(crypto.load_certificate(
 crypto.FILETYPE_PEM, certificate))
 pkcs12.set_privatekey(crypto.load_privatekey(crypto.FILETYPE_PEM,
 privatekey))
 # TODO define a random passphrase and hand it to the user
 passphrase = self.token.get_pin()
 if passphrase == -1:
 passphrase = ""
 pkcs12_bin = pkcs12.export(passphrase=passphrase)
 return pkcs12_bin

[docs] def get_as_dict(self):
 """
 This returns the token data as a dictionary.
 It is used to display the token list at /token/list.

 The certificate token can add the PKCS12 file if it exists

 :return: The token data as dict
 :rtype: dict
 """
 # first get the database values as dict
 token_dict = self.token.get()

 if "privatekey" in token_dict.get("info"):
 token_dict["info"]["pkcs12"] = base64.b64encode(
 self._create_pkcs12_bin())
 #del(token_dict["privatekey"])

 return token_dict

 @check_token_locked
[docs] def set_pin(self, pin, encrypt=False):
 """
 set the PIN of a token.
 The PIN of the certificate token is stored encrypted. It is used as
 passphrase for the PKCS12 file.

 :param pin: the pin to be set for the token
 :type pin: basestring
 :param encrypt: If set to True, the pin is stored encrypted and
 can be retrieved from the database again
 :type encrypt: bool
 """
 storeHashed = False
 self.token.set_pin(pin, storeHashed)

[docs] def revoke(self):
 """
 This revokes the token. We need to determine the CA, which issues the
 certificate, contact the connector and revoke the certificate

 Some token types may revoke a token without locking it.
 """
 TokenClass.revoke(self)

 # determine the CA and its connector.
 ti = self.get_tokeninfo()
 ca_specifier = ti.get("CA")
 log.debug("Revoking certificate {0!s} on CA {1!s}.".format(
 self.token.serial, ca_specifier))
 certificate_pem = ti.get("certificate")

 # call CAConnector.revoke_cert()
 ca_obj = get_caconnector_object(ca_specifier)
 revoked = ca_obj.revoke_cert(certificate_pem)
 log.info("Certificate {0!s} revoked on CA {1!s}.".format(revoked,
 ca_specifier))

 # call CAConnector.create_crl()
 crl = ca_obj.create_crl()
 log.info("CRL {0!s} created.".format(crl))

 return revoked

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/yubicotoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.yubicotoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2017-11-24 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Generate the nonce on an HSM
2016-04-04 Cornelius Kölbel <cornelius@privacyidea.org>
Use central yubico_api_signature function
2015-01-28 Rewrite during flask migration
Change to use requests module
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
This is the implementation of the yubico token type.
Authentication requests are forwarded to the Yubico Cloud service YubiCloud.

The code is tested in tests/test_lib_tokens_yubico
"""
import logging
from privacyidea.lib.decorators import check_token_locked
import traceback
import requests
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.crypto import geturandom
from privacyidea.lib.config import get_from_config
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.tokens.yubikeytoken import (yubico_check_api_signature,
 yubico_api_signature)
import os
import binascii
from privacyidea.lib import _

YUBICO_LEN_ID = 12
YUBICO_LEN_OTP = 44
YUBICO_URL = "https://api.yubico.com/wsapi/2.0/verify"
DEFAULT_CLIENT_ID = 20771
DEFAULT_API_KEY = "9iE9DRkPHQDJbAFFC31/dum5I54="

optional = True
required = False

log = logging.getLogger(__name__)

[docs]class YubicoTokenClass(TokenClass):

 def __init__(self, db_token):
 TokenClass.__init__(self, db_token)
 self.set_type(u"yubico")
 self.tokenid = ""

 @staticmethod
[docs] def get_class_type():
 return "yubico"

 @staticmethod
[docs] def get_class_prefix():
 return "UBCM"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or string
 """
 res = {'type': 'yubico',
 'title': 'Yubico Token',
 'description': _('Yubikey Cloud mode: Forward authentication '
 'request to YubiCloud.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy' : {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 tokenid = getParam(param, "yubico.tokenid", required)
 if len(tokenid) < YUBICO_LEN_ID:
 log.error("The tokenid needs to be {0:d} characters long!".format(YUBICO_LEN_ID))
 raise Exception("The Yubikey token ID needs to be {0:d} characters long!".format(YUBICO_LEN_ID))

 if len(tokenid) > YUBICO_LEN_ID:
 tokenid = tokenid[:YUBICO_LEN_ID]
 self.tokenid = tokenid
 # overwrite the maybe wrong lenght given at the command line
 param['otplen'] = 44
 TokenClass.update(self, param)
 self.add_tokeninfo("yubico.tokenid", self.tokenid)

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 Here we contact the Yubico Cloud server to validate the OtpVal.
 """
 res = -1

 apiId = get_from_config("yubico.id", DEFAULT_CLIENT_ID)
 apiKey = get_from_config("yubico.secret", DEFAULT_API_KEY)
 yubico_url = get_from_config("yubico.url", YUBICO_URL)

 if apiKey == DEFAULT_API_KEY or apiId == DEFAULT_CLIENT_ID:
 log.warning("Usage of default apiKey or apiId not recommended!")
 log.warning("Please register your own apiKey and apiId at "
 "yubico website!")
 log.warning("Configure of apiKey and apiId at the "
 "privacyidea manage config menu!")

 tokenid = self.get_tokeninfo("yubico.tokenid")
 if len(anOtpVal) < 12:
 log.warning("The otpval is too short: {0!r}".format(anOtpVal))
 elif anOtpVal[:12] != tokenid:
 log.warning("The tokenid in the OTP value does not match "
 "the assigned token!")
 else:
 nonce = geturandom(20, hex=True)
 p = {'nonce': nonce,
 'otp': anOtpVal,
 'id': apiId}
 # Also send the signature to the yubico server
 p["h"] = yubico_api_signature(p, apiKey)

 try:
 r = requests.post(yubico_url,
 data=p)

 if r.status_code == requests.codes.ok:
 response = r.text
 elements = response.split()
 data = {}
 for elem in elements:
 k, v = elem.split("=", 1)
 data[k] = v
 result = data.get("status")
 return_nonce = data.get("nonce")
 # check signature:
 signature_valid = yubico_check_api_signature(data, apiKey)

 if not signature_valid:
 log.error("The hash of the return from the yubico "
 "authentication server ({0!s}) "
 "does not match the data!".format(yubico_url))

 if nonce != return_nonce:
 log.error("The returned nonce does not match "
 "the sent nonce!")

 if result == "OK":
 res = 1
 if nonce != return_nonce or not signature_valid:
 log.warning("Nonce and Hash do not match.")
 res = -2
 else:
 # possible results are listed here:
 # https://github.com/Yubico/yubikey-val/wiki/ValidationProtocolV20
 log.warning("failed with {0!r}".format(result))

 except Exception as ex:
 log.error("Error getting response from Yubico Cloud Server"
 " (%r): %r" % (yubico_url, ex))
 log.debug("{0!s}".format(traceback.format_exc()))

 return res

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/passwordtoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.passwordtoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
2014-12-05 Cornelius Kölbel <cornelius@privacyidea.org>
Migration to flask
#
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de

"""
This file contains the definition of the password token class
"""

import logging
from privacyidea.lib.crypto import zerome
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

[docs]class PasswordTokenClass(TokenClass):
 """
 This Token does use a fixed Password as the OTP value.
 In addition, the OTP PIN can be used with this token.
 This Token can be used for a scenario like losttoken
 """

[docs] class SecretPassword(object):

 def __init__(self, secObj):
 self.secretObject = secObj

[docs] def get_password(self):
 return self.secretObject.getKey()

[docs] def check_password(self, password):
 res = -1

 key = self.secretObject.getKey()

 if key == password:
 res = 0

 zerome(key)
 del key

 return res

 def __init__(self, aToken):
 TokenClass.__init__(self, aToken)
 self.hKeyRequired = True
 self.set_type(u"pw")

 @staticmethod
[docs] def get_class_type():
 return "pw"

 @staticmethod
[docs] def get_class_prefix():
 return "PW"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'pw',
 'title': 'Password Token',
 'description': _('A token with a fixed password. Can be '
 'combined with the OTP PIN. Is used for the '
 'lost token scenario.'),
 'init': {},
 'config': {},
 'user': [],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': [],
 'policy': {},
 }
 # I don't think we need to define the lost token policies here...

 if key:
 ret = res.get(key)
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 """
 This method is called during the initialization process.
 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 """
 :param param:
 :return:
 """
 TokenClass.update(self, param)
 self.set_otplen()

 @log_with(log)
 @check_token_locked
[docs] def set_otplen(self, otplen=0):
 """
 sets the OTP length to the length of the password

 :param otplen: This is ignored in this class
 :type otplen: int
 :result: None
 """
 secretHOtp = self.token.get_otpkey()
 sp = PasswordTokenClass.SecretPassword(secretHOtp)
 pw_len = len(sp.get_password())
 TokenClass.set_otplen(self, pw_len)
 return

 @log_with(log, log_entry=False)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 This checks the static password

 :param anOtpVal: This contains the "OTP" value, which is the static
 password
 :return: result of password check, 0 in case of success, -1 if fail
 :rtype: int
 """
 secretHOtp = self.token.get_otpkey()
 sp = PasswordTokenClass.SecretPassword(secretHOtp)
 res = sp.check_password(anOtpVal)

 return res

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/u2ftoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.u2ftoken

-*- coding: utf-8 -*-
#
2017-04-18 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Save attestation cert info to tokeninfo
2015-11-22 Cornelius Kölbel <cornelius@privacyidea.org>
Adding dynamic facet list
#
http://www.privacyidea.org
2017-04-22 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add policies of attestation certificate
2015-09-21 Initial writeup.
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.config import get_from_config
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
import logging
from privacyidea.models import Challenge
from privacyidea.lib import _
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.crypto import geturandom
from privacyidea.lib.tokens.u2f import (check_registration_data, url_decode,
 parse_registration_data, url_encode,
 parse_response_data, check_response,
 x509name_to_string)
from privacyidea.lib.error import ValidateError, PolicyError
from privacyidea.lib.policy import SCOPE
import base64
import binascii
import json
import re

__doc__ = """
U2F is the "Universal 2nd Factor" specified by the FIDO Alliance.
The register and authentication process is described here:

https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html

But you do not need to be aware of this. privacyIDEA wraps all FIDO specific
communication, which should make it easier for you, to integrate the U2F
tokens managed by privacyIDEA into your application.

U2F Tokens can be either

 * registered by administrators for users or
 * registered by the users themselves.

Enrollment

The enrollment/registering can be completely performed within privacyIDEA.

But if you want to enroll the U2F token via the REST API you need to do it in
two steps:

1. Step
~~~~~~~

.. sourcecode:: http

   POST /token/init HTTP/1.1
   Host: example.com
   Accept: application/json

   type=utf

This step returns a serial number.

2. Step
~~~~~~~

.. sourcecode:: http

 POST /token/init HTTP/1.1
 Host: example.com
 Accept: application/json

 type=utf
 serial=U2F1234578
 clientdata=<clientdata>
 regdata=<regdata>

clientdata and *regdata* are the values returned by the U2F device.

You need to call the javascript function

 u2f.register([registerRequest], [], function(u2fData) {});

and the responseHandler needs to send the *clientdata* and *regdata* back to
privacyIDEA (2. step).

Authentication

The U2F token is a challenge response token. I.e. you need to trigger a
challenge e.g. by sending the OTP PIN/Password for this token.

Get the challenge
~~~~~~~~~~~~~~~~~

.. sourcecode:: http

   POST /validate/check HTTP/1.1
   Host: example.com
   Accept: application/json

   user=cornelius
   pass=tokenpin

**Response**

.. sourcecode:: http

   HTTP/1.1 200 OK
   Content-Type: application/json

   {
      "detail": {
        "attributes": {
                        "hideResponseInput": true,
                        "img": ...imageUrl...
                        "u2fSignRequest": {
                            "challenge": "...",
                            "appId": "...",
                            "keyHandle": "...",
                            "version": "U2F_V2"
                        }
                      },
        "message": "Please confirm with your U2F token (Yubico U2F EE ...)"
        "transaction_id": "02235076952647019161"
      },
      "id": 1,
      "jsonrpc": "2.0",
      "result": {
          "status": true,
          "value": false,
      },
      "version": "privacyIDEA unknown"
    }

Send the Response
~~~~~~~~~~~~~~~~~

The application now needs to call the javascript function *u2f.sign* with the
u2fSignRequest from the response.

 var signRequests = [error.detail.attributes.u2fSignRequest];
 u2f.sign(signRequests, function(u2fResult) {});

The response handler function needs to call the */validate/check* API again with
the signatureData and clientData returned by the U2F device in the *u2fResult*:

.. sourcecode:: http

 POST /validate/check HTTP/1.1
 Host: example.com
 Accept: application/json

 user=cornelius
 pass=
 transaction_id=<transaction_id>
 signaturedata=signatureData
 clientdata=clientData

"""

IMAGES = {"yubico": "static/css/FIDO-U2F-Security-Key-444x444.png",
 "plug-up": "static/css/plugup.jpg"}
U2F_Version = "U2F_V2"

log = logging.getLogger(__name__)
optional = True
required = False

class U2FACTION(object):
 FACETS = "u2f_facets"
 REQ = "u2f_req"

[docs]class U2fTokenClass(TokenClass):
 """
 The U2F Token implementation.
 """

 @staticmethod
[docs] def get_class_type():
 """
 Returns the internal token type identifier
 :return: u2f
 :rtype: basestring
 """
 return "u2f"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: U2F
 :rtype: basestring
 """
 return "U2F"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'u2f',
 'title': 'U2F Token',
 'description': 'U2F: Enroll a U2F token.',
 'init': {},
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {
 SCOPE.AUTH: {
 U2FACTION.FACETS: {
 'type': 'str',
 'desc': _("This is a list of FQDN hostnames "
 "trusting the registered U2F tokens.")}
 },
 SCOPE.AUTHZ: {
 U2FACTION.REQ: {
 'type': 'str',
 'desc': _("Only specified U2F tokens are "
 "authorized.")
 }
 },
 SCOPE.ENROLL: {
 U2FACTION.REQ: {
 'type': 'str',
 'desc': _("Only specified U2F tokens are allowed "
 "to be registered.")
 }
 }
 }
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new U2F Token object from a database object

 :param db_token: instance of the orm db object
 :type db_token: DB object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"u2f")
 self.hKeyRequired = False
 self.init_step = 1

[docs] def update(self, param, reset_failcount=True):
 """
 This method is called during the initialization process.

 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 TokenClass.update(self, param)
 description = "U2F initialization"
 reg_data = getParam(param, "regdata")
 if reg_data:
 self.init_step = 2
 attestation_cert, user_pub_key, key_handle, \
 signature, description = parse_registration_data(reg_data)
 client_data = getParam(param, "clientdata", required)
 client_data_str = url_decode(client_data)
 app_id = self.get_tokeninfo("appId", "")
 # Verify the registration data
 # In case of any crypto error, check_data raises an exception
 check_registration_data(attestation_cert, app_id, client_data_str,
 user_pub_key, key_handle, signature)
 self.set_otpkey(key_handle)
 self.add_tokeninfo("pubKey", user_pub_key)
 # add attestation certificat info
 issuer = x509name_to_string(attestation_cert.get_issuer())
 serial = "{!s}".format(attestation_cert.get_serial_number())
 subject = x509name_to_string(attestation_cert.get_subject())

 self.add_tokeninfo("attestation_issuer", issuer)
 self.add_tokeninfo("attestation_serial", serial)
 self.add_tokeninfo("attestation_subject", subject)

 # If a description is given we use the given description
 description = getParam(param, "description", default=description)
 self.set_description(description)

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 At the end of the initialization we ask the user to press the button
 """
 response_detail = {}
 if self.init_step == 1:
 # This is the first step of the init request
 app_id = get_from_config("u2f.appId", "").strip("/")
 from privacyidea.lib.error import TokenAdminError
 if not app_id:
 raise TokenAdminError(_("You need to define the appId in the "
 "token config!"))
 nonce = base64.urlsafe_b64encode(geturandom(32))
 response_detail = TokenClass.get_init_detail(self, params, user)
 register_request = {"version": U2F_Version,
 "challenge": nonce,
 "appId": app_id}
 response_detail["u2fRegisterRequest"] = register_request
 self.add_tokeninfo("appId", app_id)

 elif self.init_step == 2:
 # This is the second step of the init request
 response_detail["u2fRegisterResponse"] = {"subject":
 self.token.description}

 return response_detail

 @log_with(log)
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 check, if the request would start a challenge
 In fact every Request that is not a response needs to start a
 challenge request.

 At the moment we do not think of other ways to trigger a challenge.

 This function is not decorated with
 @challenge_response_allowed
 as the U2F token is always a challenge response token!

 :param passw: The PIN of the token.
 :param options: dictionary of additional request parameters

 :return: returns true or false
 """
 trigger_challenge = False
 options = options or {}
 pin_match = self.check_pin(passw, user=user, options=options)
 if pin_match is True:
 trigger_challenge = True

 return trigger_challenge

[docs] def create_challenge(self, transactionid=None, options=None):
 """
 This method creates a challenge, which is submitted to the user.
 The submitted challenge will be preserved in the challenge
 database.

 If no transaction id is given, the system will create a transaction
 id and return it, so that the response can refer to this transaction.

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :type options: dict
 :return: tuple of (bool, message, transactionid, attributes)
 :rtype: tuple

 The return tuple builds up like this:
 ``bool`` if submit was successful;
 ``message`` which is displayed in the JSON response;
 additional ``attributes``, which are displayed in the JSON response.
 """
 options = options or {}
 message = u'Please confirm with your U2F token ({0!s})'.format(\
 self.token.description)

 validity = int(get_from_config('DefaultChallengeValidityTime', 120))
 tokentype = self.get_tokentype().lower()
 lookup_for = tokentype.capitalize() + 'ChallengeValidityTime'
 validity = int(get_from_config(lookup_for, validity))

 challenge = geturandom(32)
 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=transactionid,
 challenge=binascii.hexlify(challenge),
 data=None,
 session=options.get("session"),
 validitytime=validity)
 db_challenge.save()
 sec_object = self.token.get_otpkey()
 key_handle_hex = sec_object.getKey()
 key_handle_bin = binascii.unhexlify(key_handle_hex)
 key_handle_url = url_encode(key_handle_bin)
 challenge_url = url_encode(challenge)
 u2f_sign_request = {"appId": self.get_tokeninfo("appId"),
 "version": U2F_Version,
 "challenge": challenge_url,
 "keyHandle": key_handle_url}

 image_url = IMAGES.get(self.token.description.lower().split()[0], "")
 response_details = {"u2fSignRequest": u2f_sign_request,
 "hideResponseInput": True,
 "img": image_url}

 return True, message, db_challenge.transaction_id, response_details

 @check_token_locked
[docs] def check_otp(self, otpval, counter=None, window=None, options=None):
 """
 This checks the response of a previous challenge.
 :param otpval: N/A
 :param counter: The authentication counter
 :param window: N/A
 :param options: contains "clientdata", "signaturedata" and
 "transaction_id"
 :return: A value > 0 in case of success
 """
 ret = -1
 clientdata = options.get("clientdata")
 signaturedata = options.get("signaturedata")
 transaction_id = options.get("transaction_id")
 # The challenge in the challenge DB object is saved in hex
 challenge = binascii.unhexlify(options.get("challenge", ""))
 if clientdata and signaturedata and transaction_id and challenge:
 # This is a valid response for a U2F token
 challenge_url = url_encode(challenge)
 clientdata = url_decode(clientdata)
 clientdata_dict = json.loads(clientdata)
 client_challenge = clientdata_dict.get("challenge")
 if challenge_url != client_challenge:
 return ret
 if clientdata_dict.get("typ") != "navigator.id.getAssertion":
 raise ValidateError("Incorrect navigator.id")
 #client_origin = clientdata_dict.get("origin")
 signaturedata = url_decode(signaturedata)
 signaturedata_hex = binascii.hexlify(signaturedata)
 user_presence, counter, signature = parse_response_data(
 signaturedata_hex)

 user_pub_key = self.get_tokeninfo("pubKey")
 app_id = self.get_tokeninfo("appId")
 if check_response(user_pub_key, app_id, clientdata,
 binascii.hexlify(signature), counter,
 user_presence):
 # Signature verified.
 # check, if the counter increased!
 if counter > self.get_otp_count():
 self.set_otp_count(counter)
 ret = counter
 # At this point we can check, if the attestation
 # certificate is authorized.
 # If not, we can raise a policy exception
 g = options.get("g")
 if self.user:
 token_user = self.user.login
 token_realm = self.user.realm
 token_resolver = self.user.resolver
 else:
 token_realm = token_resolver = token_user = None
 allowed_certs_pols = g.policy_object.get_action_values(
 U2FACTION.REQ,
 scope=SCOPE.AUTHZ,
 realm=token_realm,
 user=token_user,
 resolver=token_resolver,
 client=g.client_ip)
 for allowed_cert in allowed_certs_pols:
 tag, matching, _rest = allowed_cert.split("/", 3)
 tag_value = self.get_tokeninfo(
 "attestation_{0!s}".format(tag))
 # if we do not get a match, we bail out
 m = re.search(matching, tag_value)
 if not m:
 log.warning("The U2F device {0!s} is not "
 "allowed to authenticate due to policy "
 "restriction".format(
 self.token.serial))
 raise PolicyError("The U2F device is not allowed "
 "to authenticate due to policy "
 "restriction.")

 else:
 log.warning("The signature of %s was valid, but contained "
 "an old counter." % self.token.serial)
 else:
 log.warning("Checking response for token {0!s} failed.".format(
 self.token.serial))

 return ret

 @staticmethod
[docs] def api_endpoint(request, g):
 """
 This provides a function to be plugged into the API endpoint
 /ttype/u2f

 The u2f token can return the facet list at this URL.

 :param request: The Flask request
 :param g: The Flask global object g
 :return: Flask Response or text
 """
 app_id = get_from_config("u2f.appId").strip("/")

 # Read the facets from the policies
 pol_facets = g.policy_object.get_action_values(U2FACTION.FACETS,
 scope=SCOPE.AUTH,
 client=g.client_ip)
 facet_list = ["https://{0!s}".format(x) for x in pol_facets]
 facet_list.append(app_id)

 log.debug("Sending facets lists for appId {0!s}: {1!s}".format(app_id,
 facet_list))
 res = {"trustedFacets": [{"version": {"major": 1,
 "minor": 0},
 "ids": facet_list
 }
]
 }
 return "fido.trusted-apps+json", res

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/sshkeytoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.sshkeytoken

-*- coding: utf-8 -*-
#
privacyIDEA
Jul 18, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__="""The SSHKeyTokenClass provides a TokenClass that stores the public
SSH key and can give the public SSH key via the getotp function.
This can be used to manage SSH keys and retrieve the public ssh key
to import it to authorized keys files.

The code is tested in tests/test_lib_tokens_ssh
"""

import logging
from privacyidea.lib import _
log = logging.getLogger(__name__)
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass

optional = True
required = False

##TODO: We should save a fingerprint of the SSH Key in the encrypted OTP
field, so that we can be sure, that the public ssh key was not changed in
the database!

[docs]class SSHkeyTokenClass(TokenClass):
 """
 The SSHKeyTokenClass provides a TokenClass that stores the public
 SSH key and can give the public SSH key via the getotp function.
 This can be used to manage SSH keys and retrieve the public ssh key
 to import it to authorized keys files.
 """
 mode = ['authenticate']
 using_pin = False

 def __init__(self, db_token):
 TokenClass.__init__(self, db_token)
 self.set_type(u"sshkey")

 @staticmethod
[docs] def get_class_type():
 return "sshkey"

 @staticmethod
[docs] def get_class_prefix():
 return "SSHK"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dictionary
 """
 res = {'type': 'sshkey',
 'title': 'SSHkey Token',
 'description': _('SSH Public Key: The public SSH key.'),
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {},
 }
 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

[docs] def update(self, param):
 """
 The key holds the public ssh key and this is required

 The key probably is of the form "ssh-rsa BASE64 comment"
 """
 # We need to save the token, so that we can later add the tokeninfo
 # Otherwise we might not have created the DB entry, yet and we would
 # be missing the token.id
 self.token.save()

 getParam(param, "sshkey", required)

 key_elem = param.get("sshkey").split(" ", 2)
 if len(key_elem) != 3 or key_elem[0] != "ssh-rsa":
 raise Exception("The key must consist of 'ssh-rsa BASE64 comment'")

 key_type = key_elem[0]
 key = key_elem[1]
 key_comment = key_elem[2]

 # convert key to hex
 self.add_tokeninfo("ssh_key", key, value_type="password")
 self.add_tokeninfo("ssh_type", key_type)
 self.add_tokeninfo("ssh_comment", key_comment)

 # call the parents function
 TokenClass.update(self, param)

 @log_with(log)
[docs] def get_sshkey(self):
 """
 returns the public SSH key

 :return: SSH pub key
 :rtype: string
 """
 ti = self.get_tokeninfo()
 key_type = ti.get("ssh_type")
 key_comment = ti.get("ssh_comment")
 # get the ssh key directly, otherwise it will not be decrypted
 sshkey = self.get_tokeninfo("ssh_key")
 return u"{0!s} {1!s} {2!s}".format(key_type, sshkey, key_comment)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/remotetoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.remotetoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2015-01-28 Rewrite for migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """This is the implementation of the remote token. The remote token
forwards an authentication request to another privacyidea server.

To do this it uses the parameters remote.server, remote.realm,
remote.resolver, remote.user or remote.serial.
The parameter remote.local_checkpin determines, whether the PIN should be
checked locally or remotely.

The code is tested in tests/test_lib_tokens_remote
"""

import logging
import traceback
import requests
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.config import get_from_config
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.log import log_with
from privacyidea.lib.policydecorators import challenge_response_allowed
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

###

[docs]class RemoteTokenClass(TokenClass):
 """
 The Remote token forwards an authentication request to another privacyIDEA
 server. The request can be forwarded to a user on the other server or to
 a serial number on the other server. The PIN can be checked on the local
 privacyIDEA server or on the remote server.

 Using the Remote token you can assign one physical token to many
 different users.
 """

 def __init__(self, db_token):
 """
 constructor - create a token class object with it's db token binding

 :param aToken: the db bound token
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"remote")
 self.mode = ['authenticate', 'challenge']

 @staticmethod
[docs] def get_class_type():
 """
 return the class type identifier
 """
 return "remote"

 @staticmethod
[docs] def get_class_prefix():
 """
 return the token type prefix
 """
 return "PIRE"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or string
 """
 res = {'type': 'remote',
 'title': 'Remote Token',
 'description': _('Remote Token: Forward authentication request '
 'to another server.'),
 'user': [],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

[docs] def update(self, param):
 """
 second phase of the init process - updates parameters

 :param param: the request parameters
 :return: - nothing -
 """
 # if another OTP length would be specified in /admin/init this would
 # be overwritten by the parent class, which is ok.
 self.set_otplen(6)
 TokenClass.update(self, param)

 remoteServer = getParam(param, "remote.server", required)
 self.add_tokeninfo("remote.server", remoteServer)

 val = getParam(param, "remote.local_checkpin", optional) or 0
 self.add_tokeninfo("remote.local_checkpin", val)

 for key in ["remote.serial", "remote.user",
 "remote.realm", "remote.resolver"]:
 val = getParam(param, key, optional)
 if val is not None:
 self.add_tokeninfo(key, val)

 @property
 def check_pin_local(self):
 """
 lookup if pin should be checked locally or on remote host

 :return: bool
 """
 local_check = 1 == int(self.get_tokeninfo("remote.local_checkpin"))
 log.debug(" local checking pin? {0!r}".format(local_check))

 return local_check

 @log_with(log)
 @check_token_locked
[docs] def authenticate(self, passw, user=None, options=None):
 """
 do the authentication on base of password / otp and user and
 options, the request parameters.

 Here we contact the other privacyIDEA server to validate the OtpVal.

 :param passw: the password / otp
 :param user: the requesting user
 :param options: the additional request parameters

 :return: tuple of (success, otp_count - 0 or -1, reply)

 """
 res = False
 otp_counter = -1
 reply = None
 otpval = passw

 # should we check the pin localy?
 if self.check_pin_local:
 (_res, pin, otpval) = self.split_pin_pass(passw, user,
 options=options)

 if not TokenClass.check_pin(self, pin):
 return False, otp_counter, {'message': "Wrong PIN"}

 otp_count = self.check_otp(otpval, options=options)
 if otp_count >= 0:
 res = True
 reply = {'message': 'matching 1 tokens',
 'serial': self.get_serial(),
 'type': self.get_tokentype()}
 else:
 reply = {'message': 'remote side denied access'}

 return res, otp_count, reply

 @check_token_locked
[docs] def check_otp(self, otpval, counter=None, window=None, options=None):
 """
 run the http request against the remote host

 :param otpval: the OTP value
 :param counter: The counter for counter based otp values
 :type counter: int
 :param window: a counter window
 :type counter: int
 :param options: additional token specific options
 :type options: dict
 :return: counter of the matching OTP value.
 :rtype: int
 """
 otp_count = -1
 otpval = otpval.encode("utf-8")

 remoteServer = self.get_tokeninfo("remote.server") or ""
 remoteServer = remoteServer.encode("utf-8")

 # in preparation of the ability to relocate privacyidea urls,
 # we introduce the remote url path
 remotePath = self.get_tokeninfo("remote.path") or ""
 remotePath = remotePath.strip().encode('utf-8')

 remoteSerial = self.get_tokeninfo("remote.serial") or ""
 remoteSerial = remoteSerial.encode('utf-8')

 remoteUser = self.get_tokeninfo("remote.user") or ""
 remoteUser = remoteUser.encode('utf-8')

 remoteRealm = self.get_tokeninfo("remote.realm") or ""
 remoteRealm = remoteRealm.encode('utf-8')

 remoteResolver = self.get_tokeninfo("remote.resolver") or ""
 remoteResolver = remoteResolver.encode('utf-8')

 ssl_verify = get_from_config("remote.verify_ssl_certificate",
 False, return_bool=True) or False

 if type(ssl_verify) in [str, unicode]:
 if ssl_verify.lower() in ["true", "1"]:
 ssl_verify = True
 else:
 ssl_verify = False

 # here we also need to check for remote.user and so on....
 log.debug("checking OTP len:%r remotely on server: %r,"
 " serial: %r, user: %r" %
 (len(otpval), remoteServer, remoteSerial, remoteUser))
 params = {}

 remotePath = remotePath or "/validate/check"
 if remoteSerial:
 params['serial'] = remoteSerial
 elif remoteUser:
 params['user'] = remoteUser
 params['realm'] = remoteRealm
 params['resolver'] = remoteResolver

 else:
 log.warning("The remote token does neither contain a "
 "remote.serial nor a remote.user.")
 return otp_count

 params['pass'] = otpval
 request_url = "{0!s}{1!s}".format(remoteServer, remotePath)

 try:
 r = requests.post(request_url, data=params, verify=ssl_verify)

 if r.status_code == requests.codes.ok:
 response = r.json()
 result = response.get("result")
 if result.get("value"):
 otp_count = 1

 except Exception as exx: # pragma: no cover
 log.error("Error getting response from "
 "remote Server (%r): %r" % (request_url, exx))
 log.debug("{0!s}".format(traceback.format_exc()))

 return otp_count

 @log_with(log)
 @challenge_response_allowed
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 This method checks, if this is a request, that triggers a challenge.
 It depends on the way, the pin is checked - either locally or remote

 :param passw: password, which might be pin or pin+otp
 :type passw: string
 :param user: The user from the authentication request
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict

 :return: true or false
 """

 request_is_valid = False

 if self.check_pin_local:
 pin_match = self.check_pin(passw, user=user,
 options=options)
 if pin_match is True:
 request_is_valid = True

 return request_is_valid

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/hotptoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.hotptoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2017-07-13 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add period to key uri for TOTP token
#
2016-04-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add get_default_settings to change the parameters before
the token is created
2014-10-03 Add getInitDetail
Cornelius Kölbel <cornelius@privacyidea.org>
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
This is the HOTP implementation.
It is inherited from lib.tokenclass and is thus dependent on models.py

This code is tested in tests/test_lib_tokens_hotp
"""

import time
import binascii

from .HMAC import HmacOtp
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.config import get_from_config
from privacyidea.lib.tokenclass import TokenClass, TWOSTEP_DEFAULT_DIFFICULTY, TWOSTEP_DEFAULT_CLIENTSIZE
from privacyidea.lib.log import log_with
from privacyidea.lib.apps import create_google_authenticator_url as cr_google
from privacyidea.lib.error import ParameterError
from privacyidea.lib.apps import create_oathtoken_url as cr_oath
from privacyidea.lib.utils import create_img, is_true
from privacyidea.lib.utils import generate_otpkey
from privacyidea.lib.policydecorators import challenge_response_allowed
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.auth import ROLE
from privacyidea.lib.policy import SCOPE
from privacyidea.lib import _
import traceback
import logging

from passlib.utils.pbkdf2 import pbkdf2

optional = True
required = False
log = logging.getLogger(__name__)

keylen = {'sha1': 20,
 'sha256': 32,
 'sha512': 64
 }

[docs]class HotpTokenClass(TokenClass):
 """
 hotp token class implementation
 """

 @staticmethod
[docs] def get_class_type():
 """
 return the token type shortname

 :return: 'hotp'
 :rtype: string
 """
 return "hotp"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: oath
 """
 return "OATH"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition
 Is used by lib.token.get_token_info

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict
 """
 desc_self1 = _('Specify the hashlib to be used. '
 'Can be sha1 (1) or sha2-256 (2).')
 desc_self2 = _('Specify the otplen to be used. Can be 6 or 8 digits.')
 desc_two_step_user =_('Specify whether users are allowed or forced to use '
 'two-step enrollment.')
 desc_two_step_admin = _('Specify whether admins are allowed or forced to use '
 'two-step enrollment.')
 res = {'type': 'hotp',
 'title': 'HOTP Event Token',
 'description': _('HOTP: Event based One Time Passwords.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {
 SCOPE.ENROLL: {
 'yubikey_access_code': {
 'type': 'str',
 'desc': _("The Yubikey access code used to initialize Yubikeys.")
 },
 'hotp_2step_clientsize': {
 'type': 'int',
 'desc': _("The size of the OTP seed part contributed by the client (in bytes)")
 },
 'hotp_2step_serversize': {
 'type': 'int',
 'desc': _("The size of the OTP seed part contributed by the server (in bytes)")
 },
 'hotp_2step_difficulty': {
 'type': 'int',
 'desc': _("The difficulty factor used for the OTP seed generation "
 "(should be at least 10000)")
 }
 },
 SCOPE.USER: {
 'hotp_hashlib': {'type': 'str',
 'value': ["sha1",
 "sha256",
 "sha512"],
 'desc': desc_self1},
 'hotp_otplen': {'type': 'int',
 'value': [6, 8],
 'desc': desc_self2},
 'hotp_force_server_generate': {'type': 'bool',
 'desc': _("Force the key to "
 "be generated on "
 "the server.")},
 'hotp_2step': {'type': 'str',
 'value': ['allow', 'force'],
 'desc': desc_two_step_user}
 },
 SCOPE.ADMIN: {
 'hotp_2step': {'type': 'str',
 'value': ['allow', 'force'],
 'desc': desc_two_step_admin}
 }
 }
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new HOTP Token object

 :param db_token: instance of the orm db object
 :type db_token: DB object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"hotp")
 self.hKeyRequired = True

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 to complete the token initialization some additional details
 should be returned, which are displayed at the end of
 the token initialization.
 This is the e.g. the enrollment URL for a Google Authenticator.
 """
 response_detail = TokenClass.get_init_detail(self, params, user)
 params = params or {}
 tokenlabel = params.get("tokenlabel", "<s>")
 tokenissuer = params.get("tokenissuer", "privacyIDEA")
 # If the init_details contain an OTP key the OTP key
 # should be displayed as an enrollment URL
 otpkey = self.init_details.get('otpkey')
 # Add rollout state the response
 response_detail['rollout_state'] = self.token.rollout_state
 # Add two-step initialization parameters to response and QR code
 extra_data = {}
 if is_true(params.get("2stepinit")):
 twostep_parameters = self._get_twostep_parameters()
 extra_data.update(twostep_parameters)
 response_detail.update(twostep_parameters)
 if otpkey:
 tok_type = self.type.lower()
 if user is not None:
 try:
 goo_url = cr_google(key=otpkey,
 user=user.login,
 realm=user.realm,
 tokentype=tok_type.lower(),
 serial=self.get_serial(),
 tokenlabel=tokenlabel,
 hash_algo=params.get("hashlib", "sha1"),
 digits=params.get("otplen", 6),
 period=params.get("timeStep", 30),
 issuer=tokenissuer,
 user_obj=user,
 extra_data=extra_data)
 response_detail["googleurl"] = {"description":
 _("URL for google "
 "Authenticator"),
 "value": goo_url,
 "img": create_img(goo_url,
 width=250)
 }

 oath_url = cr_oath(otpkey=otpkey,
 user=user.login,
 realm=user.realm,
 type=tok_type,
 serial=self.get_serial(),
 tokenlabel=tokenlabel,
 extra_data=extra_data)
 response_detail["oathurl"] = {"description": _("URL for"
 " OATH "
 "token"),
 "value": oath_url,
 "img": create_img(oath_url,
 width=250)
 }
 except Exception as ex: # pragma: no cover
 log.error("{0!s}".format((traceback.format_exc())))
 log.error('failed to set oath or google url: {0!r}'.format(ex))

 return response_detail

 def _get_twostep_parameters(self):
 """
 :return: A dictionary with the keys ``2step_salt``,
 ``2step_difficulty``, ``2step_output``, mapping each key to an integer.
 """
 return {'2step_salt': int(self.get_tokeninfo('2step_clientsize')),
 '2step_output': int(keylen[self.hashlib]),
 '2step_difficulty': int(self.get_tokeninfo('2step_difficulty'))}

 @log_with(log)
[docs] def update(self, param, reset_failcount=True):
 """
 process the initialization parameters

 Do we really always need an otpkey?
 the otpKey is handled in the parent class
 :param param: dict of initialization parameters
 :type param: dict

 :return: nothing
 """
 # In case am Immutable MultiDict:
 upd_param = {}
 for k, v in param.items():
 upd_param[k] = v

 # Special handling of 2-step enrollment
 if is_true(getParam(param, "2stepinit", optional)):
 # Use the 2step_serversize setting for the size of the server secret
 # (if it is set)
 if "2step_serversize" in upd_param:
 upd_param["keysize"] = int(getParam(upd_param, "2step_serversize", required))
 # Add twostep settings to the tokeninfo
 for key, default in [
 ("2step_difficulty", TWOSTEP_DEFAULT_DIFFICULTY),
 ("2step_clientsize", TWOSTEP_DEFAULT_CLIENTSIZE)]:
 self.add_tokeninfo(key, getParam(param, key, optional, default))

 val = getParam(upd_param, "hashlib", optional)
 if val is not None:
 hashlibStr = val
 else:
 hashlibStr = self.hashlib

 # check if the key_size is provided
 # if not, we could derive it from the hashlib
 key_size = getParam(upd_param, 'key_size', optional) \
 or getParam(upd_param, 'keysize', optional)
 if key_size is None:
 upd_param['keysize'] = keylen.get(hashlibStr)

 otpKey = getParam(upd_param, "otpkey", optional)
 genkey = is_true(getParam(upd_param, "genkey", optional))
 if genkey and otpKey:
 # The Base TokenClass does not allow otpkey and genkey at the
 # same time
 del upd_param['otpkey']
 upd_param['hashlib'] = hashlibStr
 # We first need to call the parent class. Since exceptions would be
 # raised here.
 TokenClass.update(self, upd_param, reset_failcount)

 self.add_tokeninfo("hashlib", hashlibStr)

 @property
 def hashlib(self):
 hashlibStr = self.get_tokeninfo("hashlib") or \
 get_from_config("hotp.hashlib", u'sha1')
 return hashlibStr

 # challenge interfaces starts here
 @log_with(log)
 @challenge_response_allowed
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 check, if the request would start a challenge

 - default: if the passw contains only the pin, this request would
 trigger a challenge

 - in this place as well the policy for a token is checked

 :param passw: password, which might be pin or pin+otp
 :param options: dictionary of additional request parameters

 :return: returns true or false
 """
 trigger_challenge = False
 options = options or {}
 pin_match = self.check_pin(passw, user=user, options=options)
 if pin_match is True:
 trigger_challenge = True

 return trigger_challenge

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 check if the given OTP value is valid for this token.

 :param anOtpVal: the to be verified otpvalue
 :type anOtpVal: string
 :param counter: the counter state, that should be verified
 :type counter: int
 :param window: the counter +window, which should be checked
 :type window: int
 :param options: the dict, which could contain token specific info
 :type options: dict
 :return: the counter state or -1
 :rtype: int
 """
 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()

 if counter is None:
 counter = int(self.get_otp_count())
 if window is None:
 window = int(self.get_count_window())
 hmac2Otp = HmacOtp(secretHOtp,
 counter,
 otplen,
 self.get_hashlib(self.hashlib))
 res = hmac2Otp.checkOtp(anOtpVal, window)

 if res == -1:
 res = self._autosync(hmac2Otp, anOtpVal)
 if res != -1:
 # on success, we save the counter
 self.set_otp_count(res + 1)
 # We could also store it temporarily
 # self.auth_details["matched_otp_counter"] = res

 return res

 @log_with(log)
[docs] def check_otp_exist(self, otp, window=10, symetric=False, inc_counter=True):
 """
 checks if the given OTP value is/are values of this very token.
 This is used to autoassign and to determine the serial number of
 a token.

 :param otp: the to be verified otp value
 :type otp: string

 :param window: the lookahead window for the counter
 :type window: int

 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 res = -1
 otplen = int(self.token.otplen)
 counter = int(self.token.count)

 secretHOtp = self.token.get_otpkey()
 hmac2Otp = HmacOtp(secretHOtp, counter, otplen,
 self.get_hashlib(self.hashlib))
 res = hmac2Otp.checkOtp(otp, window, symetric=symetric)

 if inc_counter and res >= 0:
 # As usually the counter is increased in lib.token.checkUserPass,
 # we need to do this manually here:
 self.inc_otp_counter(res)
 if res == -1:
 msg = "otp counter {0!r} was not found".format(otp)
 else:
 msg = "otp counter {0!r} was found".format(otp)
 log.debug("end. {0!r}: res {1!r}".format(msg, res))
 return res

 @log_with(log)
[docs] def is_previous_otp(self, otp, window=10):
 """
 Check if the OTP values was previously used.

 :param otp:
 :param window:
 :return:
 """
 res = False
 r = self.check_otp_exist(otp, window=window, symetric=True,
 inc_counter=False)
 if 0 <= r < self.token.count:
 res = True
 return res

 @log_with(log)
 def _autosync(self, hmac2Otp, anOtpVal):
 """
 automatically sync the token based on two otp values
 internal method to implement the _autosync within the
 checkOtp method.

 :param hmac2Otp: the hmac object (with reference to the token secret)
 :type hmac2Otp: hmac object

 :param anOtpVal: the actual otp value
 :type anOtpVal: string

 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 res = -1
 # get _autosync from config or use False as default
 autosync = get_from_config("AutoResync", False, return_bool=True)

 # if _autosync is not enabled
 if autosync is False:
 log.debug("end. _autosync is not enabled : res {0!r}".format((res)))
 return res

 info = self.get_tokeninfo()
 syncWindow = self.get_sync_window()

 # check if the otpval is valid in the sync scope
 res = hmac2Otp.checkOtp(anOtpVal, syncWindow)

 # If the otpval is valid in the big sync scope, we
 # either store the value in the tokeninfo
 # or see if already another value exists.
 if res != -1:
 # if former is defined
 if "otp1c" in info:
 # check if this is consecutive
 otp1c = int(info.get("otp1c"))
 otp2c = res

 if (otp1c + 1) != otp2c:
 res = -1

 if "dueDate" in info:
 dueDate = int(info.get("dueDate"))
 now = int(time.time())
 if dueDate <= now:
 res = -1
 else:
 # if by any reason the dueDate is missing!
 res = -1 # pragma: no cover

 # now clean the resync data
 self.del_tokeninfo("dueDate")
 self.del_tokeninfo("otp1c")

 else:
 self.add_tokeninfo("otp1c", res)
 self.add_tokeninfo("dueDate", int(time.time()) +
 self.get_sync_timeout())

 res = -1

 return res

 @log_with(log)
[docs] def resync(self, otp1, otp2, options=None):
 """
 resync the token based on two otp values

 :param otp1: the first otp value
 :type otp1: string

 :param otp2: the second otp value
 :type otp2: string

 :param options: optional token specific parameters
 :type options: dict or None

 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 ret = False
 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()
 counter = self.token.count
 syncWindow = self.get_sync_window()
 # log.debug("serial: %s",serialNum)
 hmac2Otp = HmacOtp(secretHOtp, counter, otplen,
 self.get_hashlib(self.hashlib))
 counter = hmac2Otp.checkOtp(otp1, syncWindow)

 if counter == -1:
 log.debug("exit. First counter (-1) not found ret: {0!r}".format((ret)))
 return ret

 nextOtp = hmac2Otp.generate(counter + 1)

 if nextOtp != otp2:
 log.debug("exit. Failed to verify second otp: nextOtp: "
 "%r != otp2: %r ret: %r" % (nextOtp, otp2, ret))
 return ret

 ret = True
 self.inc_otp_counter(counter + 1, reset=True)

 log.debug("end. resync was successful: ret: {0!r}".format((ret)))
 return ret

 @staticmethod
[docs] def get_sync_timeout():
 """
 get the token sync timeout value

 :return: timeout value in seconds
 :rtype: int
 """
 try:
 timeOut = int(get_from_config("AutoResyncTimeout", 5 * 60))
 except Exception as ex:
 log.warning("AutoResyncTimeout: value error {0!r} - reset to 5*60".format((ex)))
 timeOut = 5 * 60

 return timeOut

 @log_with(log)
[docs] def get_otp(self, current_time=None):
 """
 return the next otp value

 :param curTime: Not Used in HOTP
 :return: next otp value and PIN if possible
 :rtype: tuple
 """
 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()

 hmac2Otp = HmacOtp(secretHOtp,
 self.token.count,
 otplen,
 self.get_hashlib(self.hashlib))
 otpval = hmac2Otp.generate(inc_counter=False)

 pin = self.token.get_pin()
 combined = "{0!s}{1!s}".format(otpval, pin)

 if get_from_config("PrependPin") == "True":
 combined = "{0!s}{1!s}".format(pin, otpval)

 return 1, pin, otpval, combined

 @log_with(log)
[docs] def get_multi_otp(self, count=0, epoch_start=0, epoch_end=0,
 curTime=None, timestamp=None):
 """
 return a dictionary of multiple future OTP values of the
 HOTP/HMAC token

 WARNING: the dict that is returned contains a sequence number as key.
 This it NOT the otp counter!

 :param count: how many otp values should be returned
 :type count: int
 :epoch_start: Not used in HOTP
 :epoch_end: Not used in HOTP
 :curTime: Not used in HOTP
 :timestamp: not used in HOTP
 :return: tuple of status: boolean, error: text and the OTP dictionary
 """
 otp_dict = {"type": "hotp", "otp": {}}
 ret = False
 error = "No count specified"
 otplen = int(self.token.otplen)

 secretHOtp = self.token.get_otpkey()
 hmac2Otp = HmacOtp(secretHOtp, self.token.count, otplen,
 self.get_hashlib(self.hashlib))
 log.debug("retrieving {0:d} OTP values for token {1!s}".format(count, hmac2Otp))

 if count > 0:
 error = "OK"
 for i in range(count):
 otpval = hmac2Otp.generate(self.token.count + i,
 inc_counter=False)
 otp_dict["otp"][i] = otpval
 ret = True

 return ret, error, otp_dict

 @classmethod
[docs] def get_default_settings(cls, params, logged_in_user=None,
 policy_object=None, client_ip=None):
 """
 This method returns a dictionary with default settings for token
 enrollment.
 These default settings are defined in SCOPE.USER and are
 hotp_hashlib, hotp_otplen.
 If these are set, the user will only be able to enroll tokens with
 these values.

 The returned dictionary is added to the parameters of the API call.
 :param params: The call parameters
 :type params: dict
 :param logged_in_user: The logged_in_user dictionary with "role",
 "username" and "realm"
 :type logged_in_user: dict
 :param policy_object: The policy_object
 :type policy_object: PolicyClass
 :param client_ip: The client IP address
 :type client_ip: basestring
 :return: default parameters
 """
 ret = {}
 if logged_in_user.get("role") == ROLE.USER:
 hashlib_pol = policy_object.get_action_values(
 action="hotp_hashlib",
 scope=SCOPE.USER,
 user=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 client=client_ip,
 unique=True)
 if hashlib_pol:
 ret["hashlib"] = hashlib_pol[0]

 otplen_pol = policy_object.get_action_values(
 action="hotp_otplen",
 scope=SCOPE.USER,
 user=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 client=client_ip,
 unique=True)
 if otplen_pol:
 ret["otplen"] = otplen_pol[0]

 return ret

[docs] def generate_symmetric_key(self, server_component, client_component,
 options=None):
 """
 Generate a composite key from a server and client component
 using a PBKDF2-based scheme.

 :param server_component: The component usually generated by privacyIDEA
 :type server_component: hex string
 :param client_component: The component usually generated by the
 client (e.g. smartphone)
 :type client_component: hex string
 :param options:
 :return: the new generated key as hex string
 """
 # As /token/init has already been called before, self.hashlib
 # is already set.
 keysize = keylen[self.hashlib]
 rounds = int(self.get_tokeninfo('2step_difficulty'))
 decoded_client_component = binascii.unhexlify(client_component)
 expected_client_size = int(self.get_tokeninfo('2step_clientsize'))
 if expected_client_size != len(decoded_client_component):
 raise ParameterError('Client Secret Size is expected to be {}, but is {}'.format(
 expected_client_size, len(decoded_client_component)
))
 # Based on the two components, we generate a symmetric key using PBKDF2
 # We pass the hex-encoded server component as the password and the
 # client component as the salt.
 secret = pbkdf2(server_component.lower(),
 decoded_client_component,
 rounds,
 keysize)
 return binascii.hexlify(secret)

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/radiustoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.radiustoken

-*- coding: utf-8 -*-
#
2016-02-22 Cornelius Kölbel <cornelius@privacyidea.org>
Add the RADIUS identifier, which points to the system wide list
of RADIUS servers.
2015-10-09 Cornelius Kölbel <cornelius@privacyidea.org>
Add the RADIUS-System-Config, so that not each
RADIUS-token needs his own secret. -> change the
secret globally
2015-01-29 Adapt for migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """This module defines the RadiusTokenClass. The RADIUS token
forwards the authentication request to another RADIUS server.

The code is tested in tests/test_lib_tokens_radius
"""

import logging

import traceback
import binascii
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.tokens.remotetoken import RemoteTokenClass
from privacyidea.api.lib.utils import getParam, ParameterError
from privacyidea.lib.log import log_with
from privacyidea.lib.config import get_from_config
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.radiusserver import get_radius

import pyrad.packet
from pyrad.client import Client
from pyrad.dictionary import Dictionary
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

###
[docs]class RadiusTokenClass(RemoteTokenClass):

 def __init__(self, db_token):
 RemoteTokenClass.__init__(self, db_token)
 self.set_type(u"radius")
 self.mode = ['authenticate', 'challenge']

 @staticmethod
[docs] def get_class_type():
 return "radius"

 @staticmethod
[docs] def get_class_prefix():
 return "PIRA"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or string
 """
 res = {'type': 'radius',
 'title': 'RADIUS Token',
 'description': _('RADIUS: Forward authentication request to a '
 'RADIUS server.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

[docs] def update(self, param):
 # New value
 radius_identifier = getParam(param, "radius.identifier")
 self.add_tokeninfo("radius.identifier", radius_identifier)

 # old values
 if not radius_identifier:
 radiusServer = getParam(param, "radius.server", optional=required)
 self.add_tokeninfo("radius.server", radiusServer)
 radius_secret = getParam(param, "radius.secret", optional=required)
 self.token.set_otpkey(binascii.hexlify(radius_secret))
 system_settings = getParam(param, "radius.system_settings",
 default=False)
 self.add_tokeninfo("radius.system_settings", system_settings)

 if not radius_identifier and not (radiusServer or radius_secret) and \
 not system_settings:
 raise ParameterError("Missing parameter: radius.identifier", id=905)

 # if another OTP length would be specified in /admin/init this would
 # be overwritten by the parent class, which is ok.
 self.set_otplen(6)
 TokenClass.update(self, param)
 val = getParam(param, "radius.local_checkpin", optional) or 0
 self.add_tokeninfo("radius.local_checkpin", val)

 val = getParam(param, "radius.user", required)
 self.add_tokeninfo("radius.user", val)

 @property
 def check_pin_local(self):
 """
 lookup if pin should be checked locally or on radius host

 :return: bool
 """
 local_check = 1 == int(self.get_tokeninfo("radius.local_checkpin"))
 log.debug("local checking pin? {0!r}".format(local_check))

 return local_check

 @log_with(log)
[docs] def split_pin_pass(self, passw, user=None, options=None):
 """
 Split the PIN and the OTP value.
 Only if it is locally checked and not remotely.
 """
 res = 0
 pin = ""
 otpval = passw
 if self.check_pin_local:
 (res, pin, otpval) = TokenClass.split_pin_pass(self, passw)

 return res, pin, otpval

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, otpval, counter=None, window=None, options=None):
 """
 run the RADIUS request against the RADIUS server

 :param otpval: the OTP value
 :param counter: The counter for counter based otp values
 :type counter: int
 :param window: a counter window
 :type counter: int
 :param options: additional token specific options
 :type options: dict
 :return: counter of the matching OTP value.
 :rtype: int
 """
 otp_count = -1
 options = options or {}

 radius_dictionary = None
 radius_identifier = self.get_tokeninfo("radius.identifier")
 radius_user = self.get_tokeninfo("radius.user")
 system_radius_settings = self.get_tokeninfo("radius.system_settings")
 if radius_identifier:
 # New configuration
 radius_server_object = get_radius(radius_identifier)
 radius_server = radius_server_object.config.server
 radius_port = radius_server_object.config.port
 radius_server = "{0!s}:{1!s}".format(radius_server, radius_port)
 radius_secret = radius_server_object.get_secret()
 radius_dictionary = radius_server_object.config.dictionary

 elif system_radius_settings:
 # system configuration
 radius_server = get_from_config("radius.server")
 radius_secret = get_from_config("radius.secret")
 # Is returned as unicode, so we convert it to utf-8
 radius_secret = radius_secret.encode("utf-8")
 else:
 # individual token settings
 radius_server = self.get_tokeninfo("radius.server")
 # Read the secret
 secret = self.token.get_otpkey()
 radius_secret = binascii.unhexlify(secret.getKey())

 # here we also need to check for radius.user
 log.debug("checking OTP len:{0!s} on radius server: {1!s}, user: {2!r}".format(len(otpval), radius_server, radius_user))

 try:
 # pyrad does not allow to set timeout and retries.
 # it defaults to retries=3, timeout=5

 # TODO: At the moment we support only one radius server.
 # No round robin.
 server = radius_server.split(':')
 r_server = server[0]
 r_authport = 1812
 if len(server) >= 2:
 r_authport = int(server[1])
 nas_identifier = get_from_config("radius.nas_identifier",
 "privacyIDEA")
 if not radius_dictionary:
 radius_dictionary = get_from_config("radius.dictfile",
 "/etc/privacyidea/"
 "dictionary")
 log.debug("NAS Identifier: %r, "
 "Dictionary: %r" % (nas_identifier, radius_dictionary))
 log.debug("constructing client object "
 "with server: %r, port: %r, secret: %r" %
 (r_server, r_authport, radius_secret))

 srv = Client(server=r_server,
 authport=r_authport,
 secret=radius_secret,
 dict=Dictionary(radius_dictionary))

 req = srv.CreateAuthPacket(code=pyrad.packet.AccessRequest,
 User_Name=radius_user.encode('ascii'),
 NAS_Identifier=nas_identifier.encode('ascii'))

 req["User-Password"] = req.PwCrypt(otpval)
 if "transactionid" in options:
 req["State"] = str(options.get("transactionid"))

 response = srv.SendPacket(req)
 c = response.code
 # TODO: handle the RADIUS challenge
 """
 if response.code == pyrad.packet.AccessChallenge:
 opt = {}
 for attr in response.keys():
 opt[attr] = response[attr]
 res = False
 log.debug("challenge returned %r " % opt)
 # now we map this to a privacyidea challenge
 if "State" in opt:
 reply["transactionid"] = opt["State"][0]
 if "Reply-Message" in opt:
 reply["message"] = opt["Reply-Message"][0]
 """
 if response.code == pyrad.packet.AccessAccept:
 log.info("Radiusserver %s granted "
 "access to user %s." % (r_server, radius_user))
 otp_count = 0
 else:
 log.warning("Radiusserver %s"
 "rejected access to user %s." %
 (r_server, radius_user))

 except Exception as ex: # pragma: no cover
 log.error("Error contacting radius Server: {0!r}".format((ex)))
 log.debug("{0!s}".format(traceback.format_exc()))

 return otp_count

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/motptoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.motptoken

-*- coding: utf-8 -*-
#
2015-07-09 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Fix mOTP reuse of OTP values
2015-01-27 Rewrite due to flask migration
Cornelius Kölbel <cornelius@privacyidea.org>
2014-10-03 Add getInitDetail
Cornelius Kölbel <cornelius@privacyidea.org>
#
May 08, 2014 Cornelius Kölbel
Sept 16, 2014 Cornelius Kölbel, added key generation for Token2
#
License: AGPLv3
contact: http://www.privacyidea.org
#
#
privacyIDEA is a fork of LinOTP
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__="""This code implements the motp one time password algorithm
described in motp.sourceforge.net.

The code is tested in tests/test_lib_tokens_motp
"""
from .mOTP import mTimeOtp
from privacyidea.lib.apps import create_motp_url
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.utils import create_img
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.utils import generate_otpkey, is_true
from privacyidea.lib.decorators import check_token_locked
import traceback
import logging
from privacyidea.lib import _

optional = True
required = False
log = logging.getLogger(__name__)

[docs]class MotpTokenClass(TokenClass):

 @staticmethod
[docs] def get_class_type():
 return "motp"

 @staticmethod
[docs] def get_class_prefix():
 return "PIMO"

 @staticmethod
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition
 Is used by lib.token.get_token_info

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype : dict or string
 """

 res = {'type': 'motp',
 'title': 'mOTP Token',
 'description': 'mOTP: Classical mobile One Time Passwords.',
 'init': {'page': {'html': 'motptoken.mako',
 'scope': 'enroll', },
 'title': {'html': 'motptoken.mako',
 'scope': 'enroll.title'},
 },
 'config': {'page': {'html': 'motptoken.mako',
 'scope': 'config'},
 'title': {'html': 'motptoken.mako',
 'scope': 'config.title', },
 },
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {}
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 constructor - create a token object

 :param a_token: instance of the orm db object
 :type a_token: orm object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"motp")
 self.hKeyRequired = True
 return

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 to complete the token normalisation, the response of the initialization
 should be build by the token specific method, the getInitDetails
 """
 response_detail = TokenClass.get_init_detail(self, params, user)
 otpkey = self.init_details.get('otpkey')
 if otpkey:
 tok_type = self.type.lower()
 if user is not None:
 try:
 motp_url = create_motp_url(otpkey,
 user.login, user.realm,
 serial=self.get_serial())
 response_detail["motpurl"] = {"description": _("URL for MOTP "
 "token"),
 "value": motp_url,
 "img": create_img(motp_url,
 width=250)
 }
 except Exception as ex: # pragma: no cover
 log.debug("{0!s}".format(traceback.format_exc()))
 log.error('failed to set motp url: {0!r}'.format(ex))

 return response_detail

 @log_with(log)
[docs] def update(self, param, reset_failcount=True):
 """
 update - process initialization parameters

 :param param: dict of initialization parameters
 :type param: dict

 :return: nothing
 """
 if self.hKeyRequired is True:
 genkey = is_true(getParam(param, "genkey", optional))
 if not param.get('keysize'):
 param['keysize'] = 16
 if genkey:
 otpKey = generate_otpkey(param['keysize'])
 del param['genkey']
 else:
 # genkey not set: check otpkey is given
 # this will raise an exception if otpkey is not present
 otpKey = getParam(param, "otpkey", required)

 param['otpkey'] = otpKey

 # motp token specific
 mOTPPin = getParam(param, "motppin", required)
 self.token.set_user_pin(mOTPPin)

 TokenClass.update(self, param, reset_failcount)

 return

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 validate the token otp against a given otpvalue

 :param anOtpVal: the to be verified otpvalue
 :type anOtpVal: string
 :param counter: the counter state, that should be verified
 :type counter: int
 :param window: the counter +window, which should be checked
 :type window: int
 :param options: the dict, which could contain token specific info
 :type options: dict
 :return: the counter state or -1
 :rtype: int
 """
 otplen = self.token.otplen

 # otime contains the previous verification time
 # the new one must be newer than this!
 oCount = self.get_otp_count()
 secretHOtp = self.token.get_otpkey()
 window = self.token.count_window
 secretPin = self.token.get_user_pin()

 log.debug("original counter %s", oCount)

 mtimeOtp = mTimeOtp(secretHOtp, secretPin, oCount, otplen)
 res = mtimeOtp.checkOtp(anOtpVal, window, options=options)

 if res != -1 and oCount != 0 and res <= oCount:
 log.warning("a previous OTP value was used again! former "
 "tokencounter: %i, presented counter %i" %
 (oCount, res))
 res = -1
 return res

 if res != -1:
 # on success, we have to save the last attempt
 self.set_otp_count(res)

 return res

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/yubikeytoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.yubikeytoken

-*- coding: utf-8 -*-
#
2016-04-04 Cornelius Kölbel <cornelius@privacyidea.org>
Move the API signature static methods to functions.
2016-03-23 Jochen Hein <jochen@jochen.org>
Fix signature verification/generation
2016-03-15 Cornelius Kölbel <cornelius@privacyidea.org>
Keep backward compatibility
2016-03-08 Jochen Hein <jochen@jochen.org>
Add the yubikey prefix to work with pam_yubikey/Yubico
Authentication Protocol.
2015-12-01 Cornelius Kölbel <cornelius@privacyidea.org>
Add yubico validation protocol
2014-12-15 Cornelius Kölbel <cornelius@privacyidea.org>
Adapt during flask migration
2014-05-08 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
This token type provides the functionality for the Yubikey AES mode.

You can authenticate the Yubikeys in AES mode against the normal
validate/check API.
In addition you can also use the Yubico Validation Protocol to authenticate
the Yubikey managed by privacyIDEA. To use the Yubico Validation Protocol you
need to use the endpoint /ttype/yubikey.

Using the Yubico Validation Protocol you can run the
`Yubico PAM module <https://github.com/Yubico/yubico-pam>`_ with privacyIDEA
as the backend server.

This code is tested in tests/test_lib_tokens_yubikey.py
"""

import logging
from privacyidea.lib.log import log_with
from privacyidea.lib.policydecorators import challenge_response_allowed
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.utils import modhex_decode
from privacyidea.lib.utils import checksum
import binascii
from privacyidea.lib.decorators import check_token_locked
from privacyidea.api.lib.utils import getParam
import datetime
import base64
import hmac
from hashlib import sha1
from privacyidea.lib.config import get_from_config
from privacyidea.lib import _

optional = True
required = False

log = logging.getLogger(__name__)

def yubico_api_signature(data, api_key):
 """
 Get a dictionary "data", sort the dictionary by the keys
 and sign it HMAC-SHA1 with the api_key

 :param data: The data to be signed
 :type data: dict
 :param api_key: base64 encoded API key
 :type api_key: basestring
 :return: base64 encoded signature
 """
 r = dict(data)
 if 'h' in r:
 del r['h']
 keys = sorted(r.keys())
 data_string = ""
 for key in keys:
 data_string += "{0!s}={1!s}&".format(key, r.get(key))
 data_string = data_string.strip("&")
 api_key_bin = base64.b64decode(api_key)
 # generate the signature
 h = hmac.new(api_key_bin, data_string, sha1).digest()
 h_b64 = base64.b64encode(h)
 return h_b64

def yubico_check_api_signature(data, api_key, signature=None):
 """
 Verfiy the signature of the data.
 Either provide the signature as parameter or take it from the data

 :param data: The data to be signed
 :type data: dict
 :param api_key: base64 encoded API key
 :type api_key: basestring
 :param signature: the signature to be verified
 :type signature: base64 encoded string
 :return: base64 encoded signature
 """
 if not signature:
 signature = data.get('h')
 return signature == yubico_api_signature(data, api_key)

[docs]class YubikeyTokenClass(TokenClass):
 """
 The Yubikey Token in the Yubico AES mode
 """

 def __init__(self, db_token):
 TokenClass.__init__(self, db_token)
 self.set_type(u"yubikey")
 self.hKeyRequired = True

 @staticmethod
[docs] def get_class_type():
 return "yubikey"

 @staticmethod
[docs] def get_class_prefix():
 return "UBAM"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string

 :param ret: default return value, if nothing is found
 :type ret: user defined

 :return: subsection if key exists or user defined
 :rtype: s.o.

 """
 res = {'type': 'yubikey',
 'title': 'Yubikey in AES mode',
 'description': _('Yubikey AES mode: One Time Passwords with '
 'Yubikey.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {}
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
[docs] def check_otp_exist(self, otp, window=None):
 """
 checks if the given OTP value is/are values of this very token.
 This is used to autoassign and to determine the serial number of
 a token.
 """
 if window is None:
 window = self.get_otp_count_window()
 counter = self.get_otp_count()

 res = self.check_otp(otp, counter=counter, window=window, options=None)

 if res >= 0:
 # As usually the counter is increased in lib.token.checkUserPass, we
 # need to do this manually here:
 self.inc_otp_counter(res)

 return res

 @log_with(log)
 @challenge_response_allowed
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 This method checks, if this is a request, that triggers a challenge.

 :param passw: password, which might be pin or pin+otp
 :type passw: string
 :param user: The user from the authentication request
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict

 :return: true or false
 """
 trigger_challenge = False
 options = options or {}
 pin_match = self.check_pin(passw, user=user, options=options)
 if pin_match is True:
 trigger_challenge = True

 return trigger_challenge

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 validate the token otp against a given otpvalue

 :param anOtpVal: the to be verified otpvalue
 :type anOtpVal: string

 :param counter: the counter state. It is not used by the Yubikey
 because the current counter value is sent encrypted inside the
 OTP value
 :type counter: int

 :param window: the counter +window, which is not used in the Yubikey
 because the current counter value is sent encrypted inside the
 OTP, allowing a simple comparison between the encrypted counter
 value and the stored counter value
 :type window: int

 :param options: the dict, which could contain token specific info
 :type options: dict

 :return: the counter state or an error code (< 0):
 -1 if the OTP is old (counter < stored counter)
 -2 if the private_uid sent in the OTP is wrong (different from the one stored with the token)
 -3 if the CRC verification fails
 :rtype: int

 """
 res = -1

 serial = self.token.serial
 secret = self.token.get_otpkey()

 # The prefix is the characters in front of the last 32 chars
 yubi_prefix = anOtpVal[:-32]
 # The variable otp val is the last 32 chars
 yubi_otp = anOtpVal[-32:]

 try:
 otp_bin = modhex_decode(yubi_otp)
 except KeyError:
 # The OTP value is no yubikey aes otp value and can not be decoded
 return -4

 msg_bin = secret.aes_decrypt(otp_bin)
 msg_hex = binascii.hexlify(msg_bin)

 # The checksum is a CRC-16 (16-bit ISO 13239 1st complement) that
 # occupies the last 2 bytes of the decrypted OTP value. Calculating the
 # CRC-16 checksum of the whole decrypted OTP should give a fixed
 # residual
 # of 0xf0b8 (see Yubikey-Manual - Chapter 6: Implementation details).
 log.debug("calculated checksum (61624): {0!r}".format(checksum(msg_hex)))
 if checksum(msg_hex) != 0xf0b8: # pragma: no cover
 log.warning("CRC checksum for token {0!r} failed".format(serial))
 return -3

 uid = msg_hex[0:12]
 log.debug("uid: {0!r}".format(uid))
 log.debug("prefix: {0!r}".format(binascii.hexlify(modhex_decode(yubi_prefix))))
 # usage_counter can go from 1 – 0x7fff
 usage_counter = msg_hex[12:16]
 timestamp = msg_hex[16:22]
 # session counter can go from 00 to 0xff
 session_counter = msg_hex[22:24]
 random = msg_hex[24:28]
 crc = msg_hex[28:]
 log.debug("decrypted: usage_count: {0!r}, session_count: {1!r}".format(usage_counter, session_counter))

 # create the counter as integer
 # Note: The usage counter is stored LSB!

 count_hex = usage_counter[2:4] + usage_counter[0:2] + session_counter
 count_int = int(count_hex, 16)
 log.debug('decrypted counter: {0!r}'.format(count_int))

 tokenid = self.get_tokeninfo("yubikey.tokenid")
 if not tokenid:
 log.debug("Got no tokenid for {0!r}. Setting to {1!r}.".format(serial, uid))
 tokenid = uid
 self.add_tokeninfo("yubikey.tokenid", tokenid)

 prefix = self.get_tokeninfo("yubikey.prefix")
 if not prefix:
 log.debug("Got no prefix for {0!r}. Setting to {1!r}.".format(serial, yubi_prefix))
 self.add_tokeninfo("yubikey.prefix", yubi_prefix)

 if tokenid != uid:
 # wrong token!
 log.warning("The wrong token was presented for %r. "
 "Got %r, expected %r."
 % (serial, uid, tokenid))
 return -2

 # TODO: We also could check the timestamp
 # see http://www.yubico.com/wp-content/uploads/2013/04/YubiKey-Manual-v3_1.pdf
 log.debug('compare counter to database counter: {0!r}'.format(self.token.count))
 if count_int >= self.token.count:
 res = count_int
 # on success we save the used counter
 self.inc_otp_counter(res)

 return res

 @staticmethod
 def _get_api_key(api_id):
 """
 Return the symmetric key for the given apiId.

 :param api_id: The base64 encoded API ID
 :return: the base64 encoded API Key or None
 """
 api_key = get_from_config("yubikey.apiid.{0!s}".format(api_id))
 return api_key

 @classmethod
[docs] def api_endpoint(cls, request, g):
 """
 This provides a function to be plugged into the API endpoint
 /ttype/yubikey which is defined in api/ttype.py

 The endpoint /ttype/yubikey is used for the Yubico validate request
 according to
 https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html

 :param request: The Flask request
 :param g: The Flask global object g
 :return: Flask Response or text

 Required query parameters

 :query id: The id of the client to identify the correct shared secret
 :query otp: The OTP from the yubikey in the yubikey mode
 :query nonce: 16-40 bytes of random data

 Optional parameters h, timestamp, sl, timeout are not supported at the
 moment.
 """
 id = getParam(request.all_data, "id")
 otp = getParam(request.all_data, "otp")
 nonce = getParam(request.all_data, "nonce")
 signature = getParam(request.all_data, "h")
 status = "MISSING_PARAMETER"

 timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ%f")
 data = {'otp': otp,
 'nonce': nonce,
 'status': status,
 'timestamp': timestamp}

 api_key = cls._get_api_key(id)
 if api_key is None:
 data['status'] = "NO_SUCH_CLIENT"
 data['h'] = ""
 elif otp and id and nonce:
 if signature and not yubico_check_api_signature(request.all_data,
 api_key, signature):
 # yubico server don't send nonce and otp back. Do we want that?
 data['status'] = "BAD_SIGNATURE"
 else:
 res, opt = cls.check_yubikey_pass(otp)
 if res:
 data['status'] = "OK"
 else:
 # Do we want REPLAYED_OTP too?
 data['status'] = "BAD_OTP"

 data["h"] = yubico_api_signature(data, api_key)
 response = """nonce={nonce}
otp={otp}
status={status}
timestamp={timestamp}
h={h}
""".format(**data)

 return "plain", response

 @staticmethod
[docs] def check_yubikey_pass(passw):
 """
 if the Token has set a PIN the user must also enter the PIN for
 authentication!

 This checks the output of a yubikey in AES mode without providing
 the serial number.
 The first 12 (of 44) or 16 of 48) characters are the tokenid, which is
 stored in the tokeninfo yubikey.tokenid or the prefix yubikey.prefix.

 :param passw: The password that consist of the static yubikey prefix and
 the otp
 :type passw: string

 :return: True/False and the User-Object of the token owner
 :rtype: dict
 """
 opt = {}
 res = False

 token_list = []

 # strip the yubico OTP and the PIN
 prefix = passw[:-32][-16:]

 from privacyidea.lib.token import get_tokens
 from privacyidea.lib.token import check_token_list

 # See if the prefix matches the serial number
 if prefix[:2] != "vv" and prefix[:2] != "cc":
 try:
 # Keep the backward compatibility
 serialnum = "UBAM" + modhex_decode(prefix)
 for i in range(1, 3):
 s = "{0!s}_{1!s}".format(serialnum, i)
 toks = get_tokens(serial=s)
 token_list.extend(toks)
 except TypeError as exx: # pragma: no cover
 log.error("Failed to convert serialnumber: {0!r}".format(exx))

 # Now, we see, if the prefix matches the new version
 if not token_list:
 # If we did not find the token via the serial number, we also
 # search for the yubikey.prefix in the tokeninfo.
 token_candidate_list = get_tokens(tokentype='yubikey',
 tokeninfo={"yubikey.prefix":
 prefix})
 token_list.extend(token_candidate_list)

 if not token_list:
 opt['action_detail'] = ("The prefix {0!s} could not be found!".format(
 prefix))
 return res, opt

 (res, opt) = check_token_list(token_list, passw)
 return res, opt

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/emailtoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.emailtoken

-*- coding: utf-8 -*-
#
2015-12-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Use privacyidea.lib.smtpserver instead of smtplib
2015-10-12 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add test config function
2015-04-14 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Adapt code to work with privacyIDEA 2 (Flask)
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """This is the implementation of an Email-Token, that sends OTP
values via SMTP.

The following config entries are used:

 * email.validtime
 * email.identifier

The identifier points to a system wide SMTP server configuration.
See :ref:`rest_smtpserver`.

The system wide SMTP server configuration was introduced in version 2.10.
In privacyIDEA up to version 2.9 the following config entries were used:

 * email.validtime
 * email.mailserver
 * email.port
 * email.username
 * email.password
 * email.mailfrom
 * email.subject
 * email.tls

policy: action: emailtext

The code is tested in tests/test_lib_tokens_email
"""

import logging
import traceback
from privacyidea.lib.tokens.smstoken import HotpTokenClass
from privacyidea.lib.config import get_from_config
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.policy import SCOPE
from privacyidea.lib.log import log_with
from privacyidea.lib import _
from privacyidea.models import Challenge
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.smtpserver import send_email_data, send_email_identifier

log = logging.getLogger(__name__)
TEST_SUCCESSFUL = "Successfully sent email. Please check your inbox."

class EMAILACTION(object):
 EMAILTEXT = "emailtext"
 EMAILSUBJECT = "emailsubject"
 EMAILAUTO = "emailautosend"

[docs]class EmailTokenClass(HotpTokenClass):
 """
 Implementation of the EMail Token Class, that sends OTP values via SMTP.
 (Similar to SMSTokenClass)
 """

 EMAIL_ADDRESS_KEY = "email"

 def __init__(self, aToken):
 HotpTokenClass.__init__(self, aToken)
 self.set_type(u"email")
 self.mode = ['challenge']
 # we support various hashlib methods, but only on create
 # which is effectively set in the update
 self.hashlibStr = get_from_config("hotp.hashlib", "sha1")

 @property
 def _email_address(self):
 return self.get_tokeninfo(self.EMAIL_ADDRESS_KEY)

 @_email_address.setter
 def _email_address(self, value):
 self.add_tokeninfo(self.EMAIL_ADDRESS_KEY, value)

 @staticmethod
[docs] def get_class_type():
 """
 return the generic token class identifier
 """
 return "email"

 @staticmethod
[docs] def get_class_prefix():
 return "PIEM"

 @staticmethod
[docs] def get_class_info(key=None, ret='all'):
 """
 returns all or a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined

 :return: subsection if key exists or user defined
 :rtype : s.o.
 """
 res = {'type': 'email',
 'title': _('EMail Token'),
 'description':
 _('EMail: Send a One Time Password to the users email '
 'address.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {SCOPE.AUTH: {
 EMAILACTION.EMAILTEXT: {
 'type': 'str',
 'desc': _('The text that will be send via EMail for'
 ' an EMail token. Use <otp> and <serial> '
 'as parameters.')},
 EMAILACTION.EMAILSUBJECT: {
 'type': 'str',
 'desc': _('The subject of the EMail for'
 ' an EMail token. Use <otp> and <serial> '
 'as parameters.')},
 EMAILACTION.EMAILAUTO: {
 'type': 'bool',
 'desc': _('If set, a new EMail OTP will be sent '
 'after successful authentication with '
 'one EMail OTP.')},
 }
 }
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

 @log_with(log)
[docs] def update(self, param, reset_failcount=True):
 """
 update - process initialization parameters

 :param param: dict of initialization parameters
 :type param: dict

 :return: nothing

 """
 # specific - e-mail
 self._email_address = getParam(param,
 self.EMAIL_ADDRESS_KEY,
 optional=False)

 # in case of the e-mail token, only the server must know the otpkey
 # thus if none is provided, we let create one (in the TokenClass)
 if 'genkey' not in param and 'otpkey' not in param:
 param['genkey'] = 1

 HotpTokenClass.update(self, param, reset_failcount)
 return

 @log_with(log)
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 check, if the request would start a challenge

 We need to define the function again, to get rid of the
 is_challenge_request-decorator of the HOTP-Token

 :param passw: password, which might be pin or pin+otp
 :param options: dictionary of additional request parameters

 :return: returns true or false
 """
 return self.check_pin(passw, user=user, options=options)

 @log_with(log)
[docs] def create_challenge(self, transactionid=None, options=None):
 """
 create a challenge, which is submitted to the user

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :return: tuple of (bool, message and data)
 bool, if submit was successful
 message is submitted to the user
 data is preserved in the challenge
 attributes - additional attributes, which are displayed in the
 output
 """
 success = False
 options = options or {}
 return_message = "Enter the OTP from the Email:"
 attributes = {'state': transactionid}

 if self.is_active() is True:
 counter = self.get_otp_count()
 log.debug("counter={0!r}".format(counter))
 self.inc_otp_counter(counter, reset=False)
 # At this point we must not bail out in case of an
 # Gateway error, since checkPIN is successful. A bail
 # out would cancel the checking of the other tokens
 try:
 message_template = self._get_email_text_or_subject(options)
 subject_template = self._get_email_text_or_subject(options,
 EMAILACTION.EMAILSUBJECT,
 "Your OTP")
 validity = int(get_from_config("email.validtime", 120))

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=transactionid,
 challenge=options.get("challenge"),
 session=options.get("session"),
 validitytime=validity)
 db_challenge.save()
 transactionid = transactionid or db_challenge.transaction_id
 # We send the email after creating the challenge for testing.
 success, sent_message = self._compose_email(
 message=message_template,
 subject=subject_template)

 except Exception as e:
 info = ("The PIN was correct, but the "
 "EMail could not be sent: %r" % e)
 log.warning(info)
 log.debug("{0!s}".format(traceback.format_exc(e)))
 return_message = info

 return success, return_message, transactionid, attributes

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 check the otpval of a token against a given counter
 and the window

 :param passw: the to be verified passw/pin
 :type passw: string

 :return: counter if found, -1 if not found
 :rtype: int
 """
 options = options or {}
 ret = HotpTokenClass.check_otp(self, anOtpVal, counter, window, options)
 if ret >= 0 and self._get_auto_email(options):
 message = self._get_email_text_or_subject(options)
 subject = self._get_email_text_or_subject(options,
 action=EMAILACTION.EMAILSUBJECT,
 default="Your OTP")
 self.inc_otp_counter(ret, reset=False)
 success, message = self._compose_email(message=message,
 subject=subject)
 log.debug("AutoEmail: send new SMS: {0!s}".format(success))
 log.debug("AutoEmail: {0!r}".format(message))
 return ret

 @staticmethod
 def _get_email_text_or_subject(options,
 action=EMAILACTION.EMAILTEXT,
 default="<otp>"):
 """
 This returns the EMAILTEXT or EMAILSUBJECT from the policy
 "emailtext" or "emailsubject

 :param options: contains user and g object.
 :type options: dict
 :param action: The action - either emailtext or emailsubject
 :param default: If no policy can be found, this is the default text
 :return: Message template
 :rtype: basestring
 """
 message = default
 g = options.get("g")
 username = None
 realm = None
 user_object = options.get("user")
 if user_object: # pragma: no cover
 username = user_object.login
 realm = user_object.realm
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 messages = policy_object.\
 get_action_values(action=action,
 scope=SCOPE.AUTH,
 realm=realm,
 user=username,
 client=clientip,
 unique=True,
 allow_white_space_in_action=True)

 if len(messages) == 1:
 message = messages[0]

 message = message.format(challenge=options.get("challenge"))
 return message

 @staticmethod
 def _get_auto_email(options):
 """
 This returns the AUTOEMAIL setting.

 :param options: contains user and g object.
 :optins type: dict
 :return: True if an SMS should be sent automatically
 :rtype: bool
 """
 autosms = False
 g = options.get("g")
 user_object = options.get("user")
 username = None
 realm = None
 if user_object: # pragma: no cover
 username = user_object.login
 realm = user_object.realm
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 autoemailpol = policy_object.\
 get_policies(action=EMAILACTION.EMAILAUTO,
 scope=SCOPE.AUTH,
 realm=realm,
 user=username,
 client=clientip, active=True)
 autosms = len(autoemailpol) >= 1

 return autosms

 @log_with(log)
 def _compose_email(self, message="<otp>", subject="Your OTP"):
 """
 send email

 :param message: the email submit message - could contain placeholders
 like <otp> or <serial>
 :type message: string

 :return: submitted message
 :rtype: string
 """
 ret = None

 recipient = self._email_address
 otp = self.get_otp()[2]
 serial = self.get_serial()

 message = message.replace("<otp>", otp)
 message = message.replace("<serial>", serial)

 subject = subject.replace("<otp>", otp)
 subject = subject.replace("<serial>", serial)

 log.debug("sending Email to {0!r} ".format(recipient))

 identifier = get_from_config("email.identifier")
 if identifier:
 # New way to send email
 ret = send_email_identifier(identifier, recipient, subject, message)
 else:
 # old way to send email / DEPRECATED
 mailserver = get_from_config("email.mailserver", "localhost")
 port = int(get_from_config("email.port", 25))
 username = get_from_config("email.username")
 password = get_from_config("email.password")
 mail_from = get_from_config("email.mailfrom", "privacyidea@localhost")
 email_tls = get_from_config("email.tls", default=False,
 return_bool=True)
 ret = send_email_data(mailserver, subject, message, mail_from,
 recipient, username, password, port,
 email_tls)
 return ret, message

 @classmethod
[docs] def test_config(cls, params=None):
 mailserver = getParam(params, "email.mailserver", optional=False)
 subject = "Your TEST OTP"
 message = "This is a test."
 mail_from = getParam(params, "email.mailfrom", optional=False)
 recipient = getParam(params, "email.recipient", optional=False)
 password = getParam(params, "email.password")
 username = getParam(params, "email.username")
 port = getParam(params, "email.port", default=25)
 email_tls = getParam(params, "email.tls", default=False)
 r = send_email_data(mailserver, subject, message, mail_from,
 recipient, username=username,
 password=password, port=port, email_tls=email_tls)

 description = "Could not send email."
 if r:
 description = TEST_SUCCESSFUL

 return r, description

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/foureyestoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.foureyestoken

-*- coding: utf-8 -*-
#
License: AGPLv3
contact: http://www.privacyidea.org
#
2015-08-28 Initial writeup of the 4eyes token
according to
https://github.com/privacyidea/privacyidea/issues/167
Cornelius Kölbel <cornelius@privacyidea.org>
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """This is the implementation of the 4eyes token.
The 4eyes token combines several other tokens to a virtual new token,
requiring that 2 or more users with different tokens are present to
authenticate.

A 4eyes token stores the required number of tokens of each realm
and the splitting sign.

The code is tested in tests/test_lib_tokens_4eyes.
"""
import logging
from privacyidea.api.lib.utils import getParam
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.error import ParameterError
from privacyidea.lib.token import check_realm_pass
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib import _

log = logging.getLogger(__name__)
optional = True
required = False

[docs]class FourEyesTokenClass(TokenClass):
 """
 The FourEyes token can be used to implement the Two Man Rule.
 The FourEyes token defines how many tokens of which realms are required
 like:
 * 2 tokens of RealmA
 * 1 token of RealmB

 Then users (the owners of those tokens) need to login by everyone
 entering their OTP PIN and OTP value. It does not matter, in which order
 they enter the values. All their PINs and OTPs are concatenated into one
 password field but need to be separated by the splitting sign.

 The FourEyes token again splits the password value and tries to
 authenticate each of the these passwords in the realms using the function
 ``check_realm_pass``.

 The FourEyes token itself does not provide an OTP PIN.

 The token is initialized using additional parameters at token/init:

 Example Authentication Request:

 .. sourcecode:: http

 POST /auth HTTP/1.1
 Host: example.com
 Accept: application/json

 type=4eyes
 user=cornelius
 realm=realm1
 4eyes=realm1:2,realm2:1
 separator=%20
 """

 def __init__(self, db_token):
 """
 :param db_token: the token
 :type db_token: database token object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"4eyes")
 # We can not do challenge response
 self.mode = ['authenticate']

 @staticmethod
[docs] def get_class_type():
 """
 return the class type identifier
 """
 return "4eyes"

 @staticmethod
[docs] def get_class_prefix():
 """
 return the token type prefix
 """
 return "PI4E"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': '4eyes',
 'title': '4Eyes Token',
 'description': _('4Eyes Token: Use tokens of two or more users '
 'to authenticate'),
 'init': {},
 'config': {},
 'user': [],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @staticmethod
[docs] def realms_dict_to_string(realms):
 """
 This function converts the realms - if it is a dictionary - to a string.

 {"realm1": {"selected": True,
 "count": 1 },
 "realm2": {"selected": True,
 "count": 2} -> realm1:1,realm2:2
 :param realms: the realms as they are passed from the WebUI
 :type realms: dict
 :return: realms
 :rtype: basestring
 """
 realms_string = ""
 if type(realms) is dict:
 for realmname, v in realms.items():
 if v.get("selected"):
 realms_string += "{0!s}:{1!s},".format(realmname, v.get("count"))
 if realms_string[-1] == ',':
 realms_string = realms_string[:-1]
 else:
 realms_string = realms

 return realms_string

 @staticmethod
[docs] def convert_realms(realms):
 """
 This function converts the realms as given by the API parameter to a
 dictionary.

 realm1:2,realm2:1 -> {"realm1":2,
 "realm2":1}

 :param realms: a serialized list of realms
 :type realms: basestring
 :return: dict of realms
 """
 realms_dict = {}
 realm_list = realms.split(",")
 for rl in realm_list:
 r = rl.split(":")
 if len(r) == 2:
 realms_dict[r[0]] = int(r[1])
 return realms_dict

 def _get_realms(self):
 """
 This returns the dictionary how many tokens of each realm are necessary
 :return: dict with realms
 """
 return self.convert_realms(self.get_tokeninfo("4eyes"))

 def _get_separator(self):
 return self.get_tokeninfo("separator") or " "

[docs] def update(self, param):
 """
 This method is called during the initialization process.
 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 TokenClass.update(self, param)

 realms = getParam(param, "4eyes", required)
 separator = getParam(param, "separator", optional, default=" ")
 if len(separator) > 1:
 raise ParameterError("The separator must only be one single "
 "character")
 realms = self.realms_dict_to_string(realms)
 self.convert_realms(realms)
 self.add_tokeninfo("separator", separator)
 self.add_tokeninfo("4eyes", realms)

 @log_with(log)
 @check_token_locked
[docs] def authenticate(self, passw, user=None, options=None):
 """
 do the authentication on base of password / otp and user and
 options, the request parameters.

 Here we contact the other privacyIDEA server to validate the OtpVal.

 :param passw: the password / otp
 :param user: the requesting user
 :param options: the additional request parameters

 :return: tuple of (success, otp_count - 0 or -1, reply)

 """
 pin_match = True
 otp_counter = -1
 reply = None

 required_realms = self._get_realms()
 # This holds the found serial numbers in the realms
 found_serials = {}

 separator = self._get_separator()
 passwords = passw.split(separator)

 for realm in required_realms.keys():
 found_serials[realm] = []
 for otp in passwords:
 res, reply = check_realm_pass(realm, otp)
 if res:
 serial = reply.get("serial")
 found_serials[realm].append(serial)
 # uniquify the serials in the list
 found_serials[realm] = list(set(found_serials[realm]))

 if len(found_serials[realm]) < required_realms[realm]:
 reply = {"foureyes": "Only found {0:d} tokens in realm {1!s}".format(
 len(found_serials[realm]), realm)}
 otp_counter = -1
 break
 else:
 otp_counter = 1

 return pin_match, otp_counter, reply

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/totptoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.totptoken

-*- coding: utf-8 -*-
#
(c) 2015 Cornelius Kölbel - cornelius@privacyidea.org
#
2017-12-01 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add policy for 2step
2016-04-29 Cornelius Kölbel <cornelius.koelbel@netknights.it>
Add get_default_settings to change the parameters before
the token is created
2015-11-30 Cornelius Kölbel <cornelius.koelbel@netknights.it>
initial write
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
This file contains the definition of the TOTP token class
It depends on the DB model, and the lib.tokenclass.
TOTP is defined in https://tools.ietf.org/html/rfc6238
"""

import logging
import time
import math
import datetime
from privacyidea.lib.tokens.HMAC import HmacOtp
from privacyidea.lib.config import get_from_config
from privacyidea.lib.log import log_with
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.tokens.hotptoken import HotpTokenClass
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.policy import ACTION, SCOPE
from privacyidea.lib.auth import ROLE
from privacyidea.lib import _

optional = True
required = False

keylen = {'sha1': 20,
 'sha256': 32,
 'sha512': 64
 }

log = logging.getLogger(__name__)

[docs]class TotpTokenClass(HotpTokenClass):

 # When resyncing we need to do two directly consecutive values.
 resyncDiffLimit = 1

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new TOTP token object from a DB Token object

 :param db_token: instance of the orm db object
 :type db_token: orm object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"totp")
 self.hKeyRequired = True

 @staticmethod
[docs] def get_class_type():
 """
 return the token type shortname

 :return: 'totp'
 :rtype: string
 """
 return "totp"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: TOTP
 """
 return "TOTP"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'totp',
 'title': 'HMAC Time Token',
 'description': _('TOTP: Time based One Time Passwords.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {
 SCOPE.USER: {
 'totp_timestep': {'type': 'int',
 'value': [30, 60],
 'desc': 'Specify the time step of '
 'the timebased OTP token.'},
 'totp_hashlib': {'type': 'str',
 'value': ["sha1",
 "sha256",
 "sha512"],
 'desc': 'Specify the hashlib to be used. '
 'Can be SHA1, SHA256 or SHA512.'},
 'totp_otplen': {'type': 'int',
 'value': [6, 8],
 'desc': "Specify the OTP length to be "
 "used."},
 'totp_force_server_generate': {'type': 'bool',
 'desc': _("Force the key to "
 "be generated on "
 "the server.")},
 '2step': {'type': 'str',
 'value': ['allow', 'force'],
 'desc': _('Specify whether users are allowed or '
 'forced to use two-step enrollment.')}
 },
 SCOPE.ADMIN: {
 '2step': {'type': 'str',
 'value': ['allow', 'force'],
 'desc': _('Specify whether admins are allowed or '
 'forced to use two-step enrollment.')
 }
 },
 SCOPE.ENROLL: {
 '2step_clientsize': {'type': 'int',
 'desc': _("The size of the OTP seed part contributed "
 "by the client (in bytes)")},
 '2step_serversize': {'type': 'int',
 'desc': _("The size of the OTP seed part "
 "contributed by the server (in bytes)")},
 '2step_difficulty': {'type': 'int',
 'desc': _("The difficulty factor used for the "
 "OTP seed generation ""(should be at least 10000)")}
 }
 },
 }
 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

 @log_with(log)
[docs] def update(self, param, reset_failcount=True):
 """
 This is called during initialization of the token
 to add additional attributes to the token object.

 :param param: dict of initialization parameters
 :type param: dict

 :return: nothing
 """
 HotpTokenClass.update(self, param, reset_failcount=reset_failcount)

 timeStep = param.get("timeStep", self.timestep)
 timeWindow = param.get("timeWindow", self.timewindow)
 timeShift = param.get("timeShift", self.timeshift)
 # we support various hashlib methods, but only on create
 # which is effectively set in the update
 hashlibStr = param.get("hashlib", self.hashlib)

 self.add_tokeninfo("timeWindow", timeWindow)
 self.add_tokeninfo("timeShift", timeShift)
 self.add_tokeninfo("timeStep", timeStep)
 self.add_tokeninfo("hashlib", hashlibStr)

 @property
 def timestep(self):
 timeStepping = int(self.get_tokeninfo("timeStep") or
 get_from_config("totp.timeStep") or 30)
 return timeStepping

 @property
 def hashlib(self):
 hashlibStr = self.get_tokeninfo("hashlib") or \
 get_from_config("totp.hashlib", u'sha1')
 return hashlibStr

 @property
 def timewindow(self):
 window = int(self.get_tokeninfo("timeWindow") or
 get_from_config("totp.timeWindow") or 180)
 return window

 @property
 def timeshift(self):
 shift = float(self.get_tokeninfo("timeShift") or 0)
 return shift

 @log_with(log)
[docs] def check_otp_exist(self, otp, window=None, options=None, symetric=True,
 inc_counter=True):
 """
 checks if the given OTP value is/are values of this very token at all.
 This is used to autoassign and to determine the serial number of
 a token.
 In fact it is a check_otp with an enhanced window.

 :param otp: the to be verified otp value
 :type otp: string
 :param window: the lookahead window for the counter in seconds!!!
 :type window: int
 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 options = options or {}
 timeStepping = int(self.get_tokeninfo("timeStep") or
 get_from_config("totp.timeStep") or 30)
 window = (window or self.get_sync_window()) * timeStepping
 res = self.check_otp(otp, window=window, options=options)

 if inc_counter and res >= 0:
 # As usually the counter is increased in lib.token.checkUserPass,
 # we need to do this manually here:
 self.inc_otp_counter(res)
 return res

 @staticmethod
 def _time2counter(T0, timeStepping=60):
 rnd = 0.5
 counter = int((T0 / timeStepping) + rnd)
 return counter

 @staticmethod
 def _counter2time(counter, timeStepping=60):
 rnd = 0.5
 T0 = (float(counter) - rnd) * int(timeStepping)
 return T0

 @staticmethod
 def _getTimeFromCounter(counter, timeStepping=30, rnd=1):
 idate = int(counter - rnd) * timeStepping
 ddate = datetime.datetime.fromtimestamp(idate / 1.0)
 return ddate

 @staticmethod
 @log_with(log)
 def _time2float(curTime):
 """
 convert a datetime object or an datetime sting into a
 float
 s. http://bugs.python.org/issue12750

 :param curTime: time in datetime format
 :type curTime: datetime object

 :return: time as float
 :rtype: float
 """
 dt = datetime.datetime.now()
 if type(curTime) == datetime.datetime:
 dt = curTime

 td = (dt - datetime.datetime(1970, 1, 1))
 # for python 2.6 compatibility, we have to implement
 # 2.7 .total_seconds()::
 # TODO: fix to float!!!!
 tCounter = ((td.microseconds +
 (td.seconds + td.days * 24 * 3600)
 * 10 ** 6) * 1.0) / 10 ** 6
 return tCounter

 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 validate the token otp against a given otpvalue

 :param anOtpVal: the to be verified otpvalue
 :type anOtpVal: string
 :param counter: the counter state, that should be verified. For TOTP
 this is the unix system time (seconds) divided by 30/60
 :type counter: int
 :param window: the counter +window (sec), which should be checked
 :type window: int
 :param options: the dict, which could contain token specific info
 :type options: dict
 :return: the counter or -1
 :rtype: int
 """
 otplen = int(self.token.otplen)
 options = options or {}
 secretHOtp = self.token.get_otpkey()
 oCount = self.get_otp_count()
 inow = int(time.time())
 window = window or self.timewindow

 initTime = int(options.get('initTime', -1))
 if initTime != -1:
 server_time = int(initTime)
 else:
 server_time = time.time() + self.timeshift

 # If we have a counter from the parameter list
 if not counter:
 # No counter, so we take the current token_time
 counter = self._time2counter(server_time,
 timeStepping=self.timestep)

 hmac2Otp = HmacOtp(secretHOtp,
 counter,
 otplen,
 self.get_hashlib(self.hashlib))
 res = hmac2Otp.checkOtp(anOtpVal,
 int(window / self.timestep),
 symetric=True)

 if res != -1 and oCount != 0 and res <= oCount:
 log.warning("a previous OTP value was used again! former "
 "tokencounter: %i, presented counter %i" %
 (oCount, res))
 res = -1
 return res

 if -1 == res:
 # _autosync: test if two consecutive otps have been provided
 res = self._autosync(hmac2Otp, anOtpVal)

 if res != -1:
 # on success, we have to save the last attempt
 self.set_otp_count(res)
 # We could also store it temporarily
 # self.auth_details["matched_otp_counter"] = res

 # here we calculate the new drift/shift between the server time
 # and the tokentime
 tokentime = self._counter2time(res, self.timestep)
 tokenDt = datetime.datetime.fromtimestamp(tokentime / 1.0)

 nowDt = datetime.datetime.fromtimestamp(inow / 1.0)

 lastauth = self._counter2time(oCount, self.timestep)
 lastauthDt = datetime.datetime.fromtimestamp(lastauth / 1.0)

 log.debug("last auth : {0!r}".format(lastauthDt))
 log.debug("tokentime : {0!r}".format(tokenDt))
 log.debug("now : {0!r}".format(nowDt))
 log.debug("delta : {0!r}".format((tokentime - inow)))

 new_shift = (tokentime - inow)
 log.debug("the counter {0!r} matched. New shift: {1!r}".format(res, new_shift))
 self.add_tokeninfo('timeShift', new_shift)
 return res

 @log_with(log)
 def _autosync(self, hmac2Otp, anOtpVal):
 """
 synchronize the token based on two otp values automatically.
 If the OTP is invalid, that OTP counter is stored.
 If an old OTP counter is stored, it is checked, if the new
 OTP value is the next value after this counter.

 internal method to realize the _autosync within the
 checkOtp method

 :param hmac2Otp: the hmac object (with reference to the token secret)
 :type hmac2Otp: hmac object
 :param anOtpVal: the actual otp value
 :type anOtpVal: string
 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 res = -1
 autosync = get_from_config("AutoResync", False, return_bool=True)
 # if _autosync is not enabled: do nothing
 if autosync is False:
 return res

 info = self.get_tokeninfo()
 syncWindow = self.get_sync_window()

 # check if the otpval is valid in the sync scope
 res = hmac2Otp.checkOtp(anOtpVal, syncWindow, symetric=True)
 log.debug("found otpval {0!r} in syncwindow ({1!r}): {2!r}".format(anOtpVal, syncWindow, res))

 if res != -1:
 # if former is defined
 if "otp1c" in info:
 # check if this is consecutive
 otp1c = int(info.get("otp1c"))
 otp2c = res
 log.debug("otp1c: {0!r}, otp2c: {1!r}".format(otp1c, otp2c))
 diff = math.fabs(otp2c - otp1c)
 if diff > self.resyncDiffLimit:
 res = -1
 else:
 server_time = time.time()
 counter = int((server_time / self.timestep) + 0.5)

 shift = otp2c - counter
 info["timeShift"] = shift
 self.set_tokeninfo(info)

 # now clean the resync data
 del info["otp1c"]
 self.set_tokeninfo(info)

 else:
 log.debug("setting otp1c: {0!s}".format(res))
 info["otp1c"] = res
 self.set_tokeninfo(info)
 res = -1

 return res

 @log_with(log)
[docs] def resync(self, otp1, otp2, options=None):
 """
 resync the token based on two otp values
 external method to do the resync of the token

 :param otp1: the first otp value
 :type otp1: string
 :param otp2: the second otp value
 :type otp2: string
 :param options: optional token specific parameters
 :type options: dict or None
 :return: counter or -1 if otp does not exist
 :rtype: int
 """
 ret = False
 options = options or {}
 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()

 log.debug("timestep: {0!r}, syncWindow: {1!r}, timeShift: {2!r}".format(self.timestep, self.timewindow, self.timeshift))

 initTime = int(options.get('initTime', -1))
 if initTime != -1:
 server_time = int(initTime)
 else:
 server_time = time.time() + self.timeshift

 counter = int((server_time / self.timestep) + 0.5)
 log.debug("counter (current time): {0:d}".format(counter))

 oCount = self.get_otp_count()

 log.debug("tokenCounter: {0!r}".format(oCount))
 log.debug("now checking window {0!s}, timeStepping {1!s}".format(self.timewindow, self.timestep))
 # check 2nd value
 hmac2Otp = HmacOtp(secretHOtp,
 counter,
 otplen,
 self.get_hashlib(self.hashlib))
 log.debug("{0!s} in otpkey: {1!s} ".format(otp2, secretHOtp))
 res2 = hmac2Otp.checkOtp(otp2,
 int(self.timewindow / self.timestep),
 symetric=True) # TEST -remove the 10
 log.debug("res 2: {0!r}".format(res2))
 # check 1st value
 hmac2Otp = HmacOtp(secretHOtp,
 counter - 1,
 otplen,
 self.get_hashlib(self.hashlib))
 log.debug("{0!s} in otpkey: {1!s} ".format(otp1, secretHOtp))
 res1 = hmac2Otp.checkOtp(otp1,
 int(self.timewindow / self.timestep),
 symetric=True) # TEST -remove the 10
 log.debug("res 1: {0!r}".format(res1))

 if res1 < oCount:
 # A previous OTP value was used again!
 log.warning("a previous OTP value was used again! tokencounter: "
 "%i, presented counter %i" %
 (oCount, res1))
 res1 = -1

 if res1 != -1 and res1 + 1 == res2:
 # here we calculate the new drift/shift between the server time
 # and the tokentime
 tokentime = (res2 + 0.5) * self.timestep
 currenttime = server_time - self.timeshift
 new_shift = (tokentime - currenttime)
 log.debug("the counters {0!r} and {1!r} matched. New shift: {2!r}".format(res1, res2, new_shift))
 self.add_tokeninfo('timeShift', new_shift)

 # The OTP value that was used for resync must not be used again!
 self.set_otp_count(res2 + 1)

 ret = True

 if ret is True:
 msg = "resync was successful"
 else:
 msg = "resync was not successful"

 log.debug("end. {0!s}: ret: {1!r}".format(msg, ret))
 return ret

[docs] def get_otp(self, current_time=None, do_truncation=True,
 time_seconds=None, challenge=None):
 """
 get the next OTP value

 :param current_time: the current time, for which the OTP value
 should be calculated for.
 :type current_time: datetime object
 :param time_seconds: the current time, for which the OTP value
 should be calculated for (date +%s)
 :type: time_seconds: int, unix system time seconds
 :return: next otp value, and PIN, if possible
 :rtype: tuple
 """
 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()

 hmac2Otp = HmacOtp(secretHOtp,
 self.get_otp_count(),
 otplen,
 self.get_hashlib(self.hashlib))

 if time_seconds is None:
 time_seconds = self._time2float(datetime.datetime.now())
 if current_time:
 time_seconds = self._time2float(current_time)

 # we don't need to round here as we have already float
 counter = int(((time_seconds - self.timeshift) / self.timestep))
 otpval = hmac2Otp.generate(counter=counter,
 inc_counter=False,
 do_truncation=do_truncation,
 challenge=challenge)

 pin = self.token.get_pin()
 combined = "{0!s}{1!s}".format(otpval, pin)
 if get_from_config("PrependPin") == "True":
 combined = "{0!s}{1!s}".format(pin, otpval)

 return 1, pin, otpval, combined

 @log_with(log)
[docs] def get_multi_otp(self, count=0, epoch_start=0, epoch_end=0,
 curTime=None, timestamp=None):
 """
 return a dictionary of multiple future OTP values
 of the HOTP/HMAC token

 :param count: how many otp values should be returned
 :type count: int
 :param epoch_start: not implemented
 :param epoch_end: not implemented
 :param curTime: Simulate the servertime
 :type curTime: datetime
 :param timestamp: Simulate the servertime
 :type timestamp: epoch time
 :return: tuple of status: boolean, error: text and the OTP dictionary

 """
 otp_dict = {"type": "TOTP", "otp": {}}
 ret = False
 error = "No count specified"

 otplen = int(self.token.otplen)
 secretHOtp = self.token.get_otpkey()

 hmac2Otp = HmacOtp(secretHOtp, self.get_otp_count(),
 otplen, self.get_hashlib(self.hashlib))

 if curTime:
 # datetime object provided for simulation
 tCounter = self._time2float(curTime)
 elif timestamp:
 # epoch time provided for simulation
 tCounter = int(timestamp)
 else:
 # use the current server time
 tCounter = self._time2float(datetime.datetime.now())

 # we don't need to round here as we have alread float
 counter = int(((tCounter - self.timeshift) / self.timestep))

 otp_dict["shift"] = self.timeshift
 otp_dict["timeStepping"] = self.timeshift

 if count > 0:
 error = "OK"
 for i in range(0, count):
 otpval = hmac2Otp.generate(counter=counter + i,
 inc_counter=False)
 timeCounter = ((counter + i) * self.timestep) + self.timeshift

 val_time = datetime.datetime.\
 fromtimestamp(timeCounter).strftime("%Y-%m-%d %H:%M:%S")
 otp_dict["otp"][counter + i] = {'otpval': otpval,
 'time': val_time}
 ret = True

 return ret, error, otp_dict

 @staticmethod
[docs] def get_setting_type(key):
 settings = {"totp.hashlib": "public",
 "totp.timeStep": "public",
 "totp.timeWindow": "public"}
 return settings.get(key, "")

 @classmethod
[docs] def get_default_settings(cls, params, logged_in_user=None,
 policy_object=None, client_ip=None):
 """
 This method returns a dictionary with default settings for token
 enrollment.
 These default settings are defined in SCOPE.USER and are
 totp_hashlib, totp_timestep and totp_otplen.
 If these are set, the user will only be able to enroll tokens with
 these values.

 The returned dictionary is added to the parameters of the API call.
 :param params: The call parameters
 :type params: dict
 :param logged_in_user: The logged_in_user dictionary with "role",
 "username" and "realm"
 :type logged_in_user: dict
 :param policy_object: The policy_object
 :type policy_object: PolicyClass
 :param client_ip: The client IP address
 :type client_ip: basestring
 :return: default parameters
 """
 ret = {}
 if logged_in_user.get("role") == ROLE.USER:
 hashlib_pol = policy_object.get_action_values(
 action="totp_hashlib",
 scope=SCOPE.USER,
 user=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 client=client_ip,
 unique=True)
 if hashlib_pol:
 ret["hashlib"] = hashlib_pol[0]

 timestep_pol = policy_object.get_action_values(
 action="totp_timestep",
 scope=SCOPE.USER,
 user=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 client=client_ip,
 unique=True)
 if timestep_pol:
 ret["timeStep"] = timestep_pol[0]

 otplen_pol = policy_object.get_action_values(
 action="totp_otplen",
 scope=SCOPE.USER,
 user=logged_in_user.get("username"),
 realm=logged_in_user.get("realm"),
 client=client_ip,
 unique=True)
 if otplen_pol:
 ret["otplen"] = otplen_pol[0]

 return ret

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/smstoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.smstoken

-*- coding: utf-8 -*-
#
privacyIDEA is a fork of LinOTP
May 08, 2014 Cornelius Kölbel
License: AGPLv3
contact: http://www.privacyidea.org
#
2016-06-20 Cornelius Kölbel <cornelius.koelbel@netkngihts.it>
Use sms.identifier, central SMS gateway definition, to send
the OTP value via SMS.
2015-05-24 Add more detailed description
Cornelius Kölbel <cornelius.koelbel@netknights.it>
2015-01-30 Adapt for migration to flask
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
Copyright (C) 2010 - 2014 LSE Leading Security Experts GmbH
License: LSE
contact: http://www.linotp.org
http://www.lsexperts.de
linotp@lsexperts.de
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """The SMS token sends an SMS containing an OTP via some kind of
gateway. The gateways can be an SMTP or HTTP gateway or the special sipgate
protocol.
The Gateways are defined in the SMSProvider Modules.

This code is tested in tests/test_lib_tokens_sms
"""

import datetime
import traceback

from privacyidea.api.lib.utils import getParam
from privacyidea.api.lib.utils import required

from privacyidea.lib.config import get_from_config
from privacyidea.lib.policy import SCOPE
from privacyidea.lib.log import log_with
from privacyidea.lib.smsprovider.SMSProvider import (get_sms_provider_class,
 create_sms_instance)
from json import loads
from privacyidea.lib import _

from privacyidea.lib.tokens.hotptoken import HotpTokenClass
from privacyidea.models import Challenge
from privacyidea.lib.decorators import check_token_locked
import logging
from privacyidea.lib.policydecorators import challenge_response_allowed
log = logging.getLogger(__name__)

keylen = {'sha1': 20,
 'sha256': 32,
 'sha512': 64}

class SMSACTION(object):
 SMSTEXT = "smstext"
 SMSAUTO = "smsautosend"

[docs]class SmsTokenClass(HotpTokenClass):
 """
 The SMS token sends an SMS containing an OTP via some kind of
 gateway. The gateways can be an SMTP or HTTP gateway or the special sipgate
 protocol. The Gateways are defined in the SMSProvider Modules.

 The SMS token is a challenge response token. I.e. the first request needs
 to contain the correct OTP PIN. If the OTP PIN is correct, the sending of
 the SMS is triggered. The second authentication must either contain the
 OTP PIN and the OTP value or the transaction_id and the OTP value.

 Example 1st Authentication Request:

 .. sourcecode:: http

 POST /validate/check HTTP/1.1
 Host: example.com
 Accept: application/json

 user=cornelius
 pass=otppin

 Example 1st response:

 .. sourcecode:: http

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "detail": {
 "transaction_id": "xyz"
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": false
 },
 "version": "privacyIDEA unknown"
 }

 After this, the SMS is triggered. When the SMS is received the second part
 of authentication looks like this:

 Example 2nd Authentication Request:

 .. sourcecode:: http

 POST /validate/check HTTP/1.1
 Host: example.com
 Accept: application/json

 user=cornelius
 transaction_id=xyz
 pass=otppin

 Example 1st response:

 .. sourcecode:: http

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "detail": {
 },
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "status": true,
 "value": true
 },
 "version": "privacyIDEA unknown"
 }

 """
 def __init__(self, db_token):
 HotpTokenClass.__init__(self, db_token)
 self.set_type(u"sms")
 self.mode = ['challenge']
 self.hKeyRequired = True

 @staticmethod
[docs] def get_class_type():
 """
 return the generic token class identifier
 """
 return "sms"

 @staticmethod
[docs] def get_class_prefix():
 return "PISM"

 @staticmethod
[docs] def get_class_info(key=None, ret='all'):
 """
 returns all or a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined

 :return: subsection if key exists or user defined
 :rtype : s.o.
 """

 res = {'type': 'sms',
 'title': _('SMS Token'),
 'description':
 _('SMS: Send a One Time Password to the users mobile '
 'phone.'),
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {
 SCOPE.AUTH: {
 SMSACTION.SMSTEXT: {
 'type': 'str',
 'desc': _('The text that will be send via SMS for'
 ' an SMS token. Use <otp> and <serial> '
 'as parameters.')},
 SMSACTION.SMSAUTO: {
 'type': 'bool',
 'desc': _('If set, a new SMS OTP will be sent '
 'after successful authentication with '
 'one SMS OTP.')},
 }
 },
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res

 return ret

 @log_with(log)
[docs] def update(self, param, reset_failcount=True):
 """
 process initialization parameters

 :param param: dict of initialization parameters
 :type param: dict
 :return: nothing
 """
 # specific - phone
 phone = getParam(param, "phone", required)
 self.add_tokeninfo("phone", phone)

 # in case of the sms token, only the server must know the otpkey
 # thus if none is provided, we let create one (in the TokenClass)
 if "genkey" not in param and "otpkey" not in param:
 param['genkey'] = 1

 HotpTokenClass.update(self, param, reset_failcount)

 @log_with(log)
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 check, if the request would start a challenge

 We need to define the function again, to get rid of the
 is_challenge_request-decorator of the HOTP-Token

 :param passw: password, which might be pin or pin+otp
 :param options: dictionary of additional request parameters

 :return: returns true or false
 """
 return self.check_pin(passw, user=user, options=options)

 @log_with(log)
[docs] def create_challenge(self, transactionid=None, options=None):
 """
 create a challenge, which is submitted to the user

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :return: tuple of (bool, message and data)
 bool, if submit was successful
 message is submitted to the user
 data is preserved in the challenge
 attributes - additional attributes, which are displayed in the
 output
 """
 success = False
 sms = ""
 options = options or {}
 return_message = "Enter the OTP from the SMS:"
 attributes = {'state': transactionid}
 validity = self._get_sms_timeout()

 if self.is_active() is True:
 counter = self.get_otp_count()
 log.debug("counter={0!r}".format(counter))
 self.inc_otp_counter(counter, reset=False)
 # At this point we must not bail out in case of an
 # Gateway error, since checkPIN is successful. A bail
 # out would cancel the checking of the other tokens
 try:
 message_template = self._get_sms_text(options)
 success, sent_message = self._send_sms(
 message=message_template)

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=transactionid,
 challenge=options.get("challenge"),
 session=options.get("session"),
 validitytime=validity)
 db_challenge.save()
 transactionid = transactionid or db_challenge.transaction_id
 except Exception as e:
 info = ("The PIN was correct, but the "
 "SMS could not be sent: %r" % e)
 log.warning(info)
 log.debug("{0!s}".format(traceback.format_exc()))
 return_message = info

 validity = self._get_sms_timeout()
 expiry_date = datetime.datetime.now() + \
 datetime.timedelta(seconds=validity)
 attributes['valid_until'] = "{0!s}".format(expiry_date)

 return success, return_message, transactionid, attributes

 @log_with(log)
 @check_token_locked
[docs] def check_otp(self, anOtpVal, counter=None, window=None, options=None):
 """
 check the otpval of a token against a given counter
 and the window

 :param passw: the to be verified passw/pin
 :type passw: string

 :return: counter if found, -1 if not found
 :rtype: int
 """
 options = options or {}
 ret = HotpTokenClass.check_otp(self, anOtpVal, counter, window, options)
 if ret >= 0 and self._get_auto_sms(options):
 message = self._get_sms_text(options)
 self.inc_otp_counter(ret, reset=False)
 success, message = self._send_sms(message=message)
 log.debug("AutoSMS: send new SMS: {0!s}".format(success))
 log.debug("AutoSMS: {0!r}".format(message))
 return ret

 @log_with(log)
 def _send_sms(self, message="<otp>"):
 """
 send sms

 :param message: the sms submit message - could contain placeholders
 like <otp> or <serial>
 :type message: string

 :return: submitted message
 :rtype: string
 """
 ret = None

 phone = self.get_tokeninfo("phone")
 otp = self.get_otp()[2]
 serial = self.get_serial()

 message = message.replace("<otp>", otp)
 message = message.replace("<serial>", serial)
 log.debug("sending SMS to phone number {0!s} ".format(phone))

 # First we try to get the new SMS gateway config style
 sms_gateway_identifier = get_from_config("sms.identifier")

 if sms_gateway_identifier:
 # New style
 sms = create_sms_instance(sms_gateway_identifier)

 else:
 # Old style
 (SMSProvider, SMSProviderClass) = self._get_sms_provider()
 log.debug("smsprovider: {0!s}, class: {1!s}".format(SMSProvider,
 SMSProviderClass))

 try:
 sms = get_sms_provider_class(SMSProvider, SMSProviderClass)()
 except Exception as exc:
 log.error("Failed to load SMSProvider: {0!r}".format(exc))
 log.debug("{0!s}".format(traceback.format_exc()))
 raise exc

 try:
 # now we need the config from the env
 log.debug("loading SMS configuration for class {0!s}".format(sms))
 config = self._get_sms_provider_config()
 log.debug("config: {0!r}".format(config))
 sms.load_config(config)
 except Exception as exc:
 log.error("Failed to load sms.providerConfig: {0!r}".format(exc))
 log.debug("{0!s}".format(traceback.format_exc()))
 raise Exception("Failed to load sms.providerConfig: {0!r}".format(exc))

 log.debug("submitMessage: {0!r}, to phone {1!r}".format(message, phone))
 ret = sms.submit_message(phone, message)
 return ret, message

 @staticmethod
 @log_with(log)
 def _get_sms_provider():
 """
 get the SMS Provider class definition

 :return: tuple of SMSProvider and Provider Class as string
 :rtype: tuple of (string, string)
 """
 smsProvider = get_from_config("sms.provider",
 default="privacyidea.lib.smsprovider."
 "HttpSMSProvider.HttpSMSProvider")
 (SMSProvider, SMSProviderClass) = smsProvider.rsplit(".", 1)
 return SMSProvider, SMSProviderClass

 @staticmethod
 @log_with(log)
 def _get_sms_provider_config():
 """
 load the defined sms provider config definition

 :return: dict of the sms provider definition
 :rtype: dict
 """
 tConfig = get_from_config("sms.providerConfig", "{}")
 config = loads(tConfig)
 return config

 @staticmethod
 @log_with(log)
 def _get_sms_timeout():
 """
 get the challenge time is in the specified range

 :return: the defined validation timeout in seconds
 :rtype: int
 """
 try:
 timeout = int(get_from_config("sms.providerTimeout", 5 * 60))
 except Exception as ex: # pragma: no cover
 log.warning("SMSProviderTimeout: value error {0!r} - reset to 5*60".format((ex)))
 timeout = 5 * 60
 return timeout

 @staticmethod
 def _get_sms_text(options):
 """
 This returns the SMSTEXT from the policy "smstext"

 options contains data like clientip, g, user and also the Request
 parameters like "challenge" or "pass".

 :param options: contains user and g object.
 :type options: dict
 :return: Message template
 :rtype: basestring
 """
 message = "<otp>"
 g = options.get("g")
 username = None
 realm = None
 user_object = options.get("user")
 if user_object:
 username = user_object.login
 realm = user_object.realm
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 messages = policy_object.\
 get_action_values(action=SMSACTION.SMSTEXT,
 scope=SCOPE.AUTH,
 realm=realm,
 user=username,
 client=clientip,
 unique=True,
 allow_white_space_in_action=True)

 if len(messages) == 1:
 message = messages[0]

 # Replace the {challenge}:
 message = message.format(challenge=options.get("challenge"))
 return message

 @staticmethod
 def _get_auto_sms(options):
 """
 This returns the AUTOSMS setting.

 :param options: contains user and g object.
 :optins type: dict
 :return: True if an SMS should be sent automatically
 :rtype: bool
 """
 autosms = False
 g = options.get("g")
 user_object = options.get("user")
 username = None
 realm = None
 if user_object:
 username = user_object.login
 realm = user_object.realm
 if g:
 clientip = options.get("clientip")
 policy_object = g.policy_object
 autosmspol = policy_object.\
 get_policies(action=SMSACTION.SMSAUTO,
 scope=SCOPE.AUTH,
 realm=realm,
 user=username,
 client=clientip, active=True)
 autosms = len(autosmspol) >= 1

 return autosms

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/tiqrtoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.tiqrtoken

-*- coding: utf-8 -*-
#
http://www.privacyidea.org
2015-09-01 Initial writeup.
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
The TiQR token is a special App based token, which allows easy login and
which is based on OCRA.

It generates an enrollment QR code, which contains a link with the more
detailed enrollment information.

For a description of the TiQR protocol see

* https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Rijswijk.pdf
* https://github.com/SURFnet/tiqr/wiki/Protocol-documentation.
* https://tiqr.org

The TiQR token is based on the OCRA algorithm. It lets you authenticate
with your smartphone by scanning a QR code.

The TiQR token is enrolled via /token/init, but it requires no otpkey, since
the otpkey is generated on the smartphone and pushed to the privacyIDEA
server in a seconds step.

Enrollment

1. Start enrollment with /token/init
2. Scan the QR code in the details of the JSON result. The QR code contains
 a link to /ttype/tiqr?action=metadata
3. The TiQR Smartphone App will fetch this link and get more information
4. The TiQR Smartphone App will push the otpkey to a
 link /ttype/tiqr?action=enrollment and the token will be ready for use.

Authentication

An application that wants to use the TiQR token with privacyIDEA has to use
the token in challenge response.

1. Call ``/validate/check?user=<user>&pass=<pin>``
 with the PIN of the TiQR token
2. The details of the JSON response contain a QR code, that needs to
 be shown to the user.
 In addition the application needs to save the ``transaction_id`` in the
 response.
3. The user scans the QR code.
4. The TiQR App communicates with privacyIDEA via the API /ttype/tiqr. In this
 step the response of the App to the challenge is verified. The successful
 authentication is stored in the Challenge DB table.
 (No need for the application to take any action)
5. Now, the application needs to poll
 ``/validate/check?user=<user>&transaction_id=*&pass=`` to verifiy the
 successful authentication. The ``pass`` can be empty.
 If ``value=true`` is returned, the user authenticated successfully
 with the TiQR token.

This code is tested in tests/test_lib_tokens_tiqr.
"""

import urllib

from privacyidea.api.lib.utils import getParam
from privacyidea.lib.config import get_from_config
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.utils import generate_otpkey
from privacyidea.lib.utils import create_img
import logging
from privacyidea.lib.token import get_tokens
from privacyidea.lib.error import ParameterError
from privacyidea.models import Challenge
from privacyidea.lib.user import get_user_from_param
from privacyidea.lib.tokens.ocra import OCRASuite, OCRA
from privacyidea.lib.challenge import get_challenges
from privacyidea.models import cleanup_challenges
from privacyidea.lib import _
from privacyidea.lib.policydecorators import challenge_response_allowed
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.tokens.ocratoken import OcraTokenClass

log = logging.getLogger(__name__)
optional = True
required = False

OCRA_DEFAULT_SUITE = "OCRA-1:HOTP-SHA1-6:QN10"

class API_ACTIONS(object):
 METADATA = "metadata"
 ENROLLMENT = "enrollment"
 AUTHENTICATION = "authentication"
 ALLOWED_ACTIONS = [METADATA, ENROLLMENT, AUTHENTICATION]

[docs]class TiqrTokenClass(OcraTokenClass):
 """
 The TiQR Token implementation.
 """

 @staticmethod
[docs] def get_class_type():
 """
 Returns the internal token type identifier
 :return: tiqr
 :rtype: basestring
 """
 return "tiqr"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: TiQR
 :rtype: basestring
 """
 return "TiQR"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'tiqr',
 'title': 'TiQR Token',
 'description': _('TiQR: Enroll a TiQR token.'),
 'init': {},
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new TiQR Token object from a database object

 :param db_token: instance of the orm db object
 :type db_token: DB object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"tiqr")
 self.hKeyRequired = False

[docs] def update(self, param):
 """
 This method is called during the initialization process.

 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 # We should only initialize such a token, when the user is
 # immediately given in the init process, since the token on the
 # smartphone needs to contain a userId.
 user_object = get_user_from_param(param, required)
 self.set_user(user_object)

 ocrasuite = get_from_config("tiqr.ocrasuite") or OCRA_DEFAULT_SUITE
 OCRASuite(ocrasuite)
 self.add_tokeninfo("ocrasuite", ocrasuite)
 TokenClass.update(self, param)
 # We have to set the realms here, since the token DB object does not
 # have an ID before TokenClass.update.
 self.set_realms([user_object.realm])

 @log_with(log)
[docs] def get_init_detail(self, params=None, user=None):
 """
 At the end of the initialization we return the URL for the TiQR App.
 """
 response_detail = TokenClass.get_init_detail(self, params, user)
 params = params or {}
 enroll_url = get_from_config("tiqr.regServer")
 log.info("using tiqr.regServer for enrollment: {0!s}".format(enroll_url))
 serial = self.token.serial
 session = generate_otpkey()
 # save the session in the token
 self.add_tokeninfo("session", session)
 tiqrenroll = "tiqrenroll://{0!s}?action={1!s}&session={2!s}&serial={3!s}".format(
 enroll_url, API_ACTIONS.METADATA,
 session, serial)

 response_detail["tiqrenroll"] = {"description":
 _("URL for TiQR "
 "enrollment"),
 "value": tiqrenroll,
 "img": create_img(tiqrenroll,
 width=250)}

 return response_detail

 @staticmethod
[docs] def api_endpoint(request, g):
 """
 This provides a function to be plugged into the API endpoint
 /ttype/<tokentype> which is defined in api/ttype.py
 See :ref:`rest_ttype`.

 :param request: The Flask request
 :param g: The Flask global object g
 :return: Flask Response or text
 """
 params = request.all_data
 action = getParam(params, "action", optional) or \
 API_ACTIONS.AUTHENTICATION
 if action not in API_ACTIONS.ALLOWED_ACTIONS:
 raise ParameterError("Allowed actions are {0!s}".format(
 API_ACTIONS.ALLOWED_ACTIONS))

 if action == API_ACTIONS.METADATA:
 session = getParam(params, "session", required)
 serial = getParam(params, "serial", required)
 # The user identifier is displayed in the App
 # We need to set the user ID
 tokens = get_tokens(serial=serial)
 if not tokens: # pragma: no cover
 raise ParameterError("No token with serial {0!s}".format(serial))
 user_identifier, user_displayname = tokens[0].get_user_displayname()

 service_identifier = get_from_config("tiqr.serviceIdentifier") or\
 "org.privacyidea"
 ocrasuite = get_from_config("tiqr.ocrasuite") or OCRA_DEFAULT_SUITE
 service_displayname = get_from_config("tiqr.serviceDisplayname") or \
 "privacyIDEA"
 reg_server = get_from_config("tiqr.regServer")
 auth_server = get_from_config("tiqr.authServer") or reg_server
 logo_url = get_from_config("tiqr.logoUrl")

 service = {"displayName": service_displayname,
 "identifier": service_identifier,
 "logoUrl": logo_url,
 "infoUrl": "https://www.privacyidea.org",
 "authenticationUrl":
 "{0!s}".format(auth_server),
 "ocraSuite": ocrasuite,
 "enrollmentUrl":
 "{0!s}?action={1!s}&session={2!s}&serial={3!s}".format(
 reg_server,
 API_ACTIONS.ENROLLMENT,
 session, serial)
 }
 identity = {"identifier": user_identifier,
 "displayName": user_displayname
 }

 res = {"service": service,
 "identity": identity
 }

 return "json", res

 elif action == API_ACTIONS.ENROLLMENT:
 """
 operation: register
 secret: HEX
 notificationType: GCM
 notificationAddress: ...
 language: de
 session:
 serial:
 """
 res = "Fail"
 serial = getParam(params, "serial", required)
 session = getParam(params, "session", required)
 secret = getParam(params, "secret", required)
 # The secret needs to be stored in the token object.
 # We take the token "serial" and check, if it contains the "session"
 # in the tokeninfo.
 enroll_tokens = get_tokens(serial=serial)
 if len(enroll_tokens) == 1:
 if enroll_tokens[0].get_tokeninfo("session") == session:
 # save the secret
 enroll_tokens[0].set_otpkey(secret)
 # delete the session
 enroll_tokens[0].del_tokeninfo("session")
 res = "OK"
 else:
 raise ParameterError("Invalid Session")

 return "plain", res
 elif action == API_ACTIONS.AUTHENTICATION:
 res = "FAIL"
 userId = getParam(params, "userId", required)
 session = getParam(params, "sessionKey", required)
 passw = getParam(params, "response", required)
 operation = getParam(params, "operation", required)
 res = "INVALID_CHALLENGE"
 # The sessionKey is stored in the db_challenge.transaction_id
 # We need to get the token serial for this sessionKey
 challenges = get_challenges(transaction_id=session)
 # We found exactly one challenge
 if (len(challenges) == 1 and challenges[0].is_valid() and
 challenges[0].otp_valid is False):
 # Challenge is still valid (time has not passed) and no
 # correct response was given.
 serial = challenges[0].serial
 tokens = get_tokens(serial=serial)
 if len(tokens) == 1:
 # We found exactly the one token
 res = "INVALID_RESPONSE"
 r = tokens[0].verify_response(
 challenge=challenges[0].challenge, passw=passw)
 if r > 0:
 res = "OK"
 # Mark the challenge as answered successfully.
 challenges[0].set_otp_status(True)

 cleanup_challenges()

 return "plain", res

[docs] def create_challenge(self, transactionid=None, options=None):
 """
 This method creates a challenge, which is submitted to the user.
 The submitted challenge will be preserved in the challenge
 database.

 If no transaction id is given, the system will create a transaction
 id and return it, so that the response can refer to this transaction.

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :type options: dict
 :return: tuple of (bool, message, transactionid, attributes)
 :rtype: tuple

 The return tuple builds up like this:
 ``bool`` if submit was successful;
 ``message`` which is displayed in the JSON response;
 additional ``attributes``, which are displayed in the JSON response.
 """
 options = options or {}
 message = 'Please scan the QR Code'

 # Get ValidityTime=120s. Maybe there is a TIQRChallengeValidityTime...
 validity = int(get_from_config('DefaultChallengeValidityTime', 120))
 tokentype = self.get_tokentype().lower()
 lookup_for = tokentype.capitalize() + 'ChallengeValidityTime'
 validity = int(get_from_config(lookup_for, validity))

 # We need to set the user ID
 user_identifier, user_displayname = self.get_user_displayname()

 service_identifier = get_from_config("tiqr.serviceIdentifier") or \
 "org.privacyidea"

 # Get the OCRASUITE from the token information
 ocrasuite = self.get_tokeninfo("ocrasuite") or OCRA_DEFAULT_SUITE
 # Depending on the OCRA-SUITE we create the challenge
 os = OCRASuite(ocrasuite)
 challenge = os.create_challenge()

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=None,
 challenge=challenge,
 data=None,
 session=options.get("session"),
 validitytime=validity)
 db_challenge.save()

 # Encode the user to UTF-8 and quote the result
 encoded_user_identifier = urllib.quote_plus(user_identifier.encode('utf-8'))
 authurl = u"tiqrauth://{0!s}@{1!s}/{2!s}/{3!s}".format(
 encoded_user_identifier,
 service_identifier,
 db_challenge.transaction_id,
 challenge)
 attributes = {"img": create_img(authurl, width=250),
 "value": authurl,
 "poll": True,
 "hideResponseInput": True}

 return True, message, db_challenge.transaction_id, attributes

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/questionnairetoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.questionnairetoken

-*- coding: utf-8 -*-
#
http://www.privacyidea.org
2015-12-16 Initial writeup.
Cornelius Kölbel <cornelius@privacyidea.org>
#
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """The questionnaire token is a challenge response token.
The user can define a set of answers to questions. Within the challenge the
user is asked one of these questions and can respond with the corresponding
answer.
"""

from privacyidea.api.lib.utils import getParam
from privacyidea.lib.config import get_from_config
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.error import TokenAdminError
import logging
from privacyidea.models import Challenge
from privacyidea.lib.challenge import get_challenges
from privacyidea.lib import _
from privacyidea.lib.decorators import check_token_locked
import random
import json

log = logging.getLogger(__name__)
optional = True
required = False
DEFAULT_NUM_ANSWERS = 5

[docs]class QuestionnaireTokenClass(TokenClass):

 """
 This is a Questionnaire Token. The token stores a list of questions and
 answers in the tokeninfo database table. The answers are encrypted.
 During authentication a random answer is selected and presented as
 challenge.
 The user has to remember and pass the right answer.
 """

 @staticmethod
[docs] def get_class_type():
 """
 Returns the internal token type identifier
 :return: qust
 :rtype: basestring
 """
 return "question"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: QUST
 :rtype: basestring
 """
 return "QUST"

 @classmethod
 @log_with(log)
[docs] def get_class_info(cls, key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': cls.get_class_type(),
 'title': 'Questionnaire Token',
 'description': _('Questionnaire: Enroll Questions for the '
 'user.'),
 'init': {},
 'config': {},
 'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': ["admin", "user"],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new QUST Token object from a database token

 :param db_token: instance of the orm db object
 :type db_token: DB object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(self.get_class_type())
 self.hKeyRequired = False

[docs] def update(self, param):
 """
 This method is called during the initialization process.

 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 j_questions = getParam(param, "questions", required)
 try:
 # If we have a string, we load the json format
 questions = json.loads(j_questions)
 except TypeError:
 # Obviously we have a dict...
 questions = j_questions
 num_answers = get_from_config("question.num_answers",
 DEFAULT_NUM_ANSWERS)
 if len(questions) < int(num_answers):
 raise TokenAdminError(_("You need to provide at least %s "
 "answers.") % num_answers)
 # Save all questions and answers and encrypt them
 for question, answer in questions.iteritems():
 self.add_tokeninfo(question, answer, value_type="password")
 TokenClass.update(self, param)

[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 The questionnaire token is always a challenge response token.
 The challenge is triggered by providing the PIN as the password.

 :param passw: password, which might be pin or pin+otp
 :type passw: string
 :param user: The user from the authentication request
 :type user: User object
 :param options: dictionary of additional request parameters
 :type options: dict

 :return: true or false
 :rtype: bool
 """
 request_is_challenge = False
 options = options or {}
 pin_match = self.check_pin(passw, user=user, options=options)
 return pin_match

[docs] def create_challenge(self, transactionid=None, options=None):
 """
 This method creates a challenge, which is submitted to the user.
 The submitted challenge will be preserved in the challenge
 database.

 The challenge is a randomly selected question of the available
 questions for this token.

 If no transaction id is given, the system will create a transaction
 id and return it, so that the response can refer to this transaction.

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :type options: dict
 :return: tuple of (bool, message, transactionid, attributes)
 :rtype: tuple

 The return tuple builds up like this:
 ``bool`` if submit was successful;
 ``message`` which is displayed in the JSON response;
 additional ``attributes``, which are displayed in the JSON response.
 """
 options = options or {}

 # Get a random question
 questions = []
 tinfo = self.get_tokeninfo()
 for question, answer in tinfo.iteritems():
 if question.endswith(".type") and answer == "password":
 # This is "Question1?.type" of type "password"
 # So this is actually a question and we add the question to
 # the list
 questions.append(question.strip(".type"))
 message = random.choice(questions)
 attributes = None

 validity = int(get_from_config('DefaultChallengeValidityTime', 120))
 tokentype = self.get_tokentype().lower()
 # Maybe there is a QUESTIONChallengeValidityTime...
 lookup_for = tokentype.capitalize() + 'ChallengeValidityTime'
 validity = int(get_from_config(lookup_for, validity))

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=transactionid,
 challenge=message,
 validitytime=validity)
 db_challenge.save()
 self.challenge_janitor()
 return True, message, db_challenge.transaction_id, attributes

[docs] def check_answer(self, given_answer, challenge_object):
 """
 Check if the given answer is the answer to the sent question.
 The question for this challenge response was stored in the
 challenge_object.

 Then we get the answer from the tokeninfo.

 :param given_answer: The answer given by the user
 :param challenge_object: The challenge object as stored in the database
 :return: in case of success: 1
 """
 res = -1
 question = challenge_object.challenge
 answer = self.get_tokeninfo(question)
 if answer == given_answer:
 res = 1
 else:
 log.debug("The answer for token {0!s} does not match.".format(
 self.get_serial()))
 return res

 @check_token_locked
[docs] def check_challenge_response(self, user=None, passw=None, options=None):
 """
 This method verifies if there is a matching question for the given
 passw and also verifies if the answer is correct.

 It then returns the the otp_counter = 1

 :param user: the requesting user
 :type user: User object
 :param passw: the password - in fact it is the answer to the question
 :type passw: string
 :param options: additional arguments from the request, which could
 be token specific. Usually "transaction_id"
 :type options: dict
 :return: return otp_counter. If -1, challenge does not match
 :rtype: int
 """
 options = options or {}
 otp_counter = -1

 # fetch the transaction_id
 transaction_id = options.get('transaction_id')
 if transaction_id is None:
 transaction_id = options.get('state')

 # get the challenges for this transaction ID
 if transaction_id is not None:
 challengeobject_list = get_challenges(serial=self.token.serial,
 transaction_id=transaction_id)

 for challengeobject in challengeobject_list:
 if challengeobject.is_valid():
 # challenge is still valid
 otp_counter = self.check_answer(passw, challengeobject)
 if otp_counter >= 0:
 # We found the matching challenge, so lets return the
 # successful result and delete the challenge object.
 challengeobject.delete()
 break
 else:
 # increase the received_count
 challengeobject.set_otp_status()

 self.challenge_janitor()
 return otp_counter

 @staticmethod
[docs] def get_setting_type(key):
 """
 The setting type of questions is public, so that the user can also
 read the questions.

 :param key: The key of the setting
 :return: "public" string
 """
 if key.startswith("question.question."):
 return "public"

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

_modules/privacyidea/lib/tokens/ocratoken.xhtml

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		privacyIDEA 2.21.1 documentation »

 		Module code »

 Source code for privacyidea.lib.tokens.ocratoken

-*- coding: utf-8 -*-
#
http://www.privacyidea.org
2017-08-29 Cornelis Kölbel <cornelius.koelbel@netknights.it>
Initial implementation of OCRA base token
#
#
This code is free software; you can redistribute it and/or
modify it under the terms of the GNU AFFERO GENERAL PUBLIC LICENSE
License as published by the Free Software Foundation; either
version 3 of the License, or any later version.
#
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU AFFERO GENERAL PUBLIC LICENSE for more details.
#
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__doc__ = """
The OCRA token is the base OCRA functionality. Usually it is created by
importing a CSV or PSKC file.

This code is tested in tests/test_lib_tokens_tiqr.
"""

from privacyidea.api.lib.utils import getParam
from privacyidea.lib.config import get_from_config
from privacyidea.lib.tokenclass import TokenClass
from privacyidea.lib.log import log_with
from privacyidea.lib.utils import generate_otpkey
from privacyidea.lib.utils import create_img
import logging
from privacyidea.lib.token import get_tokens
from privacyidea.lib.error import ParameterError
from privacyidea.models import Challenge
from privacyidea.lib.user import get_user_from_param
from privacyidea.lib.tokens.ocra import OCRASuite, OCRA
from privacyidea.lib.challenge import get_challenges
from privacyidea.models import cleanup_challenges
from privacyidea.lib import _
from privacyidea.lib.policydecorators import challenge_response_allowed
from privacyidea.lib.decorators import check_token_locked
from privacyidea.lib.crypto import get_alphanum_str
import hashlib
import binascii

OCRA_DEFAULT_SUITE = "OCRA-1:HOTP-SHA1-8:QH40"

log = logging.getLogger(__name__)
optional = True
required = False

[docs]class OcraTokenClass(TokenClass):
 """
 The OCRA Token Implementation
 """

 @staticmethod
[docs] def get_class_type():
 """
 Returns the internal token type identifier
 :return: ocra
 :rtype: basestring
 """
 return "ocra"

 @staticmethod
[docs] def get_class_prefix():
 """
 Return the prefix, that is used as a prefix for the serial numbers.
 :return: OCRA
 :rtype: basestring
 """
 return "OCRA"

 @staticmethod
 @log_with(log)
[docs] def get_class_info(key=None, ret='all'):
 """
 returns a subtree of the token definition

 :param key: subsection identifier
 :type key: string
 :param ret: default return value, if nothing is found
 :type ret: user defined
 :return: subsection if key exists or user defined
 :rtype: dict or scalar
 """
 res = {'type': 'ocra',
 'title': 'OCRA Token',
 'description': _('OCRA: Enroll an OCRA token.'),
 'init': {},
 'config': {},
 #'user': ['enroll'],
 # This tokentype is enrollable in the UI for...
 'ui_enroll': [],
 'policy': {},
 }

 if key:
 ret = res.get(key, {})
 else:
 if ret == 'all':
 ret = res
 return ret

 @log_with(log)
 def __init__(self, db_token):
 """
 Create a new OCRA Token object from a database object

 :param db_token: instance of the orm db object
 :type db_token: DB object
 """
 TokenClass.__init__(self, db_token)
 self.set_type(u"ocra")
 self.hKeyRequired = False

[docs] def update(self, param):
 """
 This method is called during the initialization process.

 :param param: parameters from the token init
 :type param: dict
 :return: None
 """
 user_object = get_user_from_param(param, optional)
 if user_object:
 self.set_user(user_object)

 ocrasuite = getParam(param, "ocrasuite", default=OCRA_DEFAULT_SUITE)
 OCRASuite(ocrasuite)
 self.add_tokeninfo("ocrasuite", ocrasuite)
 TokenClass.update(self, param)

 if user_object:
 # We have to set the realms here, since the token DB object does not
 # have an ID before TokenClass.update.
 self.set_realms([user_object.realm])

 @log_with(log)
[docs] def is_challenge_request(self, passw, user=None, options=None):
 """
 check, if the request would start a challenge
 In fact every Request that is not a response needs to start a
 challenge request.

 At the moment we do not think of other ways to trigger a challenge.

 This function is not decorated with
 @challenge_response_allowed
 as the OCRA token is always a challenge response token!

 :param passw: The PIN of the token.
 :param options: dictionary of additional request parameters

 :return: returns true or false
 """
 options = options or {}
 return self.check_pin(passw, user=user, options=options)

[docs] def create_challenge(self, transactionid=None, options=None):
 """
 This method creates a challenge, which is submitted to the user.
 The submitted challenge will be preserved in the challenge
 database.

 If no transaction id is given, the system will create a transaction
 id and return it, so that the response can refer to this transaction.

 :param transactionid: the id of this challenge
 :param options: the request context parameters / data
 :type options: dict
 :return: tuple of (bool, message, transactionid, attributes)
 :rtype: tuple

 The return tuple builds up like this:
 ``bool`` if submit was successful;
 ``message`` which is displayed in the JSON response;
 additional ``attributes``, which are displayed in the JSON response.
 """
 options = options or {}
 message = 'Please answer the challenge'
 attributes = {}

 # Get ValidityTime=120s. Maybe there is a OCRAChallengeValidityTime...
 validity = int(get_from_config('DefaultChallengeValidityTime', 120))
 tokentype = self.get_tokentype().lower()
 lookup_for = tokentype.capitalize() + 'ChallengeValidityTime'
 validity = int(get_from_config(lookup_for, validity))

 # Get the OCRASUITE from the token information
 ocrasuite = self.get_tokeninfo("ocrasuite") or OCRA_DEFAULT_SUITE

 challenge = options.get("challenge")
 # TODO: we could add an additional parameter to hash the challenge
 # cleartext -> sha1
 if not challenge:
 # If no challenge is given in the Request, we create a random
 # challenge based on the OCRA-SUITE
 os = OCRASuite(ocrasuite)
 challenge = os.create_challenge()
 else:
 # Add a random challenge
 if options.get("addrandomchallenge"):
 challenge += get_alphanum_str(int(options.get(
 "addrandomchallenge")))
 attributes["original_challenge"] = challenge
 attributes["qrcode"] = create_img(challenge)
 if options.get("hashchallenge", "").lower() == "sha256":
 challenge = binascii.hexlify(hashlib.sha256(challenge).digest())
 elif options.get("hashchallenge", "").lower() == "sha512":
 challenge = binascii.hexlify(hashlib.sha512(challenge).digest())
 elif options.get("hashchallenge"):
 challenge = binascii.hexlify(hashlib.sha1(challenge).digest())

 # Create the challenge in the database
 db_challenge = Challenge(self.token.serial,
 transaction_id=None,
 challenge=challenge,
 data=None,
 session=None,
 validitytime=validity)
 db_challenge.save()

 attributes["challenge"] = challenge

 return True, message, db_challenge.transaction_id, attributes

[docs] def verify_response(self, passw=None, challenge=None):
 """
 This method verifies if the *passw* is the valid OCRA response to the
 challenge.
 In case of success we return a value > 0

 :param passw: the password (pin+otp)
 :type passw: string
 :return: return otp_counter. If -1, challenge does not match
 :rtype: int
 """
 ocrasuite = self.get_tokeninfo("ocrasuite")
 security_object = self.token.get_otpkey()
 ocra_object = OCRA(ocrasuite, security_object=security_object)
 # TODO: We might need to add additional Signing or Counter objects
 r = ocra_object.check_response(passw, question=challenge)
 return r

 @check_token_locked
[docs] def check_challenge_response(self, user=None, passw=None, options=None):
 """
 This function checks, if the challenge for the given transaction_id
 was marked as answered correctly.
 For this we check the otp_status of the challenge with the
 transaction_id in the database.

 We do not care about the password

 :param user: the requesting user
 :type user: User object
 :param passw: the password (pin+otp)
 :type passw: string
 :param options: additional arguments from the request, which could
 be token specific. Usually "transaction_id"
 :type options: dict
 :return: return otp_counter. If -1, challenge does not match
 :rtype: int
 """
 options = options or {}
 otp_counter = -1

 # fetch the transaction_id
 transaction_id = options.get('transaction_id')
 if transaction_id is None:
 transaction_id = options.get('state')

 # get the challenges for this transaction ID
 if transaction_id is not None:
 challengeobject_list = get_challenges(serial=self.token.serial,
 transaction_id=transaction_id)

 for challengeobject in challengeobject_list:
 # check if we are still in time.
 if challengeobject.is_valid():
 if self.verify_response(passw, challengeobject.challenge):
 # create a positive response
 otp_counter = 1
 # delete the challenge
 challengeobject.delete()
 break

 return otp_counter

 © Copyright 2014-2017, Cornelius Kölbel.
 Created using Sphinx 1.4.6.

